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Motivation

Question
How do we compute rational points on (hyperelliptic) curves?

That is, given a (hyperelliptic) curve X defined over Q, how do
we compute X(Q)?

Can we make this algorithmic?
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Example 1: Can we compute X(Q)?
Consider X with affine equation

y2 = 82342800x6 − 470135160x5 + 52485681x4 + 2396040466x3+

567207969x2 − 985905640x + 247747600.

It has at least 642 rational points*, with x-coordinates:
0, -1, 1/3, 4, -4, -3/5, -5/3, 5, 6, 2/7, 7/4, 1/8, -9/5, 7/10, 5/11, 11/5, -5/12, 11/12, 5/12, 13/10, 14/9, -15/2, -3/16, 16/15, 11/18, -19/12, 19/5, -19/11,
-18/19, 20/3, -20/21, 24/7, -7/24, -17/28, 15/32, 5/32, 33/8, -23/33, -35/12, -35/18, 12/35, -37/14, 38/11, 40/17, -17/40, 34/41, 5/41, 41/16, 43/9, -47/4,
-47/54, -9/55, -55/4, 21/55, -11/57, -59/15, 59/9, 61/27, -61/37, 62/21, 63/2, 65/18, -1/67, -60/67, 71/44, 71/3, -73/41, 3/74, -58/81, -41/81, 29/83, 19/83,
36/83, 11/84, 65/84, -86/45, -84/89, 5/89, -91/27, 92/21, 99/37, 100/19, -40/101, -32/101, -104/45, -13/105, 50/111, -113/57, 115/98, -115/44, 116/15,
123/34, 124/63, 125/36, 131/5, -64/133, 135/133, 35/136, -139/88, -145/7, 101/147, 149/12, -149/80, 75/157, -161/102, 97/171, 173/132, -65/173,
-189/83, 190/63, 196/103, -195/196, -193/198, 201/28, 210/101, 227/81, 131/240, -259/3, 265/24, 193/267, 19/270, -279/281, 283/33, -229/298,
-310/309, 174/335, 31/337, 400/129, -198/401, 384/401, 409/20, -422/199, -424/33, 434/43, -415/446, 106/453, 465/316, -25/489, 490/157, 500/317,
-501/317, -404/513, -491/516, 137/581, 597/139, -612/359, 617/335, -620/383, -232/623, 653/129, 663/4, 583/695, 707/353, -772/447, 835/597,
-680/843, 853/48, 860/697, 515/869, -733/921, -1049/33, -263/1059, -1060/439, 1075/21, -1111/30, 329/1123, -193/1231, 1336/1033, 321/1340,
1077/1348, -1355/389, 1400/11, -1432/359, -1505/909, 1541/180, -1340/1639, -1651/731, -1705/1761, -1757/1788, -1456/1893, -235/1983, -1990/2103,
-2125/84, -2343/635, -2355/779, 2631/1393, -2639/2631, 396/2657, 2691/1301, 2707/948, -164/2777, -2831/508, 2988/43, 3124/395, -3137/3145,
-3374/303, 3505/1148, 3589/907, 3131/3655, 3679/384, 535/3698, 3725/1583, 3940/939, 1442/3981, 865/4023, 2601/4124, -2778/4135, 1096/4153,
4365/557, -4552/2061, -197/4620, 4857/1871, 1337/5116, 5245/2133, 1007/5534, 1616/5553, 5965/2646, 6085/1563, 6101/1858, -5266/6303,
-4565/6429, 6535/1377, -6613/6636, 6354/6697, -6908/2715, -3335/7211, 7363/3644, -4271/7399, -2872/8193, 2483/8301, -8671/3096, -6975/8941,
9107/6924, -9343/1951, -9589/3212, 10400/373, -8829/10420, 10511/2205, 1129/10836, 675/11932, 8045/12057, 12945/4627, -13680/8543, 14336/243,
-100/14949, -15175/8919, 1745/15367, 16610/16683, 17287/16983, 2129/18279, -19138/1865, 19710/4649, -18799/20047, -20148/1141, -20873/9580,
21949/6896, 21985/6999, 235/25197, 16070/26739, 22991/28031, -33555/19603, -37091/14317, -2470/39207, 40645/6896, 46055/19518,
-46925/11181, -9455/47584, 55904/8007, 39946/56827, -44323/57516, 15920/59083, 62569/39635, 73132/13509, 82315/67051, -82975/34943,
95393/22735, 14355/98437, 15121/102391, 130190/93793, -141665/55186, 39628/153245, 30145/169333, -140047/169734, 61203/171017,
148451/182305, 86648/195399, -199301/54169, 11795/225434, -84639/266663, 283567/143436, -291415/171792, -314333/195860, 289902/322289,
405523/327188, -342731/523857, 24960/630287, -665281/83977, -688283/82436, 199504/771597, 233305/795263, -799843/183558, -867313/1008993,
1142044/157607, 1399240/322953, -1418023/463891, 1584712/90191, 726821/2137953, 2224780/807321, -2849969/629081, -3198658/3291555,
675911/3302518, -5666740/2779443, 1526015/5872096, 13402625/4101272, 12027943/13799424, -71658936/86391295, 148596731/35675865,
58018579/158830656, 208346440/37486601, -1455780835/761431834, -3898675687/2462651894

Is this list complete?
*Computed by Noam Elkies and Michael Stoll in 2008.
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Example 2: A question about triangles

We say a rational triangle is one with sides of rational lengths.

Question
Does there exist a rational right triangle and a rational isosceles
triangle that have the same perimeter and the same area?

This feels like a very classical question but the answer is
surprising – this was the result of work by Y. Hirakawa and H.
Matsumura in 2018.
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A question about triangles

Assume that there exists such a pair of triangles (rational right
triangle, rational isosceles triangle). By rescaling both of the
given triangles, we may assume their lengths are

(k(1 + t2), k(1 − t2), 2kt) and ((1 + u2), (1 + u2), 4u),

respectively, for some rational numbers 0 < t, u < 1, k > 0.

k(1 − t2)

k(1 + t2)2kt (1 + u2) (1 + u2)

2u

(1 − u2)

2u
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A question about triangles

Given side lengths of

(k(1 + t2), k(1 − t2), 2kt) and ((1 + u2), (1 + u2), 4u),

by comparing perimeters and areas, we have

k + kt = 1 + 2u + u2 and k2t(1 − t2) = 2u(1 − u2).

By a change of coordinates, this is equivalent to studying
rational points on the genus 2 curve given by

X : y2 = (3x3 + 2x2 − 6x + 4)2 − 8x6.

Jennifer Balakrishnan, Boston University Explicit p-adic integration on curves 5



A question about triangles

So we consider the rational points on

X : y2 = (3x3 + 2x2 − 6x + 4)2 − 8x6.

The Chabauty–Coleman bound tells us that

|X(Q)| 6 10.

We find the points

(0,±4), (1,±1), (2,±8), (12/11,±868/113),∞±
in X(Q). We’ve found 10 points!
So we have provably determined X(Q).

And (12/11, 868/113) gives rise to a pair of triangles.
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A question about triangles: answer

Theorem
(Hirakawa–Matsumura,
2018)
Up to similitude, there exists a
unique pair of a rational right
triangle and a rational isosceles
triangle that have the same
perimeter and the same area. The
unique pair consists of the right
triangle with sides of lengths
(377, 135, 352) and the isosceles
triangle with sides of lengths
(366, 366, 132).

Yoshinosuke Hirakawa and Hideki Matsumura
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Chabauty–Coleman

What allows us to compute X(Q) in the previous example?

I Used the Chabauty–Coleman bound that, for this curve,
implied |X(Q)| 6 10:

I Crucial hypothesis: satisfying an inequality between the
genus of the curve X and the rank of the Mordell-Weil
group of its Jacobian J(Q)

I Theorem: work of Chabauty and Coleman
I ...and a bit of luck!
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The Chabauty–Coleman method
In 1985, Coleman observed that one could make the following
theorem of Chabauty effective:

Theorem (Chabauty, ’41)
Let X be a curve of genus g > 2 over Q. Suppose the Mordell-Weil
rank r of J(Q) is less than g. Then X(Q) is finite.
Coleman did this by translating it in terms of p-adic (Coleman)
integrals of regular 1-forms.

We have

X(Q) ⊂ X(Qp)1 :=

{
z ∈ X(Qp) :

∫ z

b
ω = 0

}
for a Coleman integral

∫∗
b ω, withω ∈ H0(XQp ,Ω1).

To carry out the method, we compute an annihilating
differentialω and then calculate the finite set of p-adic points
X(Qp)1. This works very well in practice, and in general, uses
the explicit computation of Coleman integrals.

Jennifer Balakrishnan, Boston University Explicit p-adic integration on curves 9
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Coleman integration
Coleman integrals are p-adic line integrals.

P
P’ Q’

“Tiny” integral?

p-adic line integration is difficult – how do we construct the
correct path?
I We can construct local (“tiny”) integrals easily, but

extending them to the entire space is challenging.
I Coleman’s solution: analytic continuation along Frobenius,

giving rise to a theory of p-adic line integration satisfying
the usual nice properties: linearity, additivity, change of
variables, fundamental theorem of calculus.

I Idea: compute action of Frobenius on appropriate basis
differentials, reduce back to the basis using relations in
cohomology, and integrate by solving a linear system.
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Notation and setup

I X: genus g hyperelliptic curve (of the form y2 = f (x), f
monic of degree 2g + 1) over K = Qp

I p: prime of good reduction
I X: special fibre of X
I Xan

Cp
: generic fibre of X (as a rigid analytic space)

Jennifer Balakrishnan, Boston University Explicit p-adic integration on curves 11



Notation and setup, in pictures
I There is a natural reduction map

from Xan
Cp

to X; the inverse image

of any point of X is a subspace of
Xan

Cp
isomorphic to an open unit

disk. We call such a disk a residue
disk of X.

I A wide open subspace of Xan
Cp

is the
complement in Xan

Cp
of the union

of a finite collection of disjoint
closed disks of radius λi < 1:

1
λ2

λ1

1

Xan

Cp

red

red (P)-1

        X

P

S

R

red (S)-1

red (R)-1
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Warm-up: Computing “tiny” integrals
We refer to any Coleman integral of the form

∫Q
P ω in which

P, Q lie in the same residue disk (so P ≡ Q (mod p)) as a tiny
integral. To compute such an integral:
I Construct a linear interpolation from P to Q. For instance,

in a non-Weierstrass residue disk, we may take

x(t) = (1 − t)x(P) + tx(Q)

y(t) =
√

f (x(t)),

where y(t) is expanded as a formal power series in t.
I Formally integrate the power series in t:

∫Q

P
ω =

∫ 1

0
ω(x(t), y(t)) dt.

P
Q

Jennifer Balakrishnan, Boston University Explicit p-adic integration on curves 13



Properties of the Coleman integral
Coleman formulated an integration theory on wide open
subspaces of curves over O.
This allows us to define

∫Q
P ωwheneverω is a meromorphic

1-form on X, and P, Q ∈ X(Qp) are points whereω is
holomorphic.
Properties of the Coleman integral include:

Theorem (Coleman)

I Linearity:
∫Q

P (αω1 + βω2) = α
∫Q

P ω1 + β
∫Q

P ω2.

I Additivity:
∫R

P ω =
∫Q

P ω+
∫R

Qω.
I Change of variables: if X ′ is another such curve, and f : U→ U ′

is a rigid analytic map between wide opens, then∫Q
P f ∗ω =

∫f(Q)
f(P) ω.

I Fundamental theorem of calculus:
∫Q

P df = f (Q) − f (P).

Jennifer Balakrishnan, Boston University Explicit p-adic integration on curves 14
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subspaces of curves over O.
This allows us to define
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Coleman’s construction

How do we integrate if P, Q aren’t in the same residue disk?
Coleman’s key idea: use Frobenius to move between different
residue disks (Dwork’s “analytic continuation along
Frobenius”)

P
P’

Q
Q’

“Tiny” integral

Frobenius

So we need to calculate the action of Frobenius on differentials.
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From zeta functions to Coleman integrals

p-adic algorithms for computing zeta functions (i.e., computing
action of Frobenius on p-adic cohomology) can be used to
compute Coleman integrals:
I One fast way of computing zeta functions of hyperelliptic

curves over finite fields is Kedlaya’s algorithm (2001).
I Kedlaya’s algorithm can be recast into an algorithm for

computing Coleman integrals (B.–Bradshaw–Kedlaya
2010).

I Long-term goals: adapt generalizations of Kedlaya’s
algorithm to give Coleman integration algorithms in
various new contexts.
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The big picture*

Kedlaya

Jennifer Balakrishnan, Boston University Explicit p-adic integration on curves 17



The big picture*

Castryck–Denef–Vercauteren,
Gaudry–Gurel, Hubrechts, Lauder,

Tuitman
KedlayaMore curves, families
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Gaudry–Gurel, Hubrechts, Lauder,
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Kedlaya

faster: Õ(p1/2)

More curves, families

Coleman integration,
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And more: “even faster” via average polynomial time (Harvey),
iterated Coleman integration (B.), higher-dimensional varieties
(Costa-Harvey-Kedlaya), . . .
*With many thanks to Alex Best for this diagram
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From zeta functions to Coleman integrals

So we will first discuss how to compute Coleman integrals on
hyperelliptic curves (B.–Bradshaw–Kedlaya from Kedlaya) and
then mention two related results:
I extending this to general curves (B.–Tuitman)
I how Harvey’s adaptation of Kedlaya’s algorithm can be

used to give faster Coleman integration for large p (Best)
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Recall: Coleman’s construction

How do we integrate if P, Q aren’t in the same residue disk?
Coleman’s key idea: use Frobenius to move between different
residue disks (Dwork’s “analytic continuation along
Frobenius”)

P
P’

Q
Q’

“Tiny” integral

Frobenius

So we need to calculate the action of Frobenius on differentials.
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Frobenius, MW-cohomology
I X ′: affine curve (X − {Weierstrass points of X })
I A: coordinate ring of X ′

To discuss the differentials we will be integrating, we recall:
The Monsky-Washnitzer (MW) weak completion of A is the ring A†

consisting of infinite sums of the form{ ∞∑
i=−∞

Bi(x)
yi , Bi(x) ∈ K[x], deg Bi 6 2g

}
,

further subject to the condition that vp(Bi(x)) grows faster than
a linear function of i as i→ ±∞. We make a ring out of these
using the relation y2 = f (x).
These functions are holomorphic on wide opens, so we will
integrate 1-forms

ω = g(x, y)
dx
2y

, g(x, y) ∈ A†.
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Using the basis differentials

Any odd differentialω = h(x, y) dx
2y , h(x, y) ∈ A† can be written as

ω = dfω + c0ω0 + · · ·+ c2g−1ω2g−1,

where fω ∈ A†, ci ∈ Qp and

ωi =
xi dx
2y

(i = 0, . . . , 2g − 1).

The set {ωi}
2g−1
i=0 forms a basis of the odd part of the de Rham

cohomology of A†.

By linearity and the fundamental theorem of calculus, we
reduce the integration ofω to the integration of theωi.
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Some notation and setup

Let φ denote a lift of p-power Frobenius:
I On a hyperelliptic curve y2 = f (x),

φ : (x, y) 7→ (xp,
√

f (xp)).

I A Teichmüller point of X is a point P fixed by Frobenius:
φ(P) = P.
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Integrals between points in different residue disks

One way to compute Coleman integrals
∫Q

P ωi:
I Find the Teichmüller points P ′, Q ′ in the residue disks of

P, Q.

I Use Frobenius to compute
∫Q ′

P ′ ωi.
I Use additivity in endpoints to recover the integral:∫Q

P ωi =
∫P ′

P ωi +
∫Q ′

P ′ ωi +
∫Q

Q ′ ωi.
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The Frobenius step (Kedlaya’s algorithm)
We have a p-power lift of Frobenius φ on A†:

φ(x) = xp,

φ(y) =
√

f (xp) = yp
(

1 +
f (xp) − f (x)p

f (x)p

)1/2

= yp
∞∑

i=0

(
1/2

i

)
(f (xp) − f (x)p)i

y2pi .

Now we use it on H1
MW(X ′)−; letωi =

xidx
2y .

φ∗ (ωi) = φ
∗
(

xidx
2y

)
Then

φ∗ (ωi) = dfi +
2g−1∑
j=0

Mijωj

for some fi ∈ A† and some 2g× 2g matrix M.

*p-adic magic: the dfi come from appropriate linear
combinations of d(xkyj) and d(y2 = f (x)).
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Frobenius and Coleman integrals
(B.–Bradshaw–Kedlaya)

I Use Kedlaya’s algorithm to calculate the action of
Frobenius φ on each basis differential, letting

φ∗ωi = dfi +
2g−1∑
j=0

Mijωj.

I Compute
∫Q ′

P ′ ωj by solving a linear system
I As the eigenvalues of the matrix M are algebraic integers of

C-norm p1/2 , 1 , the matrix M − I is invertible, and we
may solve the system to obtain the integrals

∫Q ′
P ′ ωi.
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C-norm p1/2 , 1 , the matrix M − I is invertible, and we
may solve the system to obtain the integrals

∫Q ′
P ′ ωi.
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Integrating from a Weierstrass residue disk

Suppose we want to integrate from P = (a, 0), a Weierstrass
point on X.
I In the previous algorithm, one step is evaluation of fi on

the endpoints of integration.
I But fi, as an element of

A† =
{∑∞

i=−∞ Bi(x)
yi , Bi(x) ∈ K[x], deg Bi 6 2g

}
need not

converge at P.
I However, fi does converge at any point R near the

boundary of the disk, i.e., in the complement of a certain
smaller disk which can be bounded explicitly.

I We break up the path as
∫Q

P ωi =
∫R

P ωi +
∫Q

R ωi for a
suitable “near-boundary point” R in the disk of P: that is,
we evaluate

∫Q
R ω using Frobenius, then compute

∫R
P ω as a

tiny integral.
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Implementation: Coleman integration for
hyperelliptic curves

I Coleman integration for hyperelliptic curves over Qp is in
SageMath (B.–Bradshaw–Kedlaya).

I This uses extensive work of David Roe and others in
developing the p-adics in SageMath.

R.<x> = QQ[]

X = HyperellipticCurve(xˆ5-2*xˆ3+x+1/4)

p = 3

K = Qp(p,15)

XK = X.change_ring(K)

XK.coleman_integrals_on_basis(XK(0,1/2),XK(-1,-1/2)) #basis is {xˆi*dx/(2y)}, i = 0,...,3

(3 + 3ˆ2 + 3ˆ4 + 3ˆ5 + 2*3ˆ6 + 2*3ˆ7 + 2*3ˆ8 + 3ˆ10 + O(3ˆ11),

2 + 2*3 + 2*3ˆ3 + 3ˆ4 + 3ˆ6 + 2*3ˆ8 + 2*3ˆ9 + O(3ˆ10),

2*3ˆ-1 + 2*3 + 2*3ˆ2 + 3ˆ3 + 3ˆ5 + 3ˆ6 + 3ˆ7 + O(3ˆ9),

2*3ˆ-2 + 3ˆ-1 + 2 + 2*3 + 3ˆ2 + 2*3ˆ3 + 3ˆ4 + 2*3ˆ5 + 2*3ˆ6 + 2*3ˆ7 + O(3ˆ8))
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Coleman integration for smooth curves

Best Best

B.–Tuitman , Bianchi
B.–Bradshaw–Kedlaya,

Mazur–Stein–Tate,
B.–Besser

Minzlaff,
Arul–Best–Costa–Magner–Triantafillou Harvey

Castryck–Denef–Vercauteren,
Gaudry–Gurel, Hubrechts, Lauder,

Tuitman
Kedlaya

faster: Õ(p1/2)

More curves, families

Coleman integration,
p-adic heights
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Dictionary: from Kedlaya to Tuitman
A comparison of two zeta function algorithms:

algorithm Kedlaya (2001) Tuitman (2014, 2015)
curve X/Q hyperelliptic smooth

cohomology Monsky-Washnitzer rigid
basis of H1(X) ωi =

xidx
2y ωi = it’s complicated*

Frobenius lift φ φ : x→ xp

reduction in H1(X) linear algebra reducing pole order**
output φ∗ωi = dfi +

∑2g−1
j=0 Mijωj

*Main idea: use a map x : X→ P1 to represent functions and
1-forms on X and then choose a particularly simple Frobenius
lift that sends x→ xp

**In Tuitman’s algorithm, the goal is the same, but it’s worth noting that the linear algebra uses ideas from Lauder’s
fibration method.
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Implementation: Coleman integration for curves

I Coleman integration for smooth curves over Qp is
available as a Magma package (B.–Tuitman) on GitHub.

> load "coleman.m";

> Q:=yˆ3 - (xˆ5 - 2*xˆ4 - 2*xˆ3 - 2*xˆ2 - 3*x);

> p:=7;

> N:=20;

> data:=coleman_data(Q,p,N);

> P1:=set_point(1,-2,data);

> P2:=set_point(0,0,data);

IP1P2,N2:=coleman_integrals_on_basis(P1,P2,data:e:=50);

> IP1P2;

(12586493*7 + O(7ˆ10) 19221514*7 + O(7ˆ10) -19207436*7 + O(7ˆ10)

-10636635*7 + O(7ˆ10) 128831118 + O(7ˆ10) 67444962 + O(7ˆ10)

-23020322 + O(7ˆ10) 401602170*7ˆ-1 + O(7ˆ10))
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Fast Coleman integration for superelliptic curves

Best Best

B.–Tuitman, Bianchi
B.–Bradshaw–Kedlaya,

Mazur–Stein–Tate,
B.–Besser

Minzlaff,
Arul–Best–Costa–Magner–Triantafillou Harvey

Castryck–Denef–Vercauteren,
Gaudry–Gurel, Hubrechts, Lauder,

Tuitman
Kedlaya

faster: Õ(p1/2)

More curves, families

Coleman integration,
p-adic heights
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From Kedlaya to Harvey
I Kedlaya’s algorithm gives that the action of φ∗ on

H1
MW(X ′)− can be computed in time Õ(p), where φ denotes

a p-power lift of Frobenius.
I Harvey showed that if p > (2g + 1)(2N − 1), then the action

of φ∗ on H1
MW(X ′)− can be computed in time Õ(p1/2).

For both zeta function algorithms, what is essential is finding M
such that

φ∗(ωi) = dfi +
∑

j

Mijωj;

in particular, they do not need dfi. However for Coleman
integration, we need the fi. In Kedlaya’s algorithm, the
reduction process at each step constructs fi: if we subtract dg for
a monomial g to reduce the pole order of φ∗(ωi), then

fi := fi + g.
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Harvey’s modifications

I Harvey structures the reductions and keeps track of
“horizontal” reductions (lowering degree in x) and
“vertical” reductions (lowering degree in y−1).

I He interprets these as linear recurrence relations in
cohomology.

I Work of Bostan–Gaudry–Schost gives a fast way to
compute a product of these reductions.
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From Harvey to Best
I If we subtract dg for a monomial g to reduce, need to keep

track of evaluation of g on points.
I But this is no longer linear in the reduction index and BGS

no longer applies!
I Trick: use Horner’s method to compute the evaluation of g:

instead of computing
∑N

i=0 aixi by computing sequentially(∑N
i=t aixi

)
t=N,N−1,...,0

, compute

((· · · ((aN)x + aN−1)x + · · · )x + a0)

from the inside to the out.
I This is an iterated composition of linear functions, each of

which is linear in the reduction index.
I Best uses this to give an Õ(p1/2) Coleman integration

algorithm for hyperelliptic and superelliptic curves.
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Implementation: fast Coleman integration

I Fast Coleman integration for superelliptic curves over
unramified extensions of Qp is available as a Julia/Nemo
package (Best) on GitHub.

I Nemo: a new system for computing in commutative
algebra, number theory and group theory that is based on
several low-level libraries such as MPIR, Flint, Arb, and
Antic (maintained by William Hart, Tommy Hofmann,
Claus Fieker, and Fredrik Johansson).
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Computing iterated integrals

These algorithms have natural generalizations to n-fold iterated
integrals:∫Q

P
ωn · · ·ω1 =

∫ 1

0

∫ t1

0
· · ·
∫ tn−1

0
fn(tn) · · · f1(t1) dtn · · · dt1.

We focus on the case n = 2 and discuss explicit double Coleman
integrals. Our convention:∫Q

P
ωiωj :=

∫Q

P
ωi(R)

∫R

P
ωj.

Jennifer Balakrishnan, Boston University Explicit p-adic integration on curves 36



Moving between different disks

As before, we can link integrals between non-Weierstrass
points via Frobenius.

To compute the integrals
∫Q

P ωiωk when P, Q are in different
disks:
I Compute Teichmüller points P ′, Q ′ in the disks of P, Q.

I Use Frobenius to calculate
∫Q ′

P ′ ωiωk.
I Recover the double integral:∫Q

P ωiωk =
∫Q ′

P ′ ωiωk −
∫P

P ′ ωiωk −
(∫Q

P ωi

)(∫P
P ′ ωk

)
−(∫Q ′

Q ωi

)(∫Q ′
P ′ ωk

)
+
∫Q

Q ′ ωiωk.
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Expanding Frobenius

Suppose P, Q are Teichmüller. We have∫Q

P
ωiωk =

∫φ(Q)

φ(P)
ωiωk
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Expanding Frobenius

Suppose P, Q are Teichmüller. We have∫Q

P
ωiωk =

∫Q

P
(φ∗ωi)(φ

∗ωk)
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Expanding Frobenius

Suppose P, Q are Teichmüller. We have

∫Q

P
ωiωk =

∫Q

P

dfi +
2g−1∑
j=0

Mijωj

dfk +
2g−1∑
j=0

Mkjωj
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The linear system
For all 0 6 i, k 6 2g − 1, define the constants cik:

cik =

∫Q

P
dfi(R)(fk(R)) − fk(P)(fi(Q) − fi(P))

+

∫Q

P

2g−1∑
j=0

Mijωj(R)(fk(R) − fk(P))

+ fi(Q)

∫Q

P

2g−1∑
j=0

Mkjωj −

∫Q

P
fi(R)(

2g−1∑
j=0

Mkjωj(R)).

Then
∫Q

P ω0ω0∫Q
P ω0ω1

...∫Q
P ω2g−1ω2g−1

 = (I4g2 − (Mt)⊗2)−1

 c00
...

c2g−1,2g−1

 .
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What else can Coleman integrals do?

I Kim’s nonabelian Chabauty method: extend
Chabauty–Coleman to higher rank curves by considering
iterated Coleman integrals

I Local p-adic heights on curves: hp(D1, D2) =
∫

D2
ωD1 , part

of a global p-adic height
I p-adic regulators

I’d love to discuss further applications!
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