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Maxwell’s Equations

The operator matrix

A :=



0 −∂z ∂y ∂t 0 0 0 0 0 0
∂z 0 −∂x 0 ∂t 0 0 0 0 0
−∂y ∂x 0 0 0 ∂t 0 0 0 0
0 0 0 ∂x ∂y ∂z 0 0 0 0
−∂t 0 0 0 −∂z ∂y −1 0 0 0
0 −∂t 0 ∂z 0 −∂x 0 −1 0 0
0 0 −∂t −∂y ∂x 0 0 0 −1 0
∂x ∂y ∂z 0 0 0 0 0 0 −1


acts on 3 components electrical field, 3 components magnetic
(pseudo-)field, 3 components electric current and a component
electric flux.
(constants := 1)
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Maxwell’s Equations
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Gaussian Distributions and Processes
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Gaussian Distribution on Rn
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Why is the Gaussian distribution so ubiquitous?
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Gaussian Distribution: Properties Viewed by a Bayesian

Theorem (first two moments/cumulants describe everything.)
The Gaussian distribution maximizes the entropy among all
probability distributions on Rn with fixed mean and (co)variance.

Maximum entropy prior (Jaynes)
Known/suspected mean and (co)variance: take Gaussian prior.

Corollaries (colloquial)
• uncorrelated =⇒ independent.
• Central limit theorem (iid random variables (finite mean and variance) average to a Gaussian).

• Closed under marginal distributions: drop the marginalized part
• Closed under conditional distributions:
µx1|x=a = µx1 +Σx1,xΣ

−1
x,x(a− µx)

Σx1,x2|x=a = Σx1,x2 − Σx1,xΣ
−1
x,xΣx,x2

• Sampling is possible: diagonalize covariance
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Gaussian Processes

Idea
Assume Gaussian function values of the regression function f .
Marginalization: only consider finitely many function evaluations.

x1

f(x1)

x2

f(x2)

x3

f(x3)

x4

f(x4)

density for f(x4)

Definition: Gaussian process
A distribution on functions s.t. the evaluations f(x1), . . . , f(xn) at
any x1, . . . , xn are (jointly) Gaussian.
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Characterizing Gaussian Processes

Gaussian distribution Gaussian process
1D finite dimensional

N (µ, σ2) N (µ,Σ) GP(µ(x), k(x1, x2))
mean mean vector mean function
µ µ µ(x)

variance covariance matrix covariance function
σ2 Σ k(x1, x2)

higher moments/cumulants irrelevant/zero

Set mean function to the constant zero function (normalize data).

It remains to. . .
. . . encode information in the covariance function.
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Covariance: Interdependence of Function Evaluations

C1: continuously differentiable
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Covariance: Interdependence of Function Evaluations

C2: twice continuously differentiable
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Covariance: Interdependence of Function Evaluations

C∞: smooth
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Kernel Cookbook

squared exponential σ2 exp
(
− 1

2
(x−x′)2

ℓ2

)

rational quadratic σ2
(
1 + 1

2α
(x−x′)2

ℓ2

)−α

periodic
σ2 exp

(
−2 sin2(π

p |x−x′|)
ℓ2

)

linear a2 + b2xx′

local periodic σ2 exp

(
−2

sin2(π
p

|x−x′|)

ℓ2
− 1

2
(x−x′)2

ℓ2

)

David Duvenaud, Kernel Cookbook, http://www.cs.toronto.edu/~duvenaud/cookbook/
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Bayesian approach

prior posterior

update on
observations

(Due to their computational simplicity: GPs are the standard functional prior in Bayesian ML&Stats.)
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Gaussian Process Regression: Math

Reminder: Gaussian process g = GP(µ, k)
A distribution on Rd → Rℓ s.t. g(x1), . . . , g(xn) are Gaussian.
Data structure: µ : Rd → Rℓ and k : Rd × Rd → Rℓ×ℓ

≥0 .

Regression model

Assume µ = 0. Condition on {(xi, yi) ∈ R1×(d+ℓ) | i = 1, . . . , n}.

GP
(

x 7→ yk(X,X)−1k(X,x),

(x, x′) 7→ k(x,x′)− k(x,X)k(X,X)−1k(X,x′)
)

.

k(X,X) =

[
k(x1, x1) . . .

...
. . .

]
∈ Rℓn×ℓn

≥0 ,

k(x,X) =
[
k(x, x1) . . .

]
∈ Rℓ×ℓn, and y =

[
y1 . . .

]
∈ R1×ℓn.
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Include Measurement Data

C∞: smooth
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Include Measurement Data

C∞, conditioned on data
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Gaussian Process Regression: Noise

• Take a maximum entropy prior on the behavior unexplained by g:

Add Gaussian white noise ε (works well enough if noise is not strictly Gaussian).
• Replace covariance k(X,X) by k(X,X) + var(ε)Iℓn.

(more variance in data, no new correlations)

• Posterior:

GP
(

x 7→ y(k(X,X) + var(ε)Iℓn)
−1k(x,X)T ,

(x, x′) 7→ k(x, x′)− k(x,X)(k(X,X) + var(ε)Iℓn)
−1k(x′, X)T

)
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Include Measurement Data

C∞, conditioned on data
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Include Measurement Data

C∞, conditioned on noisy data
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Gaussian Process Regression: Hyperparameters

• Hyperparameters in the priors:
• length scales ℓ
• signal variance σ
• noise ε
• period p
• etc.

• Optimal hyperparameters: optimize the (log-)likelihood.

log p(y|X) = − 1

2
yTK−1y︸ ︷︷ ︸

data fit

− 1

2
log(det(K))︸ ︷︷ ︸

model complexity

−n

2
log 2π

Computable via linear Algebra (including gradients)
• Hyperparameters in GPs are interpretable and learnable

E.g. learn a period in your data or amount of noise.
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RKHS

Reproducing Kernel Hilbert Spaces (RKHS)
A Hilbert space of functions s.t. the evaluation functionals are
continuous.

• Continuity (or even differentiability) of the model evaluation is typically
required for model training.
• Hence, most ML-models can be described by an RKHS.
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RKHS

Let g = GP(0, k).
The x 7→ k(xi, x) for xi ∈ Rd generate the pre-Hilbert spaceH0(g)
with scalar product ⟨k(xi,−), k(xj ,−)⟩ := k(xi, xj).

The closureH(g) ofH0(g) w.r.t. ⟨·, ·⟩ is the Reproducing Kernel
Hilbert Space (RKHS) of g.

Theorem (Moore–Aronszajn)
Any RKHS is of this form, i.e. has a so-called reproducing kernel k.
Hence, there is a 1-1-correspondence: covariance functions↔ RKHS.

H0(g) is the space of posterior mean functions.

In many settings, the RKHS H(g) is the Cameron-Martin Space of the Gaussian measure induced by g.
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Support and Realizations

No Gaussian measure onH(g) if it is infinite dimensional.
GP g induces a Gaussian measure on a space of functions F ←↩ H(g)
(e.g., abstract Weiner space) under mild assumptions on the topology of F , e.g. F Fréchet.

The following three sets are identical under similar mild assumptions:

1 The support of this measure.

2 The realizations (samples) of g.

3 The closureH(g) ofH(g) in F .

E.g. (1)⇔(3) holds for all Radon Gaussian measures (⇐ F locally compact ⇐ F Fréchet⇐ F Banach).

E.g. (1)⇔(2) holds almost surely anyway, and strictly holds for a continuous modification of g.

Moral
KnowingH(g) means knowing g.
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Support and Realizations

Trivial example
The linear covariance function k(t, t′) = f(t) · f(t′) induces a GP
with realizations equal to the spaceH(k) = R · (t 7→ f(t)).

Non-trivial example
The squared exponential covariance function

k(t, t′) = exp

(
−1

2
(t− t′)2

)
induces a GP with realizations dense (Fréchet topology) in C∞(R,R).

Markus Lange-Hegermann On Inductive Biases for Gaussian Processes from Differential Algebra



Sums

Theorem
Let g1 = (0, k1) and g2 = (0, k2) GPs and g = (0, k1 + k2). Then,

H(g) = H(g1) +H(g2).

(For a suitable choice of the scalar product in the sum.)

• Explain an effect as a sum of two causes.
• E.g. smooth plus periodic.
• E.g. use a summand for “unexplained behavior”.
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Products

Theorem
Let g1 = (0, k1) and g2 = (0, k2) GPs and g = (0, k1 · k2). Then,

H(g) = H(g1)⊗H(g2).

The Hilbert space ⊗ is the completion of the vector space ⊗. The fun begins when tensoring the spaces of realizations.

• All causes are needed for an effect.
• E.g. locally periodic behavior.
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Questions?

Gaussian processes and linear differential
equations
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Questions?

Gaussian processes and linear differential
equations
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Linear Systems (in the sense of linear algebra)

For F = C∞(R,R) and A =
[
2 −3

]
consider

solF (A) :=

{[
f1(x)
f2(x)

]
∈ F2×1

∣∣∣∣A · [f1(x)f2(x)

]
= 0

}

Use B =

[
3
2

]
as parametrization:

solF (A) = B · F = {B · f(x) | f(x) ∈ F}

Taking a GP prior g = GP(0, k) for f ∈ F yields a GP prior

B∗g := GP(0, BkBT ) = GP
(
0,

[
9k 6k
6k 4k

])
for solF (A).
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Combination of Gaussian Processes with Operator
Equations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

• Combine strict, global information from differential equations
with noisy, local information from observations.
• Incorporate justified assumptions: use the full information of

the observations for a precise regression model.
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Gaussian Processes and Derivatives

The class of GPs is closed under linear operators under mild assumptions.

Example

Use B =

[
1
∂x

]
as parametrization and g = GP(0, k):

⇝ B∗g := GP(0, BkB′T ) = GP
(
0,

[
k(x, x′) ∂

∂x′k(x, x′)
∂
∂xk(x, x

′) ∂2

∂x∂x′k(x, x′)

])

−3−2−1 0 1 2 3
−2
−1
0

1

2

−3−2−1 0 1 2 3
−2
−1
0

1

2
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Heating System

u(t)

x(t)

y(t)

u(t)

x(t)

y(t)

∂tx(t) = −(x(t)− y(t)) + u(t)

∂ty(t) = +(x(t)− y(t))

0 1 2 3

1

x(t)

y(t)

u(t)
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Smith Normal Form

Smith normal form
Given a matrix A (over a PID), there are invertible matrices S and T s.t.

SAT = D

where D is a matrix with non-zero entries only on the diagonal.
(D can be made unique by demanding that each diagonal entry divides the next one.)

Computable in polynomial time (as long as the PID is Euclidean), even in parallel (NC2).

Using the Smith normal form

Af = 0⇔ SAT T−1f︸ ︷︷ ︸
=:h

= 0

⇔ Dh = 0

If we get a GP prior for h = T−1f , we have one for f = Th.
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Prior for h

1 ∂t − 1
∂2
t + 1 0

 ·

h1(t)
h2(t)
h3(t)
h4(t)

 = 0

Since we can easily solve such ODEs:

h1(t) = 0 k1(t1, t2) = 0
h2(t) = c · exp(t) k2(t1, t2) = exp(t1) exp(t2)

h3(t) = c1 sin(t) + c2 cos(t) k3(t1, t2) = cos(t1 − t2)
h4(t) arbitrary (smooth) k4(t1, t2) = exp(−1

2(t1 − t2)
2)

joint with Andreas Besginow.
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Gaussian Processes and Linear Operator Matrices

Let T ∈ Rℓ×m and g = GP(µ, k).
Define the pushforward GP T∗g by applying T to the realizations of g.

Lemma
Assume that T commutes w.r.t. expectation of the relevant measures.
• (Pushforward is again a Gaussian process)
T∗g = GP(Tµ(x), Tk(x, x′)(T ′)T ) where T ′ operates on x′.
• (Realizations behave reasonable)

For g = GP(0, k) with zero mean function,H(T∗g) = TH(g).
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Heating System

u(t)

f1(t)

f2(t)
Add parameters a and b quantifying heat exchange:

f ′
1(t) = −a · (f1(t)− f2(t)) + u(t)

f ′
2(t) = −b · (f2(t)− f1(t))

(Training data from a solution, a = 3, b = 1).

• Model reconstructs a and b with error < 2.8% (data without
noise) resp. < 5.3% (data with 1% noise), 10 training runs.

• Satisfies ODEs (a = 3, b = 1) with median error of 5e−3,
trained on noisy data, despite approximate a and b in model.

joint with Andreas Besginow.
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Simple Control System

Time dependent system ∂tx(t) = t3u(t).
(We need the Jacobson form instead of the Smith form, since we are over a Weyl algebra)
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Simple Control System

Time dependent system ∂tx(t) = t3u(t).
(We need the Jacobson form instead of the Smith form, since we are over a Weyl algebra)

Set an input u(t) to influence a state x(t).
Set x(1) = 0 and u(t) = 1

t4+1
for t ∈ {1, 1110 ,

12
10 , . . . , 5}.

0
1 2 3 4 5

1

u(t)

x(t)

Model: x(5) ≈ 1.436537, close to
∫ 5
1

t3

t4+1
dt ≈ 1.436551.
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Simple Control System

Time dependent system ∂tx(t) = t3u(t).
(We need the Jacobson form instead of the Smith form, since we are over a Weyl algebra)

Prescribe a state x(t). Automatically construct an input u(t).

1 2 3

-2

-1

0

1

u(t)

x(t)
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Assumptions for PDEs
Let R be an R-algebra, a ring of linear operators, and F an R-module
of functions Rd → R with topology. Assume:

1 We can compute with operators

: R allows a Gröbner bases.

2 Functions yield enough solutions

: F is an injective R-module.

3 Gaussian processes describe functions

: There is a scalar
g = GP(0, k) s.t. its RKHSH(g) is dense in F and its set of
realizations is contained (a.s.) in F .

4 Compatible operators and topology

: R acts continuously on F .

5 Compatible Gaussian processes and topology

: GPs in F are 1 : 1
with Gaussian measures on F w.r.t. the Borel σ-algebra.

6 Compatible Gaussian processes and operators

: the operation of
R onH(g) commutes with expectation (g induces measure).

Theorem
Assumptions hold for R = R[∂x1 , . . . , ∂xd

], F = C∞(Rd,R) with
Fréchet topology, and g with SE covariance.
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Assumptions for PDEs
Let R be an R-algebra, a ring of linear operators, and F an R-module
of functions Rd → R with topology. Assume:

1 We can compute with operators: R allows a Gröbner bases.
2 Functions yield enough solutions: F is an injective R-module.
3 Gaussian processes describe functions: There is a scalar

g = GP(0, k) s.t. its RKHSH(g) is dense in F and its set of
realizations is contained (a.s.) in F .

4 Compatible operators and topology: R acts continuously on F .
5 Compatible Gaussian processes and topology: GPs in F are 1 : 1

with Gaussian measures on F w.r.t. the Borel σ-algebra.
6 Compatible Gaussian processes and operators: the operation of

R onH(g) commutes with expectation (g induces measure).

Proposition
Assumptions hold for R = R(t)⟨∂t⟩, F = C∞(D,R) with Fréchet
topology, g with SE covariance and D ⊆ R.
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Assumptions for PDEs
Let R be an R-algebra, a ring of linear operators, and F an R-module
of functions Rd → R with topology. Assume:

1 We can compute with operators: R allows a Gröbner bases.
2 Functions yield enough solutions: F is an injective R-module.
3 Gaussian processes describe functions: There is a scalar

g = GP(0, k) s.t. its RKHSH(g) is dense in F and its set of
realizations is contained (a.s.) in F .

4 Compatible operators and topology: R acts continuously on F .
5 Compatible Gaussian processes and topology: GPs in F are 1 : 1

with Gaussian measures on F w.r.t. the Borel σ-algebra.
6 Compatible Gaussian processes and operators: the operation of

R onH(g) commutes with expectation (g induces measure).

Remark
Assumptions hold for R = R[x1, . . . , xn], F = C∞(D,R) with
Fréchet topology, g with SE covariance and D ⊆ R.
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Assumptions for PDEs
Let R be an R-algebra, a ring of linear operators, and F an R-module
of functions Rd → R with topology. Assume:

1 We can compute with operators: R allows a Gröbner bases.
2 Functions yield enough solutions: F is an injective R-module.
3 Gaussian processes describe functions: There is a scalar

g = GP(0, k) s.t. its RKHSH(g) is dense in F and its set of
realizations is contained (a.s.) in F .

4 Compatible operators and topology: R acts continuously on F .
5 Compatible Gaussian processes and topology: GPs in F are 1 : 1

with Gaussian measures on F w.r.t. the Borel σ-algebra.
6 Compatible Gaussian processes and operators: the operation of

R onH(g) commutes with expectation (g induces measure).

Remark
Assumptions hold for R = R[σ1, . . . , σn], F = C∞(Rn,R) with
Fréchet topology and g with SE covariance, where σi(xj) = xi + δij .
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Assumptions for PDEs
Let R be an R-algebra, a ring of linear operators, and F an R-module
of functions Rd → R with topology. Assume:

1 We can compute with operators: R allows a Gröbner bases.
2 Functions yield enough solutions: F is an injective R-module.
3 Gaussian processes describe functions: There is a scalar

g = GP(0, k) s.t. its RKHSH(g) is dense in F and its set of
realizations is contained (a.s.) in F .

4 Compatible operators and topology: R acts continuously on F .
5 Compatible Gaussian processes and topology: GPs in F are 1 : 1

with Gaussian measures on F w.r.t. the Borel σ-algebra.
6 Compatible Gaussian processes and operators: the operation of

R onH(g) commutes with expectation (g induces measure).

Theorem
Under the above assumptions, there exists GP priors with realizations
dense in controllable system, i.e. systems with vector potentials.
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Proof / Algorithm (Differential Algebra, Malgrange)
Let M = coker(Rℓ′ A−→ Rℓ) a torsionless R-module for A ∈ Rℓ′×ℓ.

• Compute homR(M,R) and a free hull homR(M,R)
B
↞ Rℓ′′×1.

This gives the embedding homR(homR(M,R), R)
B
↪→ R1×ℓ′′ .

• Gröbner: B := r − ker(A).

• For M torsionless, i.e. M → homR(homR(M,R), R) monic:

M
I
↪→ homR(homR(M,R), R)

B
↪→ R1×ℓ′′ .

• Gröbner: Does l − ker(B) reduce to zero w.r.t. the rows of A?

• Apply the (exact, since F injective, (2)) functor homR(−,F):

homR(M,F)
B

↞−−−−− F ℓ′′×1

• Parametrize solutions by the Noether-Malgrange isomorphism

solF (A) ∼= homR(M,F) : f 7→ (ei 7→ fi)
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Proof / Properties (Functional Analysis and Probability)

• By (3) we have a GP on F and hence also a GP g with
realizations dense in F ℓ′′×1.
• Topology (continuity, denseness) implies properties of GPs (5).

• homR(M,F)
B
↞− F ℓ′′×1 is epic, continuous (4) and commutes

with expactation (6 & Lemma above). Hence, the realizations of
B∗g are dense in solF (A) ∼= homR(M,F).

More is possible in principle (e.g. as in the case of ODEs) if both
• certain Ext’s vanish and
• we can construct certain base covariances.

Or might be possible (much more speculative) to use the
• Ehrenpreis-Palamodov theorem.
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Maxwell’s Equations

The operator matrix

A :=



0 −∂z ∂y ∂t 0 0 0 0 0 0
∂z 0 −∂x 0 ∂t 0 0 0 0 0
−∂y ∂x 0 0 0 ∂t 0 0 0 0
0 0 0 ∂x ∂y ∂z 0 0 0 0
−∂t 0 0 0 −∂z ∂y −1 0 0 0
0 −∂t 0 ∂z 0 −∂x 0 −1 0 0
0 0 −∂t −∂y ∂x 0 0 0 −1 0
∂x ∂y ∂z 0 0 0 0 0 0 −1


acts on 3 components electrical field, 3 components magnetic
(pseudo-)field, 3 components electric current and a component
electric flux.
(constants := 1)
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Maxwell’s Equations

Electrical potential and magnetic potentials parametrize the solutions.

B :=



∂x ∂t 0 0
∂y 0 ∂t 0
∂z 0 0 ∂t
0 0 ∂z −∂y
0 −∂z 0 ∂x
0 ∂y −∂x 0

−∂t∂x ∂2
y + ∂2

z − ∂2
t −∂y∂x −∂z∂x

−∂t∂y −∂y∂x ∂2
x + ∂2

z − ∂2
t −∂z∂y

−∂t∂z −∂z∂x −∂z∂y ∂2
x + ∂2

y − ∂2
t

∂2
x + ∂2

y + ∂2
z ∂t∂x ∂t∂y ∂t∂z


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Maxwell’s Equations

1
x

1

y
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The Koszul Complex

The matrix A =
[
x1 x2 x3

]
yields tangents of a sphere.

Parametrized by B =

 0 x3 −x2
−x3 0 x1
x2 −x1 0

.

Covariance function for tangential fields on the sphere:−y1y2 − z1z2 y1x2 z1x2
x1y2 −x1x2 − z1z2 z1y2
x1z2 y1z2 −x1x2 − y1y2

 · k
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The Koszul Complex
Smooth field, conditioned at 4 points at the equator,
neighboring tangent vectors point into opposed directions
(north/south).

Markus Lange-Hegermann On Inductive Biases for Gaussian Processes from Differential Algebra



Intersecting two Koszul Complexes

The matrix A =
[
∂1 ∂2 ∂3

]
represents the divergence and its

kernel is the rotation B =

 0 ∂3 −∂2
−∂3 0 ∂1
∂2 −∂1 0

.

Intersecting parametrizations
We can intersect parametrizations via a pullback under suitable assumptions
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Intersecting two Koszul Complexes

Intersection of tangent fields with divergence free fields.
Data: 2 points opposed at the equator with tangents pointing north:
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Dirichlet Boundary Conditions and two Koszul Complexes

Parametrization of Dirichlet boundary conditions

Functions vanishing on hyperplane x3 = 0: ⟨x3⟩⊴ F = C∞(Rd,R).

Intersect parametrizations via pullback.
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Inhomogeneous Boundary Conditions

Smooth divergence free fields f on the sphere and inhomogeneous
boundary condition f3(x1, x2, 0) = x2.
Take particular solution µ =

[
0 −x3 x2

]T as mean.
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Analytic Boundary

Divergence-free fields bounded by y2 − sin(x)4.
with Daniel Robertz.
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Analytic Boundary with Analytic Boundary Conditions

v

Left&right boundary: zero flow.
Bottom resp. top: flow in resp. out.

with Daniel Robertz.
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Message

Differential algebra and data
• GPs play nice with linear operators (in particular PDEs)
• Can be used to learn/understand systems
• Can be used as a very, very strong inductive bias
• Combines differential algebra with data
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Summary

Thx!
Questions?

References:
On boundary conditions parametrized by analytic functions (1801.09197)
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