Toric degenerations, Newton-Okounkov polytopes and tropical geometry

Lara Bossinger

Universidad Nacional Autónoma de México, IM-Oaxaca
Differential Algebra, MPIMiS Leipzig, June 82022

Motivation

Toric varieties: Y an affine variety of dimension d is toric if it contains a dense torus $\left(k^{*}\right)^{d}$ whose action on itself extends to Y.

Motivation

Toric varieties: Y an affine variety of dimension d is toric if it contains a dense torus $\left(k^{*}\right)^{d}$ whose action on itself extends to Y.

Theorem

Every affine toric variety can be given in the following equivalent ways:

- the closure of the image of $\Phi_{\left\{a_{1}, \ldots, a_{s}\right\} \subset \mathbb{Z}^{n}}:\left(k^{*}\right)^{n} \rightarrow k^{s}$ given by $\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(\mathrm{t}^{\mathrm{a}_{1}}, \ldots, \mathrm{t}^{\mathrm{a}_{s}}\right)$
- the spectrum of an affine semigroup algebra $Y=\operatorname{Spec}(k[S])$,
- the vanishing set of a binomial prime ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, where $S=\mathbb{N}\left(a_{1}, \ldots, a_{s}\right) \subset \mathbb{Z}^{n}$ and $k[S]=k\left[x_{1}, \ldots, x_{n}\right] / l$.

Example

- $\mathcal{A}=\left\{\binom{1}{2},\binom{1}{3},\binom{1}{0}\right\}$ then $\Phi_{\mathcal{A}}:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{C}^{3}$ is given by

$$
\left(t_{1}, t_{2}\right) \mapsto\left(t_{1} t_{2}^{2}, t_{1} t_{2}^{3}, t_{1}\right)
$$

- $\operatorname{ker}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 2 & 0\end{array}\right)=\left\langle(-3,2,1)^{T}\right\rangle$ and

$$
I=\left(y^{2} z-x^{3}\right) \subset k[x, y, z]
$$

- $S=\left\{a\binom{1}{2}+b\binom{1}{3}+c\binom{1}{0}: a, b, c \geq 0\right\}$ and

$$
k[S]=k\left[t_{1}, t_{1} t_{2}^{2}, t_{1} t_{2}^{3}\right]
$$

Motivation

Recall, an affine semigroup S can be realized as the lattice points inside a polyhedral cone $C_{S}=\operatorname{cone}(S)$

properties of Y_{S}	combinatorics of C_{S}
dimension of Y_{S}	dimension of C_{S}
toric subvarieties	faces of C_{S}
Y_{S} is smooth	C_{S} is simplicial

Similarly, (normal) projective toric varieties are associated with polytopes, e.g. $P=\operatorname{conv}\left(a_{1}, \ldots, a_{s}\right)$ with a_{1}, \ldots, a_{s} inside a hyperplane and $C_{P}=\operatorname{cone}(P)$, then $X_{P}=\operatorname{Proj}\left(k\left[C_{P} \cap \mathbb{Z}^{n}\right]\right)$.

For projective varieties we may have toric degenerations and hope to glean information from the toric variety (e.g. dimension, degree, Hilbert polynomial, a moment map?)

(Algebraic) Applications of toric degenerations

- Bernstein (2017): motivated by low-rank matrix completion uses toric degenerations of $\operatorname{Gr}(2, n)$ to determine independent sets in the associated algebraic matroids
- Gross-Hacking-Keel-Kontsevich (2018): use toric degenerations of cluster varieties to prove several longstanding conjectures about cluster algebras
- Burr-Sottile-Walker (2021): use toric degenerations in a numerical homotopy continuation algorithm to solve systems of equations on an algebraic variety.
- Agostini-Fevola-Mandelshtam-Sturmfels (2021): use a toric degeneration to describe the Hirota variety that parametrizes certain tau-functions giving rise to solutions to the KP equation.
- Breiding-Michalek-Monin-Telen (in process): use Newton-Okounkov polytopes to verify the conjectured number of limit cycles in Duffing oscillators (via algebraic equations obtained from harmonic balancing)

Toric degenerations

Definition

Let X be a projective variety. A toric degeneration of X is a flat morphism $\xi: \mathfrak{X} \rightarrow \mathbb{A}^{1}$ whose special fibre $\xi^{-1}(0)$ is a toric variety and there is an isomorphism over $\mathbb{A}^{1} \backslash\{0\}$:

Toric degenerations

Definition

Let X be a projective variety. A toric degeneration of X is a flat morphism $\xi: \mathfrak{X} \rightarrow \mathbb{A}^{1}$ whose special fibre $\xi^{-1}(0)$ is a toric variety and there is an isomorphism over $\mathbb{A}^{1} \backslash\{0\}$:

$$
\mathfrak{X} \backslash \xi^{-1}(0) \longrightarrow X \times\left(\mathbb{A}^{1} \backslash\{0\}\right)
$$

\mathfrak{X} is a family of fibres, X is the generic fibre.

Toric degenerations

Definition

Let X be a projective variety. A toric degeneration of X is a flat morphism $\xi: \mathfrak{X} \rightarrow \mathbb{A}^{1}$ whose special fibre $\xi^{-1}(0)$ is a toric variety and there is an isomorphism over $\mathbb{A}^{1} \backslash\{0\}$:

$$
\mathfrak{X} \backslash \xi^{-1}(0) \longrightarrow X \times\left(\mathbb{A}^{1} \backslash\{0\}\right)
$$

\mathfrak{X} is a family of fibres, X is the generic fibre.
Example: A toric degeneration can be embedded, for example $\overline{\mathfrak{X}}=V\left(y^{2} z-x^{3}+t x z^{2}\right) \subset \mathbb{P}_{x: y: z}^{2} \times \mathbb{A}_{t}^{1}$.

Algebraic toric degenerations

An algebraic toric degeneration is equivalent to the data:

- a finitely generated positively graded $k[t]$-algebra \mathfrak{R}
- a positively graded domain $R=\bigoplus_{i \geq 0} R_{i}$

Algebraic toric degenerations

An algebraic toric degeneration is equivalent to the data:

- a finitely generated positively graded $k[t]$-algebra \mathfrak{R}
- a positively graded domain $R=\bigoplus_{i \geq 0} R_{i}$
such that:
(1) $\mathfrak{R}\left[t^{-1}\right] \cong R\left[t, t^{-1}\right]$ as $k[t]$-modules and graded algebras;
(2) $R_{0}:=\mathfrak{R} /(t)$ is the algebra of a semigrup $k[S]$ where $S \subset \mathbb{Z}_{\geq 0} \times \mathbb{Z}^{d}$ finitely generated;
(3) the action of k^{*} on $k[t]$ extends to \mathfrak{R} respecting the grading and $k[t]$ acts as $\left(k^{*}\right)^{d}$ en R_{0}.

Algebraic toric degenerations

An algebraic toric degeneration is equivalent to the data:

- a finitely generated positively graded $k[t]$-algebra \mathfrak{R}
- a positively graded domain $R=\bigoplus_{i \geq 0} R_{i}$
such that:
(1) $\mathfrak{R}\left[t^{-1}\right] \cong R\left[t, t^{-1}\right]$ as $k[t]$-modules and graded algebras;
(2) $R_{0}:=\mathfrak{R} /(t)$ is the algebra of a semigrup $k[S]$ where $S \subset \mathbb{Z}_{\geq 0} \times \mathbb{Z}^{d}$ finitely generated;
(3) the action of k^{*} on $k[t]$ extends to \mathfrak{R} respecting the grading and $k[t]$ acts as $\left(k^{*}\right)^{d}$ en R_{0}.

Theorem (Kaveh-Manon-Murata arxiv 2017)

In this case there exixts a valuation $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0} \times \mathbb{Z}^{d}$ whose image is S such that $R_{0}=k[S]$ and \Re is the Rees algebra of ν.

Toric degenerations via valuations

$R=\bigoplus_{i \geq 0} R_{i}$ a graded k-algebra and domain.
A map $\nu: R \backslash\{0\} \rightarrow\left(\mathbb{Z}^{d},<\right)$ is a (Krull-) valuation if for $f, g \in R \backslash\{0\}$ and $c \in k$

$$
\nu(f g)=\nu(f)+\nu(g), \quad \nu(c f)=\nu(f), \quad \nu(f+g) \geq \min _{<}\{\nu(f), \nu(g)\}
$$

${ }^{1} \Leftrightarrow R_{\nu} / \mathfrak{m}_{\nu}=k$, e.g. if ν is full-rank, i.e. $\operatorname{rank}(S)=\operatorname{dim}(R)$ using Abhyankar's inequality

Toric degenerations via valuations

$R=\bigoplus_{i \geq 0} R_{i}$ a graded k-algebra and domain.
A map $\nu: R \backslash\{0\} \rightarrow\left(\mathbb{Z}^{d},<\right)$ is a (Krull-) valuation if for $f, g \in R \backslash\{0\}$ and $c \in k$

$$
\nu(f g)=\nu(f)+\nu(g), \quad \nu(c f)=\nu(f), \quad \nu(f+g) \geq \min _{<}\{\nu(f), \nu(g)\}
$$

$\rightsquigarrow S:=\operatorname{im}(\nu)$ is a semigroup.

[^0]
Toric degenerations via valuations

$R=\bigoplus_{i \geq 0} R_{i}$ a graded k-algebra and domain.
A map $\nu: R \backslash\{0\} \rightarrow\left(\mathbb{Z}^{d},<\right)$ is a (Krull-) valuation if for $f, g \in R \backslash\{0\}$ and $c \in k$

$$
\nu(f g)=\nu(f)+\nu(g), \quad \nu(c f)=\nu(f), \quad \nu(f+g) \geq \min _{<}\{\nu(f), \nu(g)\}
$$

$\rightsquigarrow S:=\operatorname{im}(\nu)$ is a semigroup.
$\rightsquigarrow \nu$ induces a filtration on R, for $m \in \mathbb{Z}^{d}$

$$
F_{m}:=\{f \in R: \nu(f) \leq m\} \quad \text { and } \quad F_{<m}:=\{f \in R: \nu(f)<m\} .
$$

[^1]
Toric degenerations via valuations

$R=\bigoplus_{i \geq 0} R_{i}$ a graded k-algebra and domain.
A map $\nu: R \backslash\{0\} \rightarrow\left(\mathbb{Z}^{d},<\right)$ is a (Krull-) valuation if for $f, g \in R \backslash\{0\}$ and $c \in k$

$$
\nu(f g)=\nu(f)+\nu(g), \quad \nu(c f)=\nu(f), \quad \nu(f+g) \geq \min _{<}\{\nu(f), \nu(g)\}
$$

$\rightsquigarrow S:=\operatorname{im}(\nu)$ is a semigroup.
$\rightsquigarrow \nu$ induces a filtration on R, for $m \in \mathbb{Z}^{d}$

$$
F_{m}:=\{f \in R: \nu(f) \leq m\} \quad \text { and } \quad F_{<m}:=\{f \in R: \nu(f)<m\} .
$$

Proposition: If $\operatorname{dim}\left(F_{m} / F_{<m}\right) \leq 1$ for $m \in \mathbb{Z}^{d} 1$ then

$$
\operatorname{gr}_{\nu}(R) \cong k[S]
$$

${ }^{1} \Leftrightarrow R_{\nu} / \mathfrak{m}_{\nu}=k$, e.g. if ν is full-rank, i.e. $\operatorname{rank}(S)=\operatorname{dim}(R)$ using Abhyankar's inequality

Toric degenerations via valuations

Theorem (Anderson 2013)
Let $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ be a full-rank Krull-valuation with S finitely generated.

Toric degenerations via valuations

Theorem (Anderson 2013)

Let $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ be a full-rank Krull-valuation with S finitely generated.
Then there exists a toric degenerations of $X=\operatorname{Proj}(R)$ with special fibre $X_{0}=\operatorname{Proj}(k[S])$ defined by the Rees algebra of ν :

$$
\Re=\bigoplus_{i \geq 0} t^{i} F_{\leq i}
$$

where $F_{\leq i}=\bigcup_{\pi(m) \leq i} F_{m}$ for a suitable projection $\pi: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$.

Toric degenerations via valuations

Theorem (Anderson 2013)

Let $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ be a full-rank Krull-valuation with S finitely generated.
Then there exists a toric degenerations of $X=\operatorname{Proj}(R)$ with special fibre $X_{0}=\operatorname{Proj}(k[S])$ defined by the Rees algebra of ν :

$$
\Re=\bigoplus_{i \geq 0} t^{i} F_{\leq i}
$$

where $F_{\leq i}=\bigcup_{\pi(m) \leq i} F_{m}$ for a suitable projection $\pi: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$.
\mathfrak{R} is a flat $k[t]$-algebra with

$$
\mathfrak{R} /(t-1) \mathfrak{R}=R \quad \text { y } \quad \Re / t \mathfrak{R}=\operatorname{gr}_{\nu}(R) .
$$

Newton-Okounkov polytopes

X_{0} is a projective toric variety \Rightarrow exists a polytope defining its normalization \bar{X}_{0}, given by the Newton-Okounkov polytope of ν :

$$
\Delta(R, \nu):=\operatorname{conv}\left(\bigcup_{i>0}\left\{\frac{\nu(f)}{i}: f \in R_{i}\right\}\right) \subset \mathbb{R}^{d}
$$

Newton-Okounkov polytopes

X_{0} is a projective toric variety \Rightarrow exists a polytope defining its normalization \bar{X}_{0}, given by the Newton-Okounkov polytope of ν :

$$
\Delta(R, \nu):=\operatorname{conv}\left(\bigcup_{i>0}\left\{\frac{\nu(f)}{i}: f \in R_{i}\right\}\right) \subset \mathbb{R}^{d}
$$

Theorem (Kaveh-Khovanskii 2012, Lazarsfeld-Mustata 2009)

The number of lattice points in $\Delta(R, \nu)$ is n and the (normalized) volume of $\Delta(R, \nu)$ is the degree of $X \subset \mathbb{P}^{n-1}$.

Gröbner degenerations

Let $k=\bar{k}$ of $\operatorname{char}(k)=0$ and $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ where I is a homogeneous prime ideal.

Gröbner degenerations

Let $k=\bar{k}$ of $\operatorname{char}(k)=0$ and $R=k\left[x_{1}, \ldots, x_{n}\right] / l$ where I is a homogeneous prime ideal.

For $w \in \mathbb{R}^{n}$ we have the initial ideal $\mathrm{in}_{w}(I):=\left(\operatorname{in}_{w}(f): f \in I\right)$ and a flat family

$$
\xi_{w}: \mathfrak{X} \rightarrow \mathbb{A}^{1}
$$

with generic fibre $X=\operatorname{Proj}(R)$ and special fibre $\operatorname{Proj}\left(R_{w}\right)=X_{0}$ where $R_{w}:=k\left[x_{1}, \ldots, x_{n}\right] / \mathrm{in}_{w}(I)$.

Gröbner degenerations

Let $k=\bar{k}$ of $\operatorname{char}(k)=0$ and $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ where I is a homogeneous prime ideal.

For $w \in \mathbb{R}^{n}$ we have the initial ideal $\mathrm{in}_{w}(I):=\left(\operatorname{in}_{w}(f): f \in I\right)$ and a flat family

$$
\xi_{w}: \mathfrak{X} \rightarrow \mathbb{A}^{1}
$$

with generic fibre $X=\operatorname{Proj}(R)$ and special fibre $\operatorname{Proj}\left(R_{w}\right)=X_{0}$ where $R_{w}:=k\left[x_{1}, \ldots, x_{n}\right] / \mathrm{in}_{w}(I)$.

Example

For $I=\left(y^{2} z-x^{3}+x z^{2}\right) \in k[x, y, z]$ and $w=(2,3,0) \in \mathbb{R}^{3}$ we have

$$
\operatorname{in}_{(2,3,0)}\left(y^{2} z-x^{3}+x z^{2}\right)=y^{2} z-x^{3}
$$

which defins the flat family

$$
\mathfrak{X}=\operatorname{Proj}\left(k[t][x, y, z] /\left(y z^{2}-x^{3}+t x z^{2}\right)\right)
$$

The Gröbner fan and the tropicalization of an ideal

Definition (Mora-Robbiano 1988)

The Gröbner fan $\mathrm{GF}(I)$ of the homogeneous ideal I is \mathbb{R}^{n} with open cones defined by

$$
v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(I)=\operatorname{in}_{w}(I)
$$

The Gröbner fan and the tropicalization of an ideal

Definition (Mora-Robbiano 1988)

The Gröbner fan $\operatorname{GF}(I)$ of the homogeneous ideal I is \mathbb{R}^{n} with open cones defined by

$$
v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(I)=\operatorname{in}_{w}(I)
$$

The tropicalization $\mathcal{T}(I)$ of I is the closed subfan of GF(I) consisting of $w \in \mathbb{R}^{n}$ such that $\mathrm{in}_{w}(I)$ contains no monomials.

Example

Let $I=\left(y^{2} z-x^{3}+x z^{2}\right) \subset \mathbb{C}[x, y, z]$. So, $G F(I)$ is \mathbb{R}^{3} with the fan structure below and $\mathcal{T}(I)$ is its 1 -skeleton:

From tropicalization to Newton-Okounkov polytopes

[Kaveh-Manon 2019]

Given $w \in \mathcal{T}(I)$ with $i n_{w}(I)$ binomial and prime (i.e. $V\left(i n_{w}(I)\right)$ is toric) construct a valuation and its Newton-Okounkov polytope from $C \in \mathcal{T}(I)$ with $w \in C^{\circ}$:
(1) u_{1}, \ldots, u_{d} linearly independent generators of $\langle C\rangle_{\mathbb{R}}$
(2) let $M=\left[u_{1} \ldots u_{d}\right]$ then $\nu_{M}: k\left[x_{1}, \ldots, x_{n}\right] / I \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ given by $\nu_{M}\left(x_{i}\right)=M_{i}$ ($i^{\text {th }}$ row) extends to a full-rank fin. gen. valuation with

$$
\Delta\left(\nu_{M}\right)=\operatorname{conv}\left(M_{1}, \ldots, M_{n}\right)
$$

(3) Toric variety of $\Delta\left(\nu_{M}\right)$ is the normalization of $V\left(i n_{w}(I)\right)$.

Example

$I=\left(y^{2} z-x^{3}+x z^{2}\right)$ and $i_{(2,3,0)}(I)=\left(y^{2} z-x^{3}\right)$ is toric.
Then $C=\langle(1,1,1),(2,3,0)\rangle \in \mathcal{T}(I)$ and $M:=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 0\end{array}\right)$.
So, $\nu_{M}: k[x, y, z] / I \backslash\{0\} \rightarrow \mathbb{Z}^{2}$ is given by

$$
\nu_{M}(x)=(1,2), \nu_{M}(y)=(1,3), \nu_{M}(z)=(1,0)
$$

From NO-polytopes to tropicalization

Theorem (B.'21, Kaveh-Manon '19)

Let R be a positively graded domain, $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ a full-rank valuation with finitely generated semigroup S.

From NO-polytopes to tropicalization

Theorem (B.'21, Kaveh-Manon '19)

Let R be a positively graded domain, $\nu: R \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ a full-rank valuation with finitely generated semigroup S. Then there exists an isomorphism of graded algebras

$$
k\left[x_{1}, \ldots, x_{n}\right] / I \cong R
$$

such that Anderson's toric variety $\operatorname{Proj}(k[S])$ is isomorphic to the toric special fibre of a Gröbner degeneration for some $w \in \mathcal{T}(I) \subset \mathbb{R}^{n}$:

$$
\operatorname{Proj}(k[S]) \cong \operatorname{Proj}\left(R_{w}\right) .
$$

Idea of the proof
Let $b_{1}, \ldots, b_{n} \in R$ be such that $\left\langle\nu\left(b_{1}\right), \ldots, \nu\left(b_{n}\right)\right\rangle=S \rightsquigarrow$ Khovanskii basis

Idea of the proof

Let $b_{1}, \ldots, b_{n} \in R$ be such that $\left\langle\nu\left(b_{1}\right), \ldots, \nu\left(b_{n}\right)\right\rangle=S \rightsquigarrow$ Khovanskii basis

$$
\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R, \quad x_{i} \mapsto b_{i}
$$

so for $I:=\operatorname{ker}(\pi)$ we have $R \cong k\left[x_{1}, \ldots, x_{n}\right] / I$.

Idea of the proof

Let $b_{1}, \ldots, b_{n} \in R$ be such that $\left\langle\nu\left(b_{1}\right), \ldots, \nu\left(b_{n}\right)\right\rangle=S \rightsquigarrow$ Khovanskii basis

$$
\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R, \quad x_{i} \mapsto b_{i}
$$

so for $I:=\operatorname{ker}(\pi)$ we have $R \cong k\left[x_{1}, \ldots, x_{n}\right] / I$. For $M_{\nu}:=\left(\nu\left(b_{i}\right)_{j}\right)_{i j} \in \mathbb{Z}^{d \times n}$ and $f=\sum x^{a} c_{a} \in k\left[x_{1}, \ldots, x_{n}\right]$

$$
\operatorname{in}_{M_{\nu}}(f):=\sum_{b: M_{\nu} b=\min _{<_{l e x}}\left\{M_{\nu} a: c_{a} \neq 0\right\}} x^{b} c_{b} .
$$

Idea of the proof

Let $b_{1}, \ldots, b_{n} \in R$ be such that $\left\langle\nu\left(b_{1}\right), \ldots, \nu\left(b_{n}\right)\right\rangle=S \rightsquigarrow$ Khovanskii basis

$$
\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R, \quad x_{i} \mapsto b_{i}
$$

so for $I:=\operatorname{ker}(\pi)$ we have $R \cong k\left[x_{1}, \ldots, x_{n}\right] / I$. For $M_{\nu}:=\left(\nu\left(b_{i}\right)_{j}\right)_{i j} \in \mathbb{Z}^{d \times n}$ and $f=\sum x^{a} c_{a} \in k\left[x_{1}, \ldots, x_{n}\right]$

$$
\operatorname{in}_{M_{\nu}}(f):=\sum_{b: M_{\nu} b=\min _{<_{\text {lex }}\left\{M_{\nu} a: c_{\mathrm{a}} \neq 0\right\}}} x^{b} c_{b} .
$$

Proposition: $k[S] \cong k\left[x_{1}, \ldots, x_{n}\right] / \operatorname{in}_{M_{\nu}}(I)$

Idea of the proof

Let $b_{1}, \ldots, b_{n} \in R$ be such that $\left\langle\nu\left(b_{1}\right), \ldots, \nu\left(b_{n}\right)\right\rangle=S \rightsquigarrow$ Khovanskii basis

$$
\pi: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R, \quad x_{i} \mapsto b_{i}
$$

so for $I:=\operatorname{ker}(\pi)$ we have $R \cong k\left[x_{1}, \ldots, x_{n}\right] / I$. For $M_{\nu}:=\left(\nu\left(b_{i}\right)_{j}\right)_{i j} \in \mathbb{Z}^{d \times n}$ and $f=\sum x^{a} c_{a} \in k\left[x_{1}, \ldots, x_{n}\right]$

$$
\operatorname{in}_{M_{\nu}}(f):=\sum_{b: M_{\nu} b=\min _{<_{\text {lex }}\left\{M_{\nu} a: c_{\mathrm{a}} \neq 0\right\}}} x^{b} c_{b} .
$$

Proposition: $k[S] \cong k\left[x_{1}, \ldots, x_{n}\right] / \operatorname{in}_{M_{\nu}}(I)$
For each $G \subset I$ with $\operatorname{in}_{M_{\nu}}(I)=\left(\operatorname{in}_{M_{\nu}}(g): g \in G\right)$ there exists pr: $\mathbb{Z}^{d} \rightarrow \mathbb{Z}$ such that for all $g=\sum \mathrm{x}^{a_{i}} c_{i} \in G$:

$$
M_{\nu} a_{i}<_{l e x} M_{\nu} a_{j} \quad \Rightarrow \quad \operatorname{pr}\left(M_{\nu} a_{i}\right)<\operatorname{pr}\left(M_{\nu} a_{j}\right)
$$

Lemma: $w:=\operatorname{pr}(M) \in \mathcal{T}(I)$ and $k[S] \cong k\left[x_{1}, \ldots, x_{n}\right] / \operatorname{in}_{w}(I)=R_{w}$.

Outlook to differential algebra

- Aroca-Ilardi (2016): Newton's lemma for differential equations: using irrational weight vectors and initial terms define the Gröbner subdivision of a differential ideal
- Tropical Differential Algebra:
- Aroca-Garay-Toghani (2016): Tropical fundamental theorem for differential algebraic geometry
- Falkensteiner-Garay-Haiech-Noordman (2020): Tropical fundamental theorem for partial differential algebraic geometry
- Hu-Gao (2021): Tropical differential Gröbner bases
- Fink-Toghani (pre 2020): Initial forms and a notion of basis for tropical differential equations
- Giansiracusa-Mereta (pre 2021): A general framework for tropical differential equations
- Binyamini (2017): Bezout and Bernstein-Kushnirenko-Khovanskii type theorems for systems of algebraic differential conditions over differentially closed fields.

References

A Dave Anderson. Okounkov bodies and toric degenerations. Math. Ann. 356, No. 3, 1183-1202 (2013).
B Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. Int. Math. Res. Not. rnaa071 (2020)
KK Kiumars Kaveh and A.G. Khovanskii. Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176, No. 2, 925-978 (2012).

KM Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl. Algebra Geom., 3(2):292-336 (2019)
KMM Kiumars Kaveh, Christopher Manon and Takuya Murata. On degenerations of projective varieties to complexity-one T-varieties arXiv:1708.02698 [math.AG]
LM Robert Lazarsfeld and Mircea Mustață. Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4) 42, No. 5, 783-835 (2009).

[^0]: ${ }^{1} \Leftrightarrow R_{\nu} / \mathfrak{m}_{\nu}=k$, e.g. if ν is full-rank, i.e. $\operatorname{rank}(S)=\operatorname{dim}(R)$ using Abhyankar's inequality

[^1]: ${ }^{1} \Leftrightarrow R_{\nu} / \mathfrak{m}_{\nu}=k$, e.g. if ν is full-rank, i.e. $\operatorname{rank}(S)=\operatorname{dim}(R)$ using Abhyankar's inequality

