Toric degenerations, Newton–Okounkov polytopes and tropical geometry

Lara Bossinger

Universidad Nacional Autónoma de México, IM-Oaxaca

Differential Algebra, MPIMiS Leipzig, June 8 2022

Motivation

Toric varieties: Y an affine variety of dimension d is *toric* if it contains a dense torus $(k^*)^d$ whose action on itself extends to Y.

Motivation

Toric varieties: Y an affine variety of dimension d is *toric* if it contains a dense torus $(k^*)^d$ whose action on itself extends to Y.

Theorem

Every affine toric variety can be given in the following equivalent ways:

- the closure of the image of $\Phi_{\{a_1,\ldots,a_s\}\subset\mathbb{Z}^n}:(k^*)^n\to k^s$ given by $(t_1,\ldots,t_n)\mapsto (t^{a_1},\ldots,t^{a_s})$
- the spectrum of an affine semigroup algebra Y = Spec(k[S]),
- the vanishing set of a binomial prime ideal $I \subset k[x_1, ..., x_n]$,

where
$$S = \mathbb{N}(a_1, \dots, a_s) \subset \mathbb{Z}^n$$
 and $k[S] = k[x_1, \dots, x_n]/I$.

Example

• $\mathcal{A}=\{\binom{1}{2},\binom{1}{3},\binom{1}{0}\}$ then $\Phi_{\mathcal{A}}:(\mathbb{C}^*)^2\to\mathbb{C}^3$ is given by $(t_1,t_2)\mapsto (t_1t_2^2,t_1t_3^3,t_1)$

•
$$ker(\frac{1}{2}, \frac{1}{3}, \frac{1}{0}) = \langle (-3, 2, 1)^T \rangle$$
 and

$$I = (y^2z - x^3) \subset k[x, y, z]$$

•
$$S = \{a\binom{1}{2} + b\binom{1}{3} + c\binom{1}{0} : a,b,c \geq 0\}$$
 and

$$k[S] = k[t_1, t_1t_2^2, t_1t_2^3]$$

Motivation

Recall, an affine semigroup S can be realized as the lattice points inside a polyhedral cone $C_S = cone(S)$

properties of Y_S	combinatorics of C_S
dimension of Y_S	dimension of C_S
toric subvarieties	faces of C_S
Y_S is smooth	C_S is simplicial

Similarly, (normal) projective toric varieties are associated with polytopes, e.g. $P = conv(a_1, \ldots, a_s)$ with a_1, \ldots, a_s inside a hyperplane and $C_P = cone(P)$, then $X_P = Proj(k[C_P \cap \mathbb{Z}^n])$.

For projective varieties we may have *toric degenerations* and hope to glean information from the toric variety (e.g. dimension, degree, Hilbert polynomial, a moment map?)

(Algebraic) Applications of toric degenerations

- Bernstein (2017): motivated by low-rank matrix completion uses toric degenerations of Gr(2, n) to determine independent sets in the associated algebraic matroids
- Gross-Hacking-Keel-Kontsevich (2018): use toric degenerations of cluster varieties to prove several longstanding conjectures about cluster algebras
- Burr–Sottile–Walker (2021): use toric degenerations in a numerical homotopy continuation algorithm to solve systems of equations on an algebraic variety.
- Agostini–Fevola–Mandelshtam–Sturmfels (2021): use a toric degeneration to describe the Hirota variety that parametrizes certain tau-functions giving rise to solutions to the KP equation.
- Breiding-Michalek-Monin-Telen (in process): use Newton-Okounkov polytopes to verify the conjectured number of limit cycles in Duffing oscillators (via algebraic equations obtained from harmonic balancing)

Toric degenerations

Definition

Let X be a projective variety. A *toric degeneration* of X is a flat morphism $\xi:\mathfrak{X}\to\mathbb{A}^1$ whose *special fibre* $\xi^{-1}(0)$ is a toric variety and there is an isomorphism over $\mathbb{A}^1\setminus\{0\}$:

Toric degenerations

Definition

Let X be a projective variety. A *toric degeneration* of X is a flat morphism $\xi: \mathfrak{X} \to \mathbb{A}^1$ whose *special fibre* $\xi^{-1}(0)$ is a toric variety and there is an isomorphism over $\mathbb{A}^1 \setminus \{0\}$:

 \mathfrak{X} is a family of fibres, X is the generic fibre.

Toric degenerations

Definition

Let X be a projective variety. A *toric degeneration* of X is a flat morphism $\xi: \mathfrak{X} \to \mathbb{A}^1$ whose *special fibre* $\xi^{-1}(0)$ is a toric variety and there is an isomorphism over $\mathbb{A}^1 \setminus \{0\}$:

$$\mathfrak{X}\setminus\xi^{-1}(0)\xrightarrow{\sim} X\times\left(\mathbb{A}^1\setminus\{0\}\right)$$

$$\mathbb{A}^1\setminus\{0\}$$

 \mathfrak{X} is a *family* of fibres, X is the *generic fibre*.

Example: A toric degeneration can be *embedded*, for example $\overline{\mathfrak{X}} = V(y^2z - x^3 + txz^2) \subset \mathbb{P}^2_{x:y:z} \times \mathbb{A}^1_t$.

Algebraic toric degenerations

An *algebraic* toric degeneration is equivalent to the data:

- ullet a finitely generated positively graded k[t]-algebra $\mathfrak R$
- ullet a positively graded domain $R=igoplus_{i\geq 0}R_i$

Algebraic toric degenerations

An algebraic toric degeneration is equivalent to the data:

- ullet a finitely generated positively graded k[t]-algebra ${\mathfrak R}$
- a positively graded domain $R = \bigoplus_{i>0} R_i$

such that:

- $\mathfrak{R}[t^{-1}] \cong R[t,t^{-1}] \text{ as } k[t] \text{-modules and graded algebras; }$
- ② $R_0 := \mathfrak{R}/(t)$ is the algebra of a semigrup k[S] where $S \subset \mathbb{Z}_{\geq 0} \times \mathbb{Z}^d$ finitely generated;
- ① the action of k^* on k[t] extends to \mathfrak{R} respecting the grading and k[t] acts as $(k^*)^d$ en R_0 .

Algebraic toric degenerations

An algebraic toric degeneration is equivalent to the data:

- ullet a finitely generated positively graded k[t]-algebra ${\mathfrak R}$
- a positively graded domain $R = \bigoplus_{i>0} R_i$

such that:

- $\mathfrak{R}[t^{-1}] \cong R[t,t^{-1}] \text{ as } k[t] \text{-modules and graded algebras;}$
- ② $R_0 := \mathfrak{R}/(t)$ is the algebra of a semigrup k[S] where $S \subset \mathbb{Z}_{\geq 0} \times \mathbb{Z}^d$ finitely generated;
- ① the action of k^* on k[t] extends to \mathfrak{R} respecting the grading and k[t] acts as $(k^*)^d$ en R_0 .

Theorem (Kaveh-Manon-Murata arxiv 2017)

In this case there exixts a valuation $\nu: R \setminus \{0\} \to \mathbb{Z}_{\geq 0} \times \mathbb{Z}^d$ whose image is S such that $R_0 = k[S]$ and \mathfrak{R} is the Rees algebra of ν .

 $R = \bigoplus_{i>0} R_i$ a graded k-algebra and domain.

A map $\nu: R \setminus \{0\} \to (\mathbb{Z}^d, <)$ is a *(Krull-)valuation* if for $f, g \in R \setminus \{0\}$ and $c \in k$

$$u(fg) = \nu(f) + \nu(g), \quad \nu(cf) = \nu(f), \quad \nu(f+g) \ge \min_{s \in \{\nu(f), \nu(g)\}}$$

7/ 18

 $^{^1\}Leftrightarrow R_{
u}/\mathfrak{m}_{
u}=k$, e.g. if u is *full-rank*, i.e. $\mathrm{rank}(S)=\mathrm{dim}(R)$ using Abhyankar's inequality

 $R = \bigoplus_{i>0} R_i$ a graded k-algebra and domain.

A map $\nu: R \setminus \{0\} \to (\mathbb{Z}^d, <)$ is a *(Krull-)valuation* if for $f, g \in R \setminus \{0\}$ and $c \in k$

$$\nu(\mathit{fg}) = \nu(\mathit{f}) + \nu(\mathit{g}), \quad \nu(\mathit{cf}) = \nu(\mathit{f}), \quad \nu(\mathit{f} + \mathit{g}) \geq \min_{<} \{\nu(\mathit{f}), \nu(\mathit{g})\}$$

 $\rightsquigarrow S := \operatorname{im}(\nu)$ is a semigroup.

 $^{^1\}Leftrightarrow R_{
u}/\mathfrak{m}_{
u}=k$, e.g. if u is *full-rank*, i.e. $\mathrm{rank}(S)=\mathrm{dim}(R)$ using Abhyankar's inequality

 $R = \bigoplus_{i>0} R_i$ a graded k-algebra and domain.

A map $\nu: R \setminus \{0\} \to (\mathbb{Z}^d, <)$ is a *(Krull-)valuation* if for $f, g \in R \setminus \{0\}$ and $c \in k$

$$\nu(\mathit{fg}) = \nu(\mathit{f}) + \nu(\mathit{g}), \quad \nu(\mathit{cf}) = \nu(\mathit{f}), \quad \nu(\mathit{f} + \mathit{g}) \geq \min_{<} \{\nu(\mathit{f}), \nu(\mathit{g})\}$$

- $\rightsquigarrow S := \operatorname{im}(\nu)$ is a semigroup.
- $\rightsquigarrow \nu$ induces a filtration on R, for $m \in \mathbb{Z}^d$

$$F_m := \{ f \in R : \nu(f) \le m \} \text{ and } F_{< m} := \{ f \in R : \nu(f) < m \}.$$

 $^{^1\}Leftrightarrow R_{
u}/\mathfrak{m}_{
u}=k$, e.g. if u is *full-rank*, i.e. $\mathrm{rank}(S)=\mathrm{dim}(R)$ using Abhyankar's inequality

 $R = \bigoplus_{i>0} R_i$ a graded k-algebra and domain.

A map $\nu: R \setminus \{0\} \to (\mathbb{Z}^d, <)$ is a *(Krull-)valuation* if for $f, g \in R \setminus \{0\}$ and $c \in k$

$$\nu(\mathit{fg}) = \nu(\mathit{f}) + \nu(\mathit{g}), \quad \nu(\mathit{cf}) = \nu(\mathit{f}), \quad \nu(\mathit{f} + \mathit{g}) \geq \min_{<} \{\nu(\mathit{f}), \nu(\mathit{g})\}$$

- $\rightsquigarrow S := \operatorname{im}(\nu)$ is a semigroup.
- $\rightsquigarrow \nu$ induces a filtration on R, for $m \in \mathbb{Z}^d$

$$F_m := \{ f \in R : \nu(f) \le m \} \text{ and } F_{\le m} := \{ f \in R : \nu(f) < m \}.$$

Proposition: If $\dim(F_m/F_{\leq m}) \leq 1$ for $m \in \mathbb{Z}^{d-1}$ then

$$\operatorname{gr}_{\nu}(R) \cong k[S].$$

ossinger 7/ 18

 $^{^1\}Leftrightarrow R_{\nu}/\mathfrak{m}_{\nu}=k$, e.g. if ν is *full-rank*, i.e. $\mathrm{rank}(S)=\mathrm{dim}(R)$ using Abhyankar's inequality

Theorem (Anderson 2013)

Let $\nu: R \setminus \{0\} \to \mathbb{Z}^d$ be a full-rank Krull-valuation with S finitely generated.

Theorem (Anderson 2013)

Let $\nu: R \setminus \{0\} \to \mathbb{Z}^d$ be a full-rank Krull-valuation with S finitely generated.

Then there exists a toric degenerations of X = Proj(R) with special fibre $X_0 = Proj(k[S])$ defined by the Rees algebra of ν :

$$\mathfrak{R}=\bigoplus_{i\geq 0}t^{i}F_{\leq i},$$

where $F_{\leq i} = \bigcup_{\pi(m) \leq i} F_m$ for a suitable projection $\pi : \mathbb{Z}^d \to \mathbb{Z}$.

Theorem (Anderson 2013)

Let $\nu: R \setminus \{0\} \to \mathbb{Z}^d$ be a full-rank Krull-valuation with S finitely generated.

Then there exists a toric degenerations of X = Proj(R) with special fibre $X_0 = Proj(k[S])$ defined by the Rees algebra of ν :

$$\mathfrak{R}=\bigoplus_{i\geq 0}t^{i}F_{\leq i},$$

where $F_{\leq i} = \bigcup_{\pi(m) \leq i} F_m$ for a suitable projection $\pi : \mathbb{Z}^d \to \mathbb{Z}$.

 \mathfrak{R} is a flat k[t]-algebra with

$$\Re/(t-1)\Re=R$$
 y $\Re/t\Re=\operatorname{gr}_{\nu}(R)$.

Newton-Okounkov polytopes

 X_0 is a projective toric variety \Rightarrow exists a polytope defining its normalization \bar{X}_0 , given by the Newton–Okounkov polytope of ν :

$$\Delta(R,\nu) := \operatorname{conv}\left(\bigcup_{i>0} \left\{\frac{\nu(f)}{i} : f \in R_i\right\}\right) \subset \mathbb{R}^d.$$

Newton-Okounkov polytopes

 X_0 is a projective toric variety \Rightarrow exists a polytope defining its normalization \bar{X}_0 , given by the Newton–Okounkov polytope of ν :

$$\Delta(R,\nu) := \operatorname{conv}\left(\bigcup_{i>0}\left\{\frac{\nu(f)}{i}: f \in R_i\right\}\right) \subset \mathbb{R}^d.$$

Theorem (Kaveh-Khovanskii 2012, Lazarsfeld-Mustata 2009)

The number of lattice points in $\Delta(R,\nu)$ is n and the (normalized) volume of $\Delta(R,\nu)$ is the degree of $X \subset \mathbb{P}^{n-1}$.

Gröbner degenerations

Let $k = \bar{k}$ of char(k) = 0 and $R = k[x_1, \dots, x_n]/I$ where I is a homogeneous prime ideal.

Gröbner degenerations

Let $k = \bar{k}$ of char(k) = 0 and $R = k[x_1, \dots, x_n]/I$ where I is a homogeneous prime ideal.

For $w \in \mathbb{R}^n$ we have the *initial ideal* $in_w(I) := (in_w(f) : f \in I)$ and a flat family

$$\xi_{\mathsf{w}}:\mathfrak{X}\to\mathbb{A}^1$$

with generic fibre X = Proj(R) and special fibre $\text{Proj}(R_w) = X_0$ where $R_w := k[x_1, \dots, x_n]/\text{in}_w(I)$.

Gröbner degenerations

Let $k = \bar{k}$ of char(k) = 0 and $R = k[x_1, \dots, x_n]/I$ where I is a homogeneous prime ideal.

For $w \in \mathbb{R}^n$ we have the *initial ideal* $\operatorname{in}_w(I) := (\operatorname{in}_w(f) : f \in I)$ and a flat family

$$\xi_{\mathbf{w}}:\mathfrak{X}\to\mathbb{A}^1$$

with generic fibre X = Proj(R) and special fibre $\text{Proj}(R_w) = X_0$ where $R_w := k[x_1, \dots, x_n]/\text{in}_w(I)$.

Example

For $I=(y^2z-x^3+xz^2)\in k[x,y,z]$ and $w=(2,3,0)\in\mathbb{R}^3$ we have

$$in_{(2,3,0)}(y^2z - x^3 + xz^2) = y^2z - x^3$$

which defins the flat family

$$\mathfrak{X} = \text{Proj}\left(k[t][x, y, z]/(yz^2 - x^3 + txz^2)\right)$$

The Gröbner fan and the tropicalization of an ideal

Definition (Mora-Robbiano 1988)

The *Gröbner fan* GF(I) of the homogeneous ideal I is \mathbb{R}^n with open cones defined by

$$v, w \in C^{\circ} \Leftrightarrow \operatorname{in}_{v}(I) = \operatorname{in}_{w}(I)$$

The Gröbner fan and the tropicalization of an ideal

Definition (Mora-Robbiano 1988)

The *Gröbner fan* GF(I) of the homogeneous ideal I is \mathbb{R}^n with open cones defined by

$$v, w \in C^{\circ} \Leftrightarrow \operatorname{in}_{v}(I) = \operatorname{in}_{w}(I)$$

The *tropicalization* $\mathcal{T}(I)$ of I is the closed subfan of GF(I) consisting of $w \in \mathbb{R}^n$ such that $\text{in}_w(I)$ contains no monomials.

Example

Let $I=(y^2z-x^3+xz^2)\subset \mathbb{C}[x,y,z]$. So, GF(I) is \mathbb{R}^3 with the fan structure below and $\mathcal{T}(I)$ is its 1-skeleton:

From tropicalization to Newton-Okounkov polytopes

[Kaveh-Manon 2019]

Given $w \in \mathcal{T}(I)$ with $in_w(I)$ binomial and prime (i.e. $V(in_w(I))$ is toric) construct a valuation and its Newton–Okounkov polytope from $C \in \mathcal{T}(I)$ with $w \in C^{\circ}$:

- $lackbox{0} \ u_1, \ldots, u_d$ linearly independent generators of $\langle C \rangle_{\mathbb{R}}$
- ② let $M = [u_1 \dots u_d]$ then $\nu_M : k[x_1, \dots, x_n]/I \setminus \{0\} \to \mathbb{Z}^d$ given by $\nu_M(x_i) = M_i$ (i^{th} row) extends to a full-rank fin. gen. valuation with

$$\Delta(\nu_M) = \operatorname{conv}(M_1, \dots, M_n).$$

3 Toric variety of $\Delta(\nu_M)$ is the normalization of $V(in_w(I))$.

Example

$$I = (y^2z - x^3 + xz^2)$$
 and $in_{(2,3,0)}(I) = (y^2z - x^3)$ is toric.

Then
$$C = \langle (1,1,1), (2,3,0) \rangle \in \mathcal{T}(I)$$
 and $M := (\begin{smallmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \end{smallmatrix}).$

So,
$$\nu_M: k[x,y,z]/I\setminus\{0\}\to\mathbb{Z}^2$$
 is given by

$$\nu_M(x) = (1,2), \ \nu_M(y) = (1,3), \ \nu_M(z) = (1,0)$$

From NO-polytopes to tropicalization

Theorem (B.'21, Kaveh-Manon '19)

Let R be a positively graded domain, $\nu: R \setminus \{0\} \to \mathbb{Z}^d$ a full-rank valuation with finitely generated semigroup S.

From NO-polytopes to tropicalization

Theorem (B.'21, Kaveh-Manon '19)

Let R be a positively graded domain, $\nu: R\setminus\{0\}\to\mathbb{Z}^d$ a full-rank valuation with finitely generated semigroup S. Then there exists an isomorphism of graded algebras

$$k[x_1,\ldots,x_n]/I\cong R$$

such that Anderson's toric variety Proj(k[S]) is isomorphic to the toric special fibre of a Gröbner degeneration for some $w \in \mathcal{T}(I) \subset \mathbb{R}^n$:

$$Proj(k[S]) \cong Proj(R_w).$$

Let $b_1, \ldots, b_n \in R$ be such that $\langle \nu(b_1), \ldots, \nu(b_n) \rangle = S \rightsquigarrow \textit{Khovanskii basis}$

Let $b_1, \ldots, b_n \in R$ be such that $\langle \nu(b_1), \ldots, \nu(b_n) \rangle = S \rightsquigarrow \textit{Khovanskii basis}$

$$\pi: k[x_1,\ldots,x_n] \to R, \quad x_i \mapsto b_i$$

so for $I := \ker(\pi)$ we have $R \cong k[x_1, \dots, x_n]/I$.

Let $b_1, \ldots, b_n \in R$ be such that $\langle \nu(b_1), \ldots, \nu(b_n) \rangle = S \rightsquigarrow \textit{Khovanskii basis}$

$$\pi: k[x_1,\ldots,x_n] \to R, \quad x_i \mapsto b_i$$

so for
$$I:=\ker(\pi)$$
 we have $R\cong k[x_1,\ldots,x_n]/I$. For $M_{\nu}:=(\nu(b_i)_j)_{ij}\in\mathbb{Z}^{d\times n}$ and $f=\sum_i x^a c_a\in k[x_1,\ldots,x_n]$

$$\operatorname{in}_{M_{\nu}}(f) := \sum_{b: \ M_{\nu}b = \min_{<_{lex}} \{M_{\nu}a: c_a \neq 0\}} \mathsf{x}^b c_b.$$

Let $b_1, \ldots, b_n \in R$ be such that $\langle \nu(b_1), \ldots, \nu(b_n) \rangle = S \rightsquigarrow \textit{Khovanskii basis}$

$$\pi: k[x_1,\ldots,x_n] \to R, \quad x_i \mapsto b_i$$

so for $I:=\ker(\pi)$ we have $R\cong k[x_1,\ldots,x_n]/I$. For $M_{\nu}:=(\nu(b_i)_j)_{ij}\in\mathbb{Z}^{d\times n}$ and $f=\sum_i x^a c_a\in k[x_1,\ldots,x_n]$

$$\operatorname{in}_{M_{\nu}}(f) := \sum_{b: \ M_{\nu} \, b = \min_{\leq_{lex}} \{M_{\nu} \, a : c_a \neq 0\}} \mathsf{x}^b c_b.$$

Proposition:
$$k[S] \cong k[x_1, \dots, x_n]/\text{in}_{M_{\nu}}(I)$$

Let $b_1, \ldots, b_n \in R$ be such that $\langle \nu(b_1), \ldots, \nu(b_n) \rangle = S \rightsquigarrow \textit{Khovanskii basis}$

$$\pi: k[x_1,\ldots,x_n] \to R, \quad x_i \mapsto b_i$$

so for $I := \ker(\pi)$ we have $R \cong k[x_1, \dots, x_n]/I$. For $M_{\nu} := (\nu(b_i)_j)_{ij} \in \mathbb{Z}^{d \times n}$ and $f = \sum_i x^a c_a \in k[x_1, \dots, x_n]$

$$\operatorname{in}_{M_{\nu}}(f) := \sum_{b: \ M_{\nu}b = \min_{<_{lex}}\{M_{\nu}a: c_a \neq 0\}} \mathsf{x}^b c_b.$$

Proposition: $k[S] \cong k[x_1, ..., x_n]/in_{M_{\nu}}(I)$

For each $G \subset I$ with $\operatorname{in}_{M_{\nu}}(I) = (\operatorname{in}_{M_{\nu}}(g) : g \in G)$ there exists $\operatorname{pr} : \mathbb{Z}^d \to \mathbb{Z}$ such that for all $g = \sum x^{a_i} c_i \in G$:

$$M_{\nu}a_i <_{lex} M_{\nu}a_j \quad \Rightarrow \quad \operatorname{pr}(M_{\nu}a_i) < \operatorname{pr}(M_{\nu}a_j).$$

Lemma: $w := \operatorname{pr}(M) \in \mathcal{T}(I)$ and $k[S] \cong k[x_1, \dots, x_n]/\operatorname{in}_w(I) = R_w$.

Outlook to differential algebra

- Aroca-llardi (2016): Newton's lemma for differential equations: using irrational weight vectors and initial terms define the Gröbner subdivision of a differential ideal
- Tropical Differential Algebra:
 - Aroca–Garay–Toghani (2016): Tropical fundamental theorem for differential algebraic geometry
 - ► Falkensteiner–Garay–Haiech–Noordman (2020): Tropical fundamental theorem for partial differential algebraic geometry
 - ▶ Hu-Gao (2021): Tropical differential Gröbner bases
 - ► Fink—Toghani (pre 2020): Initial forms and a notion of basis for tropical differential equations
 - Giansiracusa–Mereta (pre 2021): A general framework for tropical differential equations
- Binyamini (2017): Bezout and Bernstein-Kushnirenko-Khovanskii type theorems for systems of algebraic differential conditions over differentially closed fields.

a Bossinger 17/ 18

References

- A Dave Anderson. Okounkov bodies and toric degenerations. Math. Ann. 356, No. 3, 1183-1202 (2013).
- B Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. *Int. Math. Res. Not.* rnaa071 (2020)
- KK Kiumars Kaveh and A.G. Khovanskii. Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176, No. 2, 925-978 (2012).
- KM Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl. Algebra Geom., 3(2):292–336 (2019)
- KMM Kiumars Kaveh, Christopher Manon and Takuya Murata. On degenerations of projective varieties to complexity-one T-varieties arXiv:1708.02698 [math.AG]
 - LM Robert Lazarsfeld and Mircea Mustață. Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4) 42, No. 5, 783-835 (2009).