The Marked Length Spectrum of Holomorphic Quadratic Differential metrics

Shi, Jiajun

Heidelberg University

04.08.2022

Table of Contents

Introduction

Main idea

Table of Contents

Introduction

2 Main idea

Let M be a closed oriented manifold. Let C be the set of free homotopy class of closed curves in M.

Let M be a closed oriented manifold. Let C be the set of free homotopy class of closed curves in M.

If M is equipped with a negatively curved metric g, let $\ell_g(\gamma)$ be the length of unique geodesic representative in γ .

Let M be a closed oriented manifold. Let \mathcal{C} be the set of free homotopy class of closed curves in M.

If M is equipped with a negatively curved metric g, let $\ell_g(\gamma)$ be the length of unique geodesic representative in γ .

Marked length spectrum

$$\ell_{g}: \mathcal{C} \to \mathbb{R}_{+}$$

Let M be a closed oriented manifold. Let \mathcal{C} be the set of free homotopy class of closed curves in M.

If M is equipped with a negatively curved metric g, let $\ell_g(\gamma)$ be the length of unique geodesic representative in γ .

Marked length spectrum

$$\ell_g: \mathcal{C} \to \mathbb{R}_+$$

Furthermore, we get

$$\mathcal{L}: \{ \mathsf{negatively} \ \mathsf{curved} \ \mathsf{metrics} \} / \sim \ \to \ \mathbb{R}_+^{\mathcal{C}}$$

Conjecture

$$\mathcal{L}: \{ \mathsf{negatively} \ \mathsf{curved} \ \mathsf{metrics} \} / \sim \ \rightarrow \ \mathbb{R}_+^{\mathcal{C}}$$

Conjecture

 $\mathcal{L}: \{ \mathsf{negatively} \ \mathsf{curved} \ \mathsf{metrics} \} / \sim \ \rightarrow \ \mathbb{R}_+^{\mathcal{C}}$

Conjecture (Burns-Katok, 85)

 \mathcal{L} is injective.

Conjecture

 $\mathcal{L}: \{ \mathsf{negatively} \ \mathsf{curved} \ \mathsf{metrics} \} / \sim \ \to \ \mathbb{R}_+^{\mathcal{C}}$

Conjecture (Burns-Katok, 85)

 $\mathcal L$ is injective.

Let Λ be a subset of metrics on M. We say λ is spectrally rigid if $\mathcal{L}|_{\Lambda}$ is injective.

Standard results

Standard results

Theorem (9g - 9)

If M is a closed surface of genus $g \geq 2$, then $\exists \ 9g - 9$ closed curves such that

$$\mathcal{L}: \{ \text{hyperbolic metrics} \} / \sim \
ightarrow \ \mathbb{R}_{+}^{9g-9}$$

is injective.

In particular, the set of hyperbolic metrics on the surface is spectrally rigid.

Standard results

Theorem (9g - 9)

If M is a closed surface of genus $g \geq 2$, then $\exists \ 9g-9$ closed curves such that

$$\mathcal{L}: \{ \text{hyperbolic metrics} \} / \sim \ \rightarrow \ \mathbb{R}_+^{9g-9}$$

is injective.

In particular, the set of hyperbolic metrics on the surface is spectrally rigid.

Theorem (Otal-Croke, 90)

The set of negatively curved metrics on surface is spectrally rigid.

Higher dimensional case

Higher dimensional case

Theorem (Hamenstädt, 99)

Suppose dim $M \ge 3$. Two negatively curved metrics g and g_0 have the same marked length spectrum, g_0 is locally symmetric. Then $g \cong g_0$.

Metrics with singularities

Metrics with singularities

Theorem (Hersonsky-Paulin, 97)

The set of negatively curved cone metrics on surface is spectrally rigid.

Theorem (Bankovic-Leininger, 17)

The set of flat cone metrics on surface is spectrally rigid.

Metrics with singularities

Theorem (Hersonsky-Paulin, 97)

The set of negatively curved cone metrics on surface is spectrally rigid.

Theorem (Bankovic-Leininger, 17)

The set of flat cone metrics on surface is spectrally rigid.

Let $S_r(p)$ be the circle around p of radius r. The cone angle at p is defined to be

$$\lim_{r\to 0}\frac{\ell(S_r(p))}{r}$$

Flat cone surface

Flat cone surface

Flat cone metric: flat except finitely many cone points, whose cone angle is bigger than 2π .

Flat cone surface

Flat cone metric: flat except finitely many cone points, whose cone angle is bigger than 2π .

E.g. Glue an octagon.

X: Riemannian surface T^*X : holomorphic cotangent bundle

X: Riemannian surface T^*X : holomorphic cotangent bundle

A holomorphic quadratic differential q on X is a holomorphic section of $T^*X \otimes T^*X$.

Local form: $f(z) dz^2$ for a holomorphic function f.

X: Riemannian surface T^*X : holomorphic cotangent bundle

A holomorphic quadratic differential q on X is a holomorphic section of $T^*X \otimes T^*X$.

Local form: $f(z) dz^2$ for a holomorphic function f.

$$f(0) \neq 0$$
: let $\xi = \int \sqrt{f} dz$, $q = d\xi^2$.

f(0)=0: suppose 0 is of order k, then $q=w^kdw^2$. Let $\eta=\frac{2}{k+2}w^{\frac{k+2}{2}}$, then $q=d\eta^2$ and the cone angle is $(k+2)\pi$.

X: Riemannian surface T^*X : holomorphic cotangent bundle

A holomorphic quadratic differential q on X is a holomorphic section of $T^*X \otimes T^*X$.

Local form: $f(z) dz^2$ for a holomorphic function f.

$$f(0) \neq 0$$
: let $\xi = \int \sqrt{f} dz$, $q = d\xi^2$.

$$f(0)=0$$
: suppose 0 is of order k , then $q=w^kdw^2$. Let $\eta=\frac{2}{k+2}w^{\frac{k+2}{2}}$, then $q=d\eta^2$ and the cone angle is $(k+2)\pi$.

Proposition

A flat cone metric comes from a holomorphic quadratic differential if and only if

- (1) every cone angle is of the form $k\pi, k \geq 3, k \in \mathbb{Z}$
- (2) $\operatorname{Hol}(S) = \pm \operatorname{Id}$

Main result

Theorem

Let (S, σ) be a closed oriented flat cone surface of genus at least 2. If its marked length spectrum is integral, simple and recurrent, then σ comes from a holomorphic quadratic differential.

Table of Contents

Introduction

Main idea

 $\partial_{\infty} S$: visual boundary of the universal cover of S

$$\mathcal{G}(\tilde{S}) = (S^1_{\infty} \times S^1_{\infty} \setminus \Delta)/(x,y) \sim (y,x)$$

 $\mathcal{G}^*(\tilde{S})$: closure of endpoints of nonsingular geodesics

Geodesic current: $\pi_1(S)$ -invariant Radon measure on $\mathcal{G}(\tilde{S})$

 $\partial_{\infty} S$: visual boundary of the universal cover of S

$$\mathcal{G}(\tilde{S}) = (S^1_{\infty} \times S^1_{\infty} \setminus \Delta)/(x,y) \sim (y,x)$$

 $\mathcal{G}^*(\tilde{S})$: closure of endpoints of nonsingular geodesics

Geodesic current: $\pi_1(S)$ -invariant Radon measure on $\mathcal{G}(\tilde{S})$

Theorem (Bonahon, 88)

Liouville current is uniquely determind by marked length spectrum.

 $\partial_{\infty} S$: visual boundary of the universal cover of S

$$\mathcal{G}(\tilde{S}) = (S^1_{\infty} \times S^1_{\infty} \setminus \Delta)/(x,y) \sim (y,x)$$

 $\mathcal{G}^*(\tilde{S})$: closure of endpoints of nonsingular geodesics

Geodesic current: $\pi_1(S)$ -invariant Radon measure on $\mathcal{G}(\tilde{S})$

Theorem (Bonahon, 88)

Liouville current is uniquely determind by marked length spectrum.

$$\operatorname{supp} L = \mathcal{G}^*(\tilde{S})$$

Roughly speaking, a chain is a sequence of points in $\partial_{\infty}S$, which is the endpoints of a sequence of geodesic rays based at the same point, such that any two consecutive rays form an angle π .

Roughly speaking, a chain is a sequence of points in $\partial_{\infty}S$, which is the endpoints of a sequence of geodesic rays based at the same point, such that any two consecutive rays form an angle π .

Roughly speaking, a chain is a sequence of points in $\partial_{\infty}S$, which is the endpoints of a sequence of geodesic rays based at the same point, such that any two consecutive rays form an angle π .

We can use the chain to compute the cone angle at the basepoint.

Roughly speaking, a chain is a sequence of points in $\partial_{\infty}S$, which is the endpoints of a sequence of geodesic rays based at the same point, such that any two consecutive rays form an angle π .

We can use the chain to compute the cone angle at the basepoint.

Integral: all the cone angles are integer multiples of π

A special leaf

A special leaf

Simple: $\forall (x, y) \in \text{supp } L$, $\forall g \in \pi_1(S)$, (x, y) and (g.x, g.y) don't link

Recurrent: $\forall (x,y) \in \text{supp } L$, the closure of its $\pi_1(S)$ -orbit does not admit a proper closed $\pi_1(S)$ -invariant subset

A special leaf

Simple: $\forall (x, y) \in \text{supp } L$, $\forall g \in \pi_1(S)$, (x, y) and (g.x, g.y) don't link

Recurrent: $\forall (x,y) \in \text{supp } L$, the closure of its $\pi_1(S)$ -orbit does not admit a proper closed $\pi_1(S)$ -invariant subset

Lemma

For a flat cone surface (S, σ) , if the Liouville current is simple and recurrent, then there exists a nonsingular noncompact geodesic h in S such that every leaf in the closure of h contains at most one cone point.

Dense leaf

Theorem

If the Liouville current is simple and recurrent, then there exists a nonsingular simple geodesic whose closure is the entire surface S.

Holonomy

 $v, w \in T^1(S)$, $v \sim w$ if they form an angle π . Each equivalent class is called a direction at p.

Idea: use the dense leaf to define a field of directions, invariant under parallel transport.

Holonomy

 $v, w \in T^1(S)$, $v \sim w$ if they form an angle π . Each equivalent class is called a direction at p.

Idea: use the dense leaf to define a field of directions, invariant under parallel transport.

