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The Plan

1. Motivation:
▶ The conjecture (with a lot of black boxes) . . .
▶ . . . & why it is great

2. What we know . . .
▶ . . . & what we don’t

3. Background: What are . . .
▶ . . . affine Coxeter groups?
▶ . . . reflection length?
▶ . . . details of the conjecture?
▶ . . . approaches to prove it?



Motivation

Conjecture (Schwer)

Let W = T ⋊W0 be an affine Coxeter group with spherical Coxeter
group W0. For w ∈ W with normal form w = tλu the reflection
length can be written as

ℓR(w) = 1
2ℓR(tλ) + min

v∈Vλ

ℓR(vu).

State of research
It is well understood how to compute reflection length

▶ of a translation tλ [MP11],

▶ in a spherical Coxeter group [Car70].

(There are also results on reflection length in affine Coxeter groups,
for example [LMPS19].)
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What we (don’t) know

Theorem (Small rank [vR20])

The conjecture is true in affine Coxeter groups of rank 1 and 2.

Theorem (Upper bound [vR20])

With the same notation as in the conjecture holds

ℓR(w) ≤ 1
2ℓR(tλ) + min

v∈Vλ

ℓR(vu).

The other inequality appears to be much harder to prove.
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Affine Coxeter groups - examples

Infinite Dieder group D∞

R

s r rsr

rs

D∞ = ⟨s, r | s2, r2, (sr)∞⟩

Affine Coxeter group of type G̃2

W = ⟨s, r , t | s2, r2, t2, (sr)6, (st)3, (rt)2⟩
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Affine Coxeter groups - definition

Definition (Coxeter group)

A Coxeter group with Coxeter generating set S = {s1, . . . , sn} is a
group

W = ⟨S | ∀s, t ∈ S : s2, (st)mst ⟩

where mst ∈ {2, 3, 4, . . . } ∪ {∞}.

If all s ∈ S describe reflections in Rn:

▶ W finite → W spherical Coxeter group

▶ W infinite → W affine Coxeter group
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Spherical and affine Coxeter groups, normal forms

Fact
One can identify an affine Coxeter group W as W ∼= T ⋊W0 where

▶ T ∼= Zm (capturing the translations),

▶ W0 a spherical Coxeter group (of ‘same type’).

An element w = tλu is said to be in normal form if tλ ∈ T and
u ∈ W0.

Revisiting D∞

R

s rs · s

rs

D∞ = Z ⋊ ⟨s⟩

The normal form of r is then r = rs · s.
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Reflection length

Definition (Reflections, reflection length)

Let W be a Coxeter group with generating set S .
An element r ∈ W is a reflection, if it is conjugate to an s ∈ S :

r = wsw−1 for some w ∈ W .

The reflection length of an w ∈ W is

ℓR(w) := min{k|w = r1 · · · rk with the ri reflections}.

Revisiting D∞

R

s r rsr

rs

ℓR(rsr) = 1, ℓR(rs · rs) = ℓR(rsr · s) = 2
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Back to the statement

Conjecture (Schwer)

Let W = T ⋊W0 be an affine Coxeter group with spherical Coxeter
group W0. For w ∈ W with normal form w = tλu the reflection
length can be written as

ℓR(w) = 1
2ℓR(tλ) + min

v∈Vλ
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What is Vλ?
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The set Vλ - motivation

Revisiting D∞ = T ⋊ ⟨s⟩

R

s rs · s

rs

Consider r with normal form r = rs · s = tλs.

Its reflection length is

1 = ℓR(r)
!
= 1

2ℓR(rs) + min
v∈Vλ

ℓR(v · s)

= 1
2 · 2 + min

v∈Vλ

ℓR(v · s)

= 1
2 · 2 + 0

where we chose v = s and thus get ℓR(v · s) = ℓR(ss) = ℓR(id) = 0.

Why does v = s work?

It reflects ‘in the direction’ of the considered translation rs.
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The set Vλ - motivation

Revisiting the affine Coxeter group of type G̃2

α∨
β∨



The set Vλ - definition (with some black boxes. . . )

Definition (The set Vλ)

Let Φ∨ be a coroot system and λ ∈ spanZΦ
∨ of dimension k. If

λ =
k∑

i=1

ciα
∨
i

with coroots α∨
i ∈ Φ∨ and ci ∈ Z then sα1 · · · sαk

∈ Vλ.



Back to the conjecture

Conjecture (Schwer)

Let W = T ⋊W0 be an affine Coxeter group with spherical Coxeter
group W0. For w ∈ W with normal form w = tλu the reflection
length can be written as

ℓR(w) = 1
2ℓR(tλ) + min
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ℓR(vu).

The conjecture in essence

There exists at least one v ∈ Vλ ‘cancelling out enough’ with u.
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Summary and outlook

Summary: Proposition

Let W = T ⋊W0 be an affine Coxeter group with spherical Coxeter
group W0 and For w ∈ W with normal form w = tλu the reflection
length can be written as

ℓR(w) ≤ 1
2ℓR(tλ) + min

v∈Vλ

ℓR(vu).

If W is of rank 1 or 2 we have ‘=’.
Otherwise we don’t know (yet).

Outlook: Approaches

▶ Understanding how sub-root systems and subgroups are nested
and interact with each.

▶ Considering simplest (general) case type affine An first.
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