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OVERVIEW

Deterministic model

e Bending energy: |A|?-term
e Two attractive walls

Goal: describe the asymptotic behaviour
of the energy when attraction to walls is
much stronger than the bending rigidity
of a membrane

Stochastic model

e Trajectory of a Gaussian process
e Covariance = Green function of A2

NN

Goal: prove Large Deviations principle
and compute corresponding rate
functional
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Part I:

DETERMINISTIC MODEL



MODEL SETUP

Fe(u) = {fn (w + 53|Au(x)|2)dx fue W22(Q)
E oo ifue LY(Q)\ W22(Q)

e () C R™ open, bounded, Lipschitz domain

e u: ) — R height profile

e W :R — [0,00) continuous such that

(H1) W(u) =0 & u € {a,b}

(H2) u> R = W(u) > Cu? . D

What is the suitable limit as e — 0 such that the variational structure is preserved ???
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['—CONVERGENCE
Motivation and main idea

e Family of minimum problems:

min{F.(u) :u e X}, €¢>0

e Would like to have a simpler "effective problem’
min{F(u) :uv e X}

such that it captures relevant behaviour of minimizers

e Ennio De Giorgl, early 70s

5/21 Anastasija Pesic Membrane models



['—CONVERGENCE
Definition

Let (X, d) be a metric space and let F,, : X — [—o0, +00] be a family of functionals. We
say that (Fy,) T'—converges 10 Fu, : X — [—o0, +0o0] If the following Is satisfied
(i) "lim inf-inequality"

Vz € X V(z,) C X such that z, — z it holds Fo(z) < lim inf F, (x,,)

n— oo
(i) "limsup-inequality"

Ve € X I(xn) C X such that z, — x and Foo(z) > limsup Fy(xx,).

n— oo

We denote this by Foo =T — im F, or F,, = Fs.
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['—CONVERGENCE
Some examples

“liminf iroqua iz’
W€ X V(wa) C X 5uch thalz, — & i Polds Fi () < liminf Fo(w,)
Tim sup-Tnedsal y"

Vo € X I(wn) © X sach lha. 2, — z 2nd Foc(2) 2 limsup Fu(sn).

(') Under additional compactness assumptions I'—convergence implies convergence of
minimizers.
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MAIN RESULT

Theorem

Let Q@ C R™ open, bounded, Lipschitz domain. Let a,b € R and W : R — [0, +o00] continuous such that
(H1) W(u) =0 & u € {a,b}

(H2) >R = W(u) > Cu?

Consider the family (Fe)e>o0 given by

Fe(u) = {fn (Wiu) +e3|Au|2)dQ; ifueW22(Q)

+oo ifue LY(Q)\ W22(Q)
Then it holds
where

m:min{/W(f)Hf”th:femif(R),tnT f(t) =0, lim f(t):a}
R —+00 ——00
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IDEA OF THE PROOF
Optimal profile

Constant m is defined as the smallest energy needed for a membrane to cross from level
a to level b

More precisely:

A= {feWéf(R):f(t):bift>0,f(t):a'ft<—C, forsomeC>0}

m = inf{ o W)+ (f()%dt: f € A} (21)

— 00
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IDEA OF THE PROOF

Inequalities

e Proof for dimension n = 1 follows closely [Fonseca & Mantegazza, 2001]

e liminf-inequality in higher dimensions uses blow-up type argument as in [Hilhorst,
Peletier & Schitzle, 2002] and [Burger, Esposito & Zeppieri, 2015]

e limsup-inequality requires a recovery sequence constructed using optimal profile
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IDEA OF THE PROOF

Recovery sequence

op!

- Ut
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IDEA OF THE PROOF

Recovery sequence
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IDEA OF THE PROOF
Compactness for energy-bounded functionals

Let (ue) € W223(Q) with 2= = 0 on 99 such that

lim ir+1f.7-"E (ue) < +o0.

e—0

Then there exists a subsequence satisfying

Ue,, L—1> u € BV (Q;{a,b}).

e Follows from the bound introduced in [Fonseca et.al. 2016]
IV2ul|72< 3]| Aul|F2+e(Q)|ull72

and compactness result from [Fonseca, Mantegazza, 2000]
e Remark: Neumann-boundary conditions can be omitted!
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CONCLUSION

e I'—limit for the functional modeling the membrane between two attractive walls of
the perimeter type

e Compactness (with and without Neumann-boundary conditions)
= Convergence of minimizers, description with optimal profile

e In the meantime: also obtained I'—convergence result on a smaller space

{u e W22(Q) : % =0, ae on 90}

(useful for a model for pattern formation in biomembranes)
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Part Il:

STOCHASTIC MODEL



MODEL DESCRIPTION

e Starting point: Gaussian process with covariance being the Green function of A%-operator

L
An

e Several cases and constraints:

S=8

e Asymptotic behaviour of a scaled family of such processes?
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LARGE DEVIATIONS PRINCIPLE

We say that {ue teso Satisfies a Large Deviations Principle with a rate functional I if
.. > -
hgg(r]lfelog,us(U) > ;rel(f]I(:v), YU C X open

limsup elog p-(G) < — Helg I(z), VG C X closed.

e—0

(1) Notice that then u. concentrates around minimizers of the rate functional I as e — 0.
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OVERVIEW OF THE RESULTS

LDP was obtained for all cases with the rate functional of the general form

I(p) = %/0 (Ap)*dt — inf, <%/0 (A¢)2dx>

where A denotes the set of trajectories with imposed boundary / integral constraints.
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OVERVIEW OF THE RESULTS

oM,
“yaast®

7

2 +
T

Membrane Modeling process I LDP derivation
Zero bdry cond Yr(t) = f‘: B(s)ds Legendre transform or
on left side Schilder Thm. and Contraction pr.
Zero bdry cond D) = P (t) — ((34)% — 2(£)%)n(L) 2 for p € W22(0,1) Legandre transform or
on both sides - - 1)B(L) ©(0) =¢'(0)=p(1) =¢'(1) =0 conditioning on bdry values
Fixed # 0 bdry Ung(t) =¥ r) —((34)2 = 2(£)*)wi(L) 1M9(p) = () = inf g T Conditioning on bdry values
cond. on right [ 1)B(L) + (3h — gL)(£)* + (9L — 2h)(3)* = I(p) — 6h% + 6hg — 29° for p € C 2([0.1])
Volume constraint WV () =P e o(Y)} 191U () = 1(9) = inf ap gy T Conditioning on bdry values
and bdry constr. for g € Ca([0,1]) N CY and ¢* () =
= 3(g —8h=20V)a? — 4(g — Th+ 15V)a® + 3(g — 6h + 12V)a! and integral constraint
Quadratic integral WV =P e | o(Y)} TomU(p) = I(p) — inf g3 gy Conditioning on bdry values
constraint and bdry constr. forpe (‘,{‘;([0 1)) and integral constraint
2D membrane, ¢ = centered Gaussian process, I(p) = 5 [p(Ap(t)dt Legendre transform or
zero-bdry cond. covariance = Green fct. of A? for ¢ € W22(D) and ¢|op=0 conditioning on bdry values
2D membrane, W) =P{pe-|aY)} IV(p) =I(p)=infslifpe A Conditioning on bdry values
volume constrant and integral constraint
1D membrane, ApF = ol PP gy ) IV (p) = 1 [ ()2 + W(p)dt — infyecaqoupld fo )2 + W()di) Varadhan's Lemma
tilted measure for F(p) := fu‘ W (p(t))dt
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THANK YOU FOR YOUR ATTENTION!
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