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Structured population models

Used for describing the evolution of cell, animal or human populations with
respect to a specific structuring variable (state variable).

Classically studied in the space of Lebesgue integrable functions.

L1-setting does not account for linear combinations of Dirac measures.

Cannot be used as initial data in L1-setting.
No description of selection phenomena in L1-setting.
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Measure setting

Solution can be interpreted as a state space distribution of the population:
If µ(t) is a solution, then

∫
A dµ(t)(x) describes individuals of the population

which have trait x ∈ A at time t.

Need to clarify what is meant by a solution of a differential equation in a measure
space.

Require suitable functional setting and metric.
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Functional setting

Space:

A Radon measure is an inner regular and locally finite measure.
A measure µ is called nonnegative if µ(A) ≥ 0 for all measurable sets A ⊂ R≥0.
M+(R≥0) = {µ | µ is a finite, signed and nonnegative Radon measure} (no vector
space!).

Metric:

Bounded Lipschitz functions: BL(R≥0) := {f ∈ C 0(R≥0) | ‖f ‖∞ <∞, |f |Lip <∞}.
Flat norm: ‖µ‖BL∗ := sup

{∫
R≥0

ψ dµ | ψ ∈ BL(R≥0), ‖ψ‖BL ≤ 1
}

.

Flat metric: ρF (µ, ν) := ‖µ− ν‖BL∗ on M+(R≥0).

⇒ We choose the positive cone M+(R≥0) together with the flat metric as functional
setting.
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Linear model with transport term

We consider the following linear population model{
∂tµt + ∂x(bµt) = cµt in [0,T ]× R≥0,

b(0)Dλµt(0) =
∫
R≥0

a dµt in [0,T ],

with given initial condition µ0 ∈M+(R≥0).

We call a map µ : [0,T ]→M+(R≥0) a
measure solution if µ is narrowly continuous w.r.t. t and∫

R≥0

ϕ(T , x)dµT (x)−
∫
R≥0

ϕ(0, x)dµ0(x)

=

∫ T

0

∫
R≥0

(
∂tϕ(t, x) + b(x)∂xϕ(t, x) + c(x)ϕ(t, x) + a(x)ϕ(t, 0)

)
dµt(x) dt

for all ϕ ∈ C 1([0,T ]× R≥0) ∩W 1,∞([0,T ]× R≥0).
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Well-posedness

Theorem (Theorem 2.19 and Remark 3.41 in book [1])

Suppose model functions a, b and c are sufficiently nice. Then, for any initial measure
µ0 ∈M+(R≥0), there exists a unique Lipschitz continuous solution
µ : [0,T ]→ (M+(R≥0), ρF ). Moreover, the solution is Lipschitz continuous w.r.t. the
initial measure as well as the model functions.

[1]: C. Düll et al. Spaces of Measures and their Applications to Structured Population Models.
2020
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Example

Consider following model (Example 2.1 and 2.10 in book [1])

∂tµt + ∂x(bµt) = 0 in [0,T ]× R≥0,

Dλµt(0) = 0 in [0,T ],

µ0 = δ0

with a constant transport coefficient b > 0.

Unique weak solution: µt = δbt .

[1]: C. Düll et al. Spaces of Measures and their Applications to Structured Population Models.
2020
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[1]: C. Düll et al. Spaces of Measures and their Applications to Structured Population Models.
2020

Finn Münnich
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Results from book [1]

In the book, there are also existence, uniqueness and well-posedness results for more
general structured population models such as

the corresponding nonlinear model and

the corresponding structured population models formulated on a general state
space (S , d) that is a proper metric space.

[1]: C. Düll et al. Spaces of Measures and their Applications to Structured Population Models.
2020
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Model in L1-setting

Originates from [2] as a clonal selection model and was extended in [3] to account for
mutation.

∂

∂t
u(t, x) = B(x , ρ(t), 0)u(t, x),

+ ε

∫
Ω
κ(x , y)u(t, y)dy ,

∂

∂t
v(t, x) = A(x , ρ(t))u(t, x)− θv(t, x),

u(0, x) = u0(x),

v(0, x) = v0(x),

where x ∈ Ω ⊂ R, ε, θ ∈ R>0 and ρ(t) =
∫

Ω v(t, x) dx .

[2]: J.-E. Busse, P. Gwiazda, and A. Marciniak-Czochra. Mass concentration in a nonlocal model
of clonal selection. In: Journal of Mathematical Biology (2016)
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Model in measure setting

In the measure setting, we have

∂tµt = B(·, νt(Ω), ε)µt + ε

∫
Ω
η(y) d[µ(t)](y),

∂tνt = A(·, νt(Ω))µt − θνt ,
µ0 = µ0,

ν0 = ν0,

where η(y)(M) =
∫
M κ(x , y)dx for a Borel set M ⊂ Ω.
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Results in measure setting

Basic clonal selection model (see [4, Section 2.7])

Existence of a unique global-in-time solution (µ, ν) ∈ C 1([0,∞),M+(Ω)×M+(Ω)).
(µ(t), ν(t)) converges w.r.t. the flat metric to a Dirac measure as t tends to infinity.

Selection-mutation model (see [5])

Existence and uniqueness of a measure solution (µ, ν) in M+(Ω)×M+(Ω).
Solution is continuous with respect to initial conditions and model functions.

For more information about the role of self-renewal see [6].

[4]: J.-E. Busse. Asymptotic behaviour of a system of integro-differential equations describing
leukemia. PhD thesis. Ruprecht-Karls-Universität Heidelberg, 2017

Finn Münnich

Well-posedness of a structured population model in spaces of measures



16/ 17

Introduction Measure setting Specific class of models Application References

Results in measure setting

Basic clonal selection model (see [4, Section 2.7])

Existence of a unique global-in-time solution (µ, ν) ∈ C 1([0,∞),M+(Ω)×M+(Ω)).
(µ(t), ν(t)) converges w.r.t. the flat metric to a Dirac measure as t tends to infinity.

Selection-mutation model (see [5])

Existence and uniqueness of a measure solution (µ, ν) in M+(Ω)×M+(Ω).
Solution is continuous with respect to initial conditions and model functions.

For more information about the role of self-renewal see [6].
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