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Abstract
Energy solutions are a probabilistic theory for singular SPDEswith tractable (quasi-) invariant
measures. The prototypical example is the stochastic Burgers/KPZ equation with its white
noise invariant measure. Energy solutions were introduced by Gonçalves-Jara [4] and later
Gubinelli-Jara [7] and they are based on methods from hydrodynamic limits such as replace-
ment lemmas and martingale estimates. More recently, we understood how to use chaos
decompositions to construct and control infinitesimal generators in this setting, which leads
to a (weak) well-posedness theory of energy solutions. Compared to pathwise approaches
like regularity structures, this requires only relatively soft estimates and the method applies
to some scaling (super-)critical equations.

In these lectures, we will start with the guiding example of a diffusion in a singular diver-
gence-free vector field, where we can understand the main ideas of energy solutions without
many technicalities and we can already see some (super-)critical problems. Then we will
discuss a relatively general and abstract construction of infinitesimal generators, semigroups,
and energy solutions based on chaos expansions and infinite-dimensional analysis. Finally we
will study applications to singular SPDEs.
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1 Introduction
Disclaimer: This is a work in progress and in particular there are many references missing and we
should give more credit to other works.

Singular SPDEs are nonlinear stochastic partial differential equation with very irregular noise.
For example, if we derive an SPDE as a mesoscopic model for fluctuations in a random system,
then the noise in the equation will typically a space-time white noise. (As long as the microscopic
system does not have correlations that persist over infinite distances.)
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The bulk of these lectures will be quite abstract, and to motivate the following abstract con-
siderations let us first consider some examples that we will be able to treat.

The example which started the theory of singular SPDEs is interface growth. In the pictures
below you see different growing interfaces. In a 1986 landmark paper in physics by Kardar, Parisi
and Zhang [14] it was conjectured that the fluctuations in such interface growth can, in a certain
regime, be modelled by an SPDE which now is called the KPZ equation: h:R+�Rd!R,

@th=�h+ jrhj2+ �;

where � is a space-time white noise, i.e. a centered generalized Gaussian process with E[�(f)�(g)]=
hf ; giL2(R+�Rd). This is a singular SPDE, because the noise makes the solution irregular and only
in d=1 it is even a function, in higher dimensions it could only be a generalized function (Schwartz
distribution)1.1. And even in d= 1, which corresponds to the pictures below (two-dimensional
phases, one-dimensional interface), h is non-smooth and x 7!h(t;x) is only as regular as a Brownian
motion and therefore jrhj2 makes no sense.
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Figure 1.1. Growing interfaces. Image credit: Löwe et al., Geophys. Res. Letters, Vol. 34, L21507, 2007
(upper left), Nils Berglund (lower left), iStockphoto.com/rudigobbo (right)

In that case there is a simple trick to make sense of h: If we define w= eh (�Cole-Hopf trans-
formation�), then w formally solves the stochastic heat equation

@tw=�w+w�;

which is linear and well-posed as an Itô SPDE. Therefore, we can simply define h := logw (luckily
w is strictly positive for positive initial conditions) and this gives us the right object to work with.
But in this way we do not get an equation for h.

The first widely visible1.2 breakthrough in singular SPDEs was a work by Hairer [13] in which he
solved the KPZ equation using rough path integrals (a pathwise version of stochastic integration).
The key point is that the roughness in h(t; �) is in the space variable, and therefore there is no direc-
tion of information and Itô techniques are not useful. While the pathwise approach does not care
about that. This inspired a lot of follow-up research, for example Hairer's regularity structures [12]
and paracontrolled distributions by Gubinelli-Imkeller-Perkowski [6] extend rough path integration
to higher dimensions, which is necessary to treat equations with higher-dimensional space variables.

1.1. In fact it is expected/in some cases shown that in d> 3 there is no nontrivial solution to the SPDE, and h
is Gaussian and a solution of @th= ��h+�� for some effective parameters �; � > 0. The physically most relevant
case d= 2 (three-dimensional phases) is more subtle and finer details of the equation should determine whether
solutions are Gaussian or not.

1.2. There was a previous work byHairer [11] where he first demonstrated the usefulness of rough path techniques
for singular SPDEs and which layed the foundation for the KPZ paper. This is a beautiful and groundbreaking
work, and the main reason why it did not get the same attention as the KPZ paper is that the SPDE treated here
is not as famous as the KPZ equation.
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By now singular SPDEs are a flourishing area of research and hundreds of papers developed and
consolidated the field since those early days. We do not go into detail and simply stress that most
works in the area follow the original, pathwise philosophy: To solve a singular SPDE, we freeze a
realization of the noise �(!) (together with a finite number of �trees�, i.e. nonlinear functionals, built
from �(!)), and then proceed to solve the SPDE with deterministic arguments. At the moment
this is the only general approach we have for solving many singular SPDEs in a unified framework.
But for some equations there is an alternative approach, based on probabilistic techniques such
as martingales. Here we present this alternative approach. Let us give some examples of SPDEs
where this is applicable:

Example 1.1.

i. Stochastic Burgers equation: The derivative of the KPZ equation solves the stochastic
Burgers equation u:R+�R!R

@tu=@xxu+ @xu
2+@x�:

We can derive this model as a mesoscopic fluctuation scaling limit from microscopic models
for local differences in interface growth. The simplest model is the (weakly asymmetric)
simple exclusion process on Z, i.e. a system of particles which perform continuous time
independent random walks with rate p (resp. 1¡ p) of jumping to the right (resp. the left),
but which are not allowed to jump on top of each other; each site has at most one particle.

Figure 1.2. Simple exclusion process

One motivation for studying this particle system is that it corresponds to a simple
interface model: We can imagine a piecewise linear curve (h(t; k): t> 0; k 2Z) over Z, such
that h(t; k + 1)¡ h(t; k) = 1 if there is a particle at site k, and h(t; k + 1)¡ h(t; k) =¡1
otherwise. Then local maxima become local minima with rate p, and local minima become
local maxima with rate 1¡ p.

*

''

Figure 1.3. Simple exlusion as interface model

The oscillations of this random interface could for example be a toy model for the
interfaces in Figure 1.1. In that case the up and down motion is not symmetric, so we would
expect p < 1

2
(p=0 would correspond to growth only, and p > 0 would for example allow

some melting of the snow). The large scale behavior for fixed p2
¡
0;

1

2

�
is described by the

KPZ fixed point, a complicated stochastic process which can only be described by explicit
formulas for its transition probabilities, but for which we do not know any differential
equation [16, 18].
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But if the random walk in the exclusion process is symmetric, i.e. p= 1

2
, then on large

scales the particle system converges to the SPDE

@tu=
1
2
@xxu+ @x�;

on R+�R, where � is a space-time white noise (roughly speaking �(t; x) is independent of
�(s; y) whenever (t; x) =/ (s; y)). This equation is called the infinite-dimensional Ornstein-
Uhlenbeck process. If we take a small perturbation around the symmetric jump rates and
consider p= 1

2
+�", with �2R and "! 0 as we scale out, then the scaling limit is given by

the stochastic Burgers equation

@tu=
1
2
@xxu+�@xu

2+ @x�;

which is singular because u is only a generalized function and therefore u2 is not classically
defined. In that case the scaling limit for the interface is the KPZ equation

@th=
1
2
@xxh¡ (@xh)2+ �:

Using the Cole-Hopf transform, this convergence was established well before the start of
singular SPDEs [2].

ii. Fractional, multi-component Burgers equation: If particles in the exclusion process are
allowed to do long range jumps in such a way that the rescaled random walk of a single non-
interacting particle would converge to an �-stable Lévy process, then the scaling limit of the
particle system is a nonlocal stochastic Burgers equation u:R+�R!R (again interpreted
as a distribution in the space variable)

@tu=¡(¡�)�u+@xu2+ 2
p

(¡�)�/2�;

where again � is a space-time white noise and � 2
� 3
4
; 1

�
, see [5]. For � > 3

4
we need to

consider a weakly asymmetric regime, while for �= 3

4
this limit arises from a fixed strength

of asymmetry. For � < 1 this equation does not have a Cole-Hopf transform. For �= 3

4
it

is scaling invariant and therefore out of the range of pathwise theories, which are crucially
based on the fact that nonlinearities vanish on small scales and can be controlled by the
linear terms � this is called subcriticality .

If there are more than one particle type, say red, blue and green particles which interact
differently, then we could expect a multi-component fractional stochastic Burgers equation

@tu=¡(¡�)�u+ @x(u�¡u)+ 2
p

(¡�)�/2�;

where ¡2Rd�d�d is a tensor coupling the different components, and � is a vector-valued
space-time white noise.

iii. Stochastic surface quasi-geostrophic equation, regularization by noise: The surface quasi-
geostrophic equation is a popular model in fluid dynamics, describing for example the
evolution of the temperature in a fluid. It is given by

@t�+u�r� = 0;

u = r?(¡�)¡1/2�

on R+�T2 or R+�R2 and where r?=(@2;¡@1). To the best of our knowledge, the well-
posedness of this equation remains a challenging open problem and one of the best results
is the well-posedness of the critical model with fractional viscosity [15]:

@t�+u�r�=(¡�)1/2�:
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This equation is formally scaling invariant, but of course the viscosity has a regularizing
effect and it adds energy dissipation, while the original equation formally conserves the
energy

R
�2. In particular, while the inviscous equation formally has an invariant measure

given by the law of the Gaussian white noise, the viscous equation does not preserve this
measure. We could regularize the equation differently, by adding an injection of energy on
top of the dissipation, so that formally the energy is preserved:

@t�+u�r� = (¡�)�+ 2
p

(¡�)1/2�;
u = r?(¡�)¡1/2�;

for a space-time white noise �. Now the equation is scaling invariant, and also the energy is
preserved. Strictly speaking the energy

R
�2 is infinite at each time, but the �energy measure�

formally given by e¡
R
�2d� is preserved, which is the white noise measure.

iv. To some extent Landau-Lifshitz Navier-Stokes. To do.

We will see that, at least i.-iii., can be interpreted as infinite-dimensional stochastic differential
equations with a drift given by an infinite-dimensional drift. To get an idea how to solve those, we
first treat a conceptually simpler, finite-dimensional example.

Example 1.2. (Diffusion in the curl of the GFF) Let � be a periodic Gaussian free field on
R2, i.e. the centered Gaussian process with covariance E[�(f)�(g)] = h(¡�)¡1/2f ; (¡�)¡1/2gi.
The recent works To Do! consider the diffusion on R2

dXt=r?� � �(Xt)dt+ 2
p

dWt;

where �2Cc1 is a mollifier. They show that on large scales, X behaves super-diffusively, roughly
speaking

E[jXtj2]' t log t
p

; t!1:

Translating this to a small scale problem, this shows that taking the truncation away, there exists
no limit: the sequence of processes

dXt
"=r?�" � �(Xt

")dt+ 2
p

dWt;

where �"(x)= "¡2�("¡1�), is not tight and does not converge in distribution. While on large scales
the issue are the long range correlations in the GFF, on small scales the issue is its irregularity:
We have (locally) � 2 C¡1¡�=B1;1

¡1¡� for all �> 0 but not for �= 0. The law of the diffusion is
formally equivalent to the Kolmogorov backward equation

@tu"=�u"+ b"�ru"; b"=r?�" � �:

We know from regularity structures that this equation is scaling subcritical exactly if (locally)
b"2C¡1+� (i.e. then u" is a perturbation of the heat equation on small scales). Our example shows
that in this case the subcriticality condition is a sharp obstacle to well-posedness and if it is only
slightly violated it may be impossible to construct a limit of (X")">0.

But what if we regularize this problem slightly, say with a Fourier multiplier (1 + jxj2)¡� for
some � > 0? In that case b"2 C¡1+2�¡� C¡1+� locally, so the dynamics are subcritical and we
should be able to solve the equation using regularity structures. But for �!0 the number of trees
we need to construct converges to 1.

2 Lecture 1: Diffusion with distributional drift
We want to solve the d-dimensional SDE

dXt= b(Xt)dt+dBt; X0� �;

where b is a distribution with div b=0. We will assume that b is periodic with respect to integer
shifts. We will interpret the SDE in the weak sense, and define the drift by a limit:

Xt=X0+ lim
n!1

Z
0

t

bn(Xs)ds+Bt;

Lecture 1: Diffusion with distributional drift 5



for smooth approximations bn of b. We will construct such solutions and show weak uniqueness if
X additionally satisfies some �energy estimates/admissibility condition� and an �incompressibility
condition�. The uniqueness argument will rely on duality with the Kolmogorov backward equation,
for which we will construct sufficiently good solutions.

2.1 Construction of energy solutions to the SDE
To construct energy solutions, we go through the usual construction of solutions to martingale
problems: We replace b by a smooth approximation and prove tightness. Let us start with an
auxiliary observation. As usual we identify functions on Td=Rd/Zd with periodic functions onRd.

Lemma 2.1. Let X solve

dXt= b(Xt)dt+dBt;

where B is a Brownian motion and where b2C1(Td) is divergence free. Let Yt=XtmodZd. Then
Y is an ergodic Td-valued Markov process with generator L= 1

2
�+ b�r and with unique invariant

measure the Lebesgue measure on Td. If Y0 is stationary, then for any T > 0 the time-reversed
process Ŷt has the generator L�= 1

2
�¡ b�r.

Proof. Y is Markov because b is periodic and therefore predicting the future behavior of
(Xt+s)s>0modZd requires only knowledge of XtmodZd. To see that Y has the generator L=
1

2
�+ b�r we can apply Itô's formula to X . Next, we have by integration by parts and because
b is divergence free: Z

Td

Lf(x)g(x)dx =

Z
Td

�
1
2
�+ b�r

�
f(x)g(x)dx

=

Z
Td

�
1
2
�f(x)+r�(bf)(x)

�
g(x)dx

=

Z
Td

f(x)

�
1
2
�g(x)¡r�(bg)(x)

�
dx

=

Z
Td

f(x)L�g(x)dx;

where L�= 1

2
�¡ b�r. With g� 1 we see that the Lebesgue measure is indeed invariant. It then

follows from general results on Markov processes2.1 that for Lebesgue distributed initial condition
the time-reversed process has the generator L�.

Uniqueness of the invariant distribution holds because the diffusion is irreducible since we have
additive noise. Here is a shorter PDE-theoretic argument: The Kolmogorov forward equation, which
describes the evolution of the probability distribution of Y , is

@t�=L��=
�
1
2
�¡ b�r

�
�:

From basic regularity theory we get that �(t0) has a smooth density for any t0> 0. Using the
equation on [t0;1) and differentiating the L2-norm of �¡ 1, where by abuse of notation � also is
the density, we get with the L2(Td) inner product h�; �i

@t

Z
(�¡ 1)2 = 2

�
(�¡ 1);

�
1
2
�¡ b�r

�
�

�
= 2

�
(�¡ 1);

�
1
2
�¡ b�r

�
(�¡ 1)

�
= ¡

Z
jr(�¡ 1)j2;

2.1. See tutorial.
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where we used that b�r is antisymmetric wrt. Lebesgue measure (as we have seen above), and
therefore hf ; b�rf i=0. By the Poincaré inequality we have

¡
Z
jr(�¡ 1)j26 j2� j2

Z
j�¡ 1j2;

so by Gronwalls inequality Z
(�(t)¡ 1)26 e¡j2� j2(t¡t0)

Z
(�(t0)¡ 1)2;

which converges to 0 for t!1. �

The time-reversal gives a very useful bound for expectations of the form E[
����R
0

T
f(Ys)ds

����p]. This
is based on the so called Itô trick :

Lemma 2.2. (Itô trick) Let Y be a periodic diffusion with generator 1

2
�+b�r, where b2C1(Td)

is divergence free. Assume that Y0 is uniformly distributed on Td. Then we have for all T >0, for
all f 2C2(Td) and for all p> 2

E

"
sup
t6T

��������Z
0

t

�f(Ys)ds

��������p
#
.T

p

2krf kLp(Td)
p :

Proof. Let Ŷt=YT¡t. We get from the martingale problem

f(Yt) = f(Y0)+

Z
0

t

Lf(s; Ys)ds+Mt
f ;

f(ŶT) = f(ŶT¡t) +

Z
T¡t

T

L�f(Ŷs)ds+ M̂T
f ¡ M̂T¡t

f ;

where Mf is a martingale and M̂f is a martingale in the backward filtration (the filtration gener-
ated by Ŷ ). We can rewrite the equation involving Ŷ as

f(Y0) = f(Yt)+

Z
T¡t

T

L�f(YT¡s)ds+ M̂T
f ¡ M̂T¡t

f

= f(Yt)+

Z
0

t

L�f(Ys)ds+ M̂T
f ¡ M̂T¡t

f :

Adding these two equations and using that L+L�=�, we getZ
0

t

�f(Ys)ds=Mt
f + M̂T

f ¡ M̂T¡t
f :

The quadratic variations are

hMf it=
Z
0

t

jrf(Ys)j2ds; hM̂f it=
Z
0

t

jrf(Ŷs)j2ds;

which follows for example by writing f(Yt)= f(Xt) and applying Itô's formula to f(Xt), and sim-
ilarly for Ŷ . Thus, we have by Burkholder-Davis Gundy, Minkowski's inequality and stationarity

E

"
sup
t6T

��������Z
0

t

�f(Ys)ds

��������p
#
. E

��Z
0

T

jrf(Ys)j2ds
�
p/2

�

+E

��Z
0

T

jrf(YT¡s)j2ds
�
p/2

�
.

�Z
0

T

E[jrf(Ys)jp]2/pds
�
p/2

= T
p

2krf kLp
p :

�

Lecture 1: Diffusion with distributional drift 7



Corollary 2.3. Let (bn)n2N�C1(Td) be divergence free such that supn kbnkC¡1+�<1 for some
�>0, and let (�n)n2N be a sequence of probability measures on Td such that supn2Nkd�nd� kL2(Td)<
1 with the Lebesgue measure � on Td.

Let Y0n� �n and let Y n be the periodic diffusion with generator 1

2
�+ bn�r. Then (Y n)n2N is

tight in C(R+;T
d). Moreover, we have uniformly in n for all f 2L2(Td)

E

"
sup
t6T

��������Z
0

t

f(Ys
n)ds

��������
#
.T 1/2k(¡�)¡1/2f kL2(Td):

Proof. For simplicity we assume that Fbn(0)=0 for each n, i.e. that bn has vanishing zero Fourier
mode2.2. In that that we can construct (¡�)¡1bn by Fourier analysis:

F((¡�)¡1bn)(k)=
1

j2�k j2Fbn(k):

The Itô trick yields under the assumption d�n
d�
� 1, bounding r(¡�)¡1/2. 1:

E

���������Z
s

t

bn(Yr
n)dr

��������p� . (t¡ s)
p

2kr(¡�)¡1bnkLp(Td)
p

. (t¡ s)
p

2k(¡�)¡1/2bnkLp(Td)
p

. (t¡ s)
p

2k(¡�)¡1/2bnkL1(Td)
p

. (t¡ s)
p

2kbnkC¡1+�
p ;

where the last step follows from regularity estimates for � in Besov spaces. For non-stationary Y0n

we use the Cauchy-Schwarz inequality:

E�n

���������Z
s

t

bn(Yr
n)dr

��������p� =

Z
Ey

���������Z
s

t

bn(Yr
n)dr

��������p�d�nd�
(y)dy

6








d�nd�










L2(Td)

1/2
�Z

Ey

���������Z
s

t

bn(Yr
n)dr

��������p�2dy�1/2
6









d�nd�










L2(Td)

1/2
�Z

Ey

���������Z
s

t

bn(Yr
n)dr

��������2p�dy�1/2
=









d�nd�










L2(Td)

1/2

E�

���������Z
s

t

bn(Yr
n)dr

��������2p�1/2
. (t¡ s)

p

2k(¡�)¡1bnkC¡1+�
p :

Since p> 2 is arbitrary, tightness follows from Kolmogorov's continuity criterion. Also, the argu-
ments did not depend on the fact that we plugged in bn and therefore the claim for general f holds
by the same steps. �

Theorem 2.4. (Existence of energy solutions) Let (bn), (�n), (Xn) as in the previous lemma.
Assume that bn converges in C¡1+� to some b, that �n converges weakly to some �, and let Y be a
weak limit of the (Y n). Then:

i. Y solves the martingale problem with generator 1

2
�+ b�r in a limiting sense: For all f 2

C2(Td) the process

f(Yt)¡ f(Y0)¡ lim
n!1

Z
0

t
�
1
2
�+ bn�r

�
f(Ys)ds

is a martingale.

ii. Y is incompressible: For all bounded and measurable f :Td!R we have

E[jf(Yt)j]. kf kL2(Td):

2.2. Otherwise we would solve (¡�)¡1(bn¡Fbn(0))
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iii. Y is admissible / satisfies an energy estimate: For all f 2L2(Td)

E

"
sup
t6T

��������Z
0

t

f(Ys)ds

��������
#
.T 1/2k(¡�)¡1/2f kL2(Td):

We call such Y an energy solution of the SDE dYt= b(Yt)dt+dBt (interpreted periodically). In
that case we can extend the map I:L2(Td)!L1(
; C([0; T ])),

I(f)t=

Z
0

t

f(Ys)ds;

continuously to H¡1, and we denote the extension with the same symbol I.

Proof.

i. Let f 2C2 and 06 s < t and let G:C([0; s];Td) be continuous and bounded. We have to
show that limn!1

R
0

t¡ 1
2
�+ bn�r

�
f(Ys)ds exists and that

E

��
f(Yt)¡ f(Ys)¡ lim

n!1

Z
s

t
�
1
2
�+ bn�r

�
f(Yr)dr

�
G((Yr)r2[0;s])

�
=0:

For simplicity we assume that bn�rf has no zero Fourier mode2.3, for all n. The Itô trick
yields

E

"
sup
t6T

��������Z
0

t
�
1
2
�+ bn�r

�
f(Ys

n)ds¡
Z
0

t
�
1
2
�+ bm�r

�
f(Ys

n)ds

��������
#

.T 1/2k(¡�)¡1/2((bn¡ bm)�rf)kL2(Td)

.T 1/2kbn¡ bmkC¡1+�kf kC2:

.T 1/2kb¡ bmkC¡1+�kf kC2:

Since bm is smooth and bounded, the map x 7!
R
0

t
bm�rf(x(s))ds is a continuous bounded

map in the uniform topology and we obtainZ
0

t
�
1

2
�+ bm�r

�
f(Ys

n)ds¡!n!1
Z
0

t
�
1

2
�+ bm�r

�
f(Ys)ds;

weakly. Therefore, Fatou's lemma for weak convergence yields

E

"
sup
t6T

��������Z
0

t
�
1
2
�+ bm�r

�
f(Ys)ds¡

Z
0

t
�
1
2
�+ bm0�r

�
f(Ys)ds

��������
#

6liminf
n!1

E

"
sup
t6T

��������Z
0

t
�
1
2
�+ bm�r

�
f(Ys

n)ds¡
Z
0

t
�
1
2
�+ bm0�r

�
f(Ys

n)ds

��������
#

.kbm¡ bm0kC¡1+�

and thus
R
0

t¡ 1
2
�+ bm�r

�
f(Ys)ds is Cauchy in L1 and the L1-limit exists. Moreover, by L1-

convergence

E

��
f(Yt)¡ f(Ys)¡ lim

m!1

Z
s

t
�
1
2
�+ bm�r

�
f(Yr)dr

�
G((Yr)r2[0;s])

�
= lim
m!1

E

��
f(Yt)¡ f(Ys)¡

Z
s

t
�
1
2
�+ bm�r

�
f(Yr)dr

�
G((Yr)r2[0;s])

�
= lim
m!1

lim
n!1

E

��
f(Yt

n)¡ f(Ysn)¡
Z
s

t
�
1
2
�+ bm�r

�
f(Yr

n)dr

�
G((Yr

n)r2[0;s])

�
= lim
m!1

lim
n!1

E

��Z
s

t

(bn¡ bm)�rf(Yrn)dr
�
G((Yr

n)r2[0;s])

�
+0;

2.3. As discussed before, the contribution from the zero Fourier mode can be easily bounded by �brute force�
and we use the Itô trick to handle the rest.
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where we used that Y n solves the martingale problem for 1

2
�+ bn�r. Now the claim follows

from another application of the Itô trick.

ii. and iii. follow from Fatou's lemma. �

Note that we only constructed energy solutions for near-stationary initial conditions with
density in L2. This can be relaxed to densities with finite entropy, but for deterministic ini-
tial conditions we would need an additional argument and in that case we would have to find
new versions of the admissibility and incompressibility conditions.

Our next goal is to prove uniqueness of energy solutions. This will be based on duality with
the Kolmogorov backward equation.

2.2 Solving the Kolmogorov backward equation

To prove uniqueness for the energy solutionX, we want to solve the Kolmogorov backward equation

@tu=
1
2
�u+ b�ru; u(0)= ';

for a sufficiently rich class of initial conditions '. For simplicity we only consider periodic ', which
means we will only show uniqueness in law of Y =XmodZd. We will explain later how we could
adapt the arguments to get uniqueness in law of X.

For b2 C¡1+�(Td) our first goal is to make sense of the operator L= 1

2
�+ b�r on a suitable

subset of L2(Td). We will work with L2-Sobolev spaces

H�=H�(Td)=B2;2
� (Td)=W�;2(Td):

To construct L, it is useful to work with paraproducts. We will not go into the details of para-
products here, but just use the following facts:

Lemma 2.5. The product of smooth functions (f ; g) 7! fg can be decomposed as a sum of three
operators,

fg= f<g+ f � g+ g<f ;

which are continuous bilinear maps satisfying the following bounds2.4 for �2R and � < 0

kf<gkH�. kf kL2kgkC�; kf<gkH�+�. kf kC�kgkH�;

and, if �+ � > 0,

kf � gkH�+�. kf kH�kgkC�:

We call < the paraproduct and � the resonant product.

You can find the construction of the paraproduct and the proof of these bounds in Chapter 2
of [1]. Equipped with this, we define now L:H1!H¡1+� via

Lf :=L0f + Gf :=
1
2
�f|||||||{z}}}}}}}
L0f

+ b<rf + b=rf +r � (b� f)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
Gf

; f 2H1(Td):

Lemma 2.6. We have

kL0f kH¡1 . kf kH1;

kGf kH¡1+� . kbkC¡1+�kf kH1:

2.4. Actually the first bound only holds if we replace H� on the left hand side by B2;1
� or by H�¡" for some

arbitrarily small " > 0. But for �> 0 we anyways have some �spare regularity�, so to simplify the presentation we
ignore this small loss of regularity.
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Proof. The bound for L0 is clear. We use the bounds for paraproduct and resonant product as
follows:

kb<rf kH¡1+� . kbkC¡1+�krf kL2. kbkC¡1+�kf kH1;

krf<bkH¡1+� . krf kL2kbkC¡1+�. kf kH1kbkC¡1+�;
kr�(b� f)kH¡1+� . kb� f kH�. kbkC¡1+�kf kH1:

�

Theorem 2.7. (Construction of the semigroup / solution of the Kolmogorov backward
equation) 2.5Let b 2 C¡1+�(Td) and L= 1

2
�+ b�r= L0+ G. Define D(L) = L¡1L2= ff 2H1:

Lf 2L2g. Then D(L) is dense and the closed operator (D(L);L) generates a contraction semigroup
(St)t>0 on L2(Td).

Proof.

1. A priori bound: Let (bn)n2N�C1(Td) be a sequence of divergence free smooth approxi-
mations of b. Define the operators

Ln=L0+ Gn; Gnf := bn<rf + bn=rf +r� (bn� f) = bn�rf ;
and the bounded resolvent operator

(1¡Ln)¡1:L2!H1

(we take this fact for granted but could also derive it from the following estimation with
an additional regularization argument; recall that bn is smooth). Testing un := (1¡Ln)¡1f
against f , we get

hun; f i = hun; (1¡Ln)uni
= kunk2+ k(¡L0)1/2unk2¡hun; Gnuni
= kunk2+ k(¡L0)1/2unk2

= kunkH1
2

Bounding

jhun; f ij6
1
2
kunkH1

2 +
1
2
kf kH¡12 ;

we get uniformly in n

kunkH16 kf kH¡1:

2. Construction of a domain D~(L) for the resolvent: Let (ek) be an orthonormal basis in L2.
By the a priori bound and a diagonal sequence argument we can extract a subsequence,
denoted by abuse of notation again by (n), such that

(1¡Ln)¡1ek! fk :=R1ek

weakly in H1 (and strongly in H1¡" for all " > 0, but we will not need this). We have for
all g 2C1:

hek; gi = lim
n
h(1¡Ln)(1¡Ln)¡1ek; gi

= lim
n
h(1¡Ln)¡1ek; (1¡Ln�)gi

= lim
n
h(1¡Ln)¡1ek; (1¡L�)gi+ h(1¡Ln)¡1ek; (Ln� ¡L�)gi:

Since (1¡L�)g 2H¡1, and since ((1¡Ln)¡1ek)n converges weakly in H1 to f we get that
the first term converges to

hfk; (1¡L�)gi= h(1¡L)fk; gi:

2.5. This result is a consequence of classical perturbation theory. We set up the proof so carefully because later
we will use similar arguments to derive a stronger result which does not follow from perturbation theory.
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The remainder is bounded by

h(1¡Ln)¡1ek; (Ln� ¡L�)gi 6 k(1¡Ln)¡1ekkH1k(Ln� ¡L�)gkH¡1
. kekkH¡1kbn¡ bkC¡1+�kgkH1;

which converges to 0. Therefore,

(1¡L)fk= ek:

By linearity, this convergence extends to the span of the (ek) and the resulting mapP
kakek 7!

P
kakfk is linear � note that here we only allow sums with finitely many non-zero

ak. The extension to infinite series follows by an approximation argument, using the a priori
bound k(1¡Ln)¡1f k6 kf k which extends by Fatou's lemma to the limit. We write R1f =
limn!1 (1¡Ln)¡1f , again with weak convergence in H1. We have thus constructed a space

D~(L)= fR1f : f 2L2g;

such that every R1f 2D~(L) satisfies (1¡L)R1f = f 2L2.
3. Existence of the semigroup: We apply the Lumer-Phillips theorem (see below): We showed

that 1¡L is surjective, and L is dissipative because for f =R1g 2D~(L)

hf ;Lf i = kf k2¡hf ; (1¡L)f i
= kf k2¡hf ; gi
6 liminf

n!0
(kfnk2¡hfn; gi);

where fn := (1¡Ln)¡1g and we used weak lower semi-continuity of the norm. Now g =
(1¡Ln)fn and therefore hfn; gi= kfnk2+ k(¡L0)1/2fnk2, so finally

hf ;Lf i6 liminf
n!1

(¡k(¡L0)1/2fnk2)6 0

and L is dissipative. Therefore, the Lumer-Phillips theorem shows that (D~(L);L) is closed
and generates a contraction semigroup.

4. D~(L)=D(L) is the maximal domain: We clearly have

L¡1L2=(1¡L)¡1L2:

If we can show that (1¡L) is injective on H1, then for f 2 (1¡L)¡1L2 with (1¡L)f = g

we must have f =R1g and thus f 2D~(L). For that purpose we note that actually

hf ;Lf i=¡k(¡L0)1/2f k2; f 2D~(L):

Indeed, we can approximate f 2H1�D~(L) by smooth functions (fn) and b by smooth
divergence free functions bn , so that we can perform the integration by parts rigorously,
and then we use the fact that G maps H1 boundedly to H¡1+� to pass to the limit.

Thus, if f 2H1 satisfies (1¡L)f =0, then

0 = h(1¡L)f ; f i= kf kL22 + k(¡L0)1/2f kL22 ;

and therefore f =0. �

Theorem. (Lumer-Phillips) Let A be a linear operator defined on a linear subspace D(A) of a
Hilbert space H. Assume that

i. A is dissipative, i.e. hAh; hi6 0 for all h2D(A), and
ii. (�¡A) is surjective for some �> 0.

Then A is closed and it generates a contraction semigroup.

We have thus solved the Kolmogorov backward equation (@t¡L)u=0, u(0)= f by u(t)=Stf .
By definition, u 2 C1(R+; L

2) \ C(R+;D(L)), where D(L) is equipped with the norm kf kL2+
kLf kL2.
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2.3 Duality of energy solutions and Kolmogorov backward equation
Here we combine the previous results to prove the uniqueness in law and Markov property of energy
solutions. Let us first connect energy solutions with the operator L:

Lemma 2.8. Let b2C¡1+� and let d�

d�
2L2(Td). Let Y be an energy solution of dYt=b(Yt)dt+dBt,

with Y0� �, and let (D(L); L) be the operator constructed in Theorem 2.5. Then Y solves the
martingale problem for L: For all f 2D(L) the process

f(Yt)¡ f(Y0)¡
Z
0

t

Lf(Ys)ds
is a martingale.

Proof. Let f"= f � �" for a mollifier. Then f"2C2 and therefore by definition of energy solutions

f"(Yt)= f"(Y0)+ lim
n!1

Z
0

t
�
1
2
�+ bn�r

�
f"(Ys)ds+Mt

f"

is a martingale. Since f"2C2, we have that
¡ 1
2
�+ bn�r

�
f"=(L0+Gn)f" converges to Lf" in H¡1

as n!1, and therefore I
¡¡ 1

2
�+bn�r

�
f"

�
converges uniformly to I(Lf"). Since f 2D(L)�H1 and

G:H1!H¡1 is continuous, we have that Lf" converges in H¡1 to Lf =0, and therefore I(Lf")t
converges in L1 to I(Lf)t=

R
0

tLf(Ys)ds. Of course, also f"(Ys)! f(Ys) for s=0; t. Since the L1-
limit of martingales is a martingale, the claim follows. �

Lemma 2.9. If Y is incompressible and it solves the martingale problem for L, then for all
f 2C(R+;D(L))\C1(R+; L2) the process

f(t; Yt)¡ f(0; Y0)¡
Z
0

t

(@s+L)f(s; Ys)ds
is a martingale.

Proof. (Sketch) We use time discretization, tkn=
k

n
t and

f(t; Yt)¡ f(0; Y0) =
X
k=0

n¡1

(f(tk+1
n ; Ytk+1n )¡ f(tkn; Ytkn))

=
X
k=0

n¡1

(f(tk+1
n ; Ytkn)¡ f(tk

n; Ytkn)) +
X
k=0

n¡1

(f(tk+1
n ; Ytk+1n )¡ f(tk+1n ; Ytkn));

and use the fundamental theorem of calculus for the first term and the martingale problem for the
second term. Then use incompressibility to show L1-convergence as n!1, and that the L1-limit
of martingales is a martingale. �

Theorem 2.10. Let b2C¡1+� and let d�

d�
2L2(Td). Let Y be an energy solution of dYt= b(Yt)dt+

dBt, with Y0� �. Then the law of Y is unique and the finite-dimensional distributions are given by

E[f1(Yt1)���fn(Ytn)] =
Z
Td

(St1f1St2¡t1f2:::Stn¡tn¡1fn)(x)�(dx);

where (St) is the semigroup generated by L= 1

2
�+ b�r. In particular, Y is a Markov process.

Proof. Markov property and uniqueness in law follow from the claimed identity. And the identity
can be shown recursively in n, with the induction base and induction step using basically the same
argument. So we only treat the case n=1. With our preparations this is now easy: For f12D(L)
consider f(t; x) = St1¡tf1(x). Then f 2C(R+;D(L))\C1(R+; L

2) and therefore the martingale
problem with time-dependent functions gives

0=E

�
f(t1; Yt)¡ f(0; Y0)¡

Z
0

t1

(@s+L)f(s; Ys)ds
�
=E[f1(Yt1)¡St1f1(Y0)]:

�
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Remark 2.11.
i. We only proved uniqueness in law for the periodic diffusion Y =XmodZd. To get uniqueness

in law for X we have to work with non-periodic initial conditions for the Kolmogorov
backward equation/semigroup and see it as an equation on Rd. This is possible and the
construction in Theorem 2.5 works verbatim. But the energy/admissibility estimate for non-
periodic test functions is a bit subtle, because now X is not stationary any more and we do
not have such nice formulas for the time-reversed process. But we still get a weaker version
of the Itô trick and under the assumption b2C¡1+� we can adapt all our arguments to get
also uniqueness in law for the non-periodic process X.

ii. The construction of X and proving its weak well-posedness can also be done without relying
on stationarity, simply by Schauder estimates for the heat semigroup and by the parapro-
duct estimates. If we would naively treat this equation in regularity structures we might
think that we need to construct O

¡ 1
�

�
tress for �! 0 to make sense of the dynamics, but

using the Leibniz rule trick b �ru=r�(b � u) we can bypass this. This would lead to
stronger results, but to set the stage for the following SPDE results and the extension
discussed below, we preferred to use simple arguments based on energy estimates. Also, the
supercritical extension sketched below really relies on the approach taken here.

iii. We could easily adapt the arguments to push the regularity of b to divergence free2.6

b2C¡1;log; C�=
�
f 2S 0: k�jf kL1.

2j

j

�
:

Then C¡1;log�/ C¡1+� for any �> 0 and if we count regularity on a power scale this looks
critical. (Of course it is still subcritical but only with logarithmic correction from criticality).

iv. To construct the semigroup, we used the �free� a priori bound k(1¡L)¡1f kH16 kf kH¡1.
But we have another bound for free:

j(1¡L)¡1f(x)j6
Z
0

1
e¡tjStf(x)jdx6 kf k1;

i.e. k(1¡L)¡1f k16kf k1. Interpolating these bounds, we get well-posedness for divergence
free

b2Bp;1
¡
;log=

�
f 2S 0: k�jf kLp.

2j


j

�
;

as long as 
6 1 and
p> 2

1¡ 
:

The key property we have to verify is that then there still exists a function space X such
that L is a bounded linear map from X to H¡1. And here we can take X =H1\L1 and
use interpolation. Note that critical regularity would be Bp;1

¡
 for

p>
d

1¡ 
;

so in d> 3 this means we get well-posedness for supercritical equations. This interpolation
of the L1 and H1 regularity is inspired by [19].

2.4 Recap: What did we need
While we were studying a concrete problem on concrete function spaces, many of the arguments
were quite robust. Let us collect all the ingredients we used so far:

i. Itô trick: We need a stationary Markov process with invariant measure � and generator
L=L0+G, where L0 is symmetric and G is antisymmetric on L2(�). Then we can estimate
for initial conditions with L2 density with respect to the invariant measure

E

"
sup
t6T

��������Z
0

t

f(Ys)ds

��������
#
.T 1/2k(¡L0)¡1/2f kL2(T):

2.6. �j is the Littlewood-Paley block. If you don't know what that is, just ignore this part.
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There are also similar Lp estimates, which we only needed for tightness. Those are a bit
more tedious to state.

ii. Construction of the semigroup: We need again a generator L=L0+G, where L0 is symmetric
and G is antisymmetric on L2(�). We used that

G:H1=(1¡L0)1/2L2(�)! (1¡L0)¡1/2L2(�)=H¡1

is a bounded operator, and similarly for L0. Most steps of the construction actually work
if G is a continuous operator from H1 to a bigger space, say H¡
 for some 
 > 0. In that
case the closure of (D~(L);L) still generates a contraction semigroup. We used 
=1 only to
show that D~(L)=D(L) is the maximal domain.

iii. Duality of energy solution and Kolmogorov backward equation: Here we needed that for
smooth f (") we have Gnf (")! Gf (") in H¡1 (which basically means that G has to be a
continuous operator from H
 for some 
 >0 to H¡1 and which is a very mild requirement)
and that Gf (")!Gf in H¡1 for smooth approximations f (") of f ; this last step means that
G should be a continuous operator from a function space containing D(L) to H¡1.

Therefore, if G:H1!H¡1 is bounded, all our analysis works. This is also what perturbation theory
would suggest, because then we can treat G as a perturbation of L0. Unfortunately we will soon
see that this is not satisfied for any of our SPDE examples.

3 Lecture 2: White noise invariant measure and Fock space
Here we will set up function spaces for singular SPDEs on which we can carry over and
strengthen/extend the previous finite-dimensional arguments. These function spaces will be cen-
tered around the white noise and its chaos representation isometry to the Fock space.

3.1 Why white noise?
To analyze the (fractional) stochastic Burgers equation, we will work under the white noise measure
and with its Fock space representation. Depending on the problem, this could be replaced by
another measure, maybe Gaussian with another covariance or non-Gaussian. In any case we need
a reference measure which in some sense corresponds to the dynamics: On infinite-dimensional
spaces, measures are typically mutually singular with respect to each other, consider for example
the law of B and of �B for �2Rnf¡1;1g, where B is a Brownian motion3.1. If our dynamics have
a tractable invariant or quasi-invariant measure (meaning that if we start absolutely continuous
with respect to a quasi-invariant measure, we stay absolutely continuous), then this is a natural
reference measure.

But this does not yet answer why white noise should be invariant for the stochastic Burgers
equation. To understand this, we again study a finite-dimensional example first:

Example 3.1. Let � be an invertible covariance matrix on Rd and consider an ODE with smooth
vector field f ,

x_(t) = f(x(t));

such that
r�

�
f(x)e

¡1

2
hx;�¡1xi

�
=0:

In that case we have with the N (0;�) distribution � for all sufficiently nice test functions 'Z
Rd

f(x)�r'(x)�(dx)=¡ 1
Z

Z
Rd

'(x)r�
�
f(x)e

¡1

2
hx;�¡1xi

�
dx=0;

where Z is a normalization constant, and therefore � is an invariant measure for the ODE. Note
that our condition is always satisfied if f is divergence free,

r�f =0; and hf(x);�¡1xi=0:

3.1. Exercise: Show that law((Bt)t2[0;1]) and law((�Bt)t2[0;1]) are indeed mutually singular. Hint: consider the
quadratic variation.
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The second condition is equivalent to E(x) := 1

2
hx;�¡1xi being preserved by the dynamics:

@tE(x(t))= hx_(t);�¡1x(t)i= hf(x(t));�¡1x(t)i=0:

Example 3.2. Consider now the inviscid Burgers equation

@tu= @xu
2:

For simplicity we work on the torus T=R/Z, but all arguments extend to R. Then the energy
E(u)=

1

2

R
u2 is formally preserved:

@tE(u)= hu; @tuiL2(T)= hu; @xu2iL2(T)=
�
1;
2
3
@xu

3

�
L2(T)

=0

by the periodic boundary conditions. The divergence free condition is a bit more difficult to
formulate in this setting. Formally we can take the functional derivative Dx (differentiating in the
direction of �x) and get Z

T

Dx@xu
2(x)dx=2

Z
T

@x(u(x)�(x))dx=0;

because the integral of any derivative over T is zero. Therefore, the measure

1
Z
e
¡1

2
hu;uiL2du

is formally preserved. How should we interpret this measure? On Rd we have for X� 1

Z
e¡hx;xiRddx

that X is centered Gaussian with

E[hX;xiRdhX; yiRd] = hx; yiRd; x; y 2Rd:

Therefore, we would expect that �� 1

Z
e
¡1

2
hu;uiL2du is an L2-valued centered Gaussian with

E[h�; f iL2h�; giL2] = hf ; giL2; f ; g 2L2:

This is nearly correct, except that � is almost surely not L2-valued but instead it takes values in
a larger space of distributions (H¡1/2¡� works for example). Such � is called a white noise.

We could imagine other Gaussian invariant measures for nonlinearities which conserve other
quadratic energies. Indeed, many variations of Euler's nonlinearities (e.g. Euler, surface quasi-
geostrophic or Leray � nonlinearities) formally have invariant Gaussian measures.

Definition 3.3. Let H be a separable Hilbert space. A white noise on H is a centered Gaussian
process (�(h))h2H with covariance

E[�(g)�(h)] = hg; hi:

Such a process always exists and one can show that it is equivalently characterized as a linear
isometry from H to L2(
) such that �(h) is centered Gaussian for each h2H.

Now we made sense of the candidate invariant measure for the inviscid Burgers equation. But
that argument was purely formal and actually it is not clear if there are (even non-unique) weak
solutions to the inviscid Burgers equation with invariant white noise distribution. The issue is
that the white noise is only a generalized function and therefore @xu2 is not well-defined and the
equation is very singular. We will see how to make sense of @xu2 as a distribution over the white
noise space, but this is too singular to control the solutions.

Therefore, we have to add additional terms to the equation. And indeed we started with the
goal of solving the stochastic Burgers equation3.2

@tu=�u+ @xu2+ 2
p

(¡�)1/2�:

3.2. Here we replaced @x� by (¡�)1/2�. But those two processes have the same law, and since we only care
about the martingale formulation of the equation, this replacement has no influence for us.
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Example 3.4. Let A be a symmetric, negative definite Fourier multiplier, i.e. F(Au)(k) =
a(k)Fu(k) for some symmetric function a:Z! (¡1; 0]. Then the equation

@tv=Av+ 2
p

A1/2�

preserves the white noise measure: Indeed, consider the Fourier basis (ek)k2Z and note that

@tv̂t(k)= vt(Aek)+ 2
p

�t(A
1/2ek)= a(k)v̂t(k)+ ¡2a(k)

p
�̂t(k):

This shows that, given the right initial condition, for each t> 0 the family (v̂t(k))k consists of
independent complex-valued standard normal variables, up to the constraint v̂t(¡k) = v̂t(k). But
this is just the distribution of the white noise.

3.2 Chaos expansion and Fock space
From now on we focus on the white noise, but the following considerations work in principle for
any Gaussian measure. Let � be a white noise on T. Our next goal is to define function spaces on
L2(�) for �= law(�) which resemble the Sobolev spaces from the finite-dimensional setting. We
will achieve this with the chaos expansion. We start with some preparations:

Definition 3.5. (Symmetric functions) For n2N let Ls2(Tn)�L2(Tn) be the space of sym-
metric functions in L2(Tn), which are such that '(x1; :::;xn)='(x�(1); :::;x�(n)) for any permutation
� 2�n of f1; :::; ng. There is a canonical symmetrization map �:L2(Tn)!Ls

2(Tn),

�'(x1; :::; xn) :=
1
n!

X
�2�n

'(x�(1); :::; x�(n)):

For '2L2(Tn) we write

k'kLs2(Tn) := k�'kL2(En):

Note that for '2L2(Tn) we have by the triangle inequality for the L2(En)-norm:

k'kLs2(Tn)= k�'kL2(Tn)6
1
n!

X
�2�n

k'(x�(1); :::; x�(n))kL2(Tn)=
1
n!
n!k'kL2(Tn)= k'kL2(Tn):

There exists a Brownian motion B such that

�(')=

Z
0

1

'(x)dBx; '2L2(T):

Indeed, it suffices to set Bx= �(1[0;x]) (continuous modification). From now on we will always use
B to denote this Brownian motion.

Definition 3.6. (Wiener-Itô integral) For '2L2(Tn) we define the n-th Wiener Itô integral
as the iterated Itô integral

Wn(') :=Wn(�') :=n!

Z
0

1Z
0

xn

���
Z
0

x2

�'(x1; :::; xn)dBx1���dBxn:

The factor n! is explained by the fact that we are integrating over the arbitrary ordering
x1<x2< ���<xn and there are n! possible orderings which all would give the same integral.

Lemma 3.7. The Wiener-Itô integral is a (multiple of a) linear isometry from Ls
2(Tn) to L2(
):

kWn(')kL2(
)2 =E[Wn(')
2] =n!k'kLs2(En)

2 =n!k�'kL2(En)2 :

Proof. This follows by repeated application of Itô's isometry. �

Definition 3.8. We write Hn�L2(
) for the image of Wn, and we call Hn the n-th Wiener-Itô
chaos.
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Note that by closedness of Ls2(Tn) also each space Hn is closed and that Hn and Hm are
orthogonal subspaces of L2(
), which again follows by repeated use of Itô's isometry. Our next
goal is to show the chaos representation

L2(
;F ;P)=
M
n>0

Hn;

where

F =�(�('): '2L2(T)):
We will only sketch the argument.

Definition 3.9. We define the Hermite polynomials recursively via

H0(x)=1; Hn(x) =xHn¡1(x)¡Hn¡1
0 (x):

The first few Hermite polynomials are

H0(x)= 1; H1(x) =x; H2(x) =x
2¡ 1;

H3(x)=x
3¡ 3x; H4(x)=x

4¡ 6x2+3:

One can show (exercise!) that Hn
0 = nHn¡1 and that the map Hn(x; t) := tn/2Hn

�
x

t
p

�
solves

the backward heat equation
¡
@t+

1

2
�
�
Hn(x; t) = 0 with initial condition Hn(x; 0)= limt!0Hn(x;

t) =xn. This leads to the following result:

Lemma 3.10. Let M be a continuous local martingale with M0=0. Then

Hn(Mt; hM it)=n
Z
0

t

Hn¡1(Ms; hM is)dMs:

Proof. We apply Ito's formula to Hn(Mt; hM it): Since Hn(0; 0)=0 and
¡
@t+

1

2
@x
2
�
Hn� 0, we get

Hn(Mt; hM it)=
Z
0

t

@xHn(Ms; hM is)dMs+

Z
0

t
�
@t+

1
2
@x
2

�
Hn(Ms; hM is)dhM is

=n

Z
0

t

Hn¡1(Ms; hM is)dMs:

�

Corollary 3.11. For '2L2(T) we have with '
n(x1; :::; xn) := '(x1)���'(xn):

Wn('

n)=Hn(�('); k'kL2(T)2 ):

Proof. Consider the continuous martingale Mt
'= �(1[0;t]'). Then we get by repeated application

of Lemma 3:10:

Hn(�('); k'kL2(T)2 )=Hn(M1
'; hM'i1)

=n!

Z
0

1Z
0

tn

���
Z
0

t2

dMt1
'dMt2

'���dMtn
'

=Wn('

n):

�

Corollary 3.12. We have the chaos representation property

L2(
;F ;P)=
M
n>0

Hn;

where

F =�(�('): '2L2(T)):
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In particular, every random variable X 2L2(
;F ;P) can be represented uniquely as

X =
X
n=0

1

Wn('n); 'n2Ls2(Tn);

and

E[X2] =
X
n=0

1

n!k'nkLs2(Tn)
2

Proof. It suffices to apply Corollary 3.11 and to note that the monomial xn can be written as a
linear combination of Hk(x; t) with k6n. Therefore, any random variable which is orthogonal toL

n=0
1 Hn is orthogonal to all polynomial of �('), for all '2L2(T). See Theorem 1.1.1 of [17] for

details. �

The following result is very useful, but we will only apply it once in our lectures, and therefore
we skip the proof in the lectures:

Theorem. (Gaussian hypercontractivity) For all p 2 (0;1) there exists a constant Cp> 0
such that for all n2N0 and all '2Ls2(Tn):

E[jWn(')jp]6Cpn(n!)p/2k'kLs2(Tn)
p =Cp

nE[jWn(')j2]p/2:

Proof. For p<2 there is nothing to show, so let p>2. By the Burkholder-Davis-Gundy inequality,
together with the Minkowski inequality k

R
T
(:::)dzkLp/2(
)6

R
T
k:::kLp/2(
)dz, we have

E[jWn(')jp]6E
�
sup
t>0

jWn('1[0;t]

n )jp

�
6CpE

��
n2

Z
T

Wn¡1
¡
'(x; �)1[0;s]


(n¡1)�2dx�p/2�
6Cp

�
n2

Z
T

E
�����Wn¡1

¡
'(x1; �)1[0;s1]


(n¡1)�����p�2/pdx1�p/2
6Cp2

�
n2(n¡ 1)2

Z
T

Z
T

E
�����Wn¡2

¡
'(x1; x2; �)1[0;s2]


(n¡2)�����p�2/p1s26s1dx2dx1�p/2
6���6Cpn

�
(n!)2

Z
T

:::

Z
T

j'(x1; :::; xn)j21sn6���6s1dxn:::dx1
�
p/2

=Cp
n

�
n!

Z
T

:::

Z
T

j'(x1; :::; xn)j2dxn:::dx1
�
p/2

;

where in the last step we used that ' is symmetric in its n arguments. The right hand side equals
Cp
n(n!)p/2k'kL2(Tn)

p , and this completes the proof. �

4 Lecture 3: Energy solutions, the generator, and its semi-
group

4.1 Sobolev spaces
From now on we assume that F =�(�('): '2L2(T)). Then

L2(
)'¡L2 :=
M
n>0

Ls
2(Tn);

and the space on the right hand side is called the (bosonic) Fock space. From now on we mostly
identify L2(
) with ¡L2 and we interpret elements as ¡L2 as random variables on 
. Let us define
two operators:

N'n = n'n; number operator;
L0'n = �'n := (@x1x1+ ���+@xnxn)'n; Laplacian:
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Definition 4.1. (Sobolev type spaces) For �; � 2R we define

H�
� := f'=('n)n2N0: (1¡L0)�/2(1+N )�'2¡L2g;

k'kH��
2 := k(1¡L0)�/2(1+N )�'k2

=
X
n=0

1

n!(1+n)2�k(1¡�)�/2'nkLs2
2

=
X
n=0

1

n!(1+n)2�k'nkHs�
2 :

So � measures the regularity of the kernels ('n), while � measures the decay of the kernels as
n!1. For �; �>0 this is a subspace of ¡L2 and therefore elements of H�

� correspond to random
variables. But if �< 0 or � < 0 we have only �distributions on random variables�, i.e. an element
'2H�

� cannot be evaluated for !2
 and instead we can only make sense of the expectation E[X']
for �nice� random variables X.

Using these function spaces, we would like to do a similar analysis as for the finite-dimensional
singular diffusion example from the first lecture. Of course, that now there are two regularity
indices suggests already that we will have to do something more complicated, but we will worry
about that later.

4.2 Fock space representation of the generator, bounds
We start by considering the Ornstein-Uhlenbeck generator L0, i.e. the generator of

@tv=�v+ 2
p

(¡�)1/2�:

Lemma 4.2. (Fock space representation of the OU generator) For ' 2H0
2 we have ' 2

D(L0) and
(L0')n=�'n := (@x1x1+ ���+ @xnxn)':

Proof. It suffices to prove this identity for Wn('n) with 'n2Hs
2(Tn). And by an approximation

argument we may take 'n= '
n with ' 2C2(T) such that k'kL2(T)= 1. Then Wn('

n)(v) =

Hn(v(')), where Wn(:::)(v) is a Wiener-Itô integral with respect to the white noise v, and for the
stationary solution of the Ornstein-Uhlenbeck process we have

dHn(vt(')) = Hn
0 (vt('))vt(�')dt+Hn

00(vt('))k(¡�)1/2'kL2(T)2 dt+dMt

= nHn¡1(vt('))H1(vt(�'))dt¡n(n¡ 1)Hn¡2(vt('))h';�'iL2(T)dt+dMt

= nWn¡1('

n¡1)W1(�')dt¡n(n¡ 1)Wn¡2('


n¡2)h';�'iL2(T)dt+dMt;

where we used that Hn
0 =nHn¡1. Now we use the multiplication rule for the Wiener chaos, see [17],

Proposition 1.1.2, and rewrite the first term on the right hand side as

nWn¡1('
n¡1)W1(�') = nWn('
n¡1
�')+n(n¡ 1)Wn¡2('
n¡2)h';�'iL2(T)
= Wn(�'


n)+n(n¡ 1)Wn¡2('

n¡2)h';�'iL2(T):

The second term on the right hand side cancels with ¡n(n¡ 1)Wn¡2('

n¡2)h';�'iL2(T), and

therefore
dWn('


n)(vt) =Wn(�'

n)(vt)dt+dMt:

�

Lemma 4.3. (Fock space representation of the Burgers generator) The operator G corre-
sponding to the dynamics @xu2 is formally given by

G = G++ G¡; G�:Ls2(Tn)!Ls
2(Tn�1);

with

G+'n(x1:n+1) = �(¡n�(x1¡x2)@1'n(x1; x3:n+1));
G¡'n(x1:n¡1) = �(¡2n(n¡ 1)@1'n(x1; x1; x2:n¡1));
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where xi:i+k=(xi; xi+1; :::; xi+k), and where we recall that � is the symmetrization operator.

Proof. (Sketch) We take again '2L2(T) with k'kL2=1 and consider Hn(ut(')). Then

dHn(ut(')) = ¡Hn
0 (ut('))ut

2(@x')dt=¡nWn¡1('

n¡1)ut

2(@x')dt:

Now, using that
R
C@x'(x)dx=0 for any constant C, we can replace u2 by the Hermite polynomial

and

u2(@x')=

Z
T

W2(�y

2)@y'(y)dy=W2

�Z
T

�y

2@y'(y)dy

�
:

The general multiplication rule for Wiener chaos variables from [17], Proposition 1.1.3, yields

Wn¡1(f)W2(g) = Wn+1(f 
 g)+ 2(n¡ 1)Wn¡1(f 
1 g)+ (n¡ 1)(n¡ 2)Wn¡3(f 
2 g);

where

f 
r g(x1:n+1¡2r)=�

�Z
f(x1:n¡1¡r; y1:r)g(xn¡1¡r+1:n+1¡2r; y1:r)dy1:r

�
:

Now observe that �Z
T

�y

2@y'(y)dy

�
(x1; x2) = �(x1¡x2)@x1'(x1);

from where we can directly read off G+ and G¡. It looks like there is still a contribution G¡3, but
note that Z

y1;y2

'(y1)'(y2)�(y1¡ y2)@y1'(y1)=
Z
y1

'(y1)2@y1'(y1)=
1

3

Z
y

@y('(y)3)= 0

and therefore G¡3=0. �

Remark 4.4. You may feel very uneasy at this point about all the formal manipulations that we
made in the last �proof� and that seem impossible to make rigorous. Instead, we should truncate
the Burgers nonlinearity by introducing a Fourier projection operator P"u=F¡1(1[¡"¡1;"¡1]Fu)
and consider

P"(@x(P"u)2):

Then all the Dirac deltas get replaced by approximations P"� and we can make the previous
arguments rigorous.

Lemma 4.5. (Bounds for the Burgers generator) Let G be as in the previous lemma. Then
we have for each � 2R:

kG�'kH�¡1¡1 . k'kH�1:

For '2H�
1 and  2H�

1 with �+ �> 1 we have

hG+';  i=¡h'; G¡ i;
and therefore

hG';  i=¡h'; G i:

Proof. (Sketch) We can rewrite the operators using Fourier series, which we should actually still
symmetrize but we can omit that by using the bound k�f kH�6 kf kH�:

F (G+'n)(k1:n+1) = ¡2�in(k1+ k2)'̂n(k1+ k2; k3:n+1);
F (G¡'n)(k1:n¡1) = ¡2�in(n¡ 1) k1

X
p+q=k1

'̂n(q; p; k2:n¡1):

Then the claimed bound follows by plugging in the definition of the H�¡1
1 norm and by some

explicit estimations of Fourier series. See [10] for details, but it can be a good exercise to do the
computation yourself.4.1

Once we have the bound, it suffices to prove hG+';  i=¡h'; G¡ i for ';  2H11=
T
mHm

m.
This follows again by a direct computation. �

4.1. If you try the computation, maybe go for kG�'kH�¡k
¡1 for some k > 0 (maybe k=2 or so). Getting k=1 is

a bit subtle, although in the recent paper [3] it is shown that the estimate even holds with k=1/2.
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These bounds can be improved, for example we actually only lose 3/2 degrees of regularity in the
upper variable and not 2. But there are two important limits of the estimates: To control G¡' we
need '2H�

1/2+" for some ">0, and no matter how smooth ' is, G+' is never better thanH1
¡1/2¡".

4.3 Construction of energy solutions
We have now two operators L0 and G, such that H0

�= (1¡L0)�/2¡L2, such that hG'; 'i=0 for
sufficiently nice ' (i.e. ' 2H1

1), and such that G is in some sense controlled by L0, i.e. G is a
bounded operator from H�

1!H�¡1
¡1 . If we ignore the lower regularity index, then this looks very

similar to the assumptions that we made in the periodic diffusion example.
Let us see how far we can push the arguments from that example to our current setting. To

construct energy solutions we consider the approximation

@tu
"=�u"+P"@x(P"u")2+ 2(¡�)

p
�:

This equation is well-posed because we can decompose it as

u"=u";<+u";> :=P"u"+(1¡P")u";
where u";< solves the finite-dimensional equation

@tu
";<=�u";<+P"@x(u";<)2+ 2(¡�)

p
P"�; u";<=P"u";

and where u";> solves the infinite-dimensional linear equation

@tu
";>=�u";>+ 2(¡�)

p
(1¡P")� u";>=(1¡P")u":

Based on this representation we can check that the white noise is also invariant for u" and that u"

has the generator G" which has the same bounds and antisymmetry properties as G, uniformly in ".

Lemma 4.6. (Itô trick) Assume that law u0"= �" and that with the white noise law � we have
d�"
d�
2L2(�). Then we have uniformly in "

E

"
sup
t6T

��������Z
0

t

L0'(us")ds
��������p

#
.









d�"d�










L2(�)

T
p

2kE(')kL2p(�)
p ;

where

E(')= 2

Z
T

j@xDx'j2dx;
for

Dx'n(x1:n¡1)=n'n(x; x1:n¡1):

Proof. This follows by exactly the same arguments as in the finite-dimensional setting. Note that
E(') corresponds to jrf j2 in finite dimensions, and this term comes from the quadratic variation
of the forward and the backward martingale. �

The L2p(�) norm of E(') may be difficult to compute. But if 'n= 0 for all n>N , then we
can use Gaussian hypercontractivity to replace it by the L1(�) norm which is

E

�
2

Z
T

j@xDx'j2dx
�
=2k(¡L0)1/2'kL2(�)2 :

This last identity follows from a direct computation, or by Dynkin's formula for the quadratic
variation,

E(')= (L0+ G")'2¡ 2'(L0+ G")'=L0'2¡ 2'L0';

where we used that G" is a first order differential operator and it satisfies Leibniz's rule.
To prove tightness of (u"), we will use Mitoma's criterion, which says that (u")" is tight in C(R+;

S 0) if and only if for all f 2C1 the family of real-valued processes (u"(f))" is tight in C(R+;R).
We also write

C= f('n): 9N s.t. F'n(k)= 0 if n>N or jk j>N g
for the cylinder functions, i.e. the polynomials depending on finitely many Fourier modes.
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Theorem 4.7. (Existence of energy solutions, Gonçalves-Jara [4], Gubinelli-Jara [7])
Assume that law u0"= �" and that with the white noise law � we have d�"

d�
2L2(�) such that d�"

d�

converges in L2(�) to some d�

d�
. Then (u") is tight in C(R+;S 0) and any limit point u satisfies:

i. u weakly solves the stochastic Burgers equation with initial distribution �: u0�� and for all
f 2C1(T)

ut(f) =u0(f)+

Z
0

t

us(�f)ds¡ lim
�!0

Z
0

t

(P�us)2(@xf)ds+Mt(f);

whereM(f) is a martingale with quadratic variation hM(f)it=2tk(¡�)1/2f kL22 . Moreover,
for all cylinder functions '2C the process

'(ut)¡ '(u0)¡ lim
�!0

Z
0

t

L�'(us)ds
is a martingale.

ii. u is incompressible: For all '2L2 (�) and all t> 0 we have

E[j'(ut)j]. k'kL2(T):

iii. u is admissible / satisfies an energy estimate:

E

"
sup
t6T

��������Z
0

t

'(us)ds

��������
#
. k(¡L0)¡1/2'kL2(�):

We call such u an energy solution of the stochastic Burgers equation. In that case we can extend
the map I:L2(�)!L1(
; C([0; T ])),

I(')t=

Z
0

t

'(Xs)ds;

continuously to H0
¡1, and we denote the extension with the same symbol I.

Remark 4.8. This construction works whenever G'2H0
¡1 for all '2C, and if for '2C we can

improve either the regularity or the integrability in the estimate

E

"
sup
t6T

��������Z
0

t

'(us)ds

��������2
#
1/2

.T 1/2k'kH0
¡1;

under stationary initial conditions. If we can take the Lp(
) norm on the left hand side, then we
could apply Kolmogorov's continuity criterion. By hypercontractivity, this is always the case if
the invariant measure is Gaussian and if G comes from a polynomial nonlinearity, and if '2 C.
Similarly, if we had some regularity to spare we could use an interpolation argument with the
trivial bound where we pull the absolute value inside the integral, see [9], and in this way we
could improve the factor T 1/2 to T (1+�)/2 for some �> 0 which again is enough for Kolmogorov's
continuity criterion.

For example, we can use the same construction for:

i. Fractional, multi-component Burgers equation:

@tu=¡(¡�)�u+ @x(u�¡u)+ 2
p

(¡�)�/2�;

if ¡ is fully symmetric in its three arguments, and if �> 1

2
. Note that �= 3

4
is scaling critical,

and therefore the construction works in the supercritical regime.

ii. Stochastic surface quasi-geostrophic equation:

@t�+u�r� = (¡�)
�+ 2
p

(¡�)
/2�;
u = r?(¡�)¡1/2�;

for a space-time white noise �, and for 
 > 0. The equation is critical for 
=1.

iii. Vorticity formulation of 2d Navier-Stokes under the enstrophy measure:

@t!+u�r! = (¡�)
!+ 2
p

(¡�)
/2�;
u = r?(¡�)¡1!;
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for a space-time white noise �, and for 
> 0. The equation is critical for 
=1/2.

The bound

kG"'kH�¡1¡1 . k'kH�1

is also uniformly satisfied for many other critical or supercritical models, for example Landau-
Lifshitz stochastic Navier-Stokes equations or stochastic Burgers equations in the supercritical
dimensions d> 3, or in the weak coupling regime in the critical dimension d= 2, where also the
anisotropic KPZ equation satisfies the same bound. But in those cases the operators (G") do not
converge and describing the limit of (u") is more difficult, see [3] and the references therein.

4.4 A first construction of semigroups, failed duality
Now that we constructed energy solutions, we would like to use duality with the semigroup/Kol-
mogorov backward equation to prove their weak uniqueness. For this purpose we follow the same
arguments as in Theorem 2.5:

Proposition 4.9. (Construction of the semigroup / solution of the Kolmogorov back-
ward equation) Let G:H0

1!H¡�¡� as a bounded operator, for some �; � 2R. Then there exists
a dense domain D~(L) for L=L0+ G such that the closure of (D~(L);L) generates a contraction
semigroup (St)t>0 on L2(Td).

Proof. This follows from exactly the same arguments as in the finite-dimensional Theorem 2.5 if
we take the approximations L"=L0+ 1N6 1

"

1L061

"

G1N61

"

1L06 1

"

. In fact, Steps 1.-3. of the proof

did not use that G maps H1 to H¡1+�, but just that continuously G maps H1 to some H¡
. We
only needed a �good image space� for G to show that

h';L'i=¡k(¡L0)1/2'k2;

from which we deduced that our domain D~(L) (which we constructed quite arbitrarily) agrees with
the maximal domain D(L) =L¡1H0

0. �

These conditions are satisfied for all the examples mentioned above, in particular for the frac-
tional stochastic Burgers equation with � > 1

2
, so also in the supercritical regime � 2

¡ 1
2
;
3

4

�
.

And in principle we do not care very much whether D~(L)=D(L) or not or whether (D~(L);L)
is closed. But without D~(L) =D(L) there is already an issue with uniqueness: We construct the
domain by selecting some subsequences. It is conceivable that other subsequences converge to
different limits and that this gives different domains, which lead to different semigroups. At this
point, we do not know if this is the case.

Ultimately, we are interested in the uniqueness of energy solutions (and the duality between
energy solution and semigroup would then also give the uniqueness of the semigroup). Looking
back at the proof of this uniqueness, we needed to show that for '2C

Gm'!G' inH0
¡1;

which basically means that G maps C to H0
¡1 and which is again satisfied in all the examples

mentioned above. But then we need to find for all '2D~(L) some ('")�C such that '"! ' in H0
0

(easy to find) and such that G'"!G' in H0
¡1. Since G only maps H0

1 to H¡1¡1 and since we only
know D~(L)�H0

1, this last condition is out of reach with our current arguments.

4.5 Commutator with the number operator, improved generator
Our goal is nearly in reach, but somehow we still need to improve the N -regularity of the domain.
We will achieve this with the help of the following commutator estimate:

Lemma 4.10. (Commutator estimate) Let G be the operator corresponding to the Burgers
nonlinearity. Then the commutator [N ; G] :=NG ¡GN satisfies the estimate

k[N ; G]'kH0
¡1. k'kH1

1:
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Proof. We have

[N ; G+]'n = (n+1)G+'n¡G+(n'n)= G+'n
[N ; G¡]'n = (n¡ 1)G¡'n¡G¡(n'n)=¡G¡'n;

so the claim follows from our estimates for G. �

Theorem 4.11. (Domain with improved regularity) Let G:H0
1!H¡1¡1 and [N ;G]:H1

1!H0
¡1,

both as bounded operators. Let D(L)=L¡1H0
0= f'2H0

1:L'2H0
0g. Then:

i. (1¡L) is injective on H0
1;

ii. D(L) is dense and the closed operator (D(L);L) generates a contraction semigroup (St)t>0
on H0

0.

iii. (1¡L)C is dense in H0
¡1.

iv. We have h(1¡L)'; 'i= k'kH0
1

2 for all '2D(L).

Proof.

i. (1¡L) is injective on H0
1: Let '2H0

1 be such that (1¡L)'=0. We introduce the operator

L�=L0+(�+N )G(�+N )¡1:
Then

0 = �2h(�+N )¡2(1¡L)'; 'i
= �2h(�+N )¡2(1¡L�)'; 'i+�2h(�+N )¡2(L�¡L)'; 'i
= h�2(�+N )¡2(1¡L0)'; 'i+�2h(�+N )¡2(L�¡L)'; 'i;

where we used that (�+N )¡1'2H1
1 and therefore hG(�+N )¡1'; (�+N )¡1'i=0 which

leads to

h(�+N )¡2(1¡L�)'; 'i= h(�+N )¡2(1¡L0)'; 'i:

Now we want to send �!1. By the dominated convergence theorem we have

h�2(�+N )¡2(1¡L0)'; 'i!k'kH0
1

2 ;

while

j�2h(�+N )¡2(L�¡L)'; 'ij 6 jh(L�¡L)'; 'ij
6 k(L�¡L)'kH0

¡1k'kH0
1

= k[(�+N ); G](�+N )¡1'kH0
¡1k'kH0

1

= k[N ; G](�+N )¡1'kH0
¡1k'kH0

1

. k(�+N )¡1'kH1
1k'kH0

1

= k(�+N )¡1(1+N )'kH0
1k'kH0

1

converges to 0, again by the dominated convergence theorem. Therefore, '=0.

ii. D~(L)=D(L): Recall that we constructed a map R1:H0
0!H0

1 (actually also R1:H0
¡1!H0

1)
such that (1¡L)R1'= ' for all '2H0

0, and that D~(L) =R1H0
0. For '2L¡1H0

0, let  =
(1¡L)', so that (1¡L)R1(1¡L) = (1¡L) . By injectivity of (1¡L) on H0

1 we must
have R1(1¡L) =  and therefore  2D~(L).

iii. (1¡L)C is dense in H0
¡1: If '2H0

¡1 is such that h(1¡L0)¡1/2(1¡L) ; (1¡L0)¡1/2'i=0
for all  2C, then

0= h(1¡L0)¡1(1¡L) ; 'i= h ; (1¡L�)(1¡L0)¡1'i

for all  2C, where we used that  2H11 and (1¡L0)¡1'2H0
1 to justify the integration by

parts. Therefore, (1¡L�)(1¡L0)¡1'=0. But since L�=L0¡G and since we never used
the sign of G it follows by exactly the same arguments as for L that (1¡L�) is injective
and therefore (1¡L0)¡1'= ', thus '=0.

Lecture 3: Energy solutions, the generator, and its semigroup 25



iv. h(1¡L)'; 'i= k'kH0
1

2 for ' 2D(L): Since now we know that (1¡L)C is dense in H0
¡1,

we can find '" such that (1¡L)'" converges to (1¡L)' in H0
¡1. Since R1 is a bounded

operator from H0
¡1 to H0

1, we get that R1(1¡L)'" converges to R1(1¡L)' in H0
1. And we

saw in step ii. that R1(1¡L) =  , so that '" converges to ' in H0
1. Therefore,

h(1¡L)'; 'i= lim
"!0

h(1¡L)'"; '"i= lim
"!0

h(1¡L0)'"; '"i= lim
"!0

k'"kH0
1

2 = k'kH0
1

2 ;

where we used that hG'"; '"i=0 on cylinder functions '". �

The difference of this result compared to the previous one is very subtle, but these small
improvements allow us to build the connection to energy solutions. If we would assume slightly
better estimates for G, say kG'kH�¡1+�.k'kH1

1 for � and/or �>0, together with the commutator
estimate, then we would be able to prove that H�

1 \D(L) is dense for any �> 0; alternatively, we
could assume that kG'kH0

¡16 �k'kH1
1 for some sufficiently small � > 0. Both of this essentially

corresponds to a subcritical regime, and to handle the critical case where we lose one order of
regularity both in the upper and in the lower variable without smallness assumption, we only know
how to get the weaker results from the theorem. Next, we see that those are nonetheless sufficient
to prove well-posedness of energy solutions.

4.6 Duality of energy solutions and semigroup
Here we combine the previous results to prove the uniqueness in law and Markov property of energy
solutions. Let us first connect energy solutions with the operator L:

Lemma 4.12. Let u be an energy solution as in Theorem 4.7, and let (D(L);L) be the operator
constructed in Theorem 4.11. Then u solves the martingale problem for L: For all '2D(L) the
process

'(ut)¡ '(u0)¡
Z
0

t

L'(us)ds
is a martingale.

Proof. Let '2D(L). Since (1¡L)C is dense in H0
¡1, we can find '" such that (1¡L)'" converges

to (1¡L)' in H0
¡1. Since R1 (from the proof of Theorem 4.11) is a bounded operator from H0

¡1 to
H0
1, we get that R1(1¡L)'" converges to R1(1¡L)' in H0

1. But in the proof of Theorem 4.11 we
showed that R1(1¡L) = and therefore '" converges to ' in H0

1, and then also L'" converges to
L' in H0

¡1. Since '"2C we can use the martingale problem for cylinder functions, and we get that

'"(ut)¡ '"(u0)¡ lim
�!0

Z
0

t

L�'"(us)ds

is a martingale. Since '"2C�H1
1, we get that L�'" converges to L'" inH0

¡1 as �!0, and therefore
by the admissibility condition we get that

lim
�!0

Z
0

t

L�'"(us)ds= I(L'")t;

with convergence in L1. Now we use the admissibility condition once more, together with the fact
that L'" converges to L' in H0

¡1, to get I(L'")t! I(L')t as "! 0, again with L1-convergence.
The incompressibility now yields '"(ut)¡ '"(u0)! '(ut)¡ '(u0) in L1, and since an L1-limit of
martingales is again a martingale, the proof is complete. �

The next two results are now shown line-by-line with the same arguments as for the singular
diffusion:

Lemma 4.13. If u is incompressible and it solves the martingale problem for L, then for all
'2C(R+;D(L))\C1(R+; L

2) the process

'(t; ut)¡ '(0; u0)¡
Z
0

t

(@s+L)'(s; us)ds
is a martingale.
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Lemma 4.14. Let u solve the martingale problem for L, and let (St)t>0 be the semigroup con-
structed in Theorem 4.9 or 4.11. Then the law of u is unique and the finite-dimensional distributions
are given by

E['1(ut1)���'n(utn)] =

Z
Td

(St1'1St2¡t1'2:::Stn¡tn¡1'n)(u)�(du);

where (St) is the semigroup generated by L. In particular, u is a Markov process.

Combining these results, we obtain:

Theorem 4.15. Let u be an energy solution as in Theorem 4.7, and let (D(L);L) be the operator
constructed in Theorem 4.11, with semigroup (St). Then the law of u is unique and u is a Markov
process with transition function (St).

5 Lecture 4: Applications

5.1 Critical equations

Example 5.1. The conditions of Theorem 4.15 are satisfied for:

i. The fractional stochastic Burgers equation on R+�T or R+�R,

@tu=¡(¡�)�u+ @x(u�¡u)+ 2
p

(¡�)�/2�;

if ¡2Rd�d�d is fully symmetric and if �> 3

4
. �= 3

4
is scaling invariant and therefore scaling

critical. We can construct energy solutions and semigroups for 
 > 1

2
, but for 
 2

¡ 1
2
;
3

4

�
we

are lacking the duality and therefore the uniqueness.

ii. The surface quasi-geostrophic equation

@t�+u�r�=¡(¡�)
�+ 2
p

(¡�)
/2�; u=r?(¡�)¡1/2�

for 
> 1. 
=1 is scaling invariant and therefore scaling critical. We can construct energy
solutions and semigroups for 
>0, but for 
 2 (0;1) we are lacking the duality and therefore
the uniqueness.

iii. 2d Navier-Stokes under the enstrophy measure:

@t!+u�r! = (¡�)
!+ 2
p

(¡�)
/2�;
u = r?(¡�)¡1!;

for a space-time white noise �, and for 
> 1

2
. 
=1/2 is scaling invariant/critical. We can

construct energy solutions and semigroups for 
 > 0, but for 
 2
¡
0;

1

2

�
we are lacking the

duality and therefore the uniqueness.

5.2 Hairer-Quastel universality
This is from a joint work with Massimiliano Gubinelli [8], although written somewhat differently.

Consider the nonlinear SPDE

@tv"=�v"+ "
1/2P1/2@xF (P1/2v") + 2(¡�)

p
�

onR+�"¡1T, where � is a space-time white noise, F is a suitable nonlinearity, and where we recall
that P1/2 is the projection onto the Fourier modes j�j6 1/2. For now we assume that F 2L2(�)
for the standard normal distribution �, and that

R
R
F (x)x�(dx) = 0 (which is for simplicity, and

which is for example the case if F is even). Let

u"(t; x)= "
¡1/2v"("

¡2t; "¡1x);
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so that u" solves

@tu"=�u"+ "
¡1P(2")¡1@xF ("1/2P(2")¡1u")+ 2(¡�)

p
�

on R+�T, where � is a new space-time white noise (now on R+�T) which we denote by the same
symbol for simplicity. Then u" is invariant under the law of the white noise. This can be shown
similarly as for the stochastic Burgers equation. The generator is L0+ G", where G" corresponds
to "¡1P(2")¡1@xF ("1/2P(2")¡1u").

To compute G", we would like to express F ("1/2P"¡1u"(x)) as a series of Wiener integrals. For
this purpose it is convenient to assume that the white noise u" has vanishing zero Fourier mode.
Since the zero Fourier mode

R
T
u" is conserved by the dynamics (every term on the right hand side

is a derivative), this �average-zero� white noise is also invariant and we will work with this invariant
measure. Then

Note that "1/2P"¡1u"(x) is centered Gaussian with

E[("1/2P(2")¡1u"(x))2]="E[u"(�x")2]="k�x"¡�x"̂(0)kL22 ="k�"¡�"̂(0)kL22 ="
X
k=/ 0

j�"̂(k)j2="
X

jkj6 1

2"
;k=/ 0

1;

where �"=F¡11[¡(2")¡1;(2")¡1] and �x" = �"(x¡ �). If 1

2"
is an integer, then the right hand side is

1. From now on we always make this assumption. Of course it is possible to adapt the analysis to
treat also the white noise with random zero Fourier mode and to treat general ", but the formulas
will be easier if "1/2P(2")¡1u"(x) is a standard normal variable.

Then we can decompose, using that
�

1

m!
p Hm

�
m2N0

(Hermite polynomials) is an orthonormal
basis in L2(�):

F ("1/2P(2")¡1u"(x)) =
X
m=0

1

E

�
1

m!
p Hm(X)F (X)

�
1

m!
p Hm("

1/2P(2")¡1u"(x))

=
X
m=0

1
1
m!

E[Hm(X)F (X)]|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
:=cm(F )

Hm("
1/2P(2")¡1u"(x));

for X� � standard normal. By assumption the term for m=1 vanishes, and the term for m=0
is killed by the derivative @x � without the derivative it would give a diverging contribution which
we would have to remove by a renormalization.

Recall that

Hm("
1/2P(2")¡1u"(x))=Hm(u"("

1/2�x
"))=Wm(("

1/2�x
")
m)(u") = "

m/2Wm((�x
")
m)(u");

and therefore

G"'=
X
m>2

G";m' :=
X
m>2

cm(F )"
m

2
¡1

Z
T

Wm(@x(�x
")
m)Dx'dx;

where DxWn('n) =nWn¡1('n(x; �)) is the Malliavin derivative. I expect that with similar argu-
ments as for the quadratic term, we get for m> 3







Z

T

Wm(@x(�x
")
m)Dx'dx










H0
¡1
. "¡

m¡3
2 k'kHm

2

1 ;

where for m= 3 we interpret "¡
m¡3
2 = log1

"

q
. But this is very tedious, so let us take a lighter

approach and restrict to test functions ' in the first chaos, which effectively means that in the
definition of an energy solution, Theorem 4.7, we are only going to check the first part of i., i.e.
that u is a weak solution of the stochastic Burgers equation with the nonlinearity defined by
approximation, and we will check ii. and iii., but we will not show that u solves the martingale
problem for cylinder functions. For the subcritical Burgers equation we can deduce the martingale
problem for cylinder functions from the other properties, see [10], basically by giving the drift
higher time regularity than 1

2
and using Young integration techniques. Only for critical equations

it is crucial to directly prove the martingale problem for cylinder functions, because then we do
not know how to get this from the weak solution description.
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With that out of the way, let '(u) =u(f) for '12C1. ThenZ
T

Wm(@x(�x
")
m)Dx'dx =

Z
T

Wm(@x(�x
")
m)f(x)dx

= ¡Wm

�Z
T

(�x
")
m@xf(x)dx

�
;

and taking the Fourier transform:

F
�Z

T

(�x
")
m@xf(x)dx

�
(k1:n) =

Z
e¡2�ik�z

Z
T

(�x
")
m(z1:m)@xf(x)dx

=

Z Y
i

�x
"̂(ki)@xf(x)dx

= 1jkj16(2")¡1(2�i(k1+ ���+ km))f̂(k1+ ���+ km);

so that 







(1¡L0)¡1/2�Z
T

(�x
")
m@xf(x)dx

�







2
=m!

X
jk1:mj16(2")¡1

(1+ j2�k j22)¡1j(2�i(k1+ ���+ km))f̂ (k1+ ���+ km)j2

'm!
X
`

X
jk1:mj16(2")¡1

1k1+���+km=`(1+ jk j22)¡1j`f̂(`)j2;

and estimating the sum by an integral we getX
jk1:mj16(2")¡1

1k1+���+km=`(1+ jk j22)¡1 . "¡(m¡3);

again with interpretation "¡(m¡3)= log1
"
for m=3.

Therefore, we get for '(u)=u(f):

kG"'¡G";2'kH0
¡1

2 =











X
m>3

cm(F )"
m

2
¡1
Wm

�Z
T

(�x
")
m@xf(x)dx

�










H0
¡1

2

=
X
m>3

cm(F )
2"m¡2m!









(1¡L0)¡1/2�Z
T

(�x
")
m@xf(x)dx

�







2
.

X
m>3

cm(F )
2"m¡2m!"¡(m¡3)

. "

�
1+ log

1
"

�X
m>3

cm(F )
2m!

. "log
1
"

X
m>3

1
m!

E[Hm(X)F (X)]

6 "log
1
"
E[F (X)2];

where in the last step we used that
�

1

m!
p Hm

�
is an orthonormal basis in L2(�) and Parseval's

identity. Therefore, G"' converges in H0
¡1 to the Burgers generator G' and from this we readily

get that any weak limit of (u") is an energy solution to the stochastic Burgers equation.

5.3 Gaussian fluctuations for periodic KPZ
This part is from a joint work in progress with Huanyu Yang. The results for KPZ are known and
were previously shown by Gu-Komorowski to do using the Cole-Hopf transform. Using energy
solutions and the generator L, we could extend them to fractional, multi-component Burgers
equations by the same arguments.
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Definition 5.2. A stochastic process h with values in C(R+; C(T)) is called a stationary energy
solution of the periodic KPZ equation

i. For all f 2C1(T)

ht(f)=h0(f)+

Z
0

t

hs(�f)ds+ lim
�!0

Z
0

t

((@xP�hs)2¡kP�kL22 )(f)ds+Mt(f);

where M(f) is a martingale with quadratic variation hM(f)it=2tkf kL22 .

ii. The distributional derivative u=@xh is a stationary energy solution of the stochastic Burgers
equation, i.e. u0 is a white noise, and moreover ût(0)= 0 for all t> 0 (so strictly speaking
ut is not a white noise but a mean free white noise).

Such stationary energy solutions of KPZ exist and they can be constructed in the same way as
energy solutions of the stochastic Burgers equation.

Our goal is to prove the following result:

Theorem 5.3. Let h be a stationary energy solution of the periodic KPZ equation. Then there
exists �22 (0;1) such that for each x2T we have that

1

t
p h(t; x)¡!

w
N (0; �2)

weakly, as t!1.

Probably the assumption of stationary initial conditions can be relaxed.
This result may be surprising at first, because famously the KPZ equation has non-Gaussian

fluctuations under the scaling t¡1/3h(t; t2/3x). But since we are on the torus, we cannot rescale
space and the Burgers equation decorrelates exponentially fast, and this gives forces the fluctua-
tions to be Gaussian. To see this, we use the mild formulation,

ht(x) = pt �h0(x)+ lim
�!0

Z
0

t

((@xP�hs)2¡kP�kL22 )(pt¡s(x¡ �))ds+Mt
pt¡�(x¡�)

= pt �h0(x)+ lim
�!0

Z
0

t

((P�us)2¡kP�kL22 )(pt¡s(x¡ �))ds+Mt
pt¡�(x¡�)

where p is the heat kernel of the periodic Laplacian

Fpt(k)= e¡j2�kj
2t;

and where
¡
Ms=Ms

pt¡�(x¡�)�
s2[0;t] is a martingale with quadratic variation

hM pt¡�(x¡�)it=
Z
0

t

kpt¡s(x¡ �)kL22 ds:

This quadratic variation is deterministic, so M is Gaussian (of course it is, because it is built by
integrating the space-time white noise against a deterministic function). We will see that with the
constant test function 1 we can interpret, up to a small error

lim
�!0

Z
0

t

((P�us)2¡kP�kL22 )(pt¡s(x¡ �))ds'
Z
0

t

W2

�Z
T

�x

21(x)dx

�
(us)ds:

The functional W2(:::)(us) is in H0
¡1, and since u decorrelates exponentially quickly we can decom-

pose for t=m Z
0

t

W2

�Z
T

�x

21(x)dx

�
(us)ds=

X
i=0

m¡1 Z
i

i+1

W2

�Z
T

�x

21(x)dx

�
(us)ds

with L2 random variables that are nearly independent. Therefore, by the central limit theorem
also this contribution should give rise to a Gaussian limit.

To make this intuition rigorous, we first replace the point evaluation ht(x) by testing against
1, which is more regular:
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Lemma 5.4. We have

lim
t!1









 1

t
p (ht(x)¡ht(1))










L2
=0:

Proof. This is based on the fact that by Parseval's identity

kpt(x¡ �)¡1kL22 =
X
k=/ 0

e¡j2�kj
2t. e¡j2� j2t

for large t. Moreover,

ht(1)=h0(1) +0+ lim
�!0

Z
0

t

((P�us)2¡kP�kL22 )(1)ds+Mt(1):

We subtract the mild formulation and bound the differences of the three different terms separately.
For the initial condition we have

jpt �h0(x)¡h0(1)j= jh0(pt(x¡ �)¡1)j6 kh0kL2kpt(x¡ �)¡ 1kL2. kh0kL2e¡Ct;

so this vanishes even without dividing by t
p

. For the drift we have to adapt the energy estimate
to allow time-dependent functions. This can be done by the same arguments, see [9]. Moreover,
we can improve the energy estimate to an L2 estimate because we are stationary and do not need
to apply Cauchy-Schwarz to pass from non-stationary to stationary initial conditions. This yields

E

�Z
0

t

((P�us)2¡kP�kL22 )(pt¡s(x¡ �)¡1)ds

�
.
Z
0

t

k(¡L0)¡1/2((P�u)2¡kP�kL22 )(pt¡s(x¡ �)¡1)k2ds

=

Z
0

t








(¡L0)¡1/2W2

�Z
(�y
�)
2(pt¡s(x¡ y)¡1)dy

�







2ds;
where as usualy �y�= ��(y¡ �) for ��=F¡11[¡�¡1;�¡1]. The term

W2

�Z
(�y
�)
2(pt¡s(x¡ y)¡1)dy

�
is basically G'1 for '1= pt¡s(x¡ y)¡1, except that we are missing a derivative. We could treat
this by hand, but since '1 has no zero Fourier mode we can cheat and write

'1=@x@x
¡1(pt¡s(x¡ y)¡1);

where

F(@x¡1f)(k)= (¡2�ik)¡1f̂(k); k=/ 0;

and @x
¡1 is not defined if f̂(0)=/ 0. Then we can apply our estimate for G and getZ

0

t








(¡L0)¡1/2W2

�Z
(�y
�)
2(pt¡s(x¡ y)¡1)dy

�







2ds
=

Z
0

t

k(¡L0)¡1/2G@x¡1(pt¡s(x¡ y)¡1)k2ds

.
Z
0

t

k(1+N )(¡L0)1/2@x¡1(pt¡s(x¡ y)¡1)k2ds

.
Z
0

t

k(¡�)1/2@x¡1(pt¡s(x¡ y)¡1)kL22 ds

'
Z
0

t

kpt¡s(x¡ y)¡1kL22 ds

.
Z
0

t

e¡C(t¡s)ds. 1;

and after dividing by t
p

this contribution vanishes.
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For the martingale part we have a similar estimate:

E[jMt
pt¡�(x¡�)¡Mt

1j2] =
Z
0

t

kpt¡s(x¡ y)¡1kL22 ds.
Z
0

t

e¡C(t¡s)ds. 1;

so again division by t
p

kills this term for t!1. �

Therefore, it suffices to prove the claimed convergence to a Gaussian for 1

t
p ht(1). Of course,

1

t
p h0(1) vanishes for t!1, so we only have to handle the drift and the martingale.

Lemma 5.5. The stochastic Burgers equation on T has a spectral gap, i.e. for all '2D(L) with
'0=0 we have

h(¡L)'; 'i> j2� j2k'k2;

and therefore the semigroup satisfies for all '2L2(�)

kSt'¡ '0kL22 6 e¡2j2� j
2t:

Proof. Let '2D(L) with '0=0. We showed that

h(¡L)'; 'i= k(¡L0)1/2'k2;

and we have by Parseval with Z0=Z n f0g:

k(¡L0)1/2'k2=
X
n=1

1

n!
X
k2Z0n

j2�k j2j'̂(k)j2> j2� j2
X
n=1

1

n!
X
k2Z0n

j'̂(k)j2= j2� j2k'k2:

For the convergence of the semigroup we simply differentiate kSt'kL22 : Since St'0= '0=0, we get

@tkSt'k2 = 2hSt';LSt'i
= ¡2k(¡L0)1/2St'k2

6 ¡2j2� j2kSt'k2;

so the claim follows from Gronwall's inequality. For general ' (not necessarily in D(L) or '0=0)
we first replace ' by '¡'0 and then we use an approximation argument, because D(L) is dense. �

Corollary 5.6. For each '2H0
¡1 with '0=0 there exists a unique solution  2H0

1 to the Poisson
equation

¡L = ';  0=0:

Proof. As in our construction of R1= (1¡L)¡1, we can also construct R�= (�¡L)¡1 for each
�> 0. Moreover,

k(¡L0)¡1/2'k � k(¡L0)1/2R�'k > h';R�'i
= h(�¡L)R�';R�'i
= �kR�'k2+ k(¡L0)1/2R�'k2

> k(¡L0)1/2R�'k2;

so uniformly in �:

k(¡L0)1/2R�'k26 k(¡L0)¡1/2'k:
And since (R�')0=�¡1'0=0, we can estimate

kR�'kH0
1 .
spectralgap

k(¡L0)1/2R�'k2. k(¡L0)¡1/2'k .
'0=0

k(1¡L0)¡1/2'kH0
¡1;

again uniformly in �. Now we can use a similar limit procedure as in the proof of Theorem 2.5 to
show that R�' converges subsequentially weakly in H0

1 to some limit R0', and that ¡LR0'= '.
Moreover,

hL ;  i= k(¡L0)1/2 k2;
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so if L =0 then  = 0 and this proves the uniqueness of the solution to the Poisson equation. �

We are now ready to prove our main result of this section:

Proof. (Proof of Theorem 5.3) Consider

 =  2=

Z
T

�x

21(x)dx:

Then  2H1¡1:

 ̂(k1:2) =

Z
T2

e¡2�ik�z
Z
T

�x(z1)�x(z2)1(x)dxdz

=

Z
T2

e¡2�ik�z�(z1¡ z2)dz

=

Z
T

e¡2�i(k1z1+k2z1)dz1

= 1k1+k2=0;

and therefore for all � 2R

k(1+N )�(1¡L0)¡1/2 k2=3�2!
X
k1;k2

(1+ j2�k j2)¡11k1+k2=0'
X
k

(1+ jk j2)¡1<1:

By the previous result we can thus solve the Poisson equation ¡L'=  , and by the martingale
problem and the extension of the I map to H0

¡1 we get that

Nt := '(ut)¡ '(u0)¡ I(L')t= '(ut)¡ '(u0) + I( )t
is a martingale, i.e.

I( )t=Nt¡ '(u0)+ '(ut);

and trivially
1

t
p (¡'(u0) + '(ut))! 0

in L2. Thus, we have written
1

t
p ht(x)=

1

t
p (Mt

1+Nt) + o(1);

where the o(1) term converges strongly to 0 (in L2, convergence in probability would also be
sufficient).

To proceed, we have to compute the quadratic variation of the martingale M1+N . Note that
for smooth �(u)=F (u(f1); :::; u(fm))2C we have from Itô's formula, using the equation for h and
letting �~(u) =F (¡u(@xf1); :::;¡u(@xfm))

d�(ut) = d�~(ht)

= (:::)dt+
X
i=1

m

@iF (¡ht(@xf1); :::;¡ht(@xfm))dMt
¡@xf i

= (:::)dt+
X
i=1

m

@iF (ut(f1); :::; ut(fm))dMt
¡@xf i

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
:=Nt
�

;

and therefore

dhN�+M git =
X
i;j=1

m

@iF (ut(f1); :::; ut(fm))@jF (ut(f1); :::; ut(fm))2h@xf i; @xf jidt

+2
X
i=1

m

@iF (ut(f1); :::; ut(fm))2h¡@xf i; gidt+2kgk2dt

=

�
2

Z
(@xDx�(ut))

2dx¡ 4
Z
T

@xDx�(ut)g(x)dx+2kgk2
�
dt

= 2k@xDx�(ut)¡ gkL22 dt:
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By an approximation argument this identity remains true in our setting, and therefore

dhM1+N it=2k@xDx'(ut)¡1kL22 dt:

The expectation of this expression simplifies a lot:

E[hM1+N it] = 2t(k(¡L0)1/2'k2+1);

where we used that the mixed term vanishes because
R
@xDx'dx=0. By the ergodic theorem we get�

1

n
p (M1+N)

�
nt

=
1

n

Z
0

nt

2k@xDx'(us)¡1kL22 ds¡! 2t(k(¡L0)1/2'k2+1);

and therefore 1

n
p (Mn�

1 +Nn�) converges in distribution to �B, where B is a Brownian motion and
where

�2=2(k(¡L0)1/2'k2+1)2 (0;1):

Now our claim follows by considering t=1. �
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