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Abstract. In this lecture series we discuss linear and nonlinear Schrödinger equations. Schrödinger

equations belong to the class of dispersive equations, which is ubiquitous in mathematical physics

and also includes wave equations and the Korteweg-de Vries equation.

In the first half of this lecture series, we present deterministic aspects of Schrödinger equations.

In particular, we discuss Strichartz estimates and Bourgain spaces. In the second half, we present

probabilistic aspects of Schrödinger equations. In particular, we prove multi-linear dispersive es-

timates for random initial data, which combine both dispersive and probabilistic cancellations.

Furthermore, we discuss a recent random tensor estimate of Deng, Nahmod, and Yue, which has

already been useful in many applications.

If time permits, we end the lecture series with a brief discussion of important open problems.
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1. Introduction

In the following four lectures, we study dispersive equations with both deterministic and random

initial data. Throughout the lectures, I will focus on linear and nonlinear Schrödinger equations on

the torus, which are important examples of nonlinear dispersive equations. They can be written as

(NLS)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

iBtu +∆u = σ∣u∣2u (t, x) ∈ R ×Td,

u∣t=0 = ϕ,

where d ≥ 1 is the spatial dimension and σ ∈ {−1,0,1}. The focus of the four lectures will lie on

methods and techniques, and I hope to cover the following ones:

(i) Strichartz estimates

(ii) Bourgain spaces

(iii) Probabilistic multi-linear dispersive estimates

(iv) Random tensor estimates

As applications of (i)-(iv), I will discuss the following two classical theorems.

Theorem 1.1 (Deterministic local well-posedness, [Bou93]). The periodic cubic nonlinear Schrödinger

equation in two dimensions (σ = ±1, d = 2) is locally well-posed in Hs
x(T2) for all s > 0.

In Proposition 3.8, which will be proven in full detail in the lectures and tutorial sessions, we

obtain a more quantitative version of Theorem 1.1.

Theorem 1.2 (Probabilistic local well-posedness, [Bou96]). Let d = 2, let σ = ±1, let (gn)n∈Zd be a

family of independent, standard, complex-valued Gaussians, and let

(1.1) ϕ = ∑
n∈Zd

gn
⟨n⟩

einx.

Then, (NLS) almost surely has a local solution.

Remark 1.3. As we will see, ϕ from (1.1) lives in H−ϵ(T2)/L2(T2) for all ϵ > 0. This form of random

initial data is relevant for proving the invariance of the Gibbs measure corresponding to (NLS),

but this will not be covered in these lectures.

Due to lack of time, we won’t prove Theorem 1.2 in full detail. However, we will see two of the

main steps (see Proposition 5.1 and Proposition 6.1).

Remark 1.4. The two main theorems are rather classical (and chosen for simplicity), but the

techniques are still current and some are quite recent. For instance, the random tensor estimate

was developed in [DNY22]. In the last five years, research in this area has been very active, and

there are many problems which can just now be solved.

Comment: These lecture notes were prepared for the summer school “Summer School on PDEs

and Randomness” at the MPI in Leipzig. Since the lectures at the summer school were accompanied

by tutorial sessions, the lecture notes contain plenty of exercises for the students.
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Notation:

All parts of this manuscript that are colored in blue will either be mentioned verbally or skipped

entirely during the actual lectures.

For ϕ∶Td → C, we define ϕ̂∶Zd → C by

ϕ̂(n) ∶= 1

(2π)d ∫Td
dxϕ(x)e−inx.

Furthermore, for all ϕ∶Td → C, a∶Zd → C, and 1 ≤ p <∞, we define

∥ϕ∥
Lp(Td) ∶= (

1

(2π)d ∫Td
dx ∣ϕ(x)∣p)

1
p

and ∥a∥
ℓp(Zd) ∶= ( ∑

n∈Zd

∣an∣p)
1
p

.

Using the above definitions, the Fourier inversion formula and Plancherell’s identity are then given

by

ϕ(x) = ∑
n∈Zd

ϕ̂(n)einx and ∥ϕ∥
L2(Td) = ∥ϕ̂∥ℓ2(Zd).

For any n ∈ Zd, we write

∣n∣ ∶= ∥n∥2 = (
d

∑
j=1

n2j)
1
2
.

For all N ∈ 2N0 , we define the frequency-projection operators

(1.2) P≤Nϕ = ∑
n∈Zd

1{∣n∣ ≤ N} ϕ̂(n)einx.

Furthermore, we define

P1 ∶= P≤1 and PN = P≤N − P≤N/2 for all N ≥ 2.

While sharp frequency-projections such as (1.2) behave poorly on Lp-spaces (see e.g. [Fef71]), all

of our arguments are L2-based and this, therefore, causes no problems.
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2. Strichartz estimates

In this section we study Strichartz estimates, which are estimates for solutions of linear dispersive

equations. To this end, consider

(2.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

iBtu +∆u = 0 (t, x) ∈ R ×Td,

u∣t=0 = ϕ.

The solution of (2.1) is given by

(2.2) u = eit∆ϕ = ∑
n∈Zd

e−it∣n∣
2

einxϕ̂(n),

where ϕ̂∶Zd → C is the Fourier transform of ϕ. We emphasize that, in contrast to the heat flow,

the Schrödinger flow preserves the size of the Fourier coefficients and is therefore not smoothing.

The effect of the Schrödinger flow is more subtle, and hidden in the oscillation of n ∈ Zd ↦ e−it∣n∣
2
.

Question: Can we use the oscillation of n ∈ Zd ↦ e−it∣n∣
2
to obtain space-time bounds for eit∆ϕ?

In our estimate, we only want bounds by ∥ϕ∥L2
x
or possibly ∥ϕ∥Hs

x
.

In general, we do not expect any gain for a fixed time t0 ∈ R. The reason is that ϕ̂ may

oscillate like eit0∣n∣
2
, and then there is no oscillation in e−it0∣n∣

2
ϕ̂(n). For instance, this can happen

if ϕ = e−it0∆ψ and ψ∶Td → C has a slowly-varying Fourier transform. However, ϕ̂ cannot oscillate

like eit∣n∣
2
for every t ∈ R, and thus we expect a gain after averaging in time.

Theorem 2.1 (Periodic L4
tL

4
x-Strichartz estimate, [Bou93]). Let d ≥ 2 and N ∈ 2N0. For all ϵ > 0

and all ϕ ∈ L2
x(Td), it holds that

(2.3) ∥P≤Neit∆ϕ∥L4
tL

4
x([0,2π]×Td) ≲ϵ N

ϵN
d−2
4 ∥ϕ∥

L2
x(Td).

Remark 2.2. We make the following remarks regarding Theorem 2.1.

(i) Deterministic estimates, such as the Strichartz estimate (2.3), are often easier to prove on

the Euclidean space Rd than on the torus Td. However, the probabilistic theory is much

better understood on Td, which is our reason for focusing on this case (cf. Problem 7.2).

(ii) Using Sobolev embedding, we easily obtain that

∥P≤Neit∆ϕ∥L∞t L4
x([0,2π]×Td) ≲ N

d
4 ∥ϕ∥

L2
x(Td).

This controls a stronger norm, but also requires more powers of N .

(iii) Let ϕ̂(n) = N−d/21{∣n∣ ≤ N}, which satisfies ∥ϕ∥
L2
x
∼ 1. It is easy to see that

∣eit∆ϕ∣(x) ≳ N−
d
2Nd1{∣t∣≪ N−2, ∣x∣≪ N−1}.

As a result, it follows that

∥eit∆ϕ∥
L4
tL

4
x([0,2π]×Td) ≳ N

− d
2Nd(N−2−d)

1
4 = N

d−2
4 .

This shows that, up to the ϵ-loss, (2.3) is optimal.

(iv) The ϵ-loss is necessary in dimension d = 2 (see e.g. [Dem20, Section 13]), but can be removed

(in the L4
tL

4
x-estimate) in dimension d ≥ 3 (see [KV16]).
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(v) The optimal range of Lq
tL

p
x-estimates on rational and irrational tori is still being investi-

gated, see e.g. [BD15, DJLM23].

We split the proof of Theorem 2.1 into two steps. In the first step, we reduce the Strichartz

estimate to a lattice point counting estimate. In the second step, we then prove the aforementioned

lattice point counting estimate.

2.1. Reduction. Throughout these lectures, we will encounter multiple lattice point counting

problems. Our first counting problem will be captured by the following definition.

Definition 2.3. For any q, d ≥ 1 and K ∈ 2N0 , we define

(2.4) Mq,d(K) ∶= sup
k∈Zd

sup
µ∈Z

#{(k1, k2,⋯, kq) ∈ (Zd)q ∶max
1≤j≤q

∣kj ∣ ≤K,
q

∑
j=1

kj = k,
q

∑
j=1
∣kj ∣2 = µ}.

The notation “Mq,d” is in line with [BDNY22, Lemma 5.4] and the “M” stands for “molecule”.

Lemma 2.4 (Reduction). For all d ≥ 1, N ∈ 2N0 , and ϕ ∈ L2(Td), it holds that

(2.5) ∥P≤Neit∆ϕ∥
L4
tL

4
x([0,2π]×Td)

≲ (M2,d(N))
1/4
∥ϕ∥

L2
x(Td).

Proof. We first introduce the set

SN ∶= {(n0, n1, n2, n3) ∈ (Zd)4∶max
0≤j≤3

∣nj ∣ ≤ N,

− n0 + n1 − n2 + n3 = 0, ∣n0∣2 − ∣n1∣2 + ∣n2∣2 − ∣n3∣2 = 0}.

Then, we write

∥P≤Neit∆ϕ∥
4

L4
tL

4
x([0,2π]×Td)

= 1

(2π)d+1 ∫
[0,2π]×Td

dtdxP≤Neit∆ϕ ⋅ P≤Neit∆ϕ ⋅ P≤Neit∆ϕ ⋅ P≤Neit∆ϕ

= 1

(2π)d+1 ∑
n0,n1,n2,n3∈Zd∶

∣nj ∣≤N

( ∫
[0,2π]×Td

dtdx (eit(∣n0∣2−∣n1∣2+∣n2∣2−∣n3∣2)ei(−n0+n1−n2+n3)x)(2.6)

× ϕ̂(n0) ⋅ ϕ̂(n1) ⋅ ϕ̂(n2) ⋅ ϕ̂(n3)).

Now, since complex exponentials have mean-zero, calculating the (t, x)-integral in (2.6) yields the

identity

(2.7) ∥P≤Neit∆ϕ∥
4

L4
tL

4
x([0,2π]×Td)

= ∑
n0,n1,n2,n3∈Zd

1SN
⋅ ϕ̂(n0) ⋅ ϕ̂(n1) ⋅ ϕ̂(n2) ⋅ ϕ̂(n3).

Using Cauchy-Schwarz and Plancherell’s identity, it follows that

(2.8)

(2.7) ≤ ( ∑
n0,n1,n2,n3∈Zd

1SN
∣ϕ̂(n0)ϕ̂(n2)∣

2)
1
2

× ( ∑
n0,n1,n2,n3∈Zd

1SN
∣ϕ̂(n1)ϕ̂(n3)∣

2)
1
2

≲ sup
n0,n2∈Zd

( ∑
n1,n3∈Zd

1SN
)

1
2 × sup

n1,n3∈Zd

( ∑
n0,n2∈Zd

1SN
)

1
2 × ∥ϕ∥4

L2
x
.
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Using the definition of SN , it easily follows that

(2.9) sup
n0,n2∈Zd

∑
n1,n3∈Zd

1SN
≲M2,d and sup

n1,n3∈Zd
∑

n0,n2∈Zd

1SN
≲M2,d.

After inserting (2.9) into (2.8), we obtain the desired inequality (2.5). □

Remark 2.5. At a technical level, it is more convenient to replace (2.6) with the identity

∥P≤Neit∆ϕ∥
4

L4
tL

4
x([0,2π]×Td)

= ∥(P≤Neit∆ϕ)2∥
2

L2
tL

2
x([0,2π]×Td)

∼ ∑
n∈Zd

∑
µ∈Z
∣ ∑
n1,n2∈Zd∶
∣n1∣,∣n2∣≤N

1{n1 + n2 = n}1{∣n1∣2 + ∣n2∣2 = µ}ϕ̂(n1)ϕ̂(n2)∣
2

.

However, (2.6) is closer to the arguments in Section 5, which is the reason for our presentation.

2.2. Lattice point counting estimate.

Proposition 2.6 (Sphere estimate). Let ϵ > 0, let d ≥ 2, and K ∈ 2N0 . Then, it holds that

(2.10) sup
c∈Zd

sup
µ∈Z

#{k ∈ Zd∶ ∣k∣ ≲K, ∣k − c∣2 = µ} ≲ϵ KϵKd−2.

We first show that Proposition 2.6 implies the desired bound onM2,d.

Corollary 2.7 (Bound onM2,d). For all ϵ > 0 and K ∈ 2N0 , it holds that

(2.11) M2,d(K) ≲ϵ KϵKd−2

Proof. Recall that

M2,d(K) = sup
k∈Zd

sup
µ∈Z

#{(k1, k2) ∈ Zd ×Zd∶ ∣k1∣, ∣k2∣ ≤K, k1 + k2 = k, ∣k1∣2 + ∣k2∣2 = µ}.

Now, if k = k1 + k2, then

∣k1∣2 + ∣k2∣2 = ∣k1∣2 + ∣k − k1∣2 =
1

2
∣2k1 − k∣

2 + 1

2
∣k∣2.

Thus, using the change of variables k′1 ∶= 2k1 and the sphere estimate (Proposition 2.6), it follows

that

M2,d(K) ≲ sup
k∈Zd

sup
µ∈Z

#{k1 ∈ Zd∶ ∣k1∣ ≤K, ∣2k1 − k∣
2 = 2µ − ∣k∣2}

≤ sup
k∈Zd

sup
µ∈Z

#{k′1 ∈ Zd∶ ∣k′1∣ ≤ 2K, ∣k′1 − k∣
2 = 2µ − ∣k∣2} ≲ϵ KϵKd−2. □

Before proving Proposition 2.6, we need two auxiliary lemmas.

Lemma 2.8 (Divisor estimate). Let R = Z or R = Z[i], i.e., the ring of Gaussian integers. For any

µ ∈R/{0}, let d(µ) be the number of divisors of µ, i.e.,

d(µ) =#{(a, b) ∈R ×R∶a ⋅ b = µ}.

Then, it holds for all ϵ > 0 that

d(µ) ≲ϵ ∣µ∣ϵ.
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The proof of Lemma 2.8 is the subject of Exercise 2.12, but the main idea is simple: If, say,

R = Z and we have the prime-factorization

(2.12) µ =
m

∏
j=1

p
aj
j ,

then the number of divisors is given explicitly by

(2.13) d(µ) =
m

∏
j=1
(1 + aj).

The combination of (2.12) and (2.13) yields a formula for the quotient d(µ)/∣µ∣ϵ, which can then

be estimated directly.

Lemma 2.9 (Jarnik’s theorem [Jar26]). Let C be a circle in R2 with radius R and let Γ be an arc

of C of length r ≪ R1/3. Then, it holds that

(2.14) #(Z2 ⋂ Γ) ≤ 2.

Proof. We only sketch the argument, which is best illustrated by a picture.

We argue by contradiction. Assume that a, b, c ∈ Z2 ⋂ Γ are distinct and let T be the triangle

spanned by a, b, c. Using linear algebra, we can write the signed area as

area(T ) = 1

2
det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

a1 b1 c1

a2 b2 c2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ 1
2
Z.

But since Γ is convex, the area is non-zero, and therefore we must have

∣area(T )∣ ≥ 1

2
.

On the other hand, since Γ has length r and C has radius R, T is contained in a rectangle of

dimensions ∼ r and ∼ r2/R. Thus, the area is bounded by

∣area(T )∣ ≲ r
3

R
.

In the case r ≪ R
1
3 , the two estimates yield a contradiction. □

Proof of Proposition 2.6: We first treat the case d = 2, which is the main step. We then further

distinguish the cases µ ≲K6 and µ≫K6. In the first case, we write (k1 − c1)2 + (k2 − c2)2 = µ as

(k1 − c1 + i(k2 − c2))(k1 − c1 − i(k2 − c2)) = µ.

Using the divisor bound (Lemma 2.8), it then follows that

#{k ∈ Zd∶ ∣k∣ ≲K, ∣k − c∣2 = µ} ≲ϵ ∣µ∣
ϵ
6 ≲Kϵ.

In the second case, we note that the constraint ∣k∣ ≲ K enforces that all points lie on an arc of

the circle ∣k − c∣2 = µ of length ≲ K. Since the radius is
√
µ ≫ K3, Jarnik’s theorem (Lemma 2.9)

implies that

#{k ∈ Zd∶ ∣k∣ ≲K, ∣k − c∣2 = µ} ≤ 2 ≲ϵ Kϵ.
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It remains to treat the case d ≥ 3, which can be deduced from the case d = 2 and a slicing argument.

Indeed, it holds that

#{k ∈ Zd∶ ∣k∣ ≲K, ∣k − c∣2 = µ}

≲ ∑
k3,⋯,kd∶

∣k3∣,⋯,∣kd∣≲K

#{(k1, k2) ∈ Z2∶ ∣(k1, k2)∣ ≲K, (k1 − c1)2 + (k2 − c2)2 = µ −
d

∑
j=3
(kj − cj)2}

≲Kϵ ∑
k3,⋯,kd∶

∣k3∣,⋯,∣kd∣≲K

1 ≲ KϵKd−2. □

Remark 2.10. In the proof of Corollary 2.7, the vector k ∈ Zd satisfies ∣k∣ ≲ K. As a result, the

cases in the Proof of Proposition 2.6 which require Jarnick’s theorem are not needed in the proof

of Corollary 2.7. We therefore could have skipped Jarnick’s theorem here, but it can be essential

in other situations.

2.3. Proof of Theorem 2.1 and Galilean boosts.

Proof of Theorem 2.1: The L4
tL

4
x-Strichartz estimate (Theorem 2.1) now follows directly from Lemma

2.4 and Corollary 2.7. Indeed, we have that

∥P≤Neit∆ϕ∥
L4
tL

4
x([0,2π]×Td)

≲ (M2,d(N))
1/4
∥ϕ∥

L2
x(Td) ≲ϵ N

ϵN
d−2
4 ∥ϕ∥

L2
x
. □

We also record a direct corollary of Theorem 2.1 and the Galilean symmetry of (linear and

nonlinear) Schrödinger equations.

Corollary 2.11 (Strichartz estimate and Galilean transformations). Let d ≥ 2, let ϵ > 0, letN ∈ 2N0 ,

let n0 ∈ Zd, and let Q ∶= n0 + [−N,N]d be a cube of side-length N in Zd. Then, it holds for all

ϕ ∈ L2(Td) that
∥PQe

it∆ϕ∥
L4
tL

4
x([0,2π]×Td)

≲ϵ N ϵN
d−2
4 ∥ϕ∥

L2
x(Td).

Proof. This follows from Galilean symmetry and the case n0 = 0 (Theorem 2.1). In this context,

Galilean symmetry can be stated as

PQ(eit∆ϕ)(x) = ein0x−i∣n0∣2tP≤N(eit∆(e−in0xϕ))(x − 2n0t),

which can also be checked via a direct computation. □

2.4. Exercises.

Exercise 2.12. Prove Lemma 2.8 for R = Z and, if you are so inclined, also for R = Z[i]. Beware
that the implicit constant is only allowed to depend on ϵ, but not on m ≥ 1 from (2.12).

Exercise 2.13 (Understanding the Cauchy-Schwarz inequality in (2.8)). For all d ≥ 1, N ∈ 2N0 ,

and ϕ ∈ L2(Td), prove the inequality

(2.15) ∥P≤Neit∆ϕ∥
L4
tL

4
x([0,2π]×Td)

≲ (M̃(N))
1/4
∥ϕ∥

L2
x(Td),
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where, for all K ∈ 2N0 ,

(2.16) M̃(K) ∶= sup
k∈Zd

sup
µ∈Z

#{(k1, k2) ∈ Zd ×Zd∶ ∣k1∣, ∣k2∣ ≤K, k1 − k2 = k, ∣k1∣2 − ∣k2∣2 = µ}.

Since

M̃(K) ≳#{(k1, k2) ∈ Zd ×Zd∶ ∣k1∣, ∣k2∣ ≤K, k1 − k2 = 0, ∣k1∣2 − ∣k2∣2 = 0} ≳Kd,

the estimate (2.15) cannot directly be used for a proof of Theorem 2.1.

Exercise 2.14 (Generalization of Lemma 2.4). For all q, d ≥ 1, N ∈ 2N0 , and ϕ ∈ L2(Td), prove
that

∥P≤Neit∆ϕ∥
L2q
t L2q

x ([0,2π]×Td)
≲ (Mq,d(N))

1
2q ∥ϕ∥

L2
x(Td).

Exercise 2.15 (L4
tL

4
x-estimate in d = 1). For all ϕ ∈ L2

x(T), prove that

∥eit∆ϕ∥
L4
tL

4
x([0,2π]×T)

∼ ∥ϕ∥
L2
x(T)

.

Exercise 2.16 (L6
tL

6
x-estimate in d = 1). For all ϵ > 0, N ∈ 2N0 , and ϕ ∈ L2

x(T), prove the inequality

∥P≤Neit∆ϕ∥L6
tL

6
x([0,2π]×T)

≲ϵ N ϵ∥ϕ∥
L2
x(T)

.

Hint: This is probably the hardest exercise of this section. Use Exercise 2.14, which implies that

we only have to boundM3,1. By inserting the linear constraint k1 + k2 + k3 = k into the quadratic

constraint, reduce the estimate ofM3,1 to a counting problem of the form

sup
µ∈Z

#{(a, b) ∈ Z2∶ ∣a∣ ∼ A, ∣b∣ ∼ B,a2 + 3b2 = µ}.

To solve the counting problem you may assume (without proof) that the divisor estimate holds in

the ring Z[ρ], where ρ = e
2πi
3 = −1+

√
3i

2 .
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3. Bourgain spaces

3.1. Definition and basic properties. For any u∶R × Td → C, we define its space-time Fourier

transform as

(3.1) ũ(ξ, n) ∶= 1

(2π)d+1 ∫R
dt∫

Td
dxe−iξt−inxu(t, x).

Definition 3.1 (Bourgain spaces). For any s ∈ R, b ∈ R, and u∶Rt × Td
x → C, we define the global

norm

∥u∥
Xs,b(R) ∶= ∥⟨n⟩

s⟨λ⟩bũ(λ − ∣n∣2, n)∥
L2
λ
ℓ2n(R×Zd) = ∥⟨n⟩

s⟨ξ + ∣n∣2⟩bũ(ξ, n)∥
L2
ξ
ℓ2n(R×Zd).

For any interval I ⊆ R and v∶ I ×Td
x → C, we also define the local norm

∥v∥
Xs,b(I) ∶= inf {∥u∥Xs,b(R)∶u∣I = v}.

Remark 3.2. For b > 0, elements of Xs,b(R) are encouraged to have their space-time frequency

support near the paraboloid {(n,−∣n∣2)∶n ∈ Zd}, and therefore are encouraged to behave like linear

Schrödinger waves.

Lemma 3.3 (Basic properties of Bourgain spaces). Let s ∈ R, let b, b′ ∈ R, and let χ ∈ C∞c (R).
Then, we have the following estimates:

(i) (Linear evolution) For all ϕ ∈Hs(Td), it holds that

∥χ(t)eit∆ϕ∥
Xs,b(R) ≲b,χ ∥ϕ∥Hs(Td).

(ii) (Duhamel integral) If b > 1
2 , we have for all F ∶R ×Td → C that

∥χ(t)∫
t

0
dt′ei(t−t

′)∆F (t′)∥
Xs,b(R)

≲b,χ ∥F ∥Xs,b−1(R).

(iii) (Time-localization) If −1
2 < b

′ ≤ b < 1
2 , it holds for all 0 < τ ≤ 1 and u ∈Xs,b([0, τ]) that

∥u∥
Xs,b′([0,τ]) ≲ τ

b−b′∥u∥
Xs,b([0,τ]).

(iv) For all u∶R ×Td → C, it holds that

∥u∥
Xs,b(R) = sup

∥v∥
X−s,−b(R)≤1

∣∫
R
dt∫

Td
dxu(t, x)v(t, x)∣.

Since the properties in Lemma 3.3 can be found in many textbooks [ET16, Tao06], we leave the

proofs as an exercise (Exercise 3.9).

We briefly describe the why one should expect (i)-(iv): For (i), note that the space-time Fourier

transform of eit∆ϕ is a distribution supported on the paraboloid {(n,−∣n∣2)∶n ∈ Zd}. The multipli-

cation with χ in time leads to a convolution with χ̂ in the time-frequency variable, and thus the

space-time Fourier transform of χ(t)eit∆ϕ is a function supported near the paraboloid. For (ii),

this is because integrals gain a derivative, and the Duhamel integral gains a derivative with respect

to the dispersive symbol ⟨ξ + ∣n∣2⟩. For (iii), this is because Xs,b with b < 1
2 does not embed into

L∞t H
s
x (just like Hb

t does not embed into L∞t ), and thus decreasing the size of the interval can lead

to a small norm. For (iv), the reason is that, after switching to frequency-space, Xs,b is just a

weighted L2-space.
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Lemma 3.4 (Transference principle). Let A > 0, let ∥ ⋅ ∥Y be a norm on space-time functions, and

assume that, for all ϕ ∈Hs
x(Td),

(3.2) sup
λ∈R
∥eitλeit∆ϕ∥

Y
≤ A∥ϕ∥

Hs(Td).

For all b > 1
2 and all u ∈Xs,b(R), it then holds that

(3.3) ∥u∥
Y
≲b A∥u∥Xs,b(R).

Proof. Using Fourier inversion, we write

u(t, x) = ∫
R
dξ ∑

n∈Zd

eitξeinxũ(ξ, n)

= ∫
R
dλ ∑

n∈Zd

eit(λ−∣n∣
2)einxũ(λ − ∣n∣2, n)

= ∫
R
dλeitλeit∆ϕλ,

where ϕλ∶Td → C is defined by

ϕ̂λ(n) = ũ(λ − ∣n∣2, n).

Using our assumption (3.2) and the triangle inequality, it follows that

(3.4) ∥u∥
Y
≤ ∫

R
dλ ∥eitλeit∆ϕλ∥Y ≤ A∫R

dλ ∥ϕλ∥Hs(Td).

Using Cauchy-Schwarz, it follows that

(3.4) ≤ A∥⟨λ⟩−b∥
L2
λ

× ∥⟨λ⟩b∥ϕλ∥Hs(Td)∥L2
λ

≲b A∥u∥Xs,b(R).

□

Lemma 3.5 (Controlling L4
tL

4
x via Xs,b′). Let N ∈ 2N0 , let Q be a cube with side-length N , and

let I ⊆ [0,2π]. Then, it holds for all u∶R ×Td → C that

(3.5) ∥PQu∥L4
tL

4
x(I×Td) ≲δ N

d−2
4
+4δ∥u∥

X0, 12−δ(I)
.

Proof. Using the definition of Bourgain-spaces, it suffices to prove that

(3.6) ∥PQu∥L4
tL

4
x([0,2π]×Td) ≲δ N

d−2
4
+4δ∥u∥

X0, 12−δ(R)
.

Using the transference principle (Lemma 3.4) and Strichartz estimates (Theorem 2.1 and Corollary

2.11), it holds that

(3.7) ∥PQu∥L4
tL

4
x([0,2π]×Td) ≲δ N

d−2
4
+δ∥u∥

X0, 12+δ(R)
.

Except for the exponent b-parameter in (3.7), which is 1
2 +δ rather than

1
2 −δ, this already coincides

with our desired estimate (3.6). In order to fix this, we will use a separate crude estimate, which

has poor dependence on N but requires less of b.

Using the Hausdorff-Young inequality, it holds that

∥PQu∥L4
tL

4
x([0,2π]×Td) ≲ ∥PQu∥L4

tL
4
x(R×Td) ≲ ∥P̃Qu∥L4/3

ξ
ℓ
4/3
n (R×Zd).
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Using Hölder’s inequality, it holds that

∥P̃Qu∥L4/3
ξ

ℓ
4/3
n (R×Zd) ≲ ∥⟨ξ + ∣n∣

2⟩−1/4−δ1Q(n)∥L4
ξ
ℓ4n(R×Zd)∥⟨ξ + ∣n∣

2⟩1/4+δũ(ξ, n)∥
L2
ξ
ℓ2n(R×Zd)

≲ N
d
4 ∥u∥

X0, 14+δ(R)
.

In total, it follows that

(3.8) ∥PQu∥L4
tL

4
x([0,2π]×Td) ≲ N

d
4 ∥u∥

X0, 14+δ(R)
.

By interpolating (3.7) and (3.8), we arrive at the desired estimate (3.6). □

Remark 3.6. In the proof of Lemma 3.5, we slightly adjusted a parameter in (3.7) by supplementing

it with the “easy” second inequality (3.8), which is a pretty general trick in PDE. This generally

only fails if there is a good reason for it. For example, in deterministic dispersive equations it is

almost never possible to slightly decrease the power of the highest frequency-scale, since there is

no smoothing.

3.2. Nonlinear estimates.

Lemma 3.7 (Trilinear estimate). Let d = 2. For s ≥ 20δ, b = 1
2 + δ, b

′ ∶= 1
2 − δ, and I ⊆ [0,2π], it

holds that

(3.9) ∥u1u2u3∥Xs,b−1(I) ≲
3

∏
j=1
∥uj∥Xs,b′(I).

Proof. Using the definition of Bourgain-spaces, it suffices to prove the estimate with I replaced by

[0,2π]. Using Exercise 3.10, it suffices to prove for all N0,N1,N2,N3 ∈ 2N0 that

(3.10) ∥PN0(PN1u1PN2u2PN3u3)∥
X0,b−1([0,2π])

≲ (N (2))16δ
3

∏
j=1
∥PNjuj∥X0,b′(R).

where N (0) ≥ N (1) ≥ N (2) ≥ N (3) is the non-increasing rearrangement of N0,N1,N2, and N3. Using

duality (Lemma 3.3), b−1 = −b′, and the definition of Bourgain-spaces, it suffices to prove that, for

all u0∶R ×Td → C,

(3.11) ∣ ∫
[0,2π]×T2

dtdxPN0u0PN1u1PN2u2PN3u3∣ ≲ (N
(2))16δ

3

∏
j=0
∥PNjuj∥X0,b′(R),

Since the other cases are similar, we only treat the case N0 ≥ N1 ≥ N2 ≥ N3. Note that, in order for

(3.11) to be non-zero, it then holds that N0 ∼ N1.

Side note: We want to use the L4
tL

4
x-estimate for u0, u1, u2, and u3. However, doing this di-

rectly would cost (N0N1N2N3)4δ. This would cost powers of the highest frequency scales N0 and

N1 which, if N2 is much smaller than N0 and N1, we cannot gain back. To avoid this loss, we use

an essential technique called box localization.
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We let Q = Q(N0,N1,N2) be a collection of cubes that have side-length ∼ N2, cover the cube

centered at the origin with side-length ∼ N0, and have finite overlap. It then follows from frequency-

support considerations that

(3.12)

∫
[0,2π]×T2

dtdxPN0u0PN1u1PN2u2PN3u3

= ∑
Q0,Q1∈Q∶

d(Q0,Q1)≲N2

∫
[0,2π]×T2

dtdxPQ0PN0u0 ⋅ PQ1PN1u1 ⋅ PN2u2 ⋅ PN3u3.

Using Hölder’s inequality and Lemma 3.5, it then follows that

∣(3.12)∣ ≲( ∑
Q0,Q1∈Q∶

d(Q0,Q1)≲N2

∥PQ0PN0u0∥L4
tL

4
x([0,2π]×T2)∥PQ1PN1u1∥L4

tL
4
x([0,2π]×T2))

× ∥PN2u2∥L4
tL

4
x([0,2π]×T2)∥PN3u3∥L4

tL
4
x([0,2π]×T2)

≲ (N (2))16δ( ∑
Q0,Q1∈Q∶

d(Q0,Q1)≲N2

∥PQ0PN0u0∥X0,b′(R)∥PQ1PN1u1∥X0,b′(R))(3.13)

× ∥PN2u2∥X0,b′(R)∥PN3u3∥X0,b′(R).

In order to obtain the desired estimate, it remains to treat the sum over Q0 and Q1 in (3.13). Using

Cauchy-Schwarz, using that Q is finitely overlapping, and using orthogonality, it holds that

∑
Q0,Q1∈Q∶

d(Q0,Q1)≲N2

∥PQ0PN0u0∥X0,b′(R)∥PQ1PN1u1∥X0,b′(R)

≲ ( ∑
Q0,Q1∈Q∶

d(Q0,Q1)≲N2

∥PQ0PN0u0∥
2

X0,b′(R))
1
2 ( ∑

Q0,Q1∈Q∶
d(Q0,Q1)≲N2

∥PQ1PN1u1∥
2

X0,b′(R))
1
2

≲ ( ∑
Q0∈Q

∥PQ0PN0u0∥
2

X0,b′(R))
1
2 ( ∑

Q1∈Q
∥PQ1PN1u1∥

2

X0,b′(R))
1
2

≲ ∥PN0u0∥X0,b′(R)∥PN1u1∥X0,b′(R)

This completes the proof of (3.11). □

3.3. Local well-posedness.

Proposition 3.8 (Local well-posedness in Xs,b-spaces). Let d = 2, let s > 0, let D = Ds ≥ 1 be

sufficiently large, let δ = δs > 0 be sufficiently small, and let b ∶= 1
2 + δ. Let R ≥ 1 be arbitrary,

let BR be the ball of radius R in Hs
x(T2), and let 0 < τ ≤ D−1R−D. Then, for all ϕ ∈ BR, there

exists a unique local solution of the integral formulation of (NLS) in Xs,b([0, τ]). Furthermore, the

data-to-solution map

BR →Xs,b([0, τ]), ϕ↦ u

is Lipschitz continuous.

We have all the necessary estimates available, and it only remains to setup the contraction-

mapping argument. This is left as an exercise (Exercise 3.11).
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3.4. Exercises.

Exercise 3.9. Prove Lemma 3.3.

Hint: (i) and (iv) are rather straightforward. For (ii) and (iii), one may want to look up the proofs

from [Tao06, Lemma 2.11 and Proposition 2.12] or [ET16, Lemma 3.12 and Lemma 3.11].

Exercise 3.10 (A step in the proof of Lemma 3.7). Using the estimate (3.10), which is satisfied

for all N0,N1,N2,N3 ∈ 2N0 and all u1, u2, u3∶R ×T2 → C, prove the estimate (3.9) for all s ≥ 20δ.

Exercise 3.11 (Contraction-mapping argument). Using the estimates of this section and a contraction-

mapping argument, prove Proposition 3.8.
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4. Probability theory and Bourgain’s trick

4.1. Probability theory.

Definition 4.1 (Massive Gaussian free field). Let d ≥ 1. Then, a random distribution ϕ∶Td → C is

called a d-dimensional (massive) Gaussian free field if it can be represented as

(4.1) ϕ = ∑
n∈Zd

gn
⟨n⟩

einx,

where (gn)n∈Zd are independent, standard, complex-valued Gaussians. We denote the unique cor-

responding measure by g = gd, i.e., we define

(4.2) gd ∶= Law ( ∑
n∈Zd

gn
⟨n⟩

einx).

Remark 4.2. We make the following remarks regarding Definition 4.1.

(i) Our definition corresponds to a unit mass m = 1. For a general mass m > 0, one would

replace ⟨n⟩ =
√
1 + ∣n∣2 by

√
m2 + ∣n∣2. In the following, we often omit writing “massive”.

(ii) The Gaussian free field is a natural model from probability, and we refer to [She07] for a

survey of its properties.

(iii) The Gibbs measure of (NLS) is given by the complex-valued Φ4
d-measure. In dimension

d = 1,2, Φ4
d is absolutely continuous with respect to the Gaussian free field. Thus, in

dimension d = 1,2, if we want to prove the almost-sure local well-posedness of (NLS) with

respect to the Gibbs measure, it suffices to prove it with respect to the Gaussian free field.

In order to work with the Gaussian free field, we later need the following standard lemma, which

will not be proven here.

Lemma 4.3 (Wick’s theorem). Let k ≥ 1 and let X1,X2,⋯,X2k be mean-zero complex-valued

Gaussian random variables. Then, it holds that

(4.3) E[
2k

∏
l=1
Xl] =∑

P
∏
{i,j}∈P

E[XiXj].

The sum in (4.3) is over all pairings P of {1,2,⋯,2k}, i.e., all partitions of {1,2,⋯,2k} into two-

element subsets.

For example, if k = 2, then Lemma 4.3 implies that

E[X1X2X3X4] = E[X1X2] ×E[X3X4] +E[X1X3] ×E[X2X4] +E[X1X4] ×E[X2X3].

Lemma 4.4 (Regularity of GFF). Let ϕ∶Td → C be a Gaussian free field. Then, it holds that

E∥ϕ∥2Hs
x(Td) <∞ ⇐⇒ s < 1 − d

2
.

Remark 4.5. In dimension d = 2, it follows that the Gaussian free field has regularity 0−. Thus, it

is barely outside the scope of Theorem 1.1.

Proof. It holds that

E∥ϕ∥2Hs
x(Td) = E ∑

n∈Zd

⟨n⟩2s ∣gn∣
2

⟨n⟩2
= ∑

n∈Zd

⟨n⟩2(s−1)E∣gn∣2 = ∑
n∈Zd

⟨n⟩2(s−1).

The latter sum is finite if and only if 2(s − 1) < −d, which yields the desired claim. □
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4.2. Wick-ordered nonlinear Schrödinger equation. For reasons that will become clear later,

we now study the Wick-ordered nonlinear Schrödinger equation, which is given by

(WNLS)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

iBtu +∆u = σ(∣u∣2 − 2∥u∥2L2)u (t, x) ∈ R ×Td,

u∣t=0 = ϕ.

There exists an invertible gauge-transformation G∶L2(Td) → L2(Td) which transforms smooth

solutions of (NLS) into smooths solutions of (WNLS), and thus (NLS) and (WNLS) are equivalent

for regular initial data (see Exercise 4.8). For initial data below L2, however, this equivalence

breaks down. The additional term −2∥u∥2L2 acts as a renormalization, which is a standard step in

the treatment of many random PDEs.

Using Fourier analysis, we obtain the following decomposition of the Wick-ordered nonlinearity.

Lemma 4.6 (Decomposition). For all smooth u∶Td → C, it holds that

(∣u∣2 − 2∥u∥2L2)u = N (u,u, u) +N r(u,u, u),

where

N (u1, u2, u3) ∶= ∑
n1,n2,n3∈Zd∶
n2≠n1,n3

û1(n1)û2(n2)û3(n3)ei(n1−n2+n3)x,

N r(u1, u2, u3) ∶= ∑
n∈Zd

û1(n)û2(n)û3(n)einx.

The simple proof of Lemma 4.6 is left as an exercise (Exercise 4.9).

Remark 4.7. We make the following remarks regarding Lemma 4.6.

(i) The nonlinearity N (u,u, u) is the main term on the right-hand side of (WNLS). The

condition n2 ≠ n1, n3 is due to Wick-ordering and will be crucial later.

(ii) The superscript in N r stands for (doubly) resonant. This term is harmless (at least in

dimension d = 2), and we will ignore it almost entirely.

4.3. Bourgain’s trick. In the following, we specialize to d = 2 (as in Theorem 1.2) and our goal

is to solve

(4.4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

iBtu +∆u = σ ⋅ (N (u,u, u) +N r(u,u, u)) (t, x) ∈ R ×Td,

u∣t=0 = ϕ,

where ϕ is a sample of the Gaussian free field.

Problem: ϕ only has regularity 0− and (4.4) cannot be solved in X0−,b.

We use the linear-nonlinear decomposition

(4.5) u = eit∆ϕ + v.

The nonlinear remainder v then must satisfy v(0) = 0 and the evolution equation

(4.6) iBtv +∆v = σ ∑
w1,w2,w3

∈{eit∆ϕ,v}

(N (w1,w2,w3) +N r(w1,w2,w3)).
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Goal: Since v(0) = 0 is smooth, we want to solve (4.6) in Xs,b for certain s > 0.
Since s > 0, the N (v, v, v)-term can be treated deterministically. Among others, however, we

have to address the following two issues:

(I) Can we control self-interactions of eit∆ϕ, i.e., N (eit∆ϕ, eit∆ϕ, eit∆ϕ) in Xs,b−1? This will be

addressed in Section 5.

(II) Can we control interactions between eit∆ϕ and v, such as N (eit∆ϕ, eit∆ϕ, v), in Xs,b−1?

This will be addressed in Section 6.

In both (I) and (II), we will need to uncover a nonlinear smoothing effect.

4.4. Exercises.

Exercise 4.8 (Gauge-transformation). Define the gauge-transform G∶L∞t L2
x → L∞t L

2
x by

G(u)(t, x) ∶= e2iσ∥u∥
2
L2 tu(t, x).

Show that G is invertible and compute its inverse. Furthermore, show that for any smooth function

u∶R×Td → C, u is a classical solution of (NLS) if and only if Gu is a classical solution of (WNLS).

Exercise 4.9 (Decomposition). Using the Fourier expansion of u into (∣u∣2 − 2∥u∥2L2)u, prove

Lemma 4.6.

Exercise 4.10 (Invariance of Gaussian free field under linear Schrödinger equation). Let t ∈ R,
let d ≥ 1, and let ϕ∶Td → C be a d-dimensional Gaussian free field. Prove that eit∆ϕ is also a

d-dimensional Gaussian free field, i.e., prove that eit∆ϕ and ϕ have the same law.
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5. The cubic stochastic object

In the main proposition of this section, we control the first Picard iterate for the random initial

data from (1.1).

Proposition 5.1. Let s ∶= 1
2 − δ1 and b ∶= 1

2 + δ2, where 0 < δ2 ≪ δ1, and let ϕ be as in (1.1). Then,

it holds that

(5.1) E[∥N(eit∆ϕ, eit∆ϕ, eit∆ϕ)∥
2

Xs,b−1([0,2π])
] ≲δ1,δ2 1.

Proposition 5.1 is a direct consequence of Lemma 5.3, which uses probabilistic cancellations, and

Lemma 5.4, which relies on dispersive effects.

5.1. Reduction. We first introduce a different counting problem than in Section 2.

Definition 5.2. Let d ≥ 2, let N0,N1,N2,N3 ∈ 2N0 , and let (ι0, ι1, ι2, ι3) = (−1,1,−1,1). We then

define

(5.2)

M4,d(Nj , ιj ∶0 ≤ j ≤ 3)

∶= sup
µ∈Z

#{(n0, n1, n2, n3) ∈ (Zd)4∶ ∣nj ∣ ∼ Nj for all 0 ≤ j ≤ 3,

(ιj , nj) ≠ (ιk, nk) for all 0 ≤ j ≠ k ≤ 3,
3

∑
j=0

ιjnj = 0,
3

∑
j=0

ιj ∣nj ∣2 = µ}.

In the following, we often write

Nmax ∶=max(N0,N1,N2,N3).

Lemma 5.3 (Probabilistic cancellations/Reduction). Let s ∈ R and b ∶= 1
2 + δ2 be as in Proposition

5.1. Then, it holds that

(5.3)

E[∥N(eit∆ϕ, eit∆ϕ, eit∆ϕ)∥
2

Xs,b−1([0,2π])
]

≲ sup
N0,N1,N2,
N3∈2N0

N8δ2
maxN

2s
0 (N1N2N3)−2M4,2(Nj , ιj ∶0 ≤ j ≤ 3),

where (ι0, ι1, ι2, ι3) = (−1,+1,−1,+1).

Proof. It suffices to prove the following estimate:

(5.4)
E[∥PN0N(PN1e

it∆ϕ,PN2e
it∆ϕ,PN3e

it∆ϕ)∥
2

Xs,b−1([0,2π])
]

≲N4δ2
maxN

2s
0 (N1N2N3)−2M4,2(Nj , ιj ∶0 ≤ j ≤ 3).

Indeed, since we gave ourselves an N−4δ2max -factor of room, we can easily prove (5.3) by summing

(5.4) over dyadic scales. To simplify the notation, we introduce the phase function

Ω = Ω(n0, n1, n2, n3) = −∣n0∣2 + ∣n1∣2 − ∣n2∣2 + ∣n3∣2.
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To prove (5.4), we first note that

(5.5)

e−it∆PN0N(PN1e
it∆ϕ,PN2e

it∆ϕ,PN3e
it∆ϕ)

= ∑
n0,n1,n2,n3∈Z2∶
n0=n1−n2+n3,

n2≠n1,n3

(e−itΩein0x(
3

∏
j=0

1Nj(nj))⟨n1⟩
−1⟨n2⟩−1⟨n3⟩−1gn1gn2gn3).

Using the statement from Exercise 5.8, it follows that

(5.6)

∥PN0N(PN1e
it∆ϕ,PN2e

it∆ϕ,PN3e
it∆ϕ)∥

2

Xs,b−1([0,2π])

≲ ∑
µ∈Z
∑

n0∈Z2

⟨µ⟩2(b−1)⟨n0⟩2s∣ ∑
n1,n2,n3∈Z2∶
n0=n1−n2+n3,

n2≠n1,n3,
Ω=µ.

(
3

∏
j=0

1Nj(nj))⟨n1⟩
−1⟨n2⟩−1⟨n3⟩−1gn1gn2gn3∣

2

.

We now claim that the family (gn1gn2gn3)n2≠n1,n3 is, up to permutations, orthogonal in L2(P).
Indeed, for any n1, n2, n3 ∈ Z2 satisfying n2 ≠ n1, n3 and n′1, n

′
2, n
′
3 ∈ Z2 also satisfying n′2 ≠ n′1, n′3,

Wick’s theorem (Lemma 4.3) implies that

(5.7)
E[gn1gn2gn3gn′1gn′2gn′3]

=1{(n1, n2, n3) = (n′1, n′2, n′3)} + 1{(n1, n2, n3) = (n′3, n′2, n′1)}.

Using orthogonality up to permutations, it follows that

E(5.6) ≤ ∑
µ∈Z
∑

n0∈Z2

⟨µ⟩2(b−1)⟨n0⟩2sE∣ ∑
n1,n2,n3∈Z2∶
n0=n1−n2+n3,

n2≠n1,n3,
Ω=µ.

(
3

∏
j=0

1Nj(nj))⟨n1⟩
−1⟨n2⟩−1⟨n3⟩−1gn1gn2gn3∣

2

≲ ∑
µ∈Z
∑

n0∈Z2

⟨µ⟩2(b−1)⟨n0⟩2s ∑
n1,n2,n3∈Z2∶
n0=n1−n2+n3,

n2≠n1,n3,
Ω=µ.

(
3

∏
j=0

1Nj(nj))⟨n1⟩
−2⟨n2⟩−2⟨n3⟩−2.(5.8)

Side note: We emphasize that the bound (5.8) heavily relies on the randomness in gn1gn2gn3 and

is significantly better than any bound we could obtain if gn1gn2gn3 is replaced by 1.

Using that the summand is non-trivial only for ∣µ∣ ≲ N2
max, 2(b−1) = −1+2δ2, and Definition 5.2,

it follows that

(5.8) ≲ N4δ2
maxN

2s
0 N

−2
1 N−22 N−23 × sup

µ∈Z
∑

n0,n1,n2,n3∈Z2∶
n0=n1−n2+n3,

n2≠n1,n3,
Ω=µ.

(
3

∏
j=0

1Nj(nj))

≲ N4δ2
maxN

2s
0 N

−2
1 N−22 N−23 M4,2(Nj , ιj ∶0 ≤ j ≤ 3).

This completes the proof of (5.4). □
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5.2. Lattice point counting estimates.

Lemma 5.4. Let d ≥ 2, let N0,N1,N2,N3 ∈ 2N0 , and let (ι0, ι1, ι2, ι3) = (−1,1,−1,1). For all ϵ > 0,
it then holds that

(5.9) M4,d(Nj , ιj ∶0 ≤ j ≤ 3) ≲ϵ (N (1)N (2))d−1+ϵ(N (3))d,

where N (0) ≥ N (1) ≥ N (2) ≥ N (3) is the non-decreasing rearrangement of the frequency-scales.

Remark 5.5. The statement of the Lemma 5.4 is technical, but it quantitatively answers a natural

question: For how many frequencies n1, n2, n3 ∈ Zd do the corresponding plane waves e−it∣nj ∣2einjx,

where j = 1,2,3, interact strongly?

The proof is the subject of Exercise 5.10, but I will describe the general idea and make an

additional comment. For simplicity, let us assume that

(5.10) N0 ∼ N1 ≳ N2 ≳ N3.

In that case, we would write the linear constraint as n0 = n1 −n2 +n3 and insert the formula for n0

into the quadratic constraint. After algebraic manipulations, the quadratic constraint then reads

as

(5.11) 2(n1 − n2) ⋅ (n3 − n2) = −µ.

According to our lemma, we are supposed to have the estimate

(5.12)
#{(n1, n2, n3) ∈ (Zd)3∶ ∣nj ∣ ∼ Nj for 1 ≤ j ≤ 3, n1, n3 ≠ n2, 2(n1 − n2) ⋅ (n3 − n2) = −µ}

≲ϵ (N1N2)d−1+ϵNd
3 .

The estimate (5.12) can be proven using the sphere and divisor estimate (Proposition 2.6 and

Lemma 2.8). Note that, up to the ϵ-loss, (5.12) is optimal. The reason is that

∑
µ∈Z

#{⋯} ∼ (N1N2N3)d

and that the bilinear form (n1 − n2)(n3 − n2) takes at most ∼ N1N2 different values. Thus, one

cannot do better in (5.12) than

(N1N2N3)d

N1N2
.

Remark 5.6. Note that the condition n1, n3 ≠ n2 is crucial. Otherwise, for µ = 0 and N2 = N3, any

tuple (n1, n2, n3) with n2 = n3 satisfies the constraint, and thus we obtain a lower bound by

∼ Nd
1N

d
2 .

If N0 ∼ N1 and N2 ∼ N3 ∼ 1, this would be much worse than the upper bound in (5.12).
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5.3. Proof of Proposition 5.1:

Proof. Using Lemma 5.3 and using that N (0) ∼ N (1) (otherwise, the linear constraint cannot be

satisfied), it follows that

E[∥N(eit∆ϕ, eit∆ϕ, eit∆ϕ)∥
2

Xs,b−1([0,2π])
]

≲ sup
N0,N1,N2,
N3∈2N0

N8δ2
maxN

2s
0 (N1N2N3)−2M4,2(Nj , ιj ∶0 ≤ j ≤ 3)

≲ sup
N0,N1,N2,
N3∈2N0

(N (1))2s+8δ2−2(N (2)N (3))−2M4,2(Nj , ιj ∶0 ≤ j ≤ 3).(5.13)

Using our counting estimate (Lemma 5.4), it follows for all ϵ > 0 that

(5.14)

(5.13) ≲ sup
N0,N1,N2,
N3∈2N0

((N (1))2s+8δ2−2(N (2)N (3))−2 × (N (1)N (2))1+2ϵ(N (3))2)

≲ sup
N0,N1,N2,
N3∈2N0

(N (1))2s−1+8δ2+2ϵ(N (2))−1+2ϵ.

This is acceptable as long as

s < 1

2
− 4δ2 − ϵ,

which can be satisfied (by choosing ϵ = δ2) in our case. □

Remark 5.7. In the above argument, we make no use of the additional (N (2))−1+2ϵ-factor in (5.14).

Whether or not this factor can be used to increase the regularity s depends on the specific interac-

tion:

(i) For high×low×low-interactions, it holds that N (2) ∼ 1, and thus we cannot increase s.

(ii) For high×high×low-interactions, however, N (2) ∼ N (1), and thus we can increase the regu-

larity from s = 1
2 − δ1 to s = 1 − δ1.

This observation is crucial for many recent developments, see e.g. [Bri21, DNY19].

5.4. Exercises.

Exercise 5.8. Let d ≥ 1, let k ≥ 1, and let ι1,⋯, ιk ∈ {−1,+1}. Furthermore, let a∶ (Zd)k → C, let
Ω∶ (Zd)k → Z, and let u∶R ×Td → C be given by

e−it∆u = ∑
n1,⋯,nk∈Zd

a(n1,⋯, nk)ei(ι1n1+⋯+ιknk)xe−itΩ.

Then, it holds for all s ∈ R and b ∈ R that

∥u∥2
Xs,b([0,2π]) ≲ ∑

n0∈Zd

∑
µ∈Z
⟨n0⟩2s⟨µ⟩2b∣ ∑

n1,⋯,nk∈Zd∶
ι1n1+⋯+ιknk=n0,

Ω=µ

a(n1,⋯, nk)∣
2
.

Exercise 5.9. For all d ≥ 2, M,N ∈ 2N0 , and ϵ > 0, prove that

(5.15) sup
k,ℓ∈Zd

sup
µ∈Z

#{(m,n) ∈ Zd ×Zd∶m,n ≠ 0, ∣m − k∣ ≤M, ∣n − ℓ∣ ≤ N, m ⋅ n = µ} ≲ (MN)d−1+ϵ.
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For this exercise, you may use (without proof) that the following strengthened divisor estimate is

satisfied: For all A,B ≥ 1, a0, b0 ∈ Z, and µ ∈ Z, it holds that

(5.16) #{(a, b) ∈ Z ×Z∶a, b ≠ 0, ∣a − a0∣ ≤ A, ∣b − b0∣ ≤ B, a ⋅ b = µ} ≲ϵ (AB)ϵ.

For a proof of (5.16), see [DNY19, Lemma 4.3.(1)].

Hint/Note: Apply (5.16) to the entries of m and n. While it is not a hard exercise, it is not

completely trivial either. The reason is that even if m,n ∈ Zd satisfy m,n ≠ 0, they may still have

zero entries.

Exercise 5.10. Using Exercise 5.9 (and potentially Proposition 2.6), prove Lemma 5.4.
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6. Random tensor estimates

As described in Subsection 4.3, solving the evolution equation for the nonlinear remainder v

requires control over interactions between eit∆ϕ and v. One of these interactions is the subject of

the next definition.

Proposition 6.1. Let s ∶= 1
2 −δ1, let b ∶=

1
2 +δ2, let b

′ ∶= 1
2 −δ2, where 0≪ δ2 ≪ δ1 ≪ 1. Furthermore,

let ϕ be as in (1.1). Then, it holds that

(6.1) E[∥v ↦ N (eit∆ϕ, eit∆ϕ, v)∥
2

Xs,b′([0,2π])→Xs,b−1([0,2π])
] ≲δ1,δ2 1.

Compared to Proposition 5.1, the new aspect of Proposition 6.1 is that it concerns a random

operator, and not an explicit random distribution. Unfortunately, I will not have time to present

a full proof of Proposition 6.1. Instead, I will focus on general random tensor estimates, which are

a new technique [DNY22] and can be used to prove Proposition 6.1.

6.1. Abstract random tensor estimate.

Definition 6.2 (Tensors). A tensor is a map h∶ (Zd)J → C, where J is a finite index set. We often

write h = hnJ
and, if J = {j1, j2,⋯, jk}, we often also write h = hnj1

⋯jk .

Example 6.3. For Proposition 6.1, the most important tensor is

(6.2)
hn0n1n2n3 ∶= (

3

∏
j=0

1Nj(nj)) × 1{n1, n3 ≠ n2} × 1{ − n0 + n1 − n2 + n3 = 0}

× 1{ − ∣n0∣2 + ∣n1∣2 − ∣n2∣2 + ∣n3∣2 = µ},

where µ ∈ Z.

Definition 6.4 (Tensor norms). Let h = hnJ
be a tensor and let X and Y form a partition of J ,

i.e., X,Y ⊆ J and X ⊍Y = J . Then, we define

(6.3) ∥h∥
nX→nY

∶= sup{∑
nY

∣∑
nX

hnJ
vnX
∣
2
∶ ∑
nX∈(Zd)X

∣vnX
∣2 ≤ 1}.

After viewing h as a linear operator from ℓ2nX
to ℓ2nY

, the tensor norm ∥h∥
nX→nY

coincides with

the usual operator norm. We emphasize that, even for a fixed set J , there are many different

choices of X and Y and thus many different tensor norms.

Proposition 6.5 (Abstract random tensor estimate [DNY22]). Let h = hn1n2nAnB
be a tensor,

where A and B are finite index sets. Let N ∈ 2N0 and assume that, on the support of h, it holds

that

(6.4) ∣n1∣, ∣n2∣,max
a∈A
∣na∣,max

b∈B
∣nb∣ ≲ N.

Furthermore, let (gn)n∈Zd be a sequence of independent, standard complex-valued Gaussians and

let H =HnAnB
be he random tensor defined as

(6.5) HnAnB
∶= ∑

n1,n2∈Zd

hn1n2nAnB
(gn1gn2 − δn1n2).
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Then, it holds for all ϵ > 0 and p ≥ 1 that

(6.6) E[∥H∥pnA→nB
]
1
p ≲ϵ pN ϵ max

X⊍Y ={1,2}
∥h∥

nAnX→nBnY
.

Remark 6.6. We make the following remarks regarding Proposition 6.5.

(i) The estimate was stated in the simplest possible form for our application, but can be

generalized. For any m ≥ 1, a similar estimate holds for products of m Gaussians.

(ii) The estimate has found many applications in the recent literature, see e.g. [Bri20, BDNY22].

In these applications, one first uses Schur’s test, which yields

∥h∥2nAnX→nBnY
≲ ( sup

nAnX

∑
nBnY

∣hnXnY nAnB
∣) × ( sup

nBnY

∑
nAnX

∣hnXnY nAnB
∣).

The right-hand side is then controlled through further counting problems.

(iii) The estimate is closely related to operator bounds for structured random matrices. In fact,

it can be proven using the methods in [vH17].

6.2. Proof of abstract random tensor estimate. We present a slightly different proof of the

abstract tensor estimate than in [DNY22], which is more modular. It relies on the following three

ingredients:

(i) Tensor merging estimate (Lemma 6.7),

(ii) Probabilistic decoupling (Lemma 6.8),

(iii) Gaussian case (Lemma 6.9).

Lemma 6.7 (Merging estimate). Let A1,A2,B1,B2, and C be disjoint finite index sets and let

h(1) = h(1)nA1
nB1

nC
and h(2) = h(2)nA2

nB2
nC

be two different tensors. Then, it holds that

(6.7) ∥∑
nC

h(1)nA1
nB1

nC
h(2)nA2

nB2
nC
∥
nA1

nA2
→nB1

nB2

≤ ∥h(1)nA1
nB1

nC
∥
nA1
→nB1

nC
∥h(2)nA2

nB2
nC
∥
nA2

nC→nB2

.

Proof. Let z = znA1
nA2

be arbitrary. By first using the tensor estimate for h(2), we obtain that

∑
nB1

nB2

∣ ∑
nA1

nA2
nC

h(1)nA1
nB1

nC
h(2)nA2

nB2
nC
znA1

nA2
∣
2

= ∑
nB1

∑
nB2

∣ ∑
nA2

nC

h(2)nA2
nB2

nC
(∑
nA1

h(1)nA1
nB1

nC
znA1

nA2
)∣

2

≤ ∥h(2)nA2
nB2

nC
∥2
nA2

nC→nB2
∑
nB1

∑
nA2

,nC

∣∑
nA1

h(1)nA1
nB1

nC
znA1

nA2
∣
2

.

By using the tensor bound for h(1), we also obtain that

∑
nA2

∑
nB1

,nC

∣∑
nA1

h(1)nA1
nB1

nC
znA1

nA2
∣
2

≤ ∥h(1)nA1
nB1

nC
∥2
nA1
→nB1

nC
∑
nA2

∑
nA1

∣znA1
nA2
∣2.

This implies the desired merging estimate (6.7). □
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Lemma 6.8 (Probabilistic decoupling). Let h and g = (gn)n∈Zd be as in Proposition 6.5 and let

g′ = (g′n)n∈Zd be an independent copy of g. For all p ≥ 1, it then holds that

(6.8)

E[∥ ∑
n1,n2∈Zd

hn1n2nAnB
(gn1gn2 − δn1n2)∥

p

nA→nB

]
1/p

≤π ⋅E[∥ ∑
n1,n2∈Zd

hn1n2nAnB
gn1g

′
n2
∥
p

nA→nB

]
1/p
.

Proof. For expository purposes, we write Eg and Eg′ for the expectations taken over g and g′,

respectively. Furthermore, for any a = (an1n2)n1,n2∈Zd , we write

(6.9) F (an1n2) ∶= ∥ ∑
n1,n2∈Zd

hn1n2nAnB
an1n2∥

nA→nB

,

which is convex and one-homogeneous. It holds that

Eg[∥ ∑
n1,n2∈Zd

hn1n2nAnB
(gn1gn2 − δn1n2)∥

p

nA→nB

]
1/p

=Eg[F(gn1gn2 − δn1n2)
p]

1/p

=Eg[F(Eg′[gn1gn2 − g
′
n1
g′n2
])p]

1/p

≤EgEg′[F(gn1gn2 − g
′
n1
g′n2
)p]

1/p
.(6.10)

In the last line, we used Jensen’s inequality. For any φ ∈ [0, π2 ], we define

(6.11) g(φ) ∶= sin(φ)g + cos(φ)g′.

By definition, it holds that g(0) = g′ and g(π2 ) = g, and thus g(φ) interpolates between g and g′.

We note that

Bφg(φ) = cos(φ)g − sin(φ)g′.

Since (sin(φ), cos(φ)) and (cos(φ),− sin(φ)) are orthonormal in R2 for all φ ∈ [0, π2 ], rotation-

invariance of Gaussians implies for all φ ∈ [0, π2 ] that

(6.12) (g(φ), Bφg(φ))
d= (Bφg(φ), g(φ))

d= (g, g′).

By using (6.11) and the triangle-inequality, it follows that

EgEg′[F(gn1gn2 − g
′
n1
g′n2
)p]

1/p

=EgEg′[F(∫
π
2

0
Bφ(gn1(φ)gn2(φ)))

p
]
1/p

≤ ∫
π
2

0
EgEg′[F(Bφ(gn1(φ)gn2(φ)))

p
]
1/p

≤ ∫
π
2

0
EgEg′[F(Bφgn1(φ) gn2(φ))

p
]
1/p
+ ∫

π
2

0
EgEg′[F(gn1(φ) Bφgn2(φ))

p
]
1/p
.(6.13)

By using (6.12), the integrands in (6.13) are given by

EgEg′[F(Bφgn1(φ) gn2(φ))
p
]
1/p
= EgEg′[F(gn1(φ) Bφgn2(φ))

p
]
1/p
= EgEg′[F(gn1 g

′
n2
)
p
]
1/p
.
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As a result, it follows that

(6.13) = π ⋅EgEg′[F(gn1 g
′
n2
)
p
]
1/p
.

After recalling the definition of F , this implies the desired inequality (6.8). □

Lemma 6.9 (Gaussian case). Let h = hn0nAnB
be a tensor and assume that, on the support of h,

it holds that

∣n0∣, max
a∈A
∣na∣, max

b∈B
∣nb∣ ≲ N.

Then, it holds for all ϵ > 0 and p ≥ 1 that

(6.14) E[∥∑
n0

hn0nAnB
gn0∥

p

nA→nB

]
1
p ≲√pN ϵmax (∥hn0nAnB

∥
n0nA→nB

, ∥hn0nAnB
∥
nA→n0nB

).

The main ingredient in the proof is the non-commutative Khintchine inequality. For a precise

statement and elegant proof, we refer to [vH17].

Proof. For each n0 ∈ Zd, we let Ln0 ∶ ℓ2nA
→ ℓ2nB

be the linear operator defined as

(Ln0z)nB
=∑

nA

hn0nAnB
znA

.

Using the definition of Ln0 , we can write

∥∑
n0

hn0nAnB
gn0∥

nA→nB

= ∥∑
n0

gn0Ln0∥
op
,

where ∥ ⋅ ∥op is the usual operator norm. Using the non-commutative Khintchine inequality [vH17,

Theorem 3.3] for non-symmetric matrices (see [vH17, p.6]), it follows that

(6.15) E[∥∑
n0

gn0Ln0∥
p

op
]
1
p ≲√pN ϵmax (∥∑

n0

L∗n0
Ln0∥

1
2

op
, ∥∑

n0

Ln0L
∗
n0
∥

1
2

op
).

We now estimate the two arguments in (6.15) separately. Using the definition of Ln0 , we can write

the entries in the first argument as

(∑
n0

L∗n0
Ln0)

n′AnA

= ∑
n0,nB

hn0n′AnB
hn0nAnB

.

Using the merging estimate (Lemma 6.7), it follows that

∥∑
n0

L∗n0
Ln0∥

op
= ∥ ∑

n0,nB

hn0n′AnB
hn0nAnB

∥
nA→n′A

≤ ∥hn0nAnB
∥
nA→n0nB

∥hn0n′AnB
∥
n0nB→n′A

= ∥hn0nAnB
∥2
nA→n0nB

.

Arguing similarly, it also follows that

∥∑
n0

Ln0L
∗
n0
∥
op
≤ ∥hn0nAnB

∥2
n0nA→nB

This yields the desired estimate (6.14). □

Equipped with Lemma 6.8 and Lemma 6.9, the proof of Proposition 6.5 is now rather simple.
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Proof of Proposition 6.5: Using Lemma 6.8, it sufffices to control

∥ ∑
n1,n2

hn1n2nAnB
gn1g

′
n2
∥
nA→nB

.

Since (gn)n∈Zd and (g′n)n∈Zd are probabilistically independent, this can be done by applying Lemma

6.9 twice. □

6.3. What is left to be done? In order to complete the proof of Proposition 6.1, we still have

to do the following:

(i) Using Schur’s test and counting estimates, control the tensor norms of

hn0n1n2n3 ∶= (
3

∏
j=0

1Nj(nj)) × 1{n1, n3 ≠ n2} × 1{ − n0 + n1 − n2 + n3 = 0}

× 1{ − ∣n0∣2 + ∣n1∣2 − ∣n2∣2 + ∣n3∣2 = µ}.

This is the subject of Exercise 6.11.

(ii) Deal with a (technical) problem due to the ϵ-loss in Proposition 6.5, which is an issue in

Proposition 6.1 when v enters at much higher frequencies than both factors of eit∆ϕ (see

e.g. [DNY19, Claim 5.2] and [BR23, Proof of Proposition 5.1]).

In order to complete the proof of Theorem 1.2, we then still need to solve the equation for the

nonlinear remainder v, i.e., we need to solve

(6.16) iBtv +∆v = σ ∑
w1,w2,w3

∈{eit∆ϕ,v}

(N (w1,w2,w3) +N r(w1,w2,w3)).

In Proposition 5.1 and Proposition 6.1, we have obtained estimates for

N (eit∆ϕ, eit∆ϕ, eit∆ϕ) and N (eit∆ϕ, eit∆ϕ, v),

respectively. While the remaining terms have not been treated here, their estimates are simpler (or

similar).

6.4. Exercises.

Exercise 6.10. Let M ≥ 2 and let (gm)Mm=1 be independent, standard, complex-valued Gaussians.

Show that

(6.17) E[ max
m=1,⋯,M

∣gm∣] ∼
√
log(M).

Furthermore, let G ∈ CM×M be the diagonal matrix with diagonal entries g1, . . . , gM . Using (6.17),

prove that

E[∥G∥
op
] ∼
√
log(M).

Note: It follows that, without additional information on h, at least a logarithmic dimension-

dependent loss in Proposition 6.5 is necessary.
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Exercise 6.11 (Estimate of tensor norms). Let d ≥ 2 and let h = hn0n1n2n3 be as in (6.2). Using

Schur’s test and counting estimates, prove the following three estimates:

∥h∥2n1n2n3→n0
≲med(N1,N2,N3)d−1+ϵmin(N1,N2,N3)d−1+ϵ,(6.18)

∥h∥2n2n3→n0n1
≲min(N0,N1)d−1min(N2,N3)d−1.(6.19)

∥h∥2n1n3→n0n2
≲min(N0,N2)d−2+ϵmin(N1,N3)d−2+ϵ.(6.20)

We remark that the second estimate (6.19) is rather crude, but potential improvements require

further number-theoretic restrictions and/or considerations.
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7. Open problems

In this section, I list some of the main open problems in random dispersive equations. All of

the problems concern the invariance of Gibbs measures, but the core of the problems is primarily

about probabilistic well-posedness. The open problems listed here are currently driving research in

this field, but most likely are not suitable first projects for a beginning graduate student. If you

are looking for a problem of the latter kind, feel free to talk to me in person.

Problem 7.1. Prove the invariance of the Gibbs measure for the defocusing cubic nonlinear

Schrödinger equation on T3, i.e., in dimension d = 3.

This is the extension of [Bou96], which we mostly proved, from d = 2 to d = 3. It is really difficult

because it is critical with respect to probabilistic scaling [DNY22].

Problem 7.2. Prove the invariance of the Gibbs measure for the defocusing cubic nonlinear

Schrödinger equation on R2.

Since the Φ4
d-measures are translation invariant, random distributions ϕ∶Rd → C drawn from the

Φ4
d-measure exhibit no spatial decay. Together with the infinite speed of propagation of Schrödinger

equations, this makes Problem 7.2 quite challenging. The one-dimensional case was treated by

Bourgain in [Bou00].

Problem 7.3. Consider the two-dimensional sine-Gordon equation

(sG) (B2
t + 1 −∆)u + sin (βu) = 0 (t, x) ∈ R ×T2,

where β ∈ R. What are the optimal conditions on β which guarantee the invariance of the corre-

sponding Gibbs measure under (sG)?

One of the most interesting aspects of Problem 7.3 is the non-polynomial nonlinearity, which

creates a challenge for frequency-based methods. Partial progress towards this problem has been

made in [ORSW21].
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