Lecture 6. Part II. Linear Elimination

Elisenda Feliu

Department of Mathematical Sciences
University of Copenhagen

A hybrid histidine kinase

We consider a histidine kinase HK that can be phosphorylated at two sites, and which transfers the phosphate group to an additional protein Htp that has one phosphorylation site.
We have 6 species:

$$
\begin{gathered}
X_{1}=\mathrm{HK}_{00}, \quad \mathrm{X}_{2}=\mathrm{HK}_{\mathrm{p} 0}, \quad \mathrm{X}_{3}=\mathrm{HK}_{0 \mathrm{p}}, \quad \mathrm{X}_{4}=\mathrm{HK}_{\mathrm{pp}} \\
X_{5}=\mathrm{Htp}, \quad X_{6}=\mathrm{Htp}_{\mathrm{p}}
\end{gathered}
$$

The reactions of the network are:

$$
\begin{array}{cc}
\mathrm{HK}_{00} \xrightarrow{\kappa_{1}} \mathrm{HK}_{\mathrm{p} 0} \xrightarrow{\kappa_{2}} \mathrm{HK}_{0 \mathrm{p}} \xrightarrow{\kappa_{3}} \mathrm{HK}_{\mathrm{pp}} & X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4} \\
\mathrm{HK}_{0 \mathrm{p}}+\mathrm{Htp} \xrightarrow{\kappa_{4}} \mathrm{HK}_{00}+\mathrm{Htp}_{\mathrm{p}} & X_{3}+X_{5} \xrightarrow{\kappa_{4}} X_{1}+X_{6} \\
\mathrm{HK}_{\mathrm{pp}}+\mathrm{Htp} \xrightarrow{\kappa_{5}} \mathrm{HK}_{\mathrm{p} 0}+\mathrm{Htp}_{\mathrm{p}} & X_{4}+X_{5} \xrightarrow{\kappa_{5}} X_{2}+X_{6} \\
\mathrm{Htp}_{\mathrm{p}} \xrightarrow{\kappa_{6}} \mathrm{Htp} & X_{6} \xrightarrow{\kappa_{6}} X_{5}
\end{array}
$$

Finding a Gröbner basis

System of steady states in stoichiometric compatibility classes $\left(C_{\kappa, T}\right)$:

$$
\begin{gathered}
X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4} \\
X_{3}+X_{5} \xrightarrow{\kappa_{4}} X_{1}+X_{6} \\
X_{4}+X_{5} \xrightarrow{\kappa_{5}} X_{2}+X_{6} \\
X_{6} \xrightarrow{\kappa_{6}} X_{5}
\end{gathered}
$$

Finding a Gröbner basis

System of steady states in stoichiometric compatibility classes $\left(C_{\kappa, T}\right)$:

$$
\begin{array}{ll}
0=\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} & \\
0=\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} & T_{1}=x_{1}+x_{2}+x_{3}+x_{4} \\
0=\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} & T_{2}=x_{5}+x_{6} \\
0=\kappa_{6} x_{6}-\kappa_{4} x_{3} x_{5}-\kappa_{5} x_{4} x_{5} &
\end{array}
$$

$$
X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4}
$$

$$
x_{3}+x_{5} \xrightarrow{\kappa_{4}} x_{1}+x_{6}
$$

$$
X_{4}+X_{5} \xrightarrow{k_{5}} X_{2}+X_{6}
$$

$$
x_{6} \xrightarrow{\kappa_{6}} X_{5}
$$

Gröbner basis, lexicographic order in $x_{1}, x_{2}, x_{3}, x_{4}, x_{6}, x_{5}$:

$$
\begin{aligned}
p_{1}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6} \\
p_{6}\left(x_{1}, x_{5}\right)= & \kappa_{1} \kappa_{2}\left(\kappa_{1}\left(\kappa_{4}-\kappa_{5}\right)+\kappa_{3} \kappa_{5}\right) x_{1}+\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{2} \\
& +\kappa_{4}\left(\left(T_{1} \kappa_{5}+\kappa_{6}\right) \kappa_{1} \kappa_{2}-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{4} \kappa_{6}
\end{aligned}
$$

Finding a Gröbner basis

System of steady states in stoichiometric compatibility classes $\left(C_{\kappa, T}\right)$:

$$
\begin{array}{ll}
0=\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} & \\
0=\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} & T_{1}=x_{1}+x_{2}+x_{3}+x_{4} \\
0=\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} & T_{2}=x_{5}+x_{6} \\
0=\kappa_{6} x_{6}-\kappa_{4} x_{3} x_{5}-\kappa_{5} x_{4} x_{5} &
\end{array}
$$

$$
X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4}
$$

$$
x_{3}+x_{5} \xrightarrow{\kappa_{4}} x_{1}+x_{6}
$$

$$
X_{4}+X_{5} \xrightarrow{k_{5}} X_{2}+X_{6}
$$

$$
x_{6} \xrightarrow{\kappa_{6}} X_{5}
$$

Gröbner basis, lexicographic order in $x_{1}, x_{2}, x_{3}, x_{4}, x_{6}, x_{5}$:

$$
\begin{aligned}
p_{1}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6} \\
p_{6}\left(x_{1}, x_{5}\right)= & \kappa_{1} \kappa_{2}\left(\kappa_{1}\left(\kappa_{4}-\kappa_{5}\right)+\kappa_{3} \kappa_{5}\right) x_{1}+\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{2} \\
& +\kappa_{4}\left(\left(T_{1} \kappa_{5}+\kappa_{6}\right) \kappa_{1} \kappa_{2}-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{4} \kappa_{6}
\end{aligned}
$$

From p_{6} we obtain:

$$
x_{1}=\frac{\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{2}+\kappa_{4}\left(\left(T_{1} \kappa_{5}+\kappa_{6}\right) \kappa_{1} \kappa_{2}-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{4} \kappa_{6}}{\kappa_{1} \kappa_{2}\left(\kappa_{1}\left(\kappa_{5}-\kappa_{4}\right)+\kappa_{3} \kappa_{5}\right)}
$$

> When is this positive?

Manual approach

Solving a linear system in $x_{1}, x_{2}, x_{3}, x_{4}, x_{6}$:

$$
\begin{aligned}
& x_{1}=\frac{\kappa_{2} \kappa_{4} \kappa_{5} T_{1} x_{5}^{2}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{2}=\frac{\kappa_{1}\left(\kappa_{4} x_{5}+\kappa_{3}\right) \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{3}=\frac{\kappa_{1} \kappa_{2} \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{4}=\frac{\kappa_{1} \kappa_{2} \kappa_{3} T_{1}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{6}=T_{2}-x_{5} .
\end{aligned}
$$

$$
\begin{aligned}
0 & =\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} \\
0 & =\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} \\
0 & =\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} \\
0 & =\kappa_{6} x_{6} x_{3} x_{5} \kappa_{5} x_{4} x_{5} \\
T_{1} & =x_{1}+x_{2}+x_{3}+x_{4} \\
T_{2} & =x_{5}+x_{6} .
\end{aligned}
$$

Manual approach

Solving a linear system in $x_{1}, x_{2}, x_{3}, x_{4}, x_{6}$:

$$
\begin{aligned}
& x_{1}=\frac{\kappa_{2} \kappa_{4} \kappa_{5} T_{1} x_{5}^{2}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{2}=\frac{\kappa_{1}\left(\kappa_{4} x_{5}+\kappa_{3}\right) \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{3}=\frac{\kappa_{1} \kappa_{2} \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{4}=\frac{\kappa_{1} \kappa_{2} \kappa_{3} T_{1}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{6}=T_{2}-x_{5} .
\end{aligned}
$$

These expressions into the remaining equation give the same polynomial:

$$
\begin{aligned}
p_{1}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6} .
\end{aligned}
$$

$\left\{\right.$ Positive roots of p_{1} smaller than $\left.T_{2}\right\} \leftrightarrow\{$ positive steady states $\}$

Linear Elimination

Let's take a look at part of the linear system:

$$
\begin{aligned}
\left(\dot{x}_{1}=0\right) & 0 & =\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} & X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4} \\
\left(\dot{x}_{2}=0\right) & 0 & =\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} & X_{3}+X_{5} \xrightarrow{\kappa_{4}} X_{1}+X_{6} \\
\left(\dot{x}_{3}=0\right) & 0 & =\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} & X_{4}+X_{5} \xrightarrow{\kappa_{5}} X_{2}+X_{6} \\
\left(\dot{x}_{4}=0\right) & 0 & =\kappa_{3} x_{3}-\kappa_{5} x_{4} x_{5} & \\
& T_{1} & =x_{1}+x_{2}+x_{3}+x_{4} & X_{6} \xrightarrow{\kappa_{6}} X_{5}
\end{aligned}
$$

Can you see why the system is linear?

Linear Elimination

Let's take a look at part of the linear system:

$$
\begin{aligned}
\left(\dot{x}_{1}=0\right) & 0 & =\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} & X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4} \\
\left(\dot{x}_{2}=0\right) & 0 & =\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} & X_{3}+X_{5} \xrightarrow{\kappa_{4}} X_{1}+X_{6} \\
\left(\dot{x}_{3}=0\right) & 0 & =\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} & X_{4}+X_{5} \xrightarrow{\kappa_{5}} X_{2}+X_{6} \\
\left(\dot{x}_{4}=0\right) & 0 & =\kappa_{3} x_{3}-\kappa_{5} x_{4} x_{5} & \\
& T_{1} & =x_{1}+x_{2}+x_{3}+x_{4} & X_{6} \xrightarrow{\kappa_{6}} X_{5}
\end{aligned}
$$

Can you see why the system is linear?

Consider the steady state equations of the 4 species $X_{1}, X_{2}, X_{3}, X_{4}$, which do not interact with each other, and write it as a linear system in $x_{1}, x_{2}, x_{3}, x_{4}$:

$$
\left(\begin{array}{cccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 \\
\kappa_{1} & -\kappa_{2} & 0 & \kappa_{5} x_{5} \\
0 & \kappa_{2} & -\kappa_{3}-\kappa_{4} x_{5} & 0 \\
0 & 0 & \kappa_{3} & -\kappa_{5} x_{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Linear Elimination

Let's take a look at part of the linear system:

$$
\begin{aligned}
\left(\dot{x}_{1}=0\right) & 0 & =\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} & X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4} \\
\left(\dot{x}_{2}=0\right) & 0 & =\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} & X_{3}+X_{5} \xrightarrow{\kappa_{4}} X_{1}+X_{6} \\
\left(\dot{x}_{3}=0\right) & 0 & =\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} & X_{4}+X_{5} \xrightarrow{\kappa_{5}} X_{2}+X_{6} \\
\left(\dot{x}_{4}=0\right) & 0 & =\kappa_{3} x_{3}-\kappa_{5} x_{4} x_{5} & \\
& T_{1} & =x_{1}+x_{2}+x_{3}+x_{4} & X_{6} \xrightarrow{\kappa_{6}} X_{5}
\end{aligned}
$$

Can you see why the system is linear?

Consider the steady state equations of the 4 species $X_{1}, X_{2}, X_{3}, X_{4}$, which do not interact with each other, and write it as a linear system in $x_{1}, x_{2}, x_{3}, x_{4}$:

$$
\left(\begin{array}{cccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 \\
\kappa_{1} & -\kappa_{2} & 0 & \kappa_{5} x_{5} \\
0 & \kappa_{2} & -\kappa_{3}-\kappa_{4} x_{5} & 0 \\
0 & 0 & \kappa_{3} & -\kappa_{5} x_{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

> Is this matrix a Laplacian matrix of a labeled digraph with positive labels?

Linear Elimination

$$
\begin{aligned}
& \left(\dot{x}_{1}=0\right) \quad 0=\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} \\
& \begin{aligned}
&\left(\dot{x}_{2}=0\right) 0 \\
&\left(\dot{x}_{3}=0\right) 0 \\
&=\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} \\
&\left(\dot{x}_{4}=0\right) 0
\end{aligned} \dot{\kappa}_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} \quad \kappa_{5} x_{4} x_{5} \quad\left(\begin{array}{cccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 \\
\kappa_{1} & -\kappa_{2} & 0 & \kappa_{5} x_{5} \\
0 & \kappa_{2} & -\kappa_{3}-\kappa_{4} x_{5} & 0 \\
0 & 0 & \kappa_{3} & -\kappa_{5} x_{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& T_{1}=x_{1}+x_{2}+x_{3}+x_{4}
\end{aligned}
$$

We draw the digraph.

$\operatorname{ker} A_{k}=\langle\xi\rangle$

$$
\begin{aligned}
s_{1} & =k_{4} x_{5} \cdot k_{2} \cdot k_{5} x_{5} \\
& =k_{2} k_{4} k_{5} x_{5}^{2}
\end{aligned}
$$

Linear Elimination

$$
\begin{aligned}
\left(\dot{x}_{1}=0\right) & 0 \\
\left(\dot{x}_{2}=0\right) & 0
\end{aligned}=\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} \quad\left(\begin{array}{cccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 \\
\left(\dot{x}_{3}=0\right) & 0 & =\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} \\
\left(\dot{x}_{4}=0\right) & 0 & =\kappa_{3} x_{3}-\kappa_{5} x_{4} x_{5} \\
0 & -\kappa_{2} & 0 & \kappa_{5} x_{5} \\
0 & 0 & -\kappa_{3}-\kappa_{4} x_{5} & 0 \\
T_{1} & =x_{1}+x_{2}+x_{3}+x_{4}
\end{array} \quad\binom{\kappa_{3}}{-\kappa_{5} x_{5}}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)\right.
$$

Any solution is of the form $\lambda \xi$ with

$$
\xi=\left(\kappa_{2} \kappa_{4} \kappa_{5} x_{5}^{2}, \kappa_{1} \kappa_{5} x_{5}\left(\kappa_{4} x_{5}+\kappa_{3}\right), \kappa_{1} \kappa_{2} \kappa_{5} x_{5}, \kappa_{1} \kappa_{2} \kappa_{3}\right)
$$

Linear Elimination

$$
\begin{aligned}
& \begin{array}{l}
\left(\dot{x}_{1}=0\right) \\
\left(\dot{x}_{2}=0\right)
\end{array} \quad 0=\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} \\
& \left(\dot{x}_{3}=0\right) \\
& \left(\dot{x}_{4}=0=\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2}\right. \\
&
\end{aligned} \quad 0=\kappa_{3} x_{3}-\kappa_{3}-\kappa_{4} x_{3} x_{4} x_{5} \quad\left[\begin{array}{cccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 \\
\kappa_{1} & -\kappa_{2} & 0 & \kappa_{5} x_{5} \\
0 & \kappa_{2} & -\kappa_{3}-\kappa_{4} x_{5} & 0 \\
0 & 0 & \kappa_{3} & -\kappa_{5} x_{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Any solution is of the form $\lambda \xi$ with

$$
\xi=\left(\kappa_{2} \kappa_{4} \kappa_{5} x_{5}^{2}, \kappa_{1} \kappa_{5} x_{5}\left(\kappa_{4} x_{5}+\kappa_{3}\right), \kappa_{1} \kappa_{2} \kappa_{5} x_{5}, \kappa_{1} \kappa_{2} \kappa_{3}\right)
$$

But we have the extra equation $T_{1}=x_{1}+x_{2}+x_{3}+x_{4}$:

$$
T_{1}=\lambda\left(\kappa_{2} \kappa_{4} \kappa_{5} x_{5}^{2}+\kappa_{1} \kappa_{5} x_{5}\left(\kappa_{4} x_{5}+\kappa_{3}\right)+\kappa_{1} \kappa_{2} \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}\right)
$$

so

$$
\lambda=\frac{T_{1}}{\kappa_{2} \kappa_{4} \kappa_{5} \times_{5}^{2}+\kappa_{1} \kappa_{5} \times_{5}\left(\kappa_{4} x_{5}+\kappa_{3}\right)+\kappa_{1} \kappa_{2} \kappa_{5} \times_{5}+\kappa_{1} \kappa_{2} \kappa_{3}}
$$

Linear Elimination

$$
\begin{aligned}
& \left(\dot{x}_{1}=0\right) \\
& \left(\dot{x}_{2}=0\right) \\
& \left(\dot{x}_{3}=0\right) \\
& \left(\dot{x}_{4}=0\right)
\end{aligned} \quad 0=\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} \quad 0=\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5}-\kappa_{5} x_{4} x_{5} \quad\left[\begin{array}{cccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 \\
\kappa_{1} & -\kappa_{2} & 0 & \kappa_{5} x_{5} \\
0 & \kappa_{2} & -\kappa_{3}-\kappa_{4} x_{5} & 0 \\
0 & 0 & \kappa_{3} & -\kappa_{5} x_{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Any solution is of the form $\lambda \xi$ with

$$
\xi=\left(\kappa_{2} \kappa_{4} \kappa_{5} x_{5}^{2}, \kappa_{1} \kappa_{5} x_{5}\left(\kappa_{4} x_{5}+\kappa_{3}\right), \kappa_{1} \kappa_{2} \kappa_{5} x_{5}, \kappa_{1} \kappa_{2} \kappa_{3}\right)
$$

But we have the extra equation $T_{1}=x_{1}+x_{2}+x_{3}+x_{4}$:

$$
T_{1}=\lambda\left(\kappa_{2} \kappa_{4} \kappa_{5} x_{5}^{2}+\kappa_{1} \kappa_{5} x_{5}\left(\kappa_{4} x_{5}+\kappa_{3}\right)+\kappa_{1} \kappa_{2} \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}\right)
$$

SO

$$
\lambda=\frac{T_{1}}{\kappa_{2} \kappa_{4} \kappa_{5} x_{5}^{2}+\kappa_{1} \kappa_{5} x_{5}\left(\kappa_{4} x_{5}+\kappa_{3}\right)+\kappa_{1} \kappa_{2} \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}}
$$

We recover

$$
\begin{array}{ll}
x_{1}=\frac{\kappa_{2} \kappa_{4} \kappa_{5} T_{1} x_{5}^{2}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} & x_{2}=\frac{\kappa_{1}\left(\kappa_{4} x_{5}+\kappa_{3}\right) \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
x_{3}=\frac{\kappa_{1} \kappa_{2} \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} & x_{4}=\frac{\kappa_{1} \kappa_{2} \kappa_{3} T_{1}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}}
\end{array}
$$

Another example

$$
\begin{array}{lrl}
0 \stackrel{\kappa_{1}}{\kappa_{2}} X_{1} & X_{1}+X_{3} \xrightarrow{\kappa_{3}} X_{2} & X_{2}+X_{4} \xrightarrow{\kappa_{6}} X_{1} \\
0 \xrightarrow{\kappa_{7}} X_{3} & 0 \xrightarrow{\kappa_{8}} X_{4} . &
\end{array}
$$

Non-interacting sets?

Another example

$$
\begin{array}{lrl}
0 \stackrel{\kappa_{1}}{\kappa_{2}} & X_{1} & X_{1}+X_{3} \xrightarrow{\kappa_{3}} X_{2} \\
0 \xrightarrow{\kappa_{7}} X_{3} & 0 \xrightarrow{\kappa_{8}} X_{4} . & X_{2}+X_{4} \xrightarrow{\kappa_{6}} X_{1}
\end{array}
$$

Non-interacting sets? For example $\left\{X_{1}, X_{2}\right\}$:

$$
\begin{aligned}
& \dot{x}_{1}=-\kappa_{1} x_{1} x_{3}+\kappa_{2} x_{2} x_{4}+\kappa_{3}-\kappa_{4} x_{1} \\
& \dot{x}_{2}=\kappa_{1} x_{1} x_{3}-\kappa_{2} x_{2} x_{4} .
\end{aligned}
$$

At steady state $\left(\dot{x}_{1}=\dot{x}_{2}=0\right)$:

$$
\left(\begin{array}{ccc}
-\kappa_{1} x_{3}-\kappa_{4} & \kappa_{2} x_{4} & \kappa_{3} \\
\kappa_{1} x_{3} & -\kappa_{2} x_{4} & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\binom{0}{0}
$$

Is the coefficient matrix a Laplacian matrix of a digraph?

Another example

$$
\begin{array}{lcc}
0 \stackrel{\kappa_{1}}{\kappa_{2}} X_{1} & X_{1}+X_{3} \xrightarrow{\kappa_{3}} X_{2} & X_{2}+X_{4} \xrightarrow{\kappa_{6}} X_{1} \\
0 \xrightarrow{\kappa_{7}} X_{3} & 0 \xrightarrow{\kappa_{8}} X_{4} . &
\end{array}
$$

At steady state $\left(\dot{x}_{1}=\dot{x}_{2}=0\right)$:

$$
\left(\begin{array}{ccc}
-\kappa_{1} x_{3}-\kappa_{4} & \kappa_{2} x_{4} & \kappa_{3} \\
\kappa_{1} x_{3} & -\kappa_{2} x_{4} & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\binom{0}{0}
$$

We extend the matrix to a Laplacian matrix (corresponds to adding a node):

Another example

$x_{1}+x_{3} \stackrel{k_{1}}{\kappa_{3}} x_{2}$

At steady state $\left(\dot{x}_{1}=\dot{x}_{2}=0\right)$:

$$
\begin{aligned}
& \left.\dot{x}_{2}=0\right): \\
& \left.\left(\begin{array}{ccc}
-\kappa_{1} x_{3}-\kappa_{4} & \kappa_{2} x_{4} & \kappa_{3} \\
\kappa_{1} x_{3} & -\kappa_{2} x_{4} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\binom{0}{0} \right\rvert\, \begin{array}{cc}
k_{3} \uparrow k_{4} & k_{2} x_{4} \\
* &
\end{array}
\end{aligned}
$$

We extend the matrix to a Laplacian matrix (corresponds to adding a node):

$$
\left(\begin{array}{ccc}
-\kappa_{1} x_{3}-\kappa_{4} & \kappa_{2} x_{4} & \kappa_{3} \\
\kappa_{1} x_{3} & -\kappa_{2} x_{4} & 0 \\
\kappa_{4} & 0 & -\kappa_{3}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

MT-theorem: any vector in the kernel of \boldsymbol{A}_{κ} is a multiple of $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ with ξ_{i} positive. As we want $\xi_{3}=1$:

$$
x_{1}=\frac{\xi_{1}}{\xi_{3}}, \quad x_{2}=\frac{\xi_{2}}{\xi_{3}}
$$

at any steady state.

The linear elimination theory

Let G be a reaction network with set of species $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$.
Definition: A subset

$$
U=\left\{X_{1}, \ldots, X_{p}\right\} \subseteq \mathcal{X}
$$

is said to be non-interacting, if no pair of species in U appear on the same side of a reaction and they all appear with stoichiometric coefficient equal to one.

Given a non-interacting set, the system of steady state equations $\dot{x}_{1}=0, \ldots, \dot{x}_{p}=0$ is linear in x_{1}, \ldots, x_{p}.

The linear elimination theory

Let G be a reaction network with set of species $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$.
Definition: A subset

$$
U=\left\{X_{1}, \ldots, X_{p}\right\} \subseteq \mathcal{X}
$$

is said to be non-interacting, if no pair of species in U appear on the same side of a reaction and they all appear with stoichiometric coefficient equal to one.

Given a non-interacting set, the system of steady state equations $\dot{x}_{1}=0, \ldots, \dot{x}_{p}=0$ is linear in x_{1}, \ldots, x_{p}.

Case 1: $x_{1}+\cdots+x_{p}$ is a conservation law.
The coefficient matrix of the linear system is the Laplacian matrix of the labeled digraph G_{U} with

- Set of nodes: $\left\{X_{1}, \ldots, X_{p}\right\}$
- An edge $X_{i} \xrightarrow{\lambda} X_{j}, i \neq j$, for each reaction

$$
X_{i}+\sum_{\ell=p+1}^{n} \alpha_{\ell} X_{\ell} \xrightarrow{\kappa} X_{j}+\sum_{\ell=p+1}^{n} \beta_{\ell} X_{\ell}
$$

where $\lambda=\kappa x_{p+1}^{\alpha_{p+1}} \cdots x_{n}^{\alpha_{n}}$.

The linear elimination theory

Case 2: $x_{1}+\cdots+x_{p}$ is not a conservation law.
The coefficient matrix of the linear system agrees with the first p rows of the Laplacian matrix of the labeled digraph G_{U} with

- Set of nodes: $\left\{X_{1}, \ldots, X_{p}, \star\right\}$
- An edge $X_{i} \xrightarrow{\lambda} X_{j}, i \neq j$, for each reaction

$$
X_{i}+\sum_{\ell=p+1}^{n} \alpha_{\ell} X_{\ell} \xrightarrow{\kappa} X_{j}+\sum_{\ell=p+1}^{n} \beta_{\ell} X_{\ell}
$$

- An edge $X_{i} \xrightarrow{\lambda} \star$, for each reaction

$$
X_{i}+\sum_{\ell=p+1}^{n} \alpha_{\ell} X_{\ell} \xrightarrow{\kappa} \sum_{\ell=p+1}^{n} \beta_{\ell} X_{\ell}
$$

- An edge $\star \xrightarrow{\lambda} X_{i}$, for each reaction

$$
\sum_{\ell=p+1}^{n} \alpha_{\ell} X_{\ell} \xrightarrow{\kappa} X_{i}+\sum_{\ell=p+1}^{n} \beta_{\ell} X_{\ell}
$$

- In all cases, $\lambda=\kappa x_{p+1}^{\alpha_{p+1}} \cdots x_{n}^{\alpha_{n}}$.

The linear elimination theorem

Theorem: Let G be a reaction network with set of species $\mathcal{X}=\left\{X_{1}, \ldots, X_{n}\right\}$. Let

$$
U=\left\{X_{1}, \ldots, X_{p}\right\} \subseteq \mathcal{X}
$$

be non-interacting.
If the digraph G_{U} is strongly connected, then at steady state

$$
x_{j}=\varphi_{j}\left(x_{p+1}, \ldots, x_{n}\right), \quad j \in\{1, \ldots, p\}
$$

with φ_{j} a rational function with all coefficients (depending on κ and T) positive. (T is relevant only when $x_{1}+\cdots+x_{p}=T$ is a conservation law).

The functions φ_{j} 's are found using the Matrix-Tree Theorem on G_{U}.

