Faculty of Science

Lecture 10: Deciding upon multistationarity

Elisenda Feliu

Department of Mathematical Sciences
University of Copenhagen

Recall some notation

- Mass-action system for $\kappa \in \mathbb{R}_{>0}^{r}$:

$$
\dot{x}=f_{\kappa}(x), \quad f_{\kappa}(x)=N \operatorname{diag}(\kappa) x^{B},
$$

with $N \in \mathbb{R}^{n \times r}$ the stoichiometric matrix.

- $s=\operatorname{rk}(N), d=n-s$.
- Matrix of conservation laws $W \in \mathbb{R}^{d \times n}(W N=0$ and W has full rank d.)
- Equations for the stoichiometric compatibility class given a total amount $T \in \mathbb{R}^{d}$:

$$
W x-T=0, \quad x \in \mathbb{R}_{\geq 0}^{n}
$$

Recall some notation

- Mass-action system for $\kappa \in \mathbb{R}_{>0}^{r}$:

$$
\dot{x}=f_{\kappa}(x), \quad f_{\kappa}(x)=N \operatorname{diag}(\kappa) x^{B},
$$

with $N \in \mathbb{R}^{n \times r}$ the stoichiometric matrix.

- $s=\operatorname{rk}(N), d=n-s$.
- Matrix of conservation laws $W \in \mathbb{R}^{d \times n}(W N=0$ and W has full rank d.)
- Equations for the stoichiometric compatibility class given a total amount $T \in \mathbb{R}^{d}$:

$$
W x-T=0, \quad x \in \mathbb{R}_{\geq 0}^{n}
$$

- Positive steady states in a stoichiometric compatibility class are solutions to

$$
F_{\kappa, T}(x)=0, \quad x \in \mathbb{R}_{>0}^{n}
$$

The function $F_{\kappa, T}$ has d rows equal to $W x-T$, and s linearly independent polynomials among $f_{\kappa}(x)$.

- $C_{\kappa, T}=\left\{x \in \mathbb{R}_{>0}^{n} \mid F_{\kappa, T}(x)=0\right\}$.

Multistationarity

Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?

Multistationarity

Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?

We have seen some approaches to answer the question:

- Injectivity of $f_{\kappa}(x)$ with respect to S implies no multistationarity.

Multistationarity

Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?

We have seen some approaches to answer the question:

- Injectivity of $f_{\kappa}(x)$ with respect to S implies no multistationarity.
- Complex balanced steady states (no multistationarity when the deficiency δ is zero).

Multistationarity

Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?

We have seen some approaches to answer the question:

- Injectivity of $f_{\kappa}(x)$ with respect to S implies no multistationarity.
- Complex balanced steady states (no multistationarity when the deficiency δ is zero).
- (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is binomial for all κ is equivalent to lack of multistationarity.

Multistationarity

Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?

We have seen some approaches to answer the question:

- Injectivity of $f_{\kappa}(x)$ with respect to S implies no multistationarity.
- Complex balanced steady states (no multistationarity when the deficiency δ is zero).
- (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is binomial for all κ is equivalent to lack of multistationarity.

We will not talk about deficiency based methods:

- Deficiency one theorem precludes multistationarity (conditions for which there is a monomial parametrization of the steady states, with exponent matrix W, as in complex balancing) (Feinberg).

Multistationarity

Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?

We have seen some approaches to answer the question:

- Injectivity of $f_{\kappa}(x)$ with respect to S implies no multistationarity.
- Complex balanced steady states (no multistationarity when the deficiency δ is zero).
- (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is binomial for all κ is equivalent to lack of multistationarity.

We will not talk about deficiency based methods:

- Deficiency one theorem precludes multistationarity (conditions for which there is a monomial parametrization of the steady states, with exponent matrix W, as in complex balancing) (Feinberg).
- The deficiency one algorithm to assert/preclude multistationarity (Feinberg).

Multistationarity

Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?

We have seen some approaches to answer the question:

- Injectivity of $f_{\kappa}(x)$ with respect to S implies no multistationarity.
- Complex balanced steady states (no multistationarity when the deficiency δ is zero).
- (We'll see shortly) Injectivity of a monomial map when the positive steady state variety is binomial for all κ is equivalent to lack of multistationarity.

We will not talk about deficiency based methods:

- Deficiency one theorem precludes multistationarity (conditions for which there is a monomial parametrization of the steady states, with exponent matrix W, as in complex balancing) (Feinberg).
- The deficiency one algorithm to assert/preclude multistationarity (Feinberg).
- The higher deficiency algorithm decides upon multistationarity "for almost" all networks (Ellison, Feinberg, Ji, Knight). Implemented in the CRNT toolbox of Feinberg for Windows (https://cbe.osu.edu/chemical-reaction-network-theory).

Today (and next Tuesday)

Explorations of these two questions:
(1) Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?
(2) If the network admits multistationarity, for which values of κ, T does this occur?

Today (and next Tuesday)

Explorations of these two questions:
(1) Is there a choice of parameters $\kappa \in \mathbb{R}_{>0}^{r}$ and $T \in \mathbb{R}^{d}$ such that the set $C_{\kappa, T}$ contains at least two positive points?
(2) If the network admits multistationarity, for which values of κ, T does this occur?

How to address the questions:

- General approaches coming from semialgebraic geometry.
- Direct approaches using ideas from univariate polynomials.
- Other methods involving the Jacobian (from semialgebraic geometry to polyhedral geometry).

A bit more on injectivity

A bit more on injectivity

Recall:

| $f_{\kappa}(x)$ injective with respect to S
 for all $\kappa \in \mathbb{R}_{>0}^{r}$ | \Rightarrow | \nRightarrow |
| :--- | :--- | :--- | | The network is not |
| :--- |
| multistationary |

A bit more on injectivity

Recall:

| $f_{\kappa}(x)$ injective with respect to S
 for all $\kappa \in \mathbb{R}_{>0}^{r}$ | \Rightarrow | \nLeftarrow |
| :--- | :--- | :--- | | The network is not |
| :--- |
| multistationary |

But the reverse implication holds when the positive steady state variety can be parametrized by monomials!

Monomials and injectivity

Assume:

- Monomial parametrization. There exists a matrix $M \in \mathbb{Z}^{n \times p}$ such that

$$
f_{\kappa}(x)=0, x \in \mathbb{R}_{>0}^{n} \quad \Leftrightarrow \quad x^{M}=\gamma(\kappa)
$$

(this holds for example if the ideal generated by $f_{\kappa}(x)$ is binomial, or if $V_{>0}\left(f_{\kappa}\right)$ admits a monomial parametrization for all κ.)

- The network is consistent (that is, $\operatorname{ker} N \cap \mathbb{R}_{>0}^{r} \neq \emptyset$).

Monomials and injectivity

Assume:

- Monomial parametrization. There exists a matrix $M \in \mathbb{Z}^{n \times p}$ such that

$$
f_{\kappa}(x)=0, x \in \mathbb{R}_{>0}^{n} \quad \Leftrightarrow \quad x^{M}=\gamma(\kappa)
$$

(this holds for example if the ideal generated by $f_{\kappa}(x)$ is binomial, or if $V_{>0}\left(f_{\kappa}\right)$ admits a monomial parametrization for all κ.)

- The network is consistent (that is, $\operatorname{ker} N \cap \mathbb{R}_{>0}^{r} \neq \emptyset$).

Then:

$$
\begin{array}{|lll}
x^{M} \text { injective with respect to } S & \Rightarrow & \begin{array}{l}
\text { The network is not } \\
\text { multistationary }
\end{array} \\
\hline
\end{array}
$$

Monomials and injectivity

Assume:

- Monomial parametrization. There exists a matrix $M \in \mathbb{Z}^{n \times p}$ such that

$$
f_{\kappa}(x)=0, x \in \mathbb{R}_{>0}^{n} \quad \Leftrightarrow \quad x^{M}=\gamma(\kappa)
$$

(this holds for example if the ideal generated by $f_{\kappa}(x)$ is binomial, or if $V_{>0}\left(f_{\kappa}\right)$ admits a monomial parametrization for all κ.)

- The network is consistent (that is, $\operatorname{ker} N \cap \mathbb{R}_{>0}^{r} \neq \emptyset$).

Then:

Monomials and injectivity: Proof

$$
f_{k}(x)=N \operatorname{diog}(k) x^{B}
$$

- There exists a matrix $M \in \mathbb{Z}^{n \times p}$ such that

$$
f_{\kappa}(x)=0, x \in \mathbb{R}_{>0}^{n} \quad \Leftrightarrow \quad x^{M}=\gamma(\kappa)
$$

(this holds for example if the ideal generated by $f_{\kappa}(x)$ is binomial, or if $V_{>0}\left(f_{\kappa}\right)$ admits a monomial parametrization for all κ.)

- The network is consistent (that is, ger $N \cap \mathbb{R}_{>0}^{r} \neq \emptyset$).
x^{M} not injective with respect to S implies the network is multistationary

$$
\begin{equation*}
כ x, y \in \mathbb{R}_{30}^{n}, \quad x-y \in s, \quad x \neq y \quad x^{M}=y^{M} \tag{x}
\end{equation*}
$$

$\exists k$ st $\operatorname{ding}(k) x^{B}=z$, where $z \in \operatorname{Ken} N \cap \mathbb{R}_{>0}^{r}$
$\Leftrightarrow f_{k}(x)=0$

$$
\begin{equation*}
f_{k}(x)=0 \quad \Leftrightarrow \quad x^{M}=\gamma(k) \Leftrightarrow y^{M}=\gamma(k) \Leftrightarrow f_{k}(y)=0 \tag{*}
\end{equation*}
$$

\Rightarrow Multist.

Recall

Our hybrid histidine kinase example:

$$
\begin{array}{cc}
\mathrm{HK}_{00} \xrightarrow{\kappa_{1}} \mathrm{HK}_{\mathrm{p} 0} \xrightarrow{\kappa_{2}} \mathrm{HK}_{0 \mathrm{p}} \xrightarrow{\kappa_{3}} \mathrm{HK}_{\mathrm{pp}} & X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4} \\
\mathrm{HK}_{0 \mathrm{p}}+\mathrm{Htp} \xrightarrow{\kappa_{4}} \mathrm{HK}_{00}+\mathrm{Htp}_{\mathrm{p}} & X_{3}+X_{5} \xrightarrow{\kappa_{4}} X_{1}+X_{6} \\
\mathrm{HK}_{\mathrm{pp}}+\mathrm{Htp} \xrightarrow{\kappa_{5}} \mathrm{HK}_{\mathrm{p} 0}+\mathrm{Htp}_{\mathrm{p}} & X_{4}+X_{5} \xrightarrow{\kappa_{5}} X_{2}+X_{6} \\
\mathrm{Htp}_{p} \xrightarrow{\kappa_{6}} \mathrm{Htp} & X_{6} \xrightarrow{\kappa_{6}} X_{5}
\end{array}
$$

This network admits multistationarity.

General approaches

Semialgebraic sets

Semialgebraic sets.
A semialgebraic set in \mathbb{R}^{n} is a finite union of sets defined by a finite number of polynomial equations and inequalities:

$$
p_{i}\left(x_{1}, \ldots, x_{n}\right)>0, \quad i=1, \ldots, r_{1}, \quad q_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, r_{2} .
$$

Semialgebraic sets

Semialgebraic sets.

A semialgebraic set in \mathbb{R}^{n} is a finite union of sets defined by a finite number of polynomial equations and inequalities:

$$
p_{i}\left(x_{1}, \ldots, x_{n}\right)>0, \quad i=1, \ldots, r_{1}, \quad q_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, r_{2}
$$

Note: It follows that expressions or the form $p\left(x_{1}, \ldots, x_{n}\right) \geq 0$ and $p\left(x_{1}, \ldots, x_{n}\right) \neq 0$ are also accepted.

Semialgebraic sets

Semialgebraic sets.
A semialgebraic set in \mathbb{R}^{n} is a finite union of sets defined by a finite number of polynomial equations and inequalities:

$$
p_{i}\left(x_{1}, \ldots, x_{n}\right)>0, \quad i=1, \ldots, r_{1}, \quad q_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, r_{2}
$$

Note: It follows that expressions or the form $p\left(x_{1}, \ldots, x_{n}\right) \geq 0$ and $p\left(x_{1}, \ldots, x_{n}\right) \neq 0$ are also accepted.

Examples:

Semialgebraic sets

Semialgebraic sets.
A semialgebraic set in \mathbb{R}^{n} is a finite union of sets defined by a finite number of polynomial equations and inequalities:

$$
p_{i}\left(x_{1}, \ldots, x_{n}\right)>0, \quad i=1, \ldots, r_{1}, \quad q_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, r_{2}
$$

Any example relevant to "us"?

$$
-V_{>0}\left(f_{k}\right)
$$

$$
-P_{x_{0}}
$$

Semialgebraic sets

Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map sending $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$.
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in \mathbb{R}^{n+1} for some $n \geq 1$, then $\pi(X)$ is a semialgebraic set in \mathbb{R}^{n}.
(In particular, it can be expressed as a finite union of sets defined by equations and inequalities).

Semialgebraic sets

Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map sending $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$.
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in \mathbb{R}^{n+1} for some $n \geq 1$, then $\pi(X)$ is a semialgebraic set in \mathbb{R}^{n}.
(In particular, it can be expressed as a finite union of sets defined by equations and inequalities).

How can we use this?

- Nonemptyness. Consider the set of positive steady states

$$
V_{\kappa}:=\left\{x \in \mathbb{R}_{>0}^{n}: f_{\kappa}(x)=0\right\}
$$

and the set $K:=\left\{\kappa \in \mathbb{R}_{>0}^{r}: V_{\kappa} \neq \emptyset\right\}$. Is $K \neq \emptyset$?

Semialgebraic sets

Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map sending $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$.
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in \mathbb{R}^{n+1} for some $n \geq 1$, then $\pi(X)$ is a semialgebraic set in \mathbb{R}^{n}.
(In particular, it can be expressed as a finite union of sets defined by equations and inequalities).

How can we use this?

- Nonemptyness. Consider the set of positive steady states

$$
V_{\kappa}:=\left\{x \in \mathbb{R}_{>0}^{n}: f_{\kappa}(x)=0\right\}
$$

and the set $K:=\left\{\kappa \in \mathbb{R}_{>0}^{r}: V_{\kappa} \neq \emptyset\right\}$. Is $K \neq \emptyset$?
K is the projection onto the κ 's of the semialgebraic set

$$
\mathcal{V}:=\left\{(\kappa, x) \in \mathbb{R}_{>0}^{r} \times \mathbb{R}_{>0}^{n}: f_{\kappa}(x)=0\right\}
$$

By the Tarski-Seidenberg Theorem, K is semialgebraic.

Semialgebraic sets

Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map sending $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$.
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in \mathbb{R}^{n+1} for some $n \geq 1$, then $\pi(X)$ is a semialgebraic set in \mathbb{R}^{n}.
(In particular, it can be expressed as a finite union of sets defined by equations and inequalities).

How can we use this?

- Multistationarity:

$$
M:=\left\{\kappa \in \mathbb{R}_{>0}^{r}: \text { exists } x \neq y \text { such that } f_{\kappa}(x)=f_{\kappa}(y), W x=W y\right\}
$$

Is $M \neq \emptyset$?

Semialgebraic sets

Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map sending $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$.
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in \mathbb{R}^{n+1} for some $n \geq 1$, then $\pi(X)$ is a semialgebraic set in \mathbb{R}^{n}.
(In particular, it can be expressed as a finite union of sets defined by equations and inequalities).

How can we use this?

- Multistationarity:

$$
M:=\left\{\kappa \in \mathbb{R}_{>0}^{r}: \text { exists } x \neq y \text { such that } f_{\kappa}(x)=f_{\kappa}(y), W x=W y\right\}
$$

Is $M \neq \emptyset$?
Rephrasing: M is the projection onto the κ 's of the semialgebraic set

$$
\left\{(\kappa, x, y) \in \mathbb{R}_{>0}^{r} \times \mathbb{R}_{>0}^{n} \times \mathbb{R}_{>0}^{n}: f_{\kappa}(x)=f_{\kappa}(y)=0, W(x-y)=0,(x-y)^{2}>0\right\}
$$

By the Tarski-Seidenberg Theorem, M is semialgebraic.

Semialgebraic sets

Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map sending $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$.
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in \mathbb{R}^{n+1} for some $n \geq 1$, then $\pi(X)$ is a semialgebraic set in \mathbb{R}^{n}.
(In particular, it can be expressed as a finite union of sets defined by equations and inequalities).

- The proof of the theorem is constructive, although the way to obtain defining equations with high complexity.

Semialgebraic sets

Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection map sending $\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ to $\left(x_{1}, \ldots, x_{n}\right)$.
Theorem. (Tarski-Seidenberg) If X is a semialgebraic set in \mathbb{R}^{n+1} for some $n \geq 1$, then $\pi(X)$ is a semialgebraic set in \mathbb{R}^{n}.
(In particular, it can be expressed as a finite union of sets defined by equations and inequalities).

- The proof of the theorem is constructive, although the way to obtain defining equations with high complexity.
- A method called Cylindrical Algebraic Decomposition of Collins gives a better approach to find the projection, but it has also high complexity.

Conclusion: we can decide upon for which κ 's the steady state variety is nonempty, upon multistationarity, and to find the parameter region of multistationarity (theoretically).

Cylindrical Algebraic Decomposition (CAD)

Idea: CAD partitions \mathbb{R}^{n} into components, called cells, over which a property takes the same value.

Cylindrical Algebraic Decomposition (CAD)

Idea: CAD partitions \mathbb{R}^{n} into components, called cells, over which a property takes the same value.

Hybrid Histidine Kinase parameter region with 3 positive steady states, for some fixed values of the κ 's and only T_{1}, T_{2} free.

Cylindrical Algebraic Decomposition (CAD)

Idea: CAD partitions \mathbb{R}^{n} into components, called cells, over which a property takes the same value.

Hybrid Histidine Kinase parameter region with 3 positive steady states, for some fixed values of the κ 's and only T_{1}, T_{2} free.

Partition of the parameter region of

$$
\begin{aligned}
p_{\kappa}(t) & =t^{5}-\left(\kappa_{1}+\frac{9}{2}\right) t^{4} \\
& +\left(\frac{9}{2} \kappa_{1}+\frac{21}{4}\right) t^{3}+\left(-\frac{23}{4} \kappa_{1}+\frac{3}{8}\right) t^{2} \\
& +\left(\frac{15}{8} \kappa_{1}-\frac{23}{8}\right) t+\left(\frac{1}{100} \kappa_{2}-\frac{1}{16}\right) .
\end{aligned}
$$

according to the number of positive roots.

Quantifier Elimination language

The Tarski-Seidenberg theorem can be expressed in terms of quantifier elimination: For every first-order formula over the reals there exists an equivalent quantifier-free formula. Furthermore, there is an explicit algorithm to compute this quantifier-free formula.

- Example 1 :

$$
\exists x \in \mathbb{R} \text { such that } x^{2}+b x+c=0
$$

is transformed into a formula without quantifiers

$$
b^{2}-4 c \geq 0
$$

Quantifier Elimination language

The Tarski-Seidenberg theorem can be expressed in terms of quantifier elimination: For every first-order formula over the reals there exists an equivalent quantifier-free formula. Furthermore, there is an explicit algorithm to compute this quantifier-free formula.

- Example 1 :

$$
\exists x \in \mathbb{R} \text { such that } x^{2}+b x+c=0
$$

is transformed into a formula without quantifiers

$$
b^{2}-4 c \geq 0
$$

- Example 2:

$$
\forall x \in \mathbb{R} \text { it holds } x^{2}-c x+1>0
$$

is transformed into a formula without quantifiers

Discriminant

Univariate approaches

Case Study

Our hybrid histidine kinase example:

$$
\begin{array}{cc}
\mathrm{HK}_{00} \xrightarrow{\kappa_{1}} \mathrm{HK}_{\mathrm{p} 0} \xrightarrow{\kappa_{2}} \mathrm{HK}_{0 \mathrm{p}} \xrightarrow{\kappa_{3}} \mathrm{HK}_{\mathrm{pp}} & X_{1} \xrightarrow{\kappa_{1}} X_{2} \xrightarrow{\kappa_{2}} X_{3} \xrightarrow{\kappa_{3}} X_{4} \\
\mathrm{HK}_{0 \mathrm{p}}+\mathrm{Htp} \xrightarrow{\kappa_{4}} \mathrm{HK}_{00}+\mathrm{Htp}_{\mathrm{p}} & X_{3}+X_{5} \xrightarrow{\kappa_{4}} X_{1}+X_{6} \\
\mathrm{HK}_{\mathrm{pp}}+\mathrm{Htp} \xrightarrow{\kappa_{5}} \mathrm{HK}_{\mathrm{p} 0}+\mathrm{Htp}_{\mathrm{p}} & X_{4}+X_{5} \xrightarrow{\kappa_{5}} X_{2}+X_{6} \\
\mathrm{Htp}_{p} \xrightarrow{\kappa_{6}} \mathrm{Htp} & X_{6} \xrightarrow{\kappa_{6}} X_{5}
\end{array}
$$

This network admits multistationarity.

Manual approach

Recall that we had the following relations:

$$
\begin{aligned}
0 & =\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1} \\
0 & =\kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2} \\
0 & =\kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5} \\
0 & =\kappa_{6} x_{6}-\kappa_{4} x_{3} x_{5}-\kappa_{5} x_{4} x_{5} \\
T_{1} & =x_{1}+x_{2}+x_{3}+x_{4} \\
T_{2} & =x_{5}+x_{6} .
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{\kappa_{2} \kappa_{4} \kappa_{5} T_{1} x_{5}^{2}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{2}=\frac{\kappa_{1}\left(\kappa_{4} x_{5}+\kappa_{3}\right) \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{3}=\frac{\kappa_{1} \kappa_{2} \kappa_{5} T_{1} x_{5}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{4}=\frac{\kappa_{1} \kappa_{2} \kappa_{3} T_{1}}{\left(\kappa_{1}+\kappa_{2} \kappa_{4}\right) \kappa_{5} x_{5}^{2}+\kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} x_{5}+\kappa_{1} \kappa_{2} \kappa_{3}} \\
& x_{6}=T_{2}-x_{5} .
\end{aligned}
$$

These expressions into the remaining equation give the polynomial:

$$
\begin{aligned}
q_{6}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}
\end{aligned}
$$

Any positive root of q_{6} provides a positive steady state.
(all roots of $q_{6}\left(x_{5}\right)$ are smaller than T_{2}).

Simple idea to assert multistationarity

Write the polynomial as

$$
q_{6}\left(x_{5}\right)=a_{3}(\kappa, T) x_{5}^{3}+a_{2}(\kappa, T) x_{5}^{2}+a_{1}(\kappa, T) x_{5}+a_{0}(\kappa, T)
$$

- Choose any polynomial with three positive roots, e.g.

$$
q(x)=(x-1)(x-2)(x-3)=x^{3}-6 x^{2}+11 x-6 .
$$

- Find κ, T such that

$$
a_{3}(\kappa, T)=1, \quad a_{2}(\kappa, T)=-6, \quad a_{1}(\kappa, T)=11, \quad a_{0}(\kappa, T)=-6
$$

Simple idea to assert multistationarity

Write the polynomial as

$$
q_{6}\left(x_{5}\right)=a_{3}(\kappa, T) x_{5}^{3}+a_{2}(\kappa, T) x_{5}^{2}+a_{1}(\kappa, T) x_{5}+a_{0}(\kappa, T)
$$

- Choose any polynomial with three positive roots, e.g.

$$
q(x)=(x-1)(x-2)(x-3)=x^{3}-6 x^{2}+11 x-6
$$

- Find κ, T such that

$$
a_{3}(\kappa, T)=1, \quad a_{2}(\kappa, T)=-6, \quad a_{1}(\kappa, T)=11, \quad a_{0}(\kappa, T)=-6
$$

We find:

$$
\begin{array}{llll}
\kappa_{1}=0.06, & \kappa_{2}=1, & \kappa_{3}=1, & \kappa_{4}=7.5 \\
\kappa_{5}=0.12, & \kappa_{6}=1, & T_{1}=1660, & T_{2}=100 .
\end{array}
$$

Therefore, there exist κ, T such that $q_{6}\left(x_{5}\right)$ has three positive roots. The network is multistationary.

Descartes' rule of signs

Descartes' rule of signs: if the polynomial has n positive roots, then the coefficients alternate signs and none of them are zero.

In our example

$$
\begin{aligned}
q_{6}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}
\end{aligned}
$$

Necessary conditions for 3 positive steady states:

$$
\begin{array}{r}
a_{2}(\kappa, T)=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5}<0 \\
a_{1}(\kappa, T)=\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right)>0
\end{array}
$$

Descartes' rule of signs

Descartes' rule of signs: if the polynomial has n positive roots, then the coefficients alternate signs and none of them are zero.

In our example

$$
\begin{aligned}
q_{6}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}
\end{aligned}
$$

Necessary conditions for 3 positive steady states:

$$
\begin{array}{r}
a_{2}(\kappa, T)=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5}<0 \\
a_{1}(\kappa, T)=\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right)>0
\end{array}
$$

Descartes' rule of signs

| $p(x)$ of degree n has n |
| :--- | :--- |
| positive roots |$\quad \stackrel{\downarrow}{\Rightarrow} \quad \nLeftarrow$| signs of the coefficients |
| :--- |
| of $p(x)$ alternate |

Sturm's theorem

$p(x)$ real univariate polynomial.

- Sturm sequence:

$$
p_{0}(x)=p(x), p_{1}(x)=p^{\prime}(x), \quad \text { and } \quad p_{i+1}(x)=-\operatorname{rem}\left(p_{i-1}, p_{i}\right)
$$

for $i \geq 1$. The sequence stops when $p_{i+1}=0 . p_{m}$ last nonzero polynomial.

- For $c \in \mathbb{R}$, let

$$
\sigma(c)=\text { number of sign changes in } p_{0}(c), \ldots, p_{m}(c)
$$

Sturm's theorem

$p(x)$ real univariate polynomial.

- Sturm sequence:

$$
p_{0}(x)=p(x), p_{1}(x)=p^{\prime}(x), \quad \text { and } \quad p_{i+1}(x)=-\operatorname{rem}\left(p_{i-1}, p_{i}\right)
$$

for $i \geq 1$. The sequence stops when $p_{i+1}=0 . p_{m}$ last nonzero polynomial.

- For $c \in \mathbb{R}$, let

$$
\sigma(c)=\text { number of sign changes in } p_{0}(c), \ldots, p_{m}(c)
$$

Sturm's theorem. Let $a<b$ and assume that neither a nor b are multiple roots of $p(x)$. Then

$$
\sigma(a)-\sigma(b)=\text { number of distinct roots of } p(x) \text { in }(a, b]
$$

Sturm's theorem

$p(x)$ real univariate polynomial.

- Sturm sequence:

$$
p_{0}(x)=p(x), p_{1}(x)=p^{\prime}(x), \quad \text { and } \quad p_{i+1}(x)=-\operatorname{rem}\left(p_{i-1}, p_{i}\right)
$$

for $i \geq 1$. The sequence stops when $p_{i+1}=0 . p_{m}$ last nonzero polynomial.

- For $c \in \mathbb{R}$, let

$$
\sigma(c)=\text { number of sign changes in } p_{0}(c), \ldots, p_{m}(c)
$$

Sturm's theorem. Let $a<b$ and assume that neither a nor b are multiple roots of $p(x)$. Then

$$
\sigma(a)-\sigma(b)=\text { number of distinct roots of } p(x) \text { in }(a, b]
$$

- For positive roots, $(0,+\infty), p_{i}(+\infty)=$ coefficient of highest degree.
- If degree of p is n and $m=n$, then p has n positive roots if and only if

$$
\sigma(0)=n, \quad \sigma(+\infty)=0
$$

Sturm's theorem

$$
\begin{aligned}
p_{0}(x) & =p(x), p_{1}(x)=p^{\prime}(x), \quad \text { and } \quad p_{i+1}(x)=-\operatorname{rem}\left(p_{i-1}, p_{i}\right), \quad i \geq 1 \\
\sigma(c) & =\text { number of sign changes in } p_{0}(c), \ldots, p_{m}(c) .
\end{aligned}
$$

Sturm's theorem. Let $a<b$ and assume that neither a nor b are multiple roots of $p(x)$. Then

$$
\sigma(a)-\sigma(b)=\text { number of distinct roots of } p(x) \text { in }(a, b]
$$

Example 1. $p(x)=x^{3}-6 x^{2}+11 x-6$.

Sturm's theorem

$$
\begin{aligned}
p_{0}(x) & =p(x), p_{1}(x)=p^{\prime}(x), \quad \text { and } \quad p_{i+1}(x)=-\operatorname{rem}\left(p_{i-1}, p_{i}\right), \quad i \geq 1 \\
\sigma(c) & =\text { number of sign changes in } p_{0}(c), \ldots, p_{m}(c) .
\end{aligned}
$$

Sturm's theorem. Let $a<b$ and assume that neither a nor b are multiple roots of $p(x)$. Then

$$
\sigma(a)-\sigma(b)=\text { number of distinct roots of } p(x) \text { in }(a, b]
$$

Example 2. $p(x)=x^{3}-3 x^{2}-3 x+1$.

$$
\begin{array}{rlll}
p_{0}(0)=1, & p_{1}(0)=-3, & p_{2}(0)=0, & p_{3}(0)=3 \\
p_{0}(+\infty)=1, & p_{1}(+\infty)=3, & p_{2}(+\infty)=4, & p_{3}(+\infty)=3 .
\end{array}
$$

$$
\sigma(0)=2
$$

$$
\sigma(\infty)=0
$$

\# roots in $(0,+\infty)$ is

$$
2-0=2
$$

Sturm's theorem

$p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. The sequence is:
$p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \quad p_{2}(x)=-\frac{6 a_{3} a_{1} x-2 a_{2}^{2} x-9 a_{3} a_{0}+a_{2} a_{1}}{9 a_{3}}$
$p_{1}(x)=3 a_{3} x^{2}+2 a_{2} x+a_{1} \quad p_{3}(x)=-\frac{9 a_{3}\left(27 a_{3}^{2} a_{0}^{2}-18 a_{3} a_{2} a_{1} a_{0}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{2}^{2} a_{1}^{2}\right)}{4\left(3 a_{3} a_{1}-a_{2}^{2}\right)^{2}}$.

Sturm's theorem

$p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. The sequence is:
$p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \quad p_{2}(x)=-\frac{6 a_{3} a_{1} x-2 a_{2}^{2} x-9 a_{3} a_{0}+a_{2} a_{1}}{9 a_{3}}$
$p_{1}(x)=3 a_{3} x^{2}+2 a_{2} x+a_{1} \quad \quad p_{3}(x)=-\frac{9 a_{3}\left(27 a_{3}^{2} a_{0}^{2}-18 a_{3} a_{2} a_{1} a_{0}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{2}^{2} a_{1}^{2}\right)}{4\left(3 a_{3} a_{1}-a_{2}^{2}\right)^{2}}$.
In our case, the coefficients are:

$$
\begin{aligned}
& a_{3}=\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6}>0 \\
& a_{2}=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} \\
& a_{1}=\kappa_{1} \kappa_{2} \kappa_{3}\left(E_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6} \\
& a_{0}=-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}<0 .
\end{aligned}
$$

Three positive steady states if and only if

$$
\begin{array}{rr}
a_{1}>0 & 27 a_{3}^{2} a_{0}^{2}-18 a_{3} a_{2} a_{1} a_{0}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{2}^{2} a_{1}^{2}<0 \\
9 a_{0} a_{3}-a_{1} a_{2}>0 & -3 a_{1} a_{3}+a_{2}^{2}>0
\end{array}
$$

Sturm's theorem

$p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$. The sequence is:
$p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \quad p_{2}(x)=-\frac{6 a_{3} a_{1} x-2 a_{2}^{2} x-9 a_{3} a_{0}+a_{2} a_{1}}{9 a_{3}}$
$p_{1}(x)=3 a_{3} x^{2}+2 a_{2} x+a_{1}$

$$
p_{3}(x)=-\frac{9 a_{3}\left(27 a_{3}^{2} a_{0}^{2}-18 a_{3} a_{2} a_{1} a_{0}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{2}^{2} a_{1}^{2}\right)}{4\left(3 a_{3} a_{1}-a_{2}^{2}\right)^{2}} .
$$

In our case, the coefficients are:

$$
\begin{aligned}
& a_{3}=\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6}>0 \\
& a_{2}=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} \\
& a_{1}=\kappa_{1} \kappa_{2} \kappa_{3}\left(\hbar_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6} \\
& a_{0}=-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}<0 .
\end{aligned}
$$

Three positive steady states if and only if

$$
\begin{array}{rr}
a_{1}>0 & 27 a_{3}^{2} a_{0}^{2}-18 a_{3} a_{2} a_{1} a_{0}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{2}^{2} a_{1}^{2}<0 \\
9 a_{0} a_{3}-a_{1} a_{2}>0 & -3 a_{1} a_{3}+a_{2}^{2}>0
\end{array}
$$

If we can show that the solution set of these inequalities (a semialgebraic set!) is nonempty, then we will have three positive solutions.

Problem: The expressions coming from Sturm's Theorem can be difficult to work with when coefficients are parametric...

Real rooted polynomials

Definition. A univariate polynomial $p(x)$ is said to be real rooted if all its roots are real.

Real rooted polynomials

Definition. A univariate polynomial $p(x)$ is said to be real rooted if all its roots are real.
Example.
Is $x^{3}-6 x^{2}+11 x-6$ real rooted?
Is $x^{3}-1$ real rooted?

Real rooted polynomials

Definition. A univariate polynomial $p(x)$ is said to be real rooted if all its roots are real.
Example.
Is $x^{3}-6 x^{2}+11 x-6$ real rooted?
Is $x^{3}-1$ real rooted?
Observation: A real rooted polynomial with sign alternating coefficients, has all its roots positive.

Real rooted polynomials

Definition. A univariate polynomial $p(x)$ is said to be real rooted if all its roots are real.
Example.
Is $x^{3}-6 x^{2}+11 x-6$ real rooted?
Is $x^{3}-1$ real rooted?
Observation: A real rooted polynomial with sign alternating coefficients, has all its roots positive.

Newton Inequalities. Let $p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$, with $a_{i} \geq 0, i=0, \ldots, n$ (all coefficients nonnegative). If $p(x)$ is real rooted, then

$$
\frac{a_{k}^{2}}{\binom{n}{k}^{2}} \geq \frac{a_{k-1}}{\binom{n}{k-1}} \cdot \frac{a_{k+1}}{\binom{n}{k+1}}
$$

These give necessary conditions for being real rooted. But they are not sufficient!

Kurtz Theorem

A theorem on real rooted polynomials (Kurtz '92)
Let $p(x)=x^{2 m+1}-a_{2 m} x^{2 m}+a_{2 m-1} x^{2 m-1}-\cdots+a_{1} x-a_{0}$ with $a_{i} \geq 0$, and let $a_{2 m+1}=1$ (a polynomial with alternating signs).
If

$$
a_{i}^{2}-4 a_{i-1} a_{i+1}>0, \quad i=1, \ldots, 2 m
$$

then $p(x)$ has $2 m+1$ distinct positive real roots.

Kurtz Theorem

A theorem on real rooted polynomials (Kurtz '92)
Let $p(x)=x^{2 m+1}-a_{2 m} x^{2 m}+a_{2 m-1} x^{2 m-1}-\cdots+a_{1} x-a_{0}$ with $a_{i} \geq 0$, and let $a_{2 m+1}=1$ (a polynomial with alternating signs).
If

$$
a_{i}^{2}-4 a_{i-1} a_{i+1}>0, \quad i=1, \ldots, 2 m
$$

then $p(x)$ has $2 m+1$ distinct positive real roots.
Examples.

- $q(x)=x^{3}-6 x^{2}+8 x-1: a_{3}=1, a_{2}=6, a_{1}=8, a_{0}=1$.

Kurtz inequalities are satisfied:

$$
0<a_{1}^{2}-4 a_{0} a_{2}=8^{2}-4 \cdot 1 \cdot 6=40, \quad 0<a_{2}^{2}-4 a_{1} a_{3}=6^{2}-4 \cdot 8 \cdot 1=4
$$

So the polynomial has three positive real roots.

Kurtz Theorem

A theorem on real rooted polynomials (Kurtz '92)
Let $p(x)=x^{2 m+1}-a_{2 m} x^{2 m}+a_{2 m-1} x^{2 m-1}-\cdots+a_{1} x-a_{0}$ with $a_{i} \geq 0$, and let $a_{2 m+1}=1$ (a polynomial with alternating signs).
If

$$
a_{i}^{2}-4 a_{i-1} a_{i+1}>0, \quad i=1, \ldots, 2 m
$$

then $p(x)$ has $2 m+1$ distinct positive real roots.
Examples.

- $q(x)=x^{3}-6 x^{2}+8 x-1: a_{3}=1, a_{2}=6, a_{1}=8, a_{0}=1$.

Kurtz inequalities are satisfied:

$$
0<a_{1}^{2}-4 a_{0} a_{2}=8^{2}-4 \cdot 1 \cdot 6=40, \quad 0<a_{2}^{2}-4 a_{1} a_{3}=6^{2}-4 \cdot 8 \cdot 1=4
$$

So the polynomial has three positive real roots.

- $q(x)=x^{3}-6 x^{2}+11 x-6: a_{3}=1, a_{2}=6, a_{1}=11, a_{0}=6$.

Kurtz inequalities are not satisfied

$$
0<a_{1}^{2}-4 a_{0} a_{2}=11^{2}-4 \cdot 6 \cdot 6=-23!!
$$

Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)
Let $p(x)=x^{2 m+1}-a_{2 m} x^{2 m}+a_{2 m-1} x^{2 m-1}-\cdots+a_{1} x-a_{0}$ with $a_{i} \geq 0$, and let $a_{2 m+1}=1$ (a polynomial with alternating signs).
If

$$
a_{i}^{2}-4 a_{i-1} a_{i+1}>0, \quad i=1, \ldots, 2 m
$$

then $p(x)$ has $2 m+1$ distinct positive real roots.

Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)
Let $p(x)=x^{2 m+1}-a_{2 m} x^{2 m}+a_{2 m-1} x^{2 m-1}-\cdots+a_{1} x-a_{0}$ with $a_{i} \geq 0$, and let $a_{2 m+1}=1$ (a polynomial with alternating signs).
If

$$
a_{i}^{2}-4 a_{i-1} a_{i+1}>0, \quad i=1, \ldots, 2 m
$$

then $p(x)$ has $2 m+1$ distinct positive real roots.
Imposing the conditions from Descartes Rule of Signs to the Hybrid HK network:

$$
\begin{array}{r}
a_{2}(\kappa, T)=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5}<0 \\
a_{1}(\kappa, T)=\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right)>0
\end{array}
$$

Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)
Let $p(x)=x^{2 m+1}-a_{2 m} x^{2 m}+a_{2 m-1} x^{2 m-1}-\cdots+a_{1} x-a_{0}$ with $a_{i} \geq 0$, and let $a_{2 m+1}=1$ (a polynomial with alternating signs).
If

$$
a_{i}^{2}-4 a_{i-1} a_{i+1}>0, \quad i=1, \ldots, 2 m
$$

then $p(x)$ has $2 m+1$ distinct positive real roots.
Imposing the conditions from Descartes Rule of Signs to the Hybrid HK network:

$$
\begin{array}{r}
a_{2}(\kappa, T)=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5}<0 \\
a_{1}(\kappa, T)=\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right)>0
\end{array}
$$

Kurtz Theorem tells me that if

$$
a_{2}(\kappa, T)^{2}-4\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} a_{1}(\kappa, T)>0, \quad a_{1}(\kappa, T)^{2}-4 a_{2}(\kappa, T) T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}>0,
$$

then the polynomial will have 3 positive real roots.
Recall:

$$
\begin{aligned}
q_{6}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}
\end{aligned}
$$

Kurtz Theorem for hybrid HK

A theorem on real rooted polynomials (Kurtz '92)
Let $p(x)=x^{2 m+1}-a_{2 m} x^{2 m}+a_{2 m-1} x^{2 m-1}-\cdots+a_{1} x-a_{0}$ with $a_{i} \geq 0$, and let $a_{2 m+1}=1$ (a polynomial with alternating signs).
If

$$
a_{i}^{2}-4 a_{i-1} a_{i+1}>0, \quad i=1, \ldots, 2 m
$$

then $p(x)$ has $2 m+1$ distinct positive real roots.
Imposing the conditions from Descartes Rule of Signs to the Hybrid HK network:

$$
\begin{array}{r}
a_{2}(\kappa, T)=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5}<0 \\
a_{1}(\kappa, T)=\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right)>0
\end{array}
$$

Kurtz Theorem tells me that if

$$
a_{2}(\kappa, T)^{2}-4\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} a_{1}(\kappa, T)>0, \quad a_{1}(\kappa, T)^{2}-4 a_{2}(\kappa, T) T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}>0,
$$

then the polynomial will have 3 positive real roots.
Recall:

$$
\begin{aligned}
q_{6}\left(x_{5}\right)= & \left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{3}+\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} x_{5}^{2} \\
& +\left(\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6}\right) x_{5}-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}
\end{aligned}
$$

With some work, it is possible to show that this semialgebraic set is nonempty

General system

Steady states are in one-to-one correspondence with the positive roots of:

$$
p_{n}(x)=a_{2 n+1}(\kappa, T) x^{2 n+1}+\cdots+a_{1}(\kappa, T) x+a_{0}(\kappa, T) \quad x=[\mathrm{Htp}]
$$

- One can construct parameters κ, T such that the coefficients $a_{i}(\kappa, T)$ fulfil the conditions of Kurtz theorem.

The system can have up to $2 n+1$ steady states
(further: alternating ones are unstable)
Kothamanchu VB, Feliu E, Cardelli L, Soyer OS (2015) Unlimited multistability and Boolean logic in microbial signaling. Journal of the Royal Society Interface. 12:108, 20150234

Parameter regions

$$
\Omega:=\left\{(\kappa, T) \in \mathbb{R}_{>0}^{6} \times \mathbb{R}_{>0}^{2}: q_{6} \text { has } 3 \text { positive roots }\right\}
$$

Parameter regions

$$
\Omega:=\left\{(\kappa, T) \in \mathbb{R}_{>0}^{6} \times \mathbb{R}_{>0}^{2}: q_{6} \text { has } 3 \text { positive roots }\right\} .
$$

- Sturm's theorem gives Ω.

Parameter regions

$$
\Omega:=\left\{(\kappa, T) \in \mathbb{R}_{>0}^{6} \times \mathbb{R}_{>0}^{2}: q_{6} \text { has } 3 \text { positive roots }\right\} .
$$

- Sturm's theorem gives Ω.
- Descartes' rule of signs gives a set that contains Ω.

Parameter regions

$$
\Omega:=\left\{(\kappa, T) \in \mathbb{R}_{>0}^{6} \times \mathbb{R}_{>0}^{2}: q_{6} \text { has } 3 \text { positive roots }\right\}
$$

- Sturm's theorem gives Ω.
- Descartes' rule of signs gives a set that contains Ω.
- Kurtz theorem gives a region contained in Ω.

Parameter regions

$$
\Omega:=\left\{(\kappa, T) \in \mathbb{R}_{>0}^{6} \times \mathbb{R}_{>0}^{2}: q_{6} \text { has } 3 \text { positive roots }\right\} .
$$

- Sturm's theorem gives Ω.
- Descartes' rule of signs gives a set that contains Ω.
- Kurtz theorem gives a region contained in Ω.

Illustration in 2D

Purple: Descartes' rule of signs; Yellow: exact region; Blue: Kurtz theorem.
Reaction rate constants: $\kappa_{1}=\frac{7329}{10000}, \kappa_{2}=100, \kappa_{3}=\frac{7329}{100}, \kappa_{4}=50, \kappa_{5}=100, \kappa_{6}=5$.

Parameter regions

$$
\Omega:=\left\{(\kappa, T) \in \mathbb{R}_{>0}^{6} \times \mathbb{R}_{>0}^{2}: q_{6} \text { has } 3 \text { positive roots }\right\}
$$

- Sturm's theorem gives Ω.
- Descartes' rule of signs gives a set that contains Ω.
- Kurtz theorem gives a region contained in Ω.

Illustration in 2D

(Previous picture from CAD)

Purple: Descartes' rule of signs; Yellow: exact region; Blue: Kurtz theorem.
Reaction rate constants: $\kappa_{1}=\frac{7329}{10000}, \kappa_{2}=100, \kappa_{3}=\frac{7329}{100}, \kappa_{4}=50, \kappa_{5}=100, \kappa_{6}=5$.

Sturm's theorem

$$
p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

$$
\begin{aligned}
& a_{3}=\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6}>0 \\
& a_{2}=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} \\
& a_{1}=\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6} \\
& a_{0}=-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}<0 .
\end{aligned}
$$

Three positive steady states if and only if

$$
\begin{array}{rr}
a_{1}>0 & 27 a_{3}^{2} a_{0}^{2}-18 a_{3} a_{2} a_{1} a_{0}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{2}^{2} a_{1}^{2}<0 \\
9 a_{0} a_{3}-a_{1} a_{2}>0 & -3 a_{1} a_{3}+a_{2}^{2}>0
\end{array}
$$

Sturm's theorem

$p_{0}(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$.

$$
\begin{aligned}
& a_{3}=\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6}>0 \\
& a_{2}=\left(\kappa_{1}\left(T_{1} \kappa_{2} \kappa_{4}+\kappa_{2} \kappa_{6}+\kappa_{3} \kappa_{6}\right)-T_{2}\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{6}\right) \kappa_{5} \\
& a_{1}=\kappa_{1} \kappa_{2} \kappa_{3}\left(T_{1} \kappa_{5}+\kappa_{6}\right)-T_{2} \kappa_{1}\left(\kappa_{2}+\kappa_{3}\right) \kappa_{5} \kappa_{6} \\
& a_{0}=-T_{2} \kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}<0 .
\end{aligned}
$$

Three positive steady states if and only if

$$
\begin{array}{rr}
a_{1}>0 & 27 a_{3}^{2} a_{0}^{2}-18 a_{3} a_{2} a_{1} a_{0}+4 a_{0} a_{2}^{3}+4 a_{1}^{3} a_{3}-a_{2}^{2} a_{1}^{2}<0 \\
9 a_{0} a_{3}-a_{1} a_{2}>0 & -3 a_{1} a_{3}+a_{2}^{2}>0
\end{array}
$$

What if I tell you that the projection onto the κ-space is the region with $\kappa_{3}>\kappa_{1}$?

Jacobian-based methods

Jacobian criterion

Injectivity and Jacobians:
Let $F: U \rightarrow \mathbb{R}^{n}, U \subseteq \mathbb{R}^{n}$ continuously differentiable, such that each coordinate of F is either a polynomial of degree 1 or 2 . Then F is injective if

$$
\operatorname{det}\left(J_{F}(x)\right) \neq 0 \quad x \in U
$$

Jacobian criterion

Injectivity and Jacobians:
Let $F: U \rightarrow \mathbb{R}^{n}, U \subseteq \mathbb{R}^{n}$ continuously differentiable, such that each coordinate of F is either a polynomial of degree 1 or 2 . Then F is injective if

$$
\operatorname{det}\left(J_{F}(x)\right) \neq 0 \quad x \in U
$$

Example.

$$
\begin{gathered}
F_{\kappa, T}=\left(\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1}, \kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2}, \kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5},\right. \\
\left.\kappa_{6} x_{6}-\kappa_{4} x_{3} x_{5}-\kappa_{5} x_{4} x_{5}, x_{1}+x_{2}+x_{3}+x_{4}-T_{1}, x_{5}+x_{6}-T_{2}\right) \\
J_{F_{\kappa, T}}(x)=\left(\begin{array}{cccccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 & \kappa_{4} x_{3} & 0 \\
\kappa_{1} & -\kappa_{2} & 0 & \kappa_{5} x_{5} & \kappa_{5} x_{4} & 0 \\
0 & \kappa_{2} & -\kappa_{4} x_{5}-\kappa_{3} & 0 & -\kappa_{4} x_{3} & 0 \\
0 & 0 & -\kappa_{4} x_{5} & -\kappa_{5} x_{5} & -\kappa_{4} x_{3}-\kappa_{5} x_{4} & \kappa_{6} \\
1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Then

Jacobian criterion

Injectivity and Jacobians:
Let $F: U \rightarrow \mathbb{R}^{n}, U \subseteq \mathbb{R}^{n}$ continuously differentiable, such that each coordinate of F is either a polynomial of degree 1 or 2 . Then F is injective if

$$
\operatorname{det}\left(J_{F}(x)\right) \neq 0 \quad x \in U
$$

Example.

$$
\begin{gathered}
F_{\kappa, T}=\left(\kappa_{4} x_{3} x_{5}-\kappa_{1} x_{1}, \kappa_{5} x_{4} x_{5}+\kappa_{1} x_{1}-\kappa_{2} x_{2}, \kappa_{2} x_{2}-\kappa_{3} x_{3}-\kappa_{4} x_{3} x_{5},\right. \\
\left.\kappa_{6} x_{6}-\kappa_{4} x_{3} x_{5}-\kappa_{5} x_{4} x_{5}, x_{1}+x_{2}+x_{3}+x_{4}-T_{1}, x_{5}+x_{6}-T_{2}\right) \\
J_{F_{\kappa, T}}(x)=\left(\begin{array}{cccccc}
-\kappa_{1} & 0 & \kappa_{4} x_{5} & 0 & \kappa_{4} x_{3} & 0 \\
\kappa_{1} & -\kappa_{2} & 0 & \kappa_{5} x_{5} & \kappa_{5} x_{4} & 0 \\
0 & \kappa_{2} & -\kappa_{4} x_{5}-\kappa_{3} & 0 & -\kappa_{4} x_{3} & 0 \\
0 & 0 & -\kappa_{4} x_{5} & -\kappa_{5} x_{5} & -\kappa_{4} x_{3}-\kappa_{5} x_{4} & \kappa_{6} \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

Then
$\operatorname{det}\left(J_{F_{\kappa, T}}(x)\right)=-\left(\kappa_{1}-\kappa_{3}\right) \kappa_{2} \kappa_{4} \kappa_{5} x_{3} x_{5}-\kappa_{1} \kappa_{2} \kappa_{3} \kappa_{4} x_{3}-\kappa_{1} \kappa_{2} \kappa_{4} \kappa_{5} x_{4} x_{5}$

$$
-\kappa_{1} \kappa_{2} \kappa_{3} \kappa_{5} x_{4}-\left(\kappa_{1}+\kappa_{2}\right) \kappa_{4} \kappa_{5} \kappa_{6} x_{5}^{2}-\left(\kappa_{2}+\kappa_{3}\right) \kappa_{1} \kappa_{5} \kappa_{6} x_{5}-\kappa_{1} \kappa_{2} \kappa_{3} \kappa_{6}
$$

If $\kappa_{1} \geq \kappa_{3}$, then no multistationarity.
So, $\kappa_{1}<\kappa_{3}$ is necessary for multistationarity.

Teaser for next Tuesday

Theorem. Consider a network such that ... (some technical conditions).
Fix κ. There exists a (computable) polynomial $p_{\kappa}(x)$ such that
(A) Uniqueness. If

$$
\operatorname{sign}\left(p_{\kappa}(x)\right)=+\quad \text { for all positive } x
$$

then $\# C_{\kappa, T}=1$ for all T.
(B) Multistationarity. If

$$
\operatorname{sign}\left(p_{\kappa}\left(x^{*}\right)\right)=-\quad \text { for some positive } x^{*}
$$

then $\# C_{\kappa, T} \geq 2$ for some T.

Teaser for next Tuesday

Theorem. Consider a network such that ... (some technical conditions). Fix κ. There exists a (computable) polynomial $p_{\kappa}(x)$ such that
(A) Uniqueness. If

$$
\operatorname{sign}\left(p_{\kappa}(x)\right)=+\quad \text { for all positive } x
$$

then $\# C_{\kappa, T}=1$ for all T.
(B) Multistationarity. If

$$
\operatorname{sign}\left(p_{\kappa}\left(x^{*}\right)\right)=-\quad \text { for some positive } x^{*}
$$

then $\# C_{\kappa, T} \geq 2$ for some T.

With this we will be able to prove that there exists T such that the hybrid HK network is multistationary if and only if $\kappa_{3}>\kappa_{1}$.

Teaser for next Tuesday

Theorem. Consider a network such that ... (some technical conditions).
Fix κ. There exists a (computable) polynomial $p_{\kappa}(x)$ such that
(A) Uniqueness. If

$$
\operatorname{sign}\left(p_{\kappa}(x)\right)=+\quad \text { for all positive } x
$$

then $\# C_{\kappa, T}=1$ for all T.
(B) Multistationarity. If

$$
\operatorname{sign}\left(p_{\kappa}\left(x^{*}\right)\right)=-\quad \text { for some positive } x^{*}
$$

then $\# C_{\kappa, T} \geq 2$ for some T.

With this we will be able to prove that there exists T such that the hybrid HK network is multistationary if and only if $\kappa_{3}>\kappa_{1}$.

Need: Understand how to decide whether a polynomial attains negative values over the positive orthant. You'll learn about this on Monday!

