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Our goal

Describe open parameter regions in the space of constant rates
+ total amounts where multistationarity occurs.

Almost all cells in a body
have the same genetic
information. Multistatio-
narity in cellular networks
can be viewed as a rationale
for decision making and cell
differentiation [Delbrück’49].

The capacity of
multistationarity of
biochemical reaction
networks for the production
of proteins in a cell can
produce different epigenetic
differencies from cell to cell.
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A two–component system
Two-component signal transduction systems enable bacteria to sense,
respond, and adapt to a wide range of environments, stressors, and
growth conditions. It relies on phosphotransfer reactions.

HK00
k1−→ HKp0

k2−→ HK0p
k3−→ HKpp

HK0p +Htp
k4−→ HK00 +Htpp

HKpp +Htp
k5−→ HKp0 +Htpp

Htpp
k6−→ Htp,

k = (k1, . . . , k6) are positive rate constants.

The hybrid histidine kinase HK has two phosphorylable domains: the
four possible states of HK are HK00, HKP0, HK0P , HKPP .

Htp is the unphosphorylated response regulator protein, Htpp the

phosphorylated form.
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A two–component system
Call x1, . . . , x6 the concentration of the species of the network:

X1
k1−→ X2

k2−→ X3
k3−→ X4

X3 +X5
k4−→ X1 +X6 (1)

X4 +X5
k5−→ X2 +X6

X6
k6−→ X5

Under mass-action kinetics, we get the following dynamical system

dx1

dt
= −k1x1 + k4x3x5,

dx2

dt
= k1x1 − k2x2 + k5x4x5,

dx3

dt
= k2x2 − k3x3 − k4x3x5,

dx4

dt
= k3x3 − k5x4x5,

dx5

dt
= −k4x3x5 − k5x4x5 + k6x6,

dx6

dt
= k4x3x5 + k5x4x5 − k6x6.
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Linear dependencies give conservation relations

From f1 + f2 + f3 + f4 = f5 + f6 = 0, we get two conservation
relations:

x1 + x2 + x3 + x4 =T1,

x5 + x6 =T2.

Thus, trajectories lie in a 4d-plane in 6d-space. Total amounts T1, T2

are determined by the initial conditions x(0).

This system is multistationary for k3 > k1.

Alicia Dickenstein (UBA) Polyhedral methods June 20, 2023 5 / 19



Linear dependencies give conservation relations

From f1 + f2 + f3 + f4 = f5 + f6 = 0, we get two conservation
relations:

x1 + x2 + x3 + x4 =T1,

x5 + x6 =T2.

Thus, trajectories lie in a 4d-plane in 6d-space. Total amounts T1, T2

are determined by the initial conditions x(0).

This system is multistationary for k3 > k1.

Alicia Dickenstein (UBA) Polyhedral methods June 20, 2023 5 / 19



Linear dependencies give conservation relations

From f1 + f2 + f3 + f4 = f5 + f6 = 0, we get two conservation
relations:

x1 + x2 + x3 + x4 =T1,

x5 + x6 =T2.

Thus, trajectories lie in a 4d-plane in 6d-space. Total amounts T1, T2

are determined by the initial conditions x(0).

This system is multistationary for k3 > k1.

Alicia Dickenstein (UBA) Polyhedral methods June 20, 2023 5 / 19



Using polyhedral methods
Our problem is to determine values of (k1, . . . , k6, T1, T2) in R8

>0 for
which the polynomial system

f1(x) = · · · = f6(x) = `1(x)− T1 = `2(x)− T2 = 0,

has more than one positive solution x ∈ R6
>0.

Theorem

Assume that k3 > k1. Then, k6

(
1

k2
+

1

k3

)
< k6

(
1

k1
+

1

k2

)
and for

any choice of total concentration constants veriying the inequalities

k6

(
1

k2
+

1

k3

)
<
T1

T2
< k6

(
1

k1
+

1

k2

)
, (2)

there exist positive constants N1, N2 such that for any values of β4

and β5 satisfying β4 > N1 and β5

β4
> N2, the system has at least three

positive steady states after modifying only the parameters k4, k5 via
the rescaling k4 = β4 k4, k5 = β5 k5.
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There is a beautiful paper by Bihan, Santos and Spaenlehauer
SIAGA’18 which uses regular subdivisions of the (convex hull of the)
exponents to get a lower bound on the number of positive solutions,
with combinatorial arguments to get new lower bounds in terms of the
number s of variables and the difference between the cardinality of the
support and s. This is on classical results on degenerations and was
used in [Sturmfels’94] to study real roots of complete intersections.

a
Rs

Rs+1h(a)
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Example

Consider A = {(0, 0), (2, 0), (0, 1),
(2, 1), (1, 2), (1, 3)},

C =

(
1 −2 1 1 −1 0
−2 1 0 −1 −1 1

)
.

We get the polynomial system

1− 2x2 + y + x2y − xy2 = 0,
−2 + x2 − x2y − xy2 + xy3 = 0,

,

which can be written as

C
(
1 x2 y x2y xy2 xy3

)t
= 0.

volZ(A) = 8 < 12 = 3 · 4
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A definition

Let C be a s × n matrix with real entries. We say that an s-
simplex ∆ = {ai1 , . . . , ais+1} in A is positively decorated by C
if the s × (s + 1) submatrix C∆ of C with columns indicated
by {i1, . . . , is+1} satisfies the following:

All the coordinates of any non-zero vector in the kernel of
the matrix C∆ are non-zero and have the same sign.

Equivalently, all the values (−1)iminor(C∆, i) are nonzero
and have the same sign, where minor(C∆, i) is the deter-
minant of the square matrix obtained by removing the i-th
column.
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Example

f1 = 1− 2x2 + y + x2y − xy2,
f2 = −2 + x2 − x2y − xy2 + xy3,

∆1 ∆2

∆3

∆4 ∆5

The simplex ∆1 is positively
decorated by C because the

submatrix of C given by the
columns of ∆1(

1 −2 1
−2 1 0

)
.

has maximal minors with
alternating signs (−1, 2,−3).

Indeed, ∆2,∆4 and ∆5 are also

positively decorated by C, but

not ∆3.

f1 = 0, f2 = 0 have 2 positive

solutions but we can scale/

degenerate the coefficients to get

a system with at least 4 positive

roots.
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f1 = 0, f2 = 0, 2 positive solutions

We can then scale/degenerate the coefficients to get a system with at

least 4 positive roots.
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Degenerating with one parameter t

If we take h ∈ R6 inducing this subdivision, there exists t0 ∈ R>0 such
that for all 0 < t < t0, the number of (nondegenerate) solutions of the
following deformed system is at least 4:

th1 − th22x2 + th3y + th4x2y − th5xy2 = 0,

−th12 + th2x2 − th4x2y − th5xy2 + th6xy3 = 0,

E.g. h1 = 1, h2 = 0, h3 = 0, h4 = 0, h5 = 1, h6 = 3, t = 1/12.
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The command firstoct

We can check e.g using a symbolic command (like firstoct in

Singular) or numerically, that there are 4 positive roots. In

general, though, the number of positively decorated simplices in a

regular subdivision is smaller than the number of positive roots.

The symbolic procedure [Pedersen-Roy-Sziprglas ’91] is based on

the computation of signatures of traces going back to Hermite

and it doesn’ t work for families (too many branchings).
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Obtaining a region of multistationarity
[Bihan, D., Giaroli, J. Algebra’ 20]

Let A = {a1, . . . , an} in Rs and C = (ci,j) ∈ Rs×n. Assume there are
p n-simplices ∆1, . . . ,∆p contained in A, that are part of a regular
subdivision of A and positively decorated by C.
Let C∆1,...,∆p be the cone of all height vectors h ∈ Rn that induce a
regular subdivision of A containing ∆1, . . . ,∆p:

C∆1,...,∆p = {h ∈ Rn : 〈mr, h〉 > 0, r = 1, . . . , `}. (3)

Then, ∀ε ∈ (0, 1)` there exists t0(ε) > 0 s.t ∀γ in the open set U

U = ∪ε∈(0,1)` {γ ∈ Rn>0 ; γmr < t0(ε)εr , r = 1 . . . , `},

the system
n∑
j=1

cij γj x
aj = 0, i = 1, . . . , s, (4)

has at least p nondegenerate positive solutions.
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Difficulties we need to overcome
Even if deciding if simplices are part of a same regular
subdivision is algorithmic, how to do this when the dimension or
the number of monomials is big (or when they are not upper
bounded)?

∆2

∆1

∆2

∆1

One way out: If two simplices share a facet, then this is always
the case! But this restricts our lower bound to 2... in fact, to 3 if
there are no relevant boundary steady states We were able to
find more for sequential phosphorylations with n-sites
[Giaroli-Rischter-P. Millám-D. ’19]

We get polynomials with non-generic coefficients, which are
rational functions of the original rate constants κ and need to
assert that we can rescale κ. We heavily use the results about
the structure of (s-toric) MESSI systems.
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The case n = 1 goes back to Newton
Explanation on the blackboard!
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The case n = 1 goes back to Newton
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Proof for the two component system
From f2 = f3 = f4 = f5 = 0 we get:

x1 =
k4k5x4x

2
5

k1k3
, x2 =

k4k5x4x
2
5

k2k3
+
k5x4x5

k2
, x3 =

k5x4x5

k3
, x6 =

k4k5x4x
2
5

k3k6
+
k5x4x5

k6
.

We get the equations:

k4k5x4x
2
5

k1k3
+
k4k5x4x

2
5

k2k3
+
k5x4x5

k2
+
k5x4x5

k3
+ x4 − T1 = 0,

x5 +
k4k5x4x

2
5

k3k6
+
k5x4x5

k6
− T2 = 0.

We can write this system as

C
(
x4 x5 x4x5 x4x

2
5 1

)t
= 0,

C =

(
1 0 C13 C14 −T1

0 1 C23 C24 −T2

)
,

and C13 = k5

(
1
k2

+ 1
k3

)
, C14 = k4k5

k3

(
1
k1

+ 1
k2

)
, C23 = k5

k6
,

C24 = k4k5
k3k6

.
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If we order the variables (x4, x5), the support of this system is:

A = {(1, 0), (0, 1), (1, 1), (1, 2), (0, 0)}.

We depict the 2-simplices ∆1 = {(1, 0), (1, 1), (0, 0)},
∆2 = {(1, 1), (1, 2), (0, 0)} and ∆3 = {(0, 1), (1, 2), (0, 0)}, which form

a regular triangulation of A, associated for instance with any height

function h : A → R satisfying h(1, 0) = h1, h(0, 1) = h2, h(1, 1) = 0,

h(1, 2) = 0, and h(0, 0) = 0, with h1, h2 > 0.

(0,0)

(0,1)

(1,0)

(1,1)

(1,2)

(0,0,0)

(0,1,h2)

(1,1,0)

(1,2,0)

(1,0,h1)
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∆1 is pos. decorated by C if
and only if

T1 k2 k3−T2 k2 k6−T2 k3 k6 > 0,

and ∆3 is pos. decorated by
C if and only if

T1 k1 k2−T2 k1 k6−T2 k2 k6 < 0.

If both conditions hold, then
∆2 is also positively
decorated by C if and only if
k1 < k3. So, the three
simplices are positively
decorated by C under the
validity of condition in our
statement.

Assume both inequalities
hold. Then, there exists
t0 ∈ R>0 such that for all
0 < t < t0,

t
h1x4 + C13 x4x5 + C14 x4x

2
5 − T1 = 0,

t
h2x5 + C23 x4x5 + C24 x4x

2
5 − T2 = 0,

has at least three positive
nondegenerate solutions.

Then, we need to find a
scaling in terms of the
coefficients of this system
and finally prove that this
can achieved by properly
scaling the original
coefficients (k, T ). We use
the MESSI structure for
this.
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Cascade with n tiers
How many variables?

There are s ≤ n− 1 phosphatases with any pattern of repetition (or
not), but the first two are equal. The number of variables is of the
order of 4n and the number of conservation relations is of the order of
2n, so both dimension and codimension of the steady state variety
tend to ∞ with n.

S0
n S1

n

Fn

. . . . . .

Fn−1

S0
2 S1

2

F

S0
1 S1

1

F

E
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Cascade with n tiers

Multistationarity parameters for any value of n

α1 =
`cat2

kcat2

Ftot − S1,tot

α2 =(
`cat1

kcat1

+ 1)Ftot − S1,tot

α3 =
`cat1

kcat1

`cat2

kcat2

Ftot + (
`cat1

kcat1

+ 1 −
`cat2

kcat2

)Etot −
`cat1

kcat1

S1,tot

α4 =(
`cat1

kcat1

+ 1)(
`cat2

kcat2

+ 1)Ftot + (
`cat2

kcat2

−
`cat1

kcat1

− 1)S2,tot − (
`cat2

kcat2

+ 1)S1,tot

Assume one of the following sets of inequalities occurs:

`cat1

kcat1

+ 1 >
`cat2

kcat2

, α1, α4 < 0, α2, α3 > 0,

`cat1

kcat1

+ 1 <
`cat2

kcat2

, α1, α4 > 0, α2, α3 < 0.

Then, we are able to find (for any n) conditions on some of the

remaining rate constants for which multistationarity occurs.
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Comments

The number of conserved quantities is increased at each
tier.

Proof has several steps: we first parametrize the steady
state variety using results about MESSI systems, we get a
system which is sparse but the new constants are (explicit)
rational functions on the given rate constants (not generic
and many times, too many of them positive), we then
identify two simplices that share a facet for any value of n,
we use the previous theorem to describe an open set in this
new set of constants, and then we lift the conditions to the
original constants.
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Multistationarity for sequential
phosphorylations

Wang and Sontag (2008) showed that for certain choices of param-

eters, the system can have 2[n2 ] + 1 = n for n odd, n + 1 for n even

stoichiometrically compatible positive steady states.

Feliu, Rendall and Wiuf (2019) showed that “half” of them can be

stable for certain parameters. Evidence had been given by Thom-

son and Gunawardena (2009).

Conradi, Feliu, Mincheva and Wiuf (2017) gave conditions on the

reaction rate constants to guarantee or preclude multistationarity

(≥ 3) based on degree theory.

Conradi and Mincheva (2014) gave a sufficient multistationar-

ity condition on the reaction rate constants for n = 2. Total

amounts are given in a precise implicit form, so as many witnesses

as wished can be constructed.
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We give open parameter regions in the space of all parame-
ters with 2[n2 ] + 1 sc pss, while assuming in the modeling that
roughly only 1

4 of the intermediates occur, but only one suf-
fices!

We also describe how to implement these tools to search for
multistationarity regions in a computer algebra system and
present some computer aided results for n ≤ 5.

The method is systematic and can be applied to other net-
works.

We don’t expect that any reduction/degeneration method
could get the conjectured upper bound 2n− 1.
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A sample computational results

n = 4

Assume Stot > Etot + Ftot. If the rate constants and total
concentrations are in one of the regions described below

1
kcat2

`cat2

<
Ftot

Etot
< min

{
kcat1

`cat1

,
kcat3

`cat3

}
,

2
kcat0

`cat0

<
Ftot

Etot
< min

{
kcat1

`cat1

,
kcat3

`cat3

}
,

3 max

{
kcat0

`cat0

,
kcat2

`cat2

}
<
Ftot

Etot
<
kcat3

`cat3

,

4 max

{
kcat0

`cat0

,
kcat2

`cat2

}
<
Ftot

Etot
<
kcat1

`cat1

,

then after rescaling of the kon’s and `on’s the distributive
sequential 4-site phosphorylation system has at least 5 steady
states.
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