Lecture 1

1. What are the real numbers?
\mathbb{R} is a field and its elements are ordered.
Def: an ORDERING of a field R is a relation " \leqslant " that is compatible with addition and multiplication:
(i) $x \leq y \Rightarrow x+z \leq y+z$,
(ii) $0 \leq x, 0 \leq y \Rightarrow 0 \leq x y$.

An ORDERED FIELD (R, \leqslant) is a field R equipped with an ordering \leqslant.

Properties: . $-1<0$ in (R, \leqslant)

- only one of the following holds for $a \in(R, \leq)$
- $\operatorname{char}(R, \leqslant)^{a<0,} a=0, \quad a>0$

Examples: \mathbb{R}, \mathbb{Q} are ordered fields

- $\mathbb{R}[x]$ admits orderings.
- \mathbb{C} does Not admit orderings

How to detect if a field R can be ordered?
Def: a cone of a field R is a subset $P \subset R$ such that
(i) $x, y \in P \Rightarrow x+y \in P$

$$
x \cdot y \in P
$$

(ii) $x \in F \Rightarrow x^{2} \in P$
P is called PROPER (or PREORDERING) if $-1 \notin P$.

The set of sums of squares of R is a cone, denoted $\sum R^{2}$. Note that $\sum R^{2}$ is contained in every cone.
If (R, \geqslant) ordered, then $P=\{x \in R \mid x \geqslant 0\}$ is a proper cone.

Theorem: Let R be a field. The following are equivalent:
(i) R can be ordered
(ii) R has a proper cone
(lii) $-1 \notin \sum R^{2}$
(iv) $\forall x_{1}, \ldots, x_{n} \in R, \quad x_{1}^{2}+\ldots+x_{n}^{2}=0 \quad \Rightarrow \quad x_{1}=\ldots=x_{n}=0$

Proof: (i) $\Rightarrow(i i)$: the positive cone.
$(i \dot{i}) \Rightarrow(i d i): P$ proper cone, $P \supset \sum R^{2}$. Since $1 \notin P$ then $1 \notin \sum R^{2}$.
$($ init $) \Rightarrow(i): \sum R^{2}$ is a proper cone $\Rightarrow F A C T$: it is contained in the
R has an ordering \Leftarrow positive cone of an ordering
$(i) \Rightarrow(i v)$: assume $\sum x_{i}^{2}=0$ and $x_{1} \neq 0$. Then $\sum x_{i}^{2} \geqslant x_{1}^{2}>0$.
(iv) $\Rightarrow(i a i)$: assume $-1=\sum x_{i}^{2}$. Then $1+\sum x_{i}^{2}=0$ implies $1=0$.
mp easier now to check that \mathbb{C} cannot be ordered.
Def: a field R is REAL if it satisfies any of the properties in the previous theorem.

We need a bit more: if we consider a field extension of R, can we extend also the ordering of R ?
$\rightarrow a \in R$ not a square \Rightarrow we can extend the ordering to $R(\sqrt{a})$ in the case $a>0$
$\longrightarrow L$ field extension of R of odd degree \Rightarrow any ordering
How much can we extend the ordering?
Theorem (Artin-Schreier) The following are equivalent:
(i) R is a real field and no proper algetorac extension of R is real
(ii) $\sum_{\text {i }} R^{2}$ is the positive cone of an ordering and every polynomial of odd degree in one variable over R has a root in R, (iii) $-1 \in R$ is not a square and $R(\sqrt{-1})$ is algebraically closed.

Def: a field R is REAL Closed if it satisfies any of the properties in the previous theorem.

Examples: $\cdot \mathbb{R}$ is real closed

- Q is NOT real closed un there is a concept of REAL ClOSURE: $\mathbb{R}_{\text {alg }}$ is the real closure of \mathbb{Q}
FACT: a real closed field has a unique ordering

2. Real algebraic varieties

Let $V \subset \mathbb{C}^{n}$ be an irreducible algebraic variety. We can view V in $\mathbb{R}^{2 n}$ and we have that

- V connected
- V unbounded
- locally the (real) dim at every smooth point of V is $2 d$, where $d=\operatorname{din}_{c} V$
These statements do not hold for real algebraic sets
\checkmark^{\square} see \&ृ 3.1 [BCD]
R real closed field, $C=\bar{R}$ algebraic closure.
Let $I \subset R\left[x_{1}, \ldots, x_{n}\right]$ be an ideal, then

$$
V=V_{c}(I)=\left\{x \in C^{n} \mid f(x)=0 \quad \forall f \in I\right\}
$$

is an affine R-variety.

$$
\begin{aligned}
& \text { line K-variery. } \\
& =\text { defined } \\
& \text { over } R
\end{aligned}
$$

The set of real points of V is $V(R)=V_{R}(I)=V \cap R^{n}$

We can also define an R-ideal of a set ScC^{n} :

$$
I_{R}(S)=\left\{f \in R\left[x_{1}, \ldots, x_{n}\right] \mid f(x)=0 \quad \forall x \in S\right\} .
$$

Then, if V is an R-variety, we define its coordinate Ring e

$$
R[v]=R\left[x_{1}, \ldots, x_{n}\right] / I_{R}(v)
$$

two polynomids are in the same equivalence class iff they
coincide over V
How to move between varieties and ideals?
Hilbert's Nullstellensatz: $I \subset R\left[x_{1}, \ldots, x_{n}\right]$ ideal, then
(i) $V_{c}(I)=\phi \Leftrightarrow 1 \in I$
(ii) $I_{R}\left(V_{c}(I)\right)=\sqrt{I}=\left\{f \in R\left[x_{1}, \ldots, x_{n}\right] \mid f^{r} \in I\right.$ for some $\left.r \in \mathbb{N}\right\}$

But what about the real points?
(i): $I=\langle f\rangle$ for $f=x^{2}+y^{2}+1$ then $V_{R}(I)=\phi$ BUT $1 \notin I$
(ii): $I=\langle f\rangle$ for $f=x^{2}+y^{2}$ then $V_{R}(I)=\{(0,0)\} \Rightarrow I_{R}\left(V_{R}(I)\right)=\langle x, y\rangle$

Def: $I \subset R\left[x_{1}, \ldots, x_{n}\right]$ ideal is called $R \in A L$ if $\forall f_{1}, \ldots, f_{k} \in R\left[x_{1}, \ldots, x_{n}\right]$

$$
f_{1}^{2}+\ldots+f_{k}^{2} \in I \Rightarrow f_{1}, \ldots, f_{k} \in I
$$

Examples: $\cdot\left\langle x^{2}+y^{2}\right\rangle$ is NOT real

$$
\cdot\left\langle y-x^{2}\right\rangle \text { is real }
$$

Real Nullstellensatz: $I \subset R\left[x_{1}, \ldots, x_{n}\right]$ ideal, then
(i) $V_{R}(I)=\phi \Leftrightarrow \exists f_{1}, \ldots, f_{k} \in R\left[x_{1}, \ldots, x_{n}\right]$ st.

$$
1+f_{1}^{2}+\ldots+f_{k}^{2} \in I
$$

(ii) $I=I_{R}\left(V_{R}(I)\right) \Leftrightarrow I$ is real
(iii) $I_{R}\left(V_{R}(I)\right)=\sqrt[r e]{I}:=\left\{g \in R\left[x_{1}, \ldots, x_{n}\right] \mid g^{2 m}+f_{1}^{2}+\ldots+f_{k}^{2} \in I\right.$
for some $m \in \mathbb{N}$ and $\left.f_{1}, \ldots, f_{k} \in R\left[x_{1}, \ldots, x_{n}\right]\right\}$
not clear that it
is an ideal
$\Rightarrow \cdot R$-zariski topology on C^{n} :

$$
\bar{S}^{R}=V_{c}\left(I_{R}(S)\right)
$$

$L_{\square}\{a\}$ is closed if $a \in R$
$\{i\}$ is NOT closed $\sim \overline{\{i}\}^{R}=\{i,-i\}$

Def: $V \subset C^{n}$ affine R-variety is REAL if $N(R)$ is dense in V w.r.t. the R-Zariski topology
$\longrightarrow I \subset R\left[x_{1}, \ldots, x_{n}\right]$ ideal. $V_{c}(I)$ real $\Leftrightarrow \sqrt{I}$ real
$\longrightarrow V \subset C^{n}$ irreducible real R-variety. Then, $f \in R(V)$ satisfies $f(x) \geqslant 0 \quad \forall x \in V(R) \leftrightarrow \quad \Leftrightarrow=$ s.o.s. in $R(V)$.

R Hilbert $17^{\text {th }}$ problem
for irreducible varieties \rightarrow see lecture 3

Later: Raluca \rightarrow different point of view

