Lecture 1

1. What are the real numbers? reflexive antisymmetric "IK is a field and its elements are ordered. transitive Def: an ORDERING of a field R is a relation "<" +hat is compatible with addition and multiplication: (i) X ≤ y => X+2 ≤ y+2, (xx) 0 ≤ x, 0 ≤ y => 0 ≤ xy. An ordered FIELD (R, <) is a field R equipped with an ordering <. • -1<0 in (R, \leq) Properties : • only one of the following holds for $ae(R, \leq)$ a<0, a=0, a>0 • char $(R, \epsilon) = 0$ R, Q are ordered fields
R[x] admits orderings Examples : • C does NOT admit orderings How to detect if a field R can be ordered? \underline{Def} : a CONE of a field R is a subset PCR such that (i) x,yeP => x+yeP xy EP (منه) xeF -> x²eP P is called PROPER (or PREORDERING) if $-1 \notin P$. The set of sums of squares of R is a cone, denoted ΣR^2 . Note that ΣR^2 is contained in every cone. If (R, \ge) ordered, then $P = \sum R |x \ge 0$ is a proper cone. R"positive cone"

Theorem : Let R be a field. The following are equivalent : (i) R can be ordered (iii) R has a proper cone (مَنْهُ) -1¢ ZR² (iv) $\forall x_{1,...,x_{n}} \in \mathbb{R}$, $x_{1}^{2} + ... + x_{n}^{2} = 0 \implies x_{1}^{2} ... + x_{n} = 0$ Proof: (i)=>(ii): the positive cone. $(\lambda\lambda) \Rightarrow (\lambda\lambda\lambda)$: P proper cone, P > \mathbb{R}^2 . Since $1 \notin \mathbb{P}$ then $1 \notin \mathbb{R}^2$. $(\lambda\lambda\lambda) \Rightarrow (\lambda)$: \mathbb{R}^2 is a proper cone => FACT: it is contained in the mp easier now to check that C cannot be ordered. Def: a field R is REAL if it satisfies any of the properties in the previous theorem. We need a bit more : if we consider a field extension of R, can we extend also the ordering of R? L> a $\in \mathbb{R}$ not a square => we can extend the ordering to $\mathbb{R}(\sqrt{a})$ in the case a>0 L> L Field extension of R of odd degree => any ordering extends to L How much can we extend the ordering? Theorem (Artin-Schreier) The following are equivalent: (i) R is a real field and no proper algebraic extension of R is real (iii) Z R² is the positive cone of an ordering and every polynomial of odd degree in one variable over R has a noot in R,
 (iii) -1 CR is not a square and R(V-I) is algebraically closed. Def: a field R is REAL CLOSED if it satisfies any of the properties in the previous theorem.

The set of real points of V is $V(R) = V_R(I) = V \cap R^n$

We can also define an R-ideal of a set Scc": $I_{R}(S) = \{ eR[x_1,...,x_n] \mid f(x) = 0 \; \forall \; x \in S \}.$

Then, if V is an R-variety, we define its coordinate RING $R[V] = R[x_{1,...,x_{n}}]/I_{R}(V)$

two polynomials are in the same equivalence class iff they coincide over V

How to move between varieties and ideals?

<u>Hilbert's Nullstellensate</u>: $I \subset R[x_1, ..., x_n]$ ideal, then (i) $V_c(I) = \phi \iff I \in I$

$$I_{\mathcal{R}}^{(\mathcal{V}_{c}(\mathcal{I}))} = \sqrt{\mathcal{I}} = \{ f \in \mathcal{R}[x_{1,...,x_{n}}] | f' \in \mathcal{I} \text{ for some } r \in \mathbb{N} \}$$

But what about the real points?

(i):
$$I = \langle f \rangle$$
 for $f = x^2 + y^2 + 1$
then $V_{R}(I) = \emptyset$ BUT $1 \notin I$
(ii): $I = \langle f \rangle$ for $f = x^2 + y^2$ (what is the
then $V_{R}(I) = \xi(0,0)$ => $I_{R}(V_{R}(I)) = \langle x, y \rangle$

Def:
$$I \subset R[x_1,...,x_n]$$
 ideal is called REAL if $\forall f_{1/...,f_k} \in R[x_{1/...,x_n}]$
 $f_1^2 + ... + f_k^2 \in I \implies f_{1/...,1} \in I$

Examples:
$$(x^2+y^2)$$
 is NOT real
 (x^2-x^2) is real

Real Nullstellensatz: IcR[x1,...,xn] ideal, then (x) VR(I) = \$\$ <=>] f, ..., fre e R[x, ..., xn] s.t. $1 + f_1^2 + ... + f_2^2 \in I$ (ii) $I = I_{\varrho}(V_{\varrho}(I)) \subset I$ is real (iii) $I_{p}(V_{p}(I)) = \sqrt[n]{I} := \{g \in R[x_{1,...,x_{n}}] \mid g^{2m} + f_{1}^{2} + ... + f_{e}^{e} \in I$ R For some me N and f, ..., fre ER[x1,..., xn] { not clear that it is an ideal -> · R-Zariski topology on C": $\overline{S}^{R} = V_{c} (I_{R}(S))$ Lo ¿a? is closed if aER 2,3 is NOT closed up 2,3 = 3,1,-13 Def: VCC" affine R-variety is REAL if V(R) is dense in V w.r.t. the R-Zariski topology I c R [x1,...,xn] ideal. Vc (I) real <=> vI real V ⊂ Cⁿ irreducible real R-variety. Then, f∈R(V) satisfies f(x)≥0 ¥ x∈V(R) <-> f=s.o.s. in R(V). R Hilbert 17th problem for irreducible varieties -> see lecture 3 Later : Raluca -> different point of view