Lecture 2

3. Semialgebraic sets ~pjumping between R and R Def: a basic semialgebraic set SCR" is the solution set of a system of polynomial (in)equalities : S= ZxeR" | f, (x) Q 0, ..., f, (x) Q 0 5 where ferril and Deriver the RIXI and Deriver the RIXI and Deriver the RIXI the terms of terms

Def: a semialgebraic set is a finite union of basic senialgebraic sets.

equivalently: a semialgebraic set is a Bodean combination (n, U, T) of polynomial (in) equalities.

Examples: • non-basic: (R2)

· basic :

v no easy proof

 \square , \bigcirc , \bigcirc

A feur more facts about semialgebraic sets:

- · the Minkowski sum of semialg. sets is semialg.
- · the product of semialg. sets is semialg.
- · interior, closure, boundary of a semially. set is semially.
- · a semially set is the projection of an algebraic set

Examples:
$$f(x) \in \mathbb{R}[x]$$

 $f(x) = \frac{p(x)}{q(x)}$, $p,q \in \mathbb{R}[x]$
 $f(x) = \sqrt{x}$
 $f(x) = \sqrt{x}$
 $f(x) = \|x\|$
 $NON-EXAMPLES: f(x) = \cos(x)$
 $f(x) = e^{x}$

Some properties:

- · sum of semialgebraic maps is semialgebraic
- · composition of semialgebraic maps is semialgebraic
- · preimage of semially. set under semially. map is semially.
- · image of semially, set under semially. map is semially.

4. Torski - Seidenberg

Example:
$$S = \{2, x \ge 0, x^2 + y^2 - 1 \le 0\} < \mathbb{R}^2$$

 $S_y = \{2, y^2 - 1 \le 0\} < \mathbb{R}$
Then, $\exists x \ s.t. \ (x, y) \in S <=> y \in S_y$

Back to a real closed field R.

- Def: a formula with coefficients in the ring A is constructed as follows:

 - given $f \in A[x_1, ..., x_n]$, $f \neq 0$ is a formula given the formulas ϕ, ψ also $\phi \land \psi, \phi \lor \psi, \neg \phi$ are formulas
 - · given the formula of, also =x; o, Vx; o are formulas

quantifiers

Theorem (Quantifier elimination): & formula with coefficients in the ring A contained in the real closed field R. Then there exists a quantifier-free formula ψ with coefficients in A such that for every $x \in \mathbb{R}^n$, $\phi(x)$ is true iff $\psi(x)$ is true.

Corollary: Let ϕ be a formula with coefficients in A c R. Then $\xi \times \in \mathbb{R}^n \mid \phi(x)$ true ξ is semialgebraic.

Even stronger, the following is the Tarski-Seidenberg principle or the Transfer principle, which allows to move between different real closed fields.

Theorem: Let (A, \ge) be an ordered ring with ACR_1 , ACR_2 where R: are real closed fields extending ">". If ϕ is a formula with coefficients in A, then ϕ is true in R_1 iff it is true in Rz. ~ we can always some A=Z,Q

Lo Another version: Let $S \subset \mathbb{R}^{n+m}$ semialgebraic defined over \mathbb{Z} . Then $\exists S_{y} \subset \mathbb{R}^{n+m}$ semialgebraic defined over \mathbb{Z} such that $\exists x \in \mathbb{R}^{n} \mid (x,y) \in S \iff y \in S_{y}$.

true (with the same Sy) for all real closed fields R