Lecture 2
Problem:

$\pi(v)$ is not an algebraic set:

$$
\begin{aligned}
& \longrightarrow \quad{ }^{\pi}(v)=\{x \neq 0\} \\
& \text { semialgebraic set }
\end{aligned}
$$

3. Semialgebraic sets mbjumping between \mathbb{R} and \mathbb{R}

Def: a basic semialgebraic set $S \subset \mathbb{R}^{n}$ is the solution set of a system of polynomial (in) equalities:

$$
S=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x) \square 0, \ldots, f_{k}(x) \square_{k} 0\right\}
$$

where $f_{i} \in \mathbb{R}[x]$ and $\square \in\{<,=,>\} \quad \forall i$.
Def: a semialoebraic set is a finite union of basic semialgelbraic sets. ξ
equivalently: a semialgebraic set is a Bodean combination (N, U, Γ) of polynomial (in) equalities.

Examples : - non-basic: $\left(\mathbb{R}^{2}\right)$

- basic:

Projection theorem: $S \subset \mathbb{R}^{n+1}$ semialgetoraic. Let $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be the projection onto the first n coordinates. Then $\pi(S)$ is semialgebraic.
π no easy proof

A few more facts about semialgebraic sets:

- the Minkowski sum of semialg. sets is semials.
- the product of semials. sets is semialg.
- interior, closure, boundary of a semialg. set is serials.
- a semialg. set is the projection of an algebraic set

Def: a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is semialgebraic if

$$
\operatorname{graph}(f) \subset \mathbb{R}^{n} \times \mathbb{R}^{m}
$$

is a semialgebraic set.
Examples: $f(x) \in \mathbb{R}[x]$

- $f(x)=\frac{p(x)}{q(x)}, p, q \in \mathbb{R}[x]$
- $f(x)=\sqrt{x}$
- $f(x)=\|x\|$
- NON-EXAMPLES: $f(x)=\cos (x)$

$$
f(x)=e^{x}
$$

Some properties:

- sum of semialgelerdic maps is semialgebraic
- composition of semialgetordic maps is semialgebraic
- preimage of semialg. set under semialg. map is semials.
- image of semialf. set under semialg. map is semialf.

4. Tarski-Seidenberg

Example: $S=\left\{x \geqslant 0, x^{2}+y^{2}-1 \leq 0\right\} \subset \mathbb{R}^{2}$

$$
S_{y}=\left\{y^{2}-1 \leq 0\right\} \subset \mathbb{R}
$$

Then, $\exists x$ s.t. $(x, y) \in S \Leftrightarrow y \in S_{y}$
Back to a real closed field R.
Def: a formula with coefficients in the ring A is constructed as follows:

- given $f \in A\left[x_{1}, \ldots, x_{n}\right], f \neq 0$ is a formula
- given the formulas ϕ, ψ^{\neq}also $\phi \wedge \psi, \phi \vee \psi, \neg \phi$ are formulas
- given the formula ϕ, also $\exists x_{i} \phi, \forall x_{i} \phi$ are formulas
quantifiers
Theorem (Quantifier elimination): ϕ formula with coefficients in the ring A contained in the real closed field R. Then there exist's a quantifier-free formula ψ with coefficients in A such that for every $x \in R^{n}, \phi(x)$ is true iff $\psi(x)$ is true.

Corollary: Let ϕ be a formula with coefficients in $A \subset R$. Then $\left\{x \in R^{n} \mid \phi(x)\right.$ true $\}$ is semialogeraic.

Even stronger, the following is the Tarski-Seidenberg principle or the Transfer principle, which allows to move between different real closed fields.
Theorem: Let (A, \geqslant) be an ordered ring with $A \subset R_{1}, A \subset R_{2}$ where R : are real closed fields extending " \geqslant ". If" ϕ is a formula with coefficients in A, then ϕ is true in R_{1} iff it is true in $\mathbb{R}_{2} . \quad \sigma$ we can always assume $A=\mathbb{Z}, \mathbb{Q}$
L_{∇} Another version: Let $S \subset \mathbb{R}^{n+m}$ semialgetoraic defined over \mathbb{Z}. Then $\exists S_{y} \subset \mathbb{R}^{m}$ semialyebraic defined over \mathbb{Z} such that $\exists x \in \mathbb{R}^{n} \mid(x, y) \in S \Leftrightarrow y \in S_{y}$. $\hat{\tau}_{\text {true (}}$ with the same S_{y}) for all real closed fields \mathbb{R}
5. Cylindrical algebraic decomposition

Example:

Goal: explicit description of $\left\{f_{1} \geqslant 0, f_{2} \geqslant 0, f_{3} \geqslant 0\right\}$ \downarrow

- divide the x axis into cells
- sample one point in each cell and subdivide the vertical line into cells \rightarrow this is consistent inside one cell
- check sign patterns

Def / Theorem:: a cylindrical algebraic decomposition of \mathbb{R}^{n} is a collection $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$ where e_{i} is a partition of \mathbb{R}^{2} into semialgebraic sets, "cells of Level i", such that

- a cell $S \in \varphi_{1}$ is either a point or an open interval;
- $\forall i \forall S \in \mathscr{C}_{i}$ there are finitely many continuous samiels functions $\varphi_{1}, \ldots, \varphi_{k}: S \longrightarrow R$ such that the cylinder $S \times R \subset R^{i+1}$ is a disjoint union of cells of e_{i+1}, namely:
- either the graph of some $\varphi_{j}:\left\{(x, y) \in S \times R \mid y=\varphi_{j}(x)\right\}$,
- or the band between φ_{j} and φ_{j+1}

$$
\left\{(x, y) \in S \times R \mid \varphi_{j}(x)<y<\varphi_{j+1}(x)\right\} \text {. }
$$

un each cell of a CAD is homeomorphic to $(0,1)^{i}$ (here $(0,1)^{0}=\{p+\}$)

N via a semialgebraic function
Def: a $C A D$ adapted to a semialgetoraic set $S \subset \mathbb{R}^{n}$ is a CAD of \mathbb{R}^{n} such that S is a union of cells. \mathbb{Z}
it exists $\forall S$! same for more sets
$m b$ in each cell, the polynomials defining S have constant $\operatorname{sigh}(>0,<0,=0)$

Computationally: there are algorithms to compute the CAD of a semialgebraic set $S \subset \mathbb{R}^{n}$
\rightarrow implementations in Maple, Mathematics, Sage Math \uparrow
a Qepcad Cylindrical Decomposition
\rightarrow complexity: assume $S \subset \mathbb{R}^{n}$ defined by K polynomials of degree at most d. Then the complexity is bounded above by

$$
\begin{aligned}
& (d \cdot k)^{2^{(n)}} \\
& \text { in fixed dimension doubly exponential } \\
& \text { in the dimension } \\
& \text { in practice it is applicable only } \\
& \text { in very sill dimension }
\end{aligned}
$$

Other interesting topic: the ordering of \mathbb{R} induces a nice topology on \mathbb{R}^{n} BUT this is not true in general for a real closed field (e.g., R Archimedean then R is totally disconnected, $[a, b]$ not compact) §

- semialgetoraic topology
- semialgebraic dimension

