Viro's Patchworking Technique Let's get $\mathbb{R e a l}$

Raluca Vlad

June 2023

Real Algebraic Curves

Definition

A real plane algebraic curve C is the vanishing locus of a homogeneous polynomial $f \in \mathbb{R}[x, y, z]$ in $\mathbb{R P}^{2}$:

$$
C:=V(f)=\left\{[x: y: z] \in \mathbb{R P}^{2} \mid f(x, y, z)=0\right\} .
$$

Real Algebraic Curves

Definition

A real plane algebraic curve C is the vanishing locus of a homogeneous polynomial $f \in \mathbb{R}[x, y, z]$ in $\mathbb{R P}^{2}$:

$$
C:=V(f)=\left\{[x: y: z] \in \mathbb{R} \mathbb{P}^{2} \mid f(x, y, z)=0\right\}
$$

- I am assuming C smooth and irreducible;
(in particular, C doesn't have components that are points)

Real Algebraic Curves

Definition

A real plane algebraic curve C is the vanishing locus of a homogeneous polynomial $f \in \mathbb{R}[x, y, z]$ in $\mathbb{R P}^{2}$:

$$
C:=V(f)=\left\{[x: y: z] \in \mathbb{R} \mathbb{P}^{2} \mid f(x, y, z)=0\right\}
$$

- I am assuming C smooth and irreducible;
(in particular, C doesn't have components that are points)
- the degree of the curve is $d:=\operatorname{deg}(f)$;

Real Algebraic Curves

Definition

A real plane algebraic curve C is the vanishing locus of a homogeneous polynomial $f \in \mathbb{R}[x, y, z]$ in $\mathbb{R P}^{2}$:

$$
C:=V(f)=\left\{[x: y: z] \in \mathbb{R} \mathbb{P}^{2} \mid f(x, y, z)=0\right\}
$$

- I am assuming C smooth and irreducible;
(in particular, C doesn't have components that are points)
- the degree of the curve is $d:=\operatorname{deg}(f)$;
- the genus of the curve is $g:=\frac{(d-1)(d-2)}{2}$.

Example

Example

Consider

$$
f=y^{2} z-(x-z) x(x+z) .
$$

Example

Example

Consider

$$
f=y^{2} z-(x-z) x(x+z) .
$$

To plot $C=V(f) \subset \mathbb{R P}^{2}$, we look in the affine chart $\{z=1\} \cong \mathbb{R}^{2}$.

Example

Example

Consider

$$
f=y^{2} z-(x-z) x(x+z) .
$$

To plot $C=V(f) \subset \mathbb{R P}^{2}$, we look in the affine chart $\{z=1\} \cong \mathbb{R}^{2}$.

Question: How do the components of a curve look like?

Components of a Curve

Properties:

Components of a Curve

Properties:

- Each connected component is a circle $S^{1} \subset \mathbb{R} \mathbb{P}^{2}$.

Components of a Curve

Properties:

- Each connected component is a circle $S^{1} \subset \mathbb{R} \mathbb{P}^{2}$.
- There are two (non-isotopic) ways to embed S^{1} into $\mathbb{R P}^{2}$, giving rise to ovals and pseudolines:

Components of a Curve

Properties:

- Each connected component is a circle $S^{1} \subset \mathbb{R} \mathbb{P}^{2}$.
- There are two (non-isotopic) ways to embed S^{1} into $\mathbb{R P}^{2}$, giving rise to ovals and pseudolines:
- an oval disconnects $\mathbb{R P}^{2}$;
- a pseudoline does not.

Components of a Curve

Properties:

- Each connected component is a circle $S^{1} \subset \mathbb{R} \mathbb{P}^{2}$.
- There are two (non-isotopic) ways to embed S^{1} into $\mathbb{R P}^{2}$, giving rise to ovals and pseudolines:
- an oval disconnects $\mathbb{R P}^{2}$;
- a pseudoline does not.
- The curve contains a (unique) pseudoline iff it has odd degree.

Components of a Curve

Properties:

- Each connected component is a circle $S^{1} \subset \mathbb{R} \mathbb{P}^{2}$.
- There are two (non-isotopic) ways to embed S^{1} into $\mathbb{R P}^{2}$, giving rise to ovals and pseudolines:
- an oval disconnects $\mathbb{R P}^{2}$;
- a pseudoline does not.
- The curve contains a (unique) pseudoline iff it has odd degree.
- \# connected components $\leq g+1$.

Components of a Curve

Classifying which configurations of components are possible is hard.

Components of a Curve

Classifying which configurations of components are possible is hard.
In degree 5, the possible topological configurations are:

Components of a Curve

Classifying which configurations of components are possible is hard.
In degree 5, the possible topological configurations are:

Viro's patchworking is a combinatorial process that gives us a way to generate curves with a certain prescribed topology.

Viro's Patchworking

- Start with the triangle T with vertices $(0,0),(0, d),(d, 0)$.

Viro's Patchworking

- Triangulate T. Triangulation should be:
- unimodular - all triangles have area $1 / 2$;
- regular - obtained as the lower convex hull of a height function $h: V(T) \rightarrow \mathbb{R}$, where $V(T)$ are the integer points in T.

Viro's Patchworking

- Triangulate T. Triangulation should be:
- unimodular - all triangles have area $1 / 2$;
- regular - obtained as the lower convex hull of a height function $h: V(T) \rightarrow \mathbb{R}$, where $V(T)$ are the integer points in T.

Viro's Patchworking

- Give signs to the integer points of T,

$$
\operatorname{sgn}: V(T) \rightarrow\{ \pm\}
$$

Viro's Patchworking

- Reflect triangulation about y-axis.
- The signs "even distance away" from the axis of reflection stay the same as their mirror images.
- Switch the signs that are "odd distance away."

Viro's Patchworking

- Reflect triangulation about y-axis.
- The signs "even distance away" from the axis of reflection stay the same as their mirror images.
- Switch the signs that are "odd distance away."

Viro's Patchworking

- Reflect triangulation about y-axis.
- The signs "even distance away" from the axis of reflection stay the same as their mirror images.
- Switch the signs that are "odd distance away."

Viro's Patchworking

- Do analogous reflection about the x-axis.

Viro's Patchworking

- The square we obtain represents a model of $\mathbb{R P}^{2}$. (Imagine its opposite edges identified.)

Viro's Patchworking

- We draw a "curve contour" inside of $\mathbb{R P}^{2}$ as follows:
- we add a blue dot in the midpoint of every edge with different signs at endpoints;
- we connect any two dots that lie in the same triangle.

Viro's Patchworking

- We draw a "curve contour" inside of \mathbb{R}^{2} as follows:
- we add a blue dot in the midpoint of every edge with different signs at endpoints;
- we connect any two dots that lie in the same triangle.

Viro's Patchworking

- We draw a "curve contour" L inside of $\mathbb{R} \mathbb{P}^{2}$ as follows:
- we add a blue dot in the midpoint of every edge with different signs at endpoints;
- we connect any two dots that lie in the same triangle.

Viro's Patchworking

Theorem (Viro, 1979)

Fix some initial data, consisting of a weight function $w: V(T) \rightarrow \mathbb{R}$ and a sign function sgn : $V(T) \rightarrow\{ \pm\}$. Carry out the previous process to obtain a topological contour L inside the square \diamond.

Viro's Patchworking

Theorem (Viro, 1979)

Fix some initial data, consisting of a weight function $w: V(T) \rightarrow \mathbb{R}$ and a sign function sgn : $V(T) \rightarrow\{ \pm\}$. Carry out the previous process to obtain a topological contour L inside the square \diamond.

Consider the polynomial

$$
f=\sum_{(i, j) \in V(T)} \operatorname{sgn}(i, j) \cdot t^{w(i, j)} \cdot x^{i} y^{j} z^{d-i-j}
$$

where t is some positive real parameter.

Viro's Patchworking

Theorem (Viro, 1979)

Fix some initial data, consisting of a weight function $w: V(T) \rightarrow \mathbb{R}$ and a sign function sgn : $V(T) \rightarrow\{ \pm\}$. Carry out the previous process to obtain a topological contour L inside the square \diamond.

Consider the polynomial

$$
f=\sum_{(i, j) \in V(T)} \operatorname{sgn}(i, j) \cdot t^{w(i, j)} \cdot x^{i} y^{j} z^{d-i-j},
$$

where t is some positive real parameter.

Then, for small enough t, the curve $C=V(f)$ topologically looks like the contour L, i.e. there is a homeomorphism of $\mathbb{R P}^{2}$ and \diamond which sends C to L.

Viro's Patchworking

In our running example, we have

$$
\begin{aligned}
f & =\sum_{(i, j) \in V(T)} \operatorname{sgn}(i, j) \cdot t^{w(i, j)} \cdot x^{i} y^{j} z^{d-i-j} \\
& =-x y z+t\left(x^{2} y+x^{2} z+x y^{2}+x z^{2}+y^{2} z+y z^{2}\right)+t^{3}\left(x^{3}+y^{3}+z^{3}\right)
\end{aligned}
$$

Viro's Patchworking

(a) Our model

(b) The curve $V(f)$

Harnack's Inequality

Theorem (Harnack's Inequality)

Let C be a real algebraic curve of genus g. Then \#connected components of $C \leq g+1$.

Harnack's Inequality

Theorem (Harnack's Inequality)

Let C be a real algebraic curve of genus g. Then

$$
\text { \#connected components of } C \leq g+1 \text {. }
$$

Proof

- Given a topological space X, we define its Betti number to be

$$
b_{*}(X ; K):=\sum_{i} \operatorname{dim}_{K} H_{i}(X ; K)
$$

Harnack's Inequality

Theorem (Harnack's Inequality)

Let C be a real algebraic curve of genus g. Then

$$
\text { \#connected components of } C \leq g+1 \text {. }
$$

Proof

- Given a topological space X, we define its Betti number to be

$$
b_{*}(X ; K):=\sum_{i} \operatorname{dim}_{K} H_{i}(X ; K) .
$$

- If X is a topological space with an involution σ, and X^{σ} is the fixed locus of the involution, then

$$
b_{*}\left(X^{\sigma} ; \mathbb{F}_{2}\right) \leq b_{*}\left(X ; \mathbb{F}_{2}\right)
$$

Harnack's Inequality

Proof (continued)

- Consider our curve C and its extension X to \mathbb{C}.

Harnack's Inequality

Proof (continued)

- Consider our curve C and its extension X to \mathbb{C}.
- X has an involution given by complex conjugation. The fixed locus under conjugation is C. So

$$
b_{*}\left(C ; \mathbb{F}_{2}\right) \leq b_{*}\left(X ; \mathbb{F}_{2}\right)
$$

Harnack's Inequality

Proof (continued)

- Consider our curve C and its extension X to \mathbb{C}.
- X has an involution given by complex conjugation. The fixed locus under conjugation is C. So

$$
\begin{equation*}
b_{*}\left(C ; \mathbb{F}_{2}\right) \leq b_{*}\left(X ; \mathbb{F}_{2}\right) \tag{*}
\end{equation*}
$$

$$
C=\bigsqcup_{k \text { copies }} S^{1} \quad \Rightarrow \quad b_{*}\left(C ; \mathbb{F}_{2}\right)=2 k .
$$

Harnack's Inequality

Proof (continued)

- Consider our curve C and its extension X to \mathbb{C}.
- X has an involution given by complex conjugation. The fixed locus under conjugation is C. So

$$
b_{*}\left(C ; \mathbb{F}_{2}\right) \leq b_{*}\left(X ; \mathbb{F}_{2}\right)
$$

$$
C=\bigsqcup_{k \text { copies }} S^{1} \quad \Rightarrow \quad b_{*}\left(C ; \mathbb{F}_{2}\right)=2 k
$$

- X is a genus g complex curve, so topologically it is a g-holed torus. So

$$
b_{*}\left(X ; \mathbb{F}_{2}\right)=1+2 g+1=2 g+2 .
$$

Harnack's Inequality

Proof (continued)

- Consider our curve C and its extension X to \mathbb{C}.
- X has an involution given by complex conjugation. The fixed locus under conjugation is C. So

$$
b_{*}\left(C ; \mathbb{F}_{2}\right) \leq b_{*}\left(X ; \mathbb{F}_{2}\right)
$$

$$
C=\bigsqcup_{k \text { copies }} S^{1} \quad \Rightarrow \quad b_{*}\left(C ; \mathbb{F}_{2}\right)=2 k
$$

- X is a genus g complex curve, so topologically it is a g-holed torus. So

$$
b_{*}\left(X ; \mathbb{F}_{2}\right)=1+2 g+1=2 g+2 .
$$

- (*) implies that $\#$ connected components $=k \leq g+1$.

Maximal Curves

Definition

A maximal curve is a curve having $g+1$ connected components.

Maximal Curves

Definition

A maximal curve is a curve having $g+1$ connected components.

Punch line: We can use Viro's patchworking to construct maximal plane curves in any degree.

Maximal Curves

Definition

A maximal curve is a curve having $g+1$ connected components.

Punch line: We can use Viro's patchworking to construct maximal plane curves in any degree.

- Consider the triangle T with the standard unimodular triangulation and the Harnack sign function sgn : $V(T) \rightarrow\{ \pm\}$ given by

$$
\operatorname{sgn}(i, j)=\left\{\begin{array}{ll}
- & \text { if } i, j \text { even } \\
+ & \text { otherwise }
\end{array} .\right.
$$

Maximal Curves

- In degree 4 , we get

Maximal Curves

- In degrees 5 and 6, we get:

Maximal Mumford Curves

Maximal Mumford Curves

- Think of our polynomial:

$$
f=\sum_{(i, j) \in V(T)} \operatorname{sgn}(i, j) \cdot t^{w(i, j)} \cdot x^{i} y^{j} z^{d-i-j} \quad \in \mathbb{R}\{\{t\}\}
$$

Maximal Mumford Curves

- Think of our polynomial:

$$
f=\sum_{(i, j) \in V(T)} \operatorname{sgn}(i, j) \cdot t^{w(i, j)} \cdot x^{i} y^{j} z^{d-i-j} \quad \in \mathbb{R}\{\{t\}\}
$$

- If f is obtained from standard triangulation with Harnack signs, the curve $C=V(f)$ has $g+1$ components over $\mathbb{R}\{\{t\}\}$ (by Tarski's principle) $\Rightarrow C$ is maximal.

Maximal Mumford Curves

- Think of our polynomial:

$$
f=\sum_{(i, j) \in V(T)} \operatorname{sgn}(i, j) \cdot t^{w(i, j)} \cdot x^{i} y^{j} z^{d-i-j} \quad \in \mathbb{R}\{\{t\}\}
$$

- If f is obtained from standard triangulation with Harnack signs, the curve $C=V(f)$ has $g+1$ components over $\mathbb{R}\{\{t\}$ (by Tarski's principle) $\Rightarrow C$ is maximal.
- If we tropicalize, $\operatorname{Trop}(C)$ is dual to our unimodular triangulation, so the tropical skeleton has full genus $g \Rightarrow C$ is Mumford.

Maximal Mumford Curves

- Think of our polynomial:

$$
f=\sum_{(i, j) \in V(T)} \operatorname{sgn}(i, j) \cdot t^{w(i, j)} \cdot x^{i} y^{j} z^{d-i-j} \quad \in \mathbb{R}\{\{t\}\}
$$

- If f is obtained from standard triangulation with Harnack signs, the curve $C=V(f)$ has $g+1$ components over $\mathbb{R}\{\{t\}\}$ (by Tarski's principle) $\Rightarrow C$ is maximal.
- If we tropicalize, $\operatorname{Trop}(C)$ is dual to our unimodular triangulation, so the tropical skeleton has full genus $g \Rightarrow C$ is Mumford.

Thank you!

References

(1) J. A. De Loera, J. Rambau, F. Santos. Triangulations. Structures for Algorithms and Applications.
(2) J. Hinssen. The topology of real loci of \mathbb{R}-varieties.
(3) I. Itenberg. Viro's method and T-curves.

Also, cool online tool for Viro's patchworking: https://math.uniandes.edu.co/~j.rau/patchworking_ english/patchworking.html

