
Notes on volume approximation
using SDP relaxations

Chiara Meroni

March 2023

Introduction. These notes are a crash course on how to approximate the volume of a
compact semialgebraic set using semidefinite programming. What follows is entirely based
on [HLS09, TWLH22, TLH23], but we implement the algorithms in Mathematica.
Our setting is the following. Let K = {x ∈ B | f(x) ≥ 0} ⊂ B ⊂ Rn with f = ∑

w∈W cwxw

for some set W of multiindices. Here B is a nice set, by which we mean that the moments
of B are known or easy to compute. For instance, in our examples, we are going to use the
cube B = [−1, 1]n, but also the unit ball of any Lp-norm would do the job. Given a com-
pact set S ⊂ Rn and a multiindex α ∈ Zn

≥0, the α-th moment of S is

mα =
∫

S
xαdµ∗

S, (1)

where µ∗
S is the Lebesgue measure on S. Note that m0 = vol S. The same definition

works when we substitute µ∗
S with any other measure µS supported on S; in this case,

we say that m = (mα)α has a representing finite Borel measure µS supported on S.
In this way, we associate to the set S and the measure µS an infinite sequence of real
numbers.

A few facts on moments. A natural question to ask is then: given a sequence of real
numbers m = (mα)α, does there exist a set S and a measure µS supported on S such that
(1) holds?
Given d ∈ N, denote by Nn

d the set of multiindices α ∈ Zn
≥0 such that |α| = α1 +

. . . + αn ≤ d. Fix a set K as above, let r = ⌈deg f
2 ⌉, and consider a sequence of real

numbers m = (mα)α. Define the associated moment matrix and the localizing matrix to
be respectively

Md(m) =
(

mα+β

)
α,β∈Nn

d

, Md−r(fm) =
( ∑

w∈W

cwmw+α+β

)
α,β∈Nn

d

. (2)

Notice that the moment matrix has size
(

n+d
d

)
×

(
n+d

d

)
whereas the localizing matrix

has size
(

n+d−r
d−r

)
×

(
n+d−r

d−r

)
. A necessary condition for a sequence m = (mα)α to have

a representing measure supported on K is that for every d ∈ N the matrix inequalities
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Md(m) ≽ 0 and Md−r(fm) ≽ 0 hold. This result is a formulation of Putinar’s Positivstel-
lensatz [Put93], also stated in [HLS09, Theorem 2.2]. In particular, the positive definite-
ness of the moment matrix is a necessary condition for m to have a representing measure;
the inequality with the localizing matrix forces the support of the representing measure
to be contained in the superlevel set {f(x) ≥ 0}, namely K.

Example 1. As a sanity check, consider the disc K = {(x, y) ∈ R2 | f = 1 − x2 − y2 ≥ 0}.
One can compute its moments via the formula

m(α1,α2) = ((−1)α1 + 1) ((−1)α2 + 1)
Γ

(
α1+1

2

)
Γ

(
α2+1

2

)
4Γ

(
1
2(α1 + α2 + 4)

) .

For d = 3, the moment and localizing matrices in (2) are

M3(m) =



π 0 π
4 0 0 0 0 π

4 0 0
0 π

4 0 π
8 0 0 0 0 π

24 0
π
4 0 π

8 0 0 0 0 π
24 0 0

0 π
8 0 5π

64 0 0 0 0 π
64 0

0 0 0 0 π
4 0 π

24 0 0 π
8

0 0 0 0 0 π
24 0 0 0 0

0 0 0 0 π
24 0 π

64 0 0 π
64

π
4 0 π

24 0 0 0 0 π
8 0 0

0 π
24 0 π

64 0 0 0 0 π
64 0

0 0 0 0 π
8 0 π

64 0 0 5π
64


, M2(fm) =


π
2 0 π

12 0 0 π
12

0 π
12 0 0 0 0

π
12 0 π

32 0 0 π
96

0 0 0 π
12 0 0

0 0 0 0 π
96 0

π
12 0 π

96 0 0 π
32

 ,

which are indeed positive definite.

Infinite-dimensional LP and its dual. In this section we construct an infinite-dimensional
Linear Program on measures whose optimal value is the volume of K ⊂ B. The program is
stated in [HLS09, Equation 3.1], [TWLH22, Equation 1], and it reads:

P : max
µK ,µB\K

∫
dµK

s.t. µK + µB\K = µ∗
B,

(3)

where µS is a positive finite Borel measure supported on S, and µ∗
B is the Lebesgue measure

on B. The adjective “infinite-dimensional” refers to the fact that we are optimizing over
a set of measures, which is uncountable. Based on the theory of dual Banach spaces,
one can talk about dual convex bodies or convex cones, and construct the theory of dual
programming. In our case, it is a well-known fact (from some analysis class) that the dual
to the space of positive finite Borel measures is the set of positive continuous functions.
This observation leads to the definition of an LP dual to P :

P ∗ : inf
γ

∫
γ dµ∗

B

s.t. γ ≥ 1K ,
(4)

where γ is a positive continuous function on B and 1K is the indicator function of K. It can
be proved that there is no duality gap between P and P ∗, which means that the optimal
values of (3) and (4) coincide. Notice that the optimal value of P ∗ is an infimum and not
a minimum, since we are trying to approximate the discontinuous indicator function 1K

using continuous functions. This detail will turn out to be relevant for the slow rate of
approximation that this method has in the first place.
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Finite-dimensional SDP and its dual. The infinite-dimensional LP can be approxi-
mated as closely as desired by using a hierarchy of finite-dimensional SemiDefinite Pro-
grams, see [Las10]. The sequence of optimal values of the hierarchy converges monotoni-
cally to the optimal value of the LP [HLS09, Theorem 3.2]. There is again a primal and
dual version of the SDP problems. In our setting, the primal hierarchy is

Pd : max
m,m̂

m0

s.t. m + m̂ = b,

Md(m) ≽ 0, Md(m̂) ≽ 0,

Md−r(fm) ≽ 0,

(5)

where m = (mα)α∈Nn
2d

, m̂ = (m̂α)α∈Nn
2d

, and b is the sequence of moments of B for
the multiindices in Nn

2d. This formulation is [TWLH22, Equation 3] but also [HLS09,
Equation 3.3]. Note that the optimal value of Pd is an upper bound for vol(K), since
we are optimizing over a larger set. The corresponding dual SDP is [HLS09, Equation
3.6], which is formulated using sums of squares of polynomials. The authors of [HLS09,
TWLH22, TLH23] implemented the SDPs using GloptiPoly MATLAB [HLL09]. Our basic
computations in the next examples are performed in Mathematica. We are going to
include the linear condition m + m̂ = b inside the condition on the moment matrix of m̂,
by imposing directly that Md(b − m) ≽ 0.

Example 2 (The TV screen in Figure 1, left). Consider the semialgebraic convex body
K1 = {x, y ∈ [−1.2, 1.2]2 | f1(x, y) ≥ 0} ⊂ R2 with

f1(x, y) = 1 − x4 − y4 − 1
100xy.

Using for instance the methods from [LMSED19] we can compute the volume of K1,
namely 3.7081599447.... Let us now use the SDP formulation. Fix d = 10, then M10(m)
and M10(b − m) are 66 × 66 matrices, and for instance the second one is

4−m(0,0) −m(0,1)
4
3 −m(0,2) −m(0,3) ···

−m(0,1)
4
3 −m(0,2) −m(0,3)

4
5 −m(0,4) ···

4
3 −m(0,2) −m(0,3)

4
5 −m(0,4) −m(0,5) ···

−m(0,3)
4
5 −m(0,4) −m(0,5)

4
7 −m(0,6) ···

... ... ... ... ...

 .

The matrix M8(f1m) is a 45 × 45 matrix whose (α, β) entry is

mα+β − m(4,0)+α+β − m(0,4)+α+β − 1
100m(1,1)+α+β.

The optimal value of the semidefinite program P10 is 4.4644647361..., the optimal value
of P14 is 4.3679560947..., and for P18 we get 4.3241824171...; these numbers provide upper
bounds for the actual volume, as predicted.

Example 3 (The elliptope in Figure 1, right). Consider the semialgebraic convex body
K2 = {x, y ∈ [−1, 1]3 | f2(x, y) ≥ 0} ⊂ R3 with

f2(x, y) = 1 − x2 − y2 − z2 + 2xyz.

The volume of this spectrahedron, called elliptope, can be computed analytically and it
is vol K2 = π2

2 = 4.934802202.... In this case the solutions of the SDP for d = 4, 8, 12 are
respectively 7.3254012963..., 6.6182632506..., and 6.303035372....
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Figure 1: Left: the TV screen from Example 2. Right: the elliptope from Example 3.

Stokes constraints. As the reader can notice in Example 2 and Example 3, the con-
vergence of the approximation via the SDP method is quite slow. Indeed, in [KH18] the
authors prove that, under mild assumptions, the convergence rate is O( 1

log log d
). The goal

of this section is to improve the convergence by using Stokes constraints, introduced and
analysed in [Las17, TWLH22, TLH23].
As we already pointed out, in the infinite-dimensional linear program P ∗ (and in its
corresponding SDP hierarchy) we want to approximate a piecewise-differentiable function,
1K , with continuous functions (respectively, polynomials). This produces the well-known
Gibbs effect, creating many oscillations near the boundary of K in the polynomial solutions
of the SDP.
Heuristically, one could try to speed up the computation by adding certain linear con-
straint that do not modify the infinite-dimensional LP problem but add more information
to the finite-dimensional SDP. One concrete way to do this uses Stokes’ theorem (and its
consequences) and the fact that f vanishes on the boundary of K.
Let U be an open set such that the Euclidean closure of U is our set K. Since ∂K is smooth
almost everywhere, the classical Stokes’ theorem applies, namely∫

∂K
ω =

∫
K

dω

for any (n − 1)-differential form ω on Rn. One of the consequences of this theorem is the
following integral inequality, known as the Gauss formula:∫

∂K
V (x) · n̂(x) dHn−1(x) =

∫
K

div V (x) dx,

where V (x) is a vector field, n̂(x) is the exterior normal vector at x ∈ ∂K, Hn−1 is the
(n−1)-dimensional Hausdorff measure, and div denotes the divergence. If the vector field
is just a scalar field multiplying a constant vector, namely V (x) = v(x)c, then we obtain
the following chain of equalities:

c ·
(∫

∂K
v(x)n̂(x) dHn−1(x)

)
=

∫
K

div
(
v(x)c

)
dx = c ·

(∫
K

∇v(x) dx
)

because div
(
v(x)c

)
= ∇v(x) · c + v(x) div c and the divergence of a constant vector is

zero. Since this equality must be valid for every c ∈ Rn, we have∫
∂K

v(x)n̂(x) dHn−1(x) =
∫

K
∇v(x) dx. (6)
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If v = 0 on ∂K, then the left hand side of (6) is zero. This condition can be expressed in
terms of measures and distributions, and added to (3) and (4) as in [TWLH22, Equation
17 and Remark 3]. In the more concrete case of the SDP, the Stokes constraints translate
as follows. Let v(x) = f(x)xα for any multiindex α ∈ Nn with |α| ≤ d + 1 − deg f . Then
we require that

∇
(
f(x)xα

)∣∣∣
xβ→mβ

= 0,

where we substitute each monomial with the corresponding moment, and get n new linear
conditions for every such α.

Example 4. Consider the two convex bodies from Example 2 and Example 3. The Stokes
constraints for a given α are:

K1 :
α1mα+(−1,0) − (α1 + 4)mα+(3,0) − α1mα+(−1,4) − α1+1

100 mα+(0,1) = 0,

α2mα+(0,−1) − α2mα+(4,−1) − (α2 + 4)mα+(0,3) − α2+1
100 mα+(1,0) = 0,

K2 :
α1mα+(−1,0,0) − (α1 + 2)mα+(1,0,0) − α1mα+(−1,2,0) − α1mα+(−1,0,2) + 2(α1 + 1)mα+(0,1,1) = 0,

α2mα+(0,−1,0) − α2mα+(2,−1,0) − (α2 + 2)mα+(0,1,0) − α2mα+(0,−1,2) + 2(α2 + 1)mα+(1,0,1) = 0,

α3mα+(0,0,−1) − α3mα+(2,0,−1) − α3mα+(0,2,−1) − (α3 + 2)mα+(0,0,1) + 2(α3 + 1)mα+(1,1,0) = 0.

Table 1 compares the computation of the optimal value of the SDP (5) with and without
Stokes constraints.

K Volume d
without Stokes with Stokes

max Pd time max Pd time

3.708159...

10 4.464464... 0.621093 3.709994... 0.482376
14 4.367956... 3.545369 3.708191... 3.738137
18 4.324182... 14.906281 3.708163... 20.592531

4.934802...

4 7.325401... 0.124392 5.612716... 0.077315
8 6.618263... 7.222441 4.976796... 7.178571
12 6.303035... 696.886298 4.937648... 1105.619231

Table 1: Comparison of the optimal values of (5), with and without Stokes constraints, in
Example 2 and Example 3. The column “max Pd” displays the optimal value of
Pd for a certain d, whereas the column “time” gives the time, in seconds, involved
in running the command SemidefiniteOptimization in Mathematica.

Conclusions. As Table 1 shows, the convergence with Stokes constraints is much faster
than without constraints. The heuristics is that now, with the (dual version of the) Stokes
constraints added to P ∗, the function we are trying to approximate is not just the indicator
function of K. A more precise explanation can be found in [TLH23], for a slightly different
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type of Stokes constraints. The authors, in fact, prove that when adding this new type
of constraints, obtained again from Stokes theorem, the optimal solution of the new P ∗

becomes a minimum. This eliminates any kind of Gibbs effect, and guarantees a faster
convergence. In [TLH23], the authors mention that, from numerical experiments, it is
reasonable to expect that the original Stokes constraints and the new Stokes constraints
are equivalent, but there is no formal proof of this statement yet.
We conclude by mentioning that more general semialgebraic sets fit into the framework of
[HLS09, TWLH22, TLH23], and we refer to these works for all the proofs, much more de-
tailed computations and deeper analyses from a numerical point of view.
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