
Mildly Overparametrized ReLU Networks Have a
Favorable Loss Landscape

Guido Montúfar
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Overview

• Neural networks have a non-convex loss landscape with local minima
and plateaus [SS89, AHW95, FA00, SCP17, SS18].

• A particularly puzzling question is why bad local minima do not seem
to be a problem for training.

• Very highly overparameterized networks with d1 = ⌦(n2) are known to
have more benevolent loss landscape and follow lazy training.

• We are able to avoid excessive overparameterization by emphasizing
qualitative aspects of the loss landscape, using only the rank of the
Jacobian rather than e.g. the smallest eigenvalue of the NTK.

• We obtain theorems under more realistic mild overparameterization
d1 = ⌦(n log n) or even d1 = ⌦(1) for high-dimensional inputs.
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Overview

For n data points, d0 input dimension, d1 hidden units, we show:

• Theorem 2: If d0d1 � n and d1 = ⌦(log( n
✏d0

)), then all activation
regions, except for an ✏ fraction, have no bad local minima.

• Theorem 9: If d0 = 1 and d1 = ⌦(n log(n✏ )), all but at most an ✏
fraction of non-empty activation regions have no bad local minima.

• Theorem 11: If d0 = 1 and d1 = d+ + d� with d+, d� = ⌦(n log(n✏ )),
then all but at most an ✏ fraction of non-empty activation regions
contain an a�ne set of global minima of codimension n.
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Setup
• We consider input and output data

X = (x (1), . . . , x (n)) 2 Rd⇥n, y = (y (1), . . . , y (n)) 2 R1⇥n.

• We consider a parameterized model

F : Rm

parameter
⇥ Rd

input
! R

prediction

and the vector of predictions on input data X ,

F (✓,X ) := (F (✓, x (1)),F (✓, x (2)), . . . ,F (✓, x (n))).

• The mean squared error loss L : Rm
parameter

⇥ Rd⇥n

inputs
⇥ R1⇥n

outputs
! R1,

L(✓,X , y) :=
1

2

nX

i=1

(F (✓, x (i))� y
(i))2. (1)
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Lemma 1 (Full rank Jacobian implies critical point is global min)

Fix a dataset (X , y) 2 Rd⇥n ⇥ R1⇥n
, a parametrized model F , and a

di↵erentiable critical point ✓ 2 Rm
of the squared error loss (1).

If rank(r✓F (✓,X )) = n, then ✓ is a global minimizer.

Proof.

0 = r✓L(✓,X , y) = r✓F (✓,X )| {z }
rank=n

· (F (✓,X )� y)| {z }
=0

.
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Shallow ReLU network

• Consider two-layer ReLU network F : Rd1⇥d0
parameter

⇥ Rd0
input

! R
prediction

F (W , x) = v
T�(Wx),

where � : s 7! max{0, s} componentwise, and v 2 Rd1 .

• To accommodate a bias, we can add a 1 component to x .

• This map is piecewise polynomial in W , v and piecewise linear in x .

G. Montúfar 7/32



Shallow ReLU network

• Consider two-layer ReLU network F : Rd1⇥d0
parameter

⇥ Rd0
input

! R
prediction

F (W , x) = v
T�(Wx),

where � : s 7! max{0, s} componentwise, and v 2 Rd1 .

• To accommodate a bias, we can add a 1 component to x .

• This map is piecewise polynomial in W , v and piecewise linear in x .

G. Montúfar 7/32
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G. Montúfar 7/32



Activation regions and Jacobian

• For data X , the smooth pieces are separated by hw (i), x (j))i = 0.

• For each A = [a(1), . . . , a(n)] 2 {0, 1}d1⇥n define activation region

SA
X :=

n
W 2 Rd1⇥d0 : (2Aij � 1)hw (i), x (j)i > 0 8i 2 [d1], j 2 [n]

o
.

Parameters so that ith unit is active on jth data point i↵ Aij = 1.

• The Jacobian of the vector of predictions is

r✓F (W ,X ) = [(v � a
(j))⌦ x

(j)]j , 8W 2 SA
X , 8A.
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G. Montúfar 8/32



• For a fixed input data point x (i), a single ReLU

w 7! �(hw , x (i)i)

has two activation regions separated by hyperplane Hi = x
(i)?.

• This is analog to the linear regions of

x 7! �(hw , xi)

in input space for fixed parameter w .

G. Montúfar 9/32



Subdivision of parameter space

Parameter space

w2

w1
x
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Figure 1: Fan of activation regions; activation patterns indicate the input data
points on which each unit is active.
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Activation regions with no bad local minima
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Theorem 2 (Most activation regions are good)

Let ✏ > 0. If

d1 � max

✓
n

d0
,⌦

✓
log

✓
n

✏d0

◆◆◆
,

then for generic datasets (X , y), the following holds.

In all but at most an ✏ fraction of all activation regions (i.e. at most

d✏2d1e), every di↵erentiable critical point of L is a global minimum.

Caveat: This refers to all activation regions, empty or non-empty.
More on this later.

G. Montúfar 12/32
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Proof sketch

Theorem 3 (Most binary matrices are full rank, [BVW10])

Let A be a d ⇥ d matrix whose entries are iid random variables sampled

uniformly from {0, 1}. Then A is singular with probability at most

✓
1p
2
+ o(1)

◆d

.

Lemma 4
Let a

(j) 2 Rd1 , x (j) 2 Rd0 for j 2 [n] and v 2 Rd1 , with vi 6= 0, i 2 [d1].
Then

rank({(v � a
(j))⌦ x

(j) : j 2 n}) = rank({a(j) ⌦ x
(j) : j 2 [n]}).

Our Jacobian is r✓F (W ,X ) = [(v � a
(j))⌦ x

(j)]j , 8W 2 SA
X , 8A.
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Proof sketch for Theorem 2

• Partition [n] into r  d0 blocks S1, . . . , Sr , |Sk |  d1.

• By Theorem 3, each corresponding block of A fails to have full rank
with probability at most ( 1p

2
+ o(1))d1  C1 · 0.72d1 .

• Using a union bound,

Pr((a(s))s2Sk linearly independent for all k 2 [r ]) � 1� rC1 · 0.72d1 .

• Then A ⇤X is full rank for X with x
(i) = ek for i 2 Sk . Thus, for most

A the set J A = {X 2 Rd0⇥n : A ⇤ X full rank} is non-empty and,
being complement of a Zariski closed set, contain almost every X .

• If we take X 2 J = \A : J A 6=;J A and
d1 � log(C1(n + 1)/d0✏)/ log(1/0.72), then for at least a 1� ✏
fraction of all A we have full rank Jacobian on SA

X .

G. Montúfar 14/32



Non-empty activation regions
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Subdivision of parameter space

Proposition 5 (Number of non-empty regions)

Consider a network with one layer of d1 ReLUs. If the columns of X are in

general position in a d-dimensional linear space, then the number of

non-empty activation regions in the parameter space is (2
Pd�1

k=0

�n�1
k

�
)d1 .

Regions of a product central hyperplane arrangement.

Proposition 6 (Identity of non-empty regions)

Let A 2 {0, 1}d1⇥n
. The corresponding activation region is non-empty if

and only if
P

j :Aij=1 x
(j)

is a vertex of
P

j2[n] conv{0, x (j)} for all i 2 [d1].

Combination of covectors of the oriented matroid of the input data.

G. Montúfar 16/32
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G. Montúfar 16/32



000

x
(1)

100
x
(2)

x
(3)

001

110 011

111

P = P1 + P2 + P3

Figure 2: The polytope P of a ReLU on data points x (1), x (2), x (3) is the
Minkowski sum of the line segments Pi = conv{0, x (i)}.
The activation regions are the normal cones of P .
The vertices of P correspond to the non-empty activation regions.
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High-dimensional input

For high-dimensional inputs, most activation regions are non-empty, thus:

Corollary 7 (Most non-empty activation regions are good)

Under the same assumptions as Theorem 2, if d � n, then for X in general

position and arbitrary y :

In all but at most an ✏ fraction of all non-empty activation regions, every

di↵erentiable critical point of L is a zero loss global minimum.

G. Montúfar 18/32



Non-empty activation regions with no bad local minima

G. Montúfar 19/32



For 1D input, we can explicitly list the non-empty activation regions.

Lemma 8 (Non-empty activation regions for 1D data)

Fix a dataset (X , y) with x
(1) < x

(2) < · · · < x
(n)

. Let A 2 {0, 1}d1⇥n
.

Then SA
X is non-empty if and only if the rows of A are step vectors. In

particular, there are exactly (2n)d1 non-empty activation regions.

G. Montúfar 20/32



1D input

Theorem 9 (Most non-empty activation regions are good)

Let ✏ 2 (0, 1). Suppose that X consists of distinct data points, and

d1 � 2n log
⇣
n

✏

⌘
.

Then in all but at most an ✏ fraction of non-empty activation regions, r✓F

is full rank and every di↵erentiable critical point of L is a global minimum.

G. Montúfar 21/32



Proof sketch

Lemma 10 (Coupon collector’s problem)

Let ✏ 2 (0, 1), and let n  m be positive integers. Let C1,C2, . . . ,Cd 2 [m]
be iid random variables such that for all i 2 [d ] one has P(C1 = j) � �. If

d � 1

�
log

⇣
n

✏

⌘
,

then [n] ✓ {C1, . . . ,Cd} with probability at least 1� ✏.

G. Montúfar 22/32



Theorem 11 (Fraction of regions with global minima)

Let ✏ 2 (0, 1). Suppose that X consists of distinct data points, and

|{i 2 [d1] : v
(i) > 0}| � 2n log

✓
2n

✏

◆
,

and

|{i 2 [d1] : v
(i) < 0}| � 2n log

✓
2n

✏

◆
.

Then in all but at most an ✏ fraction of non-empty activation regions SA
X ,

the subset of global minimizers GX ,y \ SA
X is a non-empty a�ne set of

codimension n. Moreover, all global minima of L have zero loss.

G. Montúfar 23/32



Function space on 1D data
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Proposition 12 (Function space on one-dimensional data)

Let X be a list of n distinct points in 1⇥ R with x
(1) < x

(2) < · · · < x
(n)

.

Let x
(i) = [x (i)2 ,�1] and X�i = [0, . . . , 0, x (i), . . . , x (n)].

• Then the functions a ReLU represents on X form a polyhedral cone,

↵f 2 Rn
with ↵ � 0 and f in the polyline with vertices

x̄
(i)
Xi , i = 1, . . . , n and � x̄

(i)
X�i , i = 1, . . . , n. (2)

• A sum of m ReLUs represents non-negative scalar multiples of convex

combinations of any m points on this polyline.

• Arbitrary linear combinations of m ReLUs represent scalar multiples of

a�ne combinations of any m points on this polyline.

G. Montúfar 25/32



Function space

n = 3 n = 4

f1

f2

f3

f1

f2

f3

f4

Figure 3: Function space of a ReLU on n data points in 1⇥ R, for n = 3, 4.
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Experiments
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Probability of full rank Jacobian for random init

(a) d0 = 1. (b) d0 = 2. (c) d0 = 3. (d) d0 = 5.

Figure 4: Input dimension d0 is left fixed. Minimum d1 to achieve full rank linear
in n, slope decreases as d0 increases, as predicted by Theorem 2.
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Probability of full rank Jacobian for random init

(a) d0 = d n
4 e. (b) d0 = d n

2 e. (c) d0 = n. (d) d0 = 2n.

Figure 4: Input dimension d0 scales linearly in the number of samples n. Minimum
d1 to achieve full rank remains constant in n, consistent with Theorem 2.
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Percentage of regions with global min, d0 = 1

(a) deg 1. (b) deg 2. (c) deg 10.

(d) deg 100. (e) Teacher-student. (f) Random.

Figure 5: Percentage of randomly sampled activation regions that contain a global
minimum of the loss for networks with d0 = 1. Black line is Theorem 11.
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Percentage of regions with global min, d0 = 2, 5

(a) deg 2. (b) Teacher-student. (c) Random.

(d) deg 2. (e) Teacher-student. (f) Random.

Figure 6: Percentage of randomly sampled activation regions that contain a global
minimum for networks with input dimension d0 = 2 (top) and d0 = 5 (bottom).
Consistent with Theorem 2 and Corollary 7.
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Summary

• We studied the loss landscape of two-layer ReLU networks in the
mildly overparameterized regime.

• Most activation regions have no bad di↵erentiable local minima.

• In the univariate case, most non-empty activation regions contain a
high-dimensional set of global minimizers.

Further topics

• Gradient descent.

• Non-empty regions for multivariate data.

• Deep networks.

G. Montúfar 31/32



Questions

• Properties of oriented matroids (as matrices) of given datasets.

• Volume of normal cones and parameter initialization.

• Function spaces of deep networks.

G. Montúfar 32/32
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