
Conditional Gradients
in Machine Learning

Sebastian Pokutta

Technische Universität Berlin
and

Zuse Institute Berlin

pokutta@math.tu-berlin.de

@spokutta

Workshop on Geometry and Machine Learning

November 14, 2023 · Leipzig, Germany

Berlin Mathematics Research Center

MATH

mailto:pokutta@math.tu-berlin.de
https://twitter.com/spokutta
https://www.mis.mpg.de/calendar/conferences/2023/gaml/program.html

What is this talk about?
Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.

Today: A brief overview of recent developments in conditional gradient methods.

Outline
• The basics: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Several examples:

• Recovering Dynamics from Noisy Data
• Deep Learning
• Robust Rate-Distortion Explanation

• High-performance Julia Package: FrankWolfe.jl

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Conditional Gradients 1 / 34

https://github.com/ZIB-IOL/FrankWolfe.jl

What is this talk about?
Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.

Today: A brief overview of recent developments in conditional gradient methods.

Outline
• The basics: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Several examples:

• Recovering Dynamics from Noisy Data
• Deep Learning
• Robust Rate-Distortion Explanation

• High-performance Julia Package: FrankWolfe.jl

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Conditional Gradients 1 / 34

https://github.com/ZIB-IOL/FrankWolfe.jl

What is this talk about?
Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.

Today: A brief overview of recent developments in conditional gradient methods.

Outline
• The basics: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Several examples:

• Recovering Dynamics from Noisy Data
• Deep Learning
• Robust Rate-Distortion Explanation

• High-performance Julia Package: FrankWolfe.jl

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Conditional Gradients 1 / 34

https://github.com/ZIB-IOL/FrankWolfe.jl

What is this talk about?
Introduction

A very versatile and simple optimization method for
projection-free optimization that promotes sparsity.

Why? Constraints and Sparsity help interpretability and explainability.

Today: A brief overview of recent developments in conditional gradient methods.

Outline
• The basics: Conditional Gradients a.k.a. the Frank-Wolfe algorithm
• Several examples:

• Recovering Dynamics from Noisy Data
• Deep Learning
• Robust Rate-Distortion Explanation

• High-performance Julia Package: FrankWolfe.jl

(Hyperlinked) References are not exhaustive; check references contained therein.

Sebastian Pokutta · Conditional Gradients 1 / 34

https://github.com/ZIB-IOL/FrankWolfe.jl

Conditional Gradients
a.k.a. the Frank-Wolfe algorithm

—The Basics—

Sebastian Pokutta · Conditional Gradients 2 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

Source: [Jaggi, 2013]

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Conditional Gradients 3 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

Source: [Jaggi, 2013]

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Conditional Gradients 3 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

Source: [Jaggi, 2013]

1. Very versatile model
2. Can use various types of information about both f and P
3. Works very well in (continuous) real-world applications
4. At the core of many (all?) learning algorithms (albeit mostly non-convex case)

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Conditional Gradients 3 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

Source: [Jaggi, 2013]
Our setup.

1. Access to P. Linear Minimization Oracle (LMO): Given linear objective c return

x← arg min
v∈P

cTv.

2. Access to f . First-Order Oracle (FO): Given x return

∇f (x) and f (x).

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Conditional Gradients 3 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

Source: [Jaggi, 2013]
Our setup.

1. Access to P. Linear Minimization Oracle (LMO): Given linear objective c return

x← arg min
v∈P

cTv.

2. Access to f . First-Order Oracle (FO): Given x return

∇f (x) and f (x).

⇒ Complexity of convex optimization relative to LO/FO oracle

Sebastian Pokutta · Conditional Gradients 3 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Given a smooth and convex function f and a poly-
tope P, solve optimization problem:

min
x∈P

f (x) (baseProblem)

Source: [Jaggi, 2013]
Our setup.

1. Access to P. Linear Minimization Oracle (LMO): Given linear objective c return

x← arg min
v∈P

cTv.

2. Access to f . First-Order Oracle (FO): Given x return

∇f (x) and f (x).

⇒ Complexity of convex optimization relative to LO/FO oracle
Sebastian Pokutta · Conditional Gradients 3 / 34

Interlude: why LMOs?
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

LMO model has many advantages.

1. Includes explicit formulation via constraints
2. Some problems do not posess ‘small’ formulations but have efficient LMOs.

Example: Matching Polytope [Rothvoss, 2014, Braun and Pokutta, 2015a,b, Braun et al., 2015, 2017b]

3. Allows modeling of compact convex constraints as long as we have an LMO.
Example: SDP cone

4. Often much faster than projection.
Example: nuclear norm. Largest singular vector (Lanczos method) vs. full SVD

5. LMO is a black box for the algorithms
6. For many LMOs of interest close form solutions available.

Example: ℓ1-ball for LASSO regression.
For an overview see: [Combettes and Pokutta, 2021]

Sebastian Pokutta · Conditional Gradients 4 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : Rn → R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

f (y) − f (x) ≥ ⟨∇f (x), y − x⟩ .

In particular, all local minima are global minima.

Definition (L-Smoothness)
For all x, y it holds:

f (y) − f (x) ≤ ⟨∇f (x), y − x⟩ + L
2 ∥y − x∥2.

Sebastian Pokutta · Conditional Gradients 5 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : Rn → R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

f (y) − f (x) ≥ ⟨∇f (x), y − x⟩ .

In particular, all local minima are global minima.

Definition (L-Smoothness)
For all x, y it holds:

f (y) − f (x) ≤ ⟨∇f (x), y − x⟩ + L
2 ∥y − x∥2.

Sebastian Pokutta · Conditional Gradients 5 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : Rn → R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

f (y) − f (x) ≥ ⟨∇f (x), y − x⟩ .

In particular, all local minima are global minima.

Definition (L-Smoothness)
For all x, y it holds:

f (y) − f (x) ≤ ⟨∇f (x), y − x⟩ + L
2 ∥y − x∥2.

Sebastian Pokutta · Conditional Gradients 5 / 34

The basic problem
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Basic notions. Let f : Rn → R be a differentiable function.

Definition (Convexity)
For all x, y it holds:

f (y) − f (x) ≥ ⟨∇f (x), y − x⟩ .

In particular, all local minima are global minima.

Definition (L-Smoothness)
For all x, y it holds:

f (y) − f (x) ≤ ⟨∇f (x), y − x⟩ + L
2 ∥y − x∥2.

Sebastian Pokutta · Conditional Gradients 5 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗

xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]

Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.

Sebastian Pokutta · Conditional Gradients 6 / 34

The Frank-Wolfe Algorithm
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Algorithm Frank-Wolfe Algorithm (FW)
1: x0 ∈ P
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: xt+1 ← xt + 𝛾t(vt − xt)
5: end for

xt

vt

−∇f (xt)

x∗
xt+1

[Frank and Wolfe, 1956, Levitin and Polyak, 1966]
Advantages:
• Extremely simple and robust: no complicated data structures to maintain
• Easy to implement: requires only the two oracles
• Projection-free: feasibility convex combination and LO oracle
• Sparsity: optimal solution is a convex combination of (usually) vertices
• Affine invariance: no rescaling etc required
• Parameter-free: does not require any knowledge about the function or feasible region

Disadvantages:
• Suboptimal convergence rate of O(1/T)
• No iterate convergence in the classical sense

⇒ Despite (theoretically) suboptimal rate heavily used in applications due to simplicity.
Sebastian Pokutta · Conditional Gradients 6 / 34

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice 𝛾t � 2

t+3 :

f (xt) − f (x∗) ≤ 2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ ⟨∇f (xt), xt+1 − xt⟩ +
L
2 ∥xt+1 − xt∥2 = 𝛾t ⟨∇f (xt), vt − xt⟩ +

L𝛾2
t

2 ∥vt − xt∥2 .

LP maximality and convexity: ⟨∇f (xt), vt − xt⟩ ≤ ⟨∇f (xt), x∗ − xt⟩ ≤ f (x∗) − f (xt). Moreover, ∥vt − xt∥ ≤ D.

Thus:

f (xt+1) − f (x∗) ≤ (1 − 𝛾t)(f (xt) − f (x∗)) + 𝛾2
t

LD2

2 .

By Induction (plugging in the guarantee + definition of 𝛾t):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2
· LD2

2 =
2LD2(t + 2)
(t + 3)2

≤ 2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

□

Sebastian Pokutta · Conditional Gradients 7 / 34

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice 𝛾t � 2

t+3 :

f (xt) − f (x∗) ≤ 2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ ⟨∇f (xt), xt+1 − xt⟩ +
L
2 ∥xt+1 − xt∥2 = 𝛾t ⟨∇f (xt), vt − xt⟩ +

L𝛾2
t

2 ∥vt − xt∥2 .

LP maximality and convexity: ⟨∇f (xt), vt − xt⟩ ≤ ⟨∇f (xt), x∗ − xt⟩ ≤ f (x∗) − f (xt). Moreover, ∥vt − xt∥ ≤ D.

Thus:

f (xt+1) − f (x∗) ≤ (1 − 𝛾t)(f (xt) − f (x∗)) + 𝛾2
t

LD2

2 .

By Induction (plugging in the guarantee + definition of 𝛾t):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2
· LD2

2 =
2LD2(t + 2)
(t + 3)2

≤ 2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

□
Sebastian Pokutta · Conditional Gradients 7 / 34

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice 𝛾t � 2

t+3 :

f (xt) − f (x∗) ≤ 2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ ⟨∇f (xt), xt+1 − xt⟩ +
L
2 ∥xt+1 − xt∥2 = 𝛾t ⟨∇f (xt), vt − xt⟩ +

L𝛾2
t

2 ∥vt − xt∥2 .

LP maximality and convexity: ⟨∇f (xt), vt − xt⟩ ≤ ⟨∇f (xt), x∗ − xt⟩ ≤ f (x∗) − f (xt). Moreover, ∥vt − xt∥ ≤ D.

Thus:

f (xt+1) − f (x∗) ≤ (1 − 𝛾t)(f (xt) − f (x∗)) + 𝛾2
t

LD2

2 .

By Induction (plugging in the guarantee + definition of 𝛾t):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2
· LD2

2 =
2LD2(t + 2)
(t + 3)2

≤ 2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

□
Sebastian Pokutta · Conditional Gradients 7 / 34

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice 𝛾t � 2

t+3 :

f (xt) − f (x∗) ≤ 2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ ⟨∇f (xt), xt+1 − xt⟩ +
L
2 ∥xt+1 − xt∥2 = 𝛾t ⟨∇f (xt), vt − xt⟩ +

L𝛾2
t

2 ∥vt − xt∥2 .

LP maximality and convexity: ⟨∇f (xt), vt − xt⟩ ≤ ⟨∇f (xt), x∗ − xt⟩ ≤ f (x∗) − f (xt). Moreover, ∥vt − xt∥ ≤ D.

Thus:

f (xt+1) − f (x∗) ≤ (1 − 𝛾t)(f (xt) − f (x∗)) + 𝛾2
t

LD2

2 .

By Induction (plugging in the guarantee + definition of 𝛾t):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2
· LD2

2 =
2LD2(t + 2)
(t + 3)2

≤ 2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.

□
Sebastian Pokutta · Conditional Gradients 7 / 34

Simple Convergence Proof
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Theorem (Convergence rate of the vanilla Frank-Wolfe Algorithm)
Let f be L-smooth convex, P be polytope with diameter D. With choice 𝛾t � 2

t+3 :

f (xt) − f (x∗) ≤ 2LD2

t + 3 .

Proof Sketch.
By smoothness:

f (xt+1) − f (xt) ≤ ⟨∇f (xt), xt+1 − xt⟩ +
L
2 ∥xt+1 − xt∥2 = 𝛾t ⟨∇f (xt), vt − xt⟩ +

L𝛾2
t

2 ∥vt − xt∥2 .

LP maximality and convexity: ⟨∇f (xt), vt − xt⟩ ≤ ⟨∇f (xt), x∗ − xt⟩ ≤ f (x∗) − f (xt). Moreover, ∥vt − xt∥ ≤ D.

Thus:

f (xt+1) − f (x∗) ≤ (1 − 𝛾t)(f (xt) − f (x∗)) + 𝛾2
t

LD2

2 .

By Induction (plugging in the guarantee + definition of 𝛾t):

f (xt+1) − f (x∗) ≤
(
1 − 2

t + 3

)
2LD2

t + 3 +
4

(t + 3)2
· LD2

2 =
2LD2(t + 2)
(t + 3)2

≤ 2LD2

t + 4 ,

by (t + 2)(t + 4) ≤ (t + 3)2.
□

Sebastian Pokutta · Conditional Gradients 7 / 34

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({e1 , . . . , en}) the probability sim-
plex and f = ∥x∥2.

Clearly. arg minx∈P f (x) = x∗ � 1
n e with f (x∗) = 1

n .

Observe. Starting from any vertex ei after t < n
iterations we picked up at most t vertices of P.

Easy to see. For any iterate xt:

f (xt) ≥ min
x∈conv(𝒮)
𝒮⊆{e1 ,...,en}
|𝒮|≤t

f (x) = 1/t,

Thus lower bound. f (xt) − f (x∗) ≥ 1
t −

1
n

⇒ Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta · Conditional Gradients 8 / 34

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({e1 , . . . , en}) the probability sim-
plex and f = ∥x∥2.

Clearly. arg minx∈P f (x) = x∗ � 1
n e with f (x∗) = 1

n .

Observe. Starting from any vertex ei after t < n
iterations we picked up at most t vertices of P.

Easy to see. For any iterate xt:

f (xt) ≥ min
x∈conv(𝒮)
𝒮⊆{e1 ,...,en}
|𝒮|≤t

f (x) = 1/t,

Thus lower bound. f (xt) − f (x∗) ≥ 1
t −

1
n

⇒ Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta · Conditional Gradients 8 / 34

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({e1 , . . . , en}) the probability sim-
plex and f = ∥x∥2.

Clearly. arg minx∈P f (x) = x∗ � 1
n e with f (x∗) = 1

n .

Observe. Starting from any vertex ei after t < n
iterations we picked up at most t vertices of P.

Easy to see. For any iterate xt:

f (xt) ≥ min
x∈conv(𝒮)
𝒮⊆{e1 ,...,en}
|𝒮|≤t

f (x) = 1/t,

Thus lower bound. f (xt) − f (x∗) ≥ 1
t −

1
n

⇒ Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta · Conditional Gradients 8 / 34

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({e1 , . . . , en}) the probability sim-
plex and f = ∥x∥2.

Clearly. arg minx∈P f (x) = x∗ � 1
n e with f (x∗) = 1

n .

Observe. Starting from any vertex ei after t < n
iterations we picked up at most t vertices of P.

Easy to see. For any iterate xt:

f (xt) ≥ min
x∈conv(𝒮)
𝒮⊆{e1 ,...,en}
|𝒮|≤t

f (x) = 1/t,

Thus lower bound. f (xt) − f (x∗) ≥ 1
t −

1
n

⇒ Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta · Conditional Gradients 8 / 34

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({e1 , . . . , en}) the probability sim-
plex and f = ∥x∥2.

Clearly. arg minx∈P f (x) = x∗ � 1
n e with f (x∗) = 1

n .

Observe. Starting from any vertex ei after t < n
iterations we picked up at most t vertices of P.

Easy to see. For any iterate xt:

f (xt) ≥ min
x∈conv(𝒮)
𝒮⊆{e1 ,...,en}
|𝒮|≤t

f (x) = 1/t,

Thus lower bound. f (xt) − f (x∗) ≥ 1
t −

1
n

⇒ Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta · Conditional Gradients 8 / 34

A matching lower bound
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

Consider P = conv({e1 , . . . , en}) the probability sim-
plex and f = ∥x∥2.

Clearly. arg minx∈P f (x) = x∗ � 1
n e with f (x∗) = 1

n .

Observe. Starting from any vertex ei after t < n
iterations we picked up at most t vertices of P.

Easy to see. For any iterate xt:

f (xt) ≥ min
x∈conv(𝒮)
𝒮⊆{e1 ,...,en}
|𝒮|≤t

f (x) = 1/t,

Thus lower bound. f (xt) − f (x∗) ≥ 1
t −

1
n

⇒ Any LP method converges no faster than O(1/t).

Note: Strong consequences for strongly convex case
and also provides a sparsity vs. optimality trade-off.

see also for non-smooth variants: [Braun et al., 2017a]

Sebastian Pokutta · Conditional Gradients 8 / 34

Significant progress over the recent years (incomplete list)
Conditional Gradients a.k.a. the Frank-Wolfe algorithm

1. Strongly convex case [Garber and Hazan, 2013, Lacoste-Julien and Jaggi, 2015, Lan and Zhou, 2016, Garber and Meshi, 2016]

2. Non-convex case [Lacoste-Julien, 2016]

3. Online case [Hazan and Kale, 2012]

4. Stochastic variants and adaptive gradients [Hazan and Luo, 2016, Reddi et al., 2016, Combettes et al., 2020]

5. Sharp functions and sharp regions [Kerdreux et al., 2019, 2021a,b]

6. Acceleration [Diakonikolas et al., 2020, Bach, 2020, Carderera et al., 2021a]

7. Specialized variants [Freund et al., 2017, Braun et al., 2017c, 2019b,a]

Conditional Gradients very competitive: simple, robust, real-world performance.

For more background etc see our survey! [Braun et al., 2022]

Sebastian Pokutta · Conditional Gradients 9 / 34

Conditional Gradient-based Identification
of Nonlinear Dynamics (CINDy)

—Recovering Dynamics from Noisy Data—

joint work with Alejandro Carderera, Christof Schütte, Martin Weiser
[Carderera et al., 2021b]

Sebastian Pokutta · Conditional Gradients 10 / 34

Physical Systems via ODEs
CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary differential equation.

¤x(t) = F (x(t)) ,
where x(t) ∈ Rd denotes the state of the system at time t.

Usually. F : Rd → Rd (usually) linear combination of simpler ansatz functions
𝒟 = {𝜓i | i ∈ ⟦1, n⟧} with 𝜓i : Rd → R:

¤x(t) = F (x(t)) = ΞT𝜓(x(t)) =

𝜉1
...

𝜉d

𝜓1(x(t))

...

𝜓n(x(t))

 ,
where Ξ ∈ Rn×d is a typically sparse matrix and 𝜓(x(t)) = [𝜓1(x(t)), · · · ,𝜓n(x(t))]T ∈ Rn.

Sebastian Pokutta · Conditional Gradients 11 / 34

Physical Systems via ODEs
CINDy: Recovering Dynamics from Noisy Data

Physical systems described by ordinary differential equation.

¤x(t) = F (x(t)) ,
where x(t) ∈ Rd denotes the state of the system at time t.

Usually. F : Rd → Rd (usually) linear combination of simpler ansatz functions
𝒟 = {𝜓i | i ∈ ⟦1, n⟧} with 𝜓i : Rd → R:

¤x(t) = F (x(t)) = ΞT𝜓(x(t)) =

𝜉1
...

𝜉d

𝜓1(x(t))

...

𝜓n(x(t))

 ,
where Ξ ∈ Rn×d is a typically sparse matrix and 𝜓(x(t)) = [𝜓1(x(t)), · · · ,𝜓n(x(t))]T ∈ Rn.

Sebastian Pokutta · Conditional Gradients 11 / 34

Sparse Identification of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al., 2016]

and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

N
ov

em
be

r 1
9,

 2
02

0

Focus on component-wise formulation of sparse recovery problem, and solve a
relaxation of:

min
𝜉j∈Rd

m∑
i=1
∥ ¤xi − 𝜉T

j 𝜓(xi)∥22 + 𝛼∥𝜉j∥0 ,

for each j ∈ ⟦1, d⟧ for a suitably chosen 𝛼 ≥ 0.

Note. Earlier approach via Gröbner/Border Bases for homogeneous. [Heldt et al., 2009]

Sebastian Pokutta · Conditional Gradients 12 / 34

Sparse Identification of Nonlinear Dynamics (SINDy)
CINDy: Recovering Dynamics from Noisy Data

[Brunton et al., 2016]

of the time derivative of the state _x in time. Here, the right-hand-
side dynamics are identified in the space of polynomials ΘðXÞ in
ðx, y, zÞ up to fifth order, although other functions such as
sin, cos, exp, or higher-order polynomials may be included:

ΘðXÞ=

"

xðtÞ
j

j
yðtÞ
j

j
zðtÞ
j

j
xðtÞ2

j

j
xðtÞyðtÞ

j

j
⋯ z ðtÞ5

j

j

#

.

Each column of ΘðXÞ represents a candidate function for the right-
hand sideofEq.1. Becauseonly a fewof these terms are active in each
row of f, we solve the sparse regression problem inEq. 3 to determine
the sparse vectors of coefficients Ξ= ½ ξ1 ξ2 ⋯ ξn $ that determine
which terms are active in the dynamics. This is illustrated schemati-
cally in Fig. 1, where sparse vectors ξk are found to represent the
derivative _xk as a linear combination of the fewest terms in ΘðXÞ.
In the Lorenz example, the ability to capture dynamics on the

attractor is more important than the ability to predict an individual
trajectory, because chaos will quickly cause any small variations in
initial conditions or model coefficients to diverge exponentially.
As shown in Fig. 1, the sparse model accurately reproduces the
attractor dynamics from chaotic trajectory measurements. The
algorithm not only identifies the correct terms in the dynamics, but
it accurately determines the coefficients to within .03% of the true
values. We also explore the identification of the dynamics when
only noisy state measurements are available (SI Appendix, Fig. S7).
The correct dynamics are identified, and the attractor is preserved
for surprisingly large noise values. In SI Appendix, section 4.5, we
reconstruct the attractor dynamics in the Lorenz system using
time-delay coordinates from a single measurement xðtÞ.

PDE for Vortex Shedding Behind an Obstacle.The Lorenz system is a
low-dimensional model of more realistic high-dimensional PDE
models for fluid convection in the atmosphere. Many systems of
interest are governed by PDEs (24), such as weather and climate,
epidemiology, and the power grid, to name a few. Each of these
examples is characterized by big data, consisting of large spatially
resolved measurements consisting of millions or billions of states
and spanning orders of magnitude of scale in both space and
time. However, many high-dimensional, real-world systems evolve
on a low-dimensional attractor, making the effective dimension
much smaller (35).
Here we generalize the SINDy method to an example in fluid dy-

namics that typifies many of the challenges outlined above. In the
context of data from a PDE, our algorithm shares some connections to
the dynamic mode decomposition, which is a linear dynamic regression

(41–43). Data are collected for the fluid flow past a cylinder at
Reynolds number 100 using direct numerical simulations of the 2D
Navier–Stokes equations (44, 45). The nonlinear dynamic relationship
between the dominant coherent structures is identified from these flow-
field measurements with no knowledge of the governing equations.
The flow past a cylinder is a particularly interesting example be-

cause of its rich history in fluid mechanics and dynamical systems. It
has long been theorized that turbulence is the result of a series of
Hopf bifurcations that occur as the flow velocity increases (46), giving
rise to more rich and intricate structures in the fluid. After 15 years,
the first Hopf bifurcation was discovered in a fluid system, in the
transition from a steady laminar wake to laminar periodic vortex
shedding at Reynolds number 47 (47, 48). This discovery led to a
long-standing debate about how a Hopf bifurcation, with cubic
nonlinearity, can be exhibited in aNavier–Stokes fluid with quadratic
nonlinearities. After 15 more years, this was resolved using a sepa-
ration of timescales and a mean-field model (49), shown in Eq. 8. It
was shown that coupling between oscillatorymodes and the base flow
gives rise to a slow manifold (Fig. 2, Left), which results in algebraic
terms that approximate cubic nonlinearities on slow timescales.
This example provides a compelling test case for the proposed

algorithm, because the underlying form of the dynamics took
nearly three decades for experts in the community to uncover.
Because the state dimension is large, consisting of the fluid state
at hundreds of thousands of grid points, it is first necessary to
reduce the dimension of the system. The POD (35, 37), provides
a low-rank basis resulting in a hierarchy of orthonormal modes
that, when truncated, capture the most energy of the original
system for the given rank truncation. The first two most energetic
POD modes capture a significant portion of the energy, and
steady-state vortex shedding is a limit cycle in these coordinates.
An additional mode, called the shift mode, is included to capture
the transient dynamics connecting the unstable steady state (“C”
in Fig. 2) with the mean of the limit cycle (49) (“B” in Fig. 2).
These modes define the x, y, z coordinates in Fig. 2.
In the coordinate system described above, the mean-field

model for the cylinder dynamics is given by (49)

_x= μx−ωy+Axz, [8a]

_y=ωx+ μy+Ayz, [8b]

_z=−λ
!
z− x2 − y2

"
. [8c]

If λ is large, so that the z dynamics are fast, then the mean flow
rapidly corrects to be on the (slow) manifold z= x2 + y2 given by

Fig. 2. Example of high-dimensional dynamical system from fluid dynamics. The vortex shedding past a cylinder is a prototypical example that is used for flow
control, with relevance to many applications, including drag reduction behind vehicles. The vortex shedding is the result of a Hopf bifurcation. However, because
the Navier–Stokes equations have quadratic nonlinearity, it is necessary to use a mean-field model with a separation of timescales, where a fast mean-field
deformation is slave to the slow vortex shedding dynamics. The parabolic slow manifold is shown (Left), with the unstable fixed point (C), mean flow (B), and
vortex shedding (A). A POD basis and shift mode are used to reduce the dimension of the problem (Middle Right). The identified dynamics closely match the true
trajectory in POD coordinates, and most importantly, they capture the quadratic nonlinearity and timescales associated with the mean-field model.

Brunton et al. PNAS | April 12, 2016 | vol. 113 | no. 15 | 3935

A
PP

LI
ED

M
A
TH

EM
A
TI
CS

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

N
ov

em
be

r 1
9,

 2
02

0

the amplitude of vortex shedding. When substituting this alge-
braic relationship into Eqs. 8a and 8b, we recover the Hopf
normal form on the slow manifold.
With a time history of these three coordinates, the proposed al-

gorithm correctly identifies quadratic nonlinearities and reproduces
a parabolic slow manifold. Note that derivative measurements are
not available, but are computed from the state variables. In-
terestingly, when the training data do not include trajectories that
originate off of the slow manifold, the algorithm incorrectly iden-
tifies cubic nonlinearities, and fails to identify the slow manifold.

Normal Forms, Bifurcations, and Parameterized Systems. In practice,
many real-world systems depend on parameters, and dramatic
changes, or bifurcations, may occur when the parameter is var-
ied. The SINDy algorithm is readily extended to encompass
these important parameterized systems, allowing for the dis-
covery of normal forms (31, 50) associated with a bifurcation
parameter μ. First, we append μ to the dynamics:

_x= fðx; μÞ, [9a]

_μ= 0. [9b]

It is then possible to identify fðx; μÞ as a sparse combination of
functions of x as well as the bifurcation parameter μ.
Identifying parameterized dynamics is shown in two examples:

the 1D logistic map with stochastic forcing,

xk+1 = μxkð1− xkÞ+ ηk,

and the 2D Hopf normal form (51),

_x= μx+ωy−Ax
!
x2 + y2

"

_y=−ωx+ μy−Ay
!
x2 + y2

"
.

The logistic map is a classical model for population dynamics,
and the Hopf normal form models spontaneous oscillations in
chemical reactions, electrical circuits, and fluid instability.
The noisy measurements and the sparse dynamic reconstruc-

tions for both examples are shown in Fig. 3. In the logistic map
example, the stochastically forced trajectory is sampled at 10
discrete parameter values, shown in red. From these measure-
ments, the correct parameterized dynamics are identified. The
parameterization is accurate enough to capture the cascade of
bifurcations as μ is increased, resulting in the detailed bifurcation
diagram in Fig. 3. Parameters are identified to within .1% of true
values (SI Appendix, Appendix C).

In the Hopf normal-form example, noisy state measurements
from eight parameter values are sampled, with data collected on the
blue and red trajectories in Fig. 3 (Top Right). Noise is added to the
position measurements to simulate sensor noise, and the total var-
iation regularized derivative (33) is used. In this example, the nor-
mal form is correctly identified, resulting in accurate limit cycle
amplitudes and growth rates (Bottom Right). The correct identifi-
cation of a normal form depends critically on the choice of variables
and the nonlinear basis functions used for ΘðxÞ. In practice, these
choices may be informed by machine learning and data mining, by
partial knowledge of the physics, and by expert human intuition.
Similarly, time dependence and external forcing or feedback

control uðtÞ may be added to the vector field:

_x= fðx, uðtÞ, tÞ,

_t= 1.

Generalizing the SINDy algorithm makes it possible to analyze
systems that are externally forced or controlled. For example, the
climate is both parameterized (50) and has external forcing, includ-
ing carbon dioxide and solar radiation. The financial market is an-
other important example with forcing and active feedback
control.

Discussion
In summary, we have demonstrated a powerful technique to identify
nonlinear dynamical systems from data without assumptions on the
form of the governing equations. This builds on prior work in sym-
bolic regression but with innovations related to sparse regression,
which allow our algorithms to scale to high-dimensional systems.We
demonstrate this method on a number of example systems exhibiting
chaos, high-dimensional data with low-rank coherence, and param-
eterized dynamics. As shown in the Lorenz example, the ability to
predict a specific trajectory may be less important than the ability to
capture the attractor dynamics. The example from fluid dynamics
highlights the remarkable ability of this method to extract dynamics
in a fluid system that took three decades for experts in the com-
munity to explain. There are numerous fields where this methodmay
be applied, where there are ample data and the absence of governing
equations, including neuroscience, climate science, epidemiology,
and financial markets. Finally, normal forms may be discovered by
including parameters in the optimization, as shown in two examples.
The identification of sparse governing equations and parameteriza-
tions marks a significant step toward the long-held goal of intelligent,
unassisted identification of dynamical systems.
We have demonstrated the robustness of the sparse dynamics

algorithm to measurement noise and unavailability of derivative

Fig. 3. SINDy algorithm is able to
identify normal forms and capture
bifurcations, as demonstrated on the
logistic map (Left) and the Hopf nor-
mal form (Right). Noisy data from
both systems are used to train models.
For the logistic map, a handful of
parameter values μ (red lines), are
used for the training data, and the
correct normal form and bifurcation
sequence is captured (below). Noisy
data for the Hopf normal form are
collected at a few values of μ, and the
total variation derivative (33) is used
to compute time derivatives. The ac-
curate Hopf normal form is repro-
duced (below). The nonlinear terms
identified by the algorithm are in SI
Appendix, section 4.4 and Appendix C.

3936 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

N
ov

em
be

r 1
9,

 2
02

0

Characteristics of SINDy.
1. Works on a very wide variety of dynamics
2. Recovers sparse dynamics very well in the noise-free case
3. However when data is noisy, picks up many auxiliary terms to explain noise.

Sebastian Pokutta · Conditional Gradients 13 / 34

The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

1: x0 ∈ P, 𝒮0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: 𝒮t+1 ← 𝒮t ∪ {vt}
5: xt+1 ← arg minx∈conv(𝒮t+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW offers much higher sparsity
• Speed: Convergence speed is (much) higher but

iterations very costly
• Projection-free: While still projection-free requires

solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒While expensive can be useful if sheer speed is not a priority but sparsity is.

Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Conditional Gradients 14 / 34

The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

1: x0 ∈ P, 𝒮0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: 𝒮t+1 ← 𝒮t ∪ {vt}
5: xt+1 ← arg minx∈conv(𝒮t+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW offers much higher sparsity
• Speed: Convergence speed is (much) higher but

iterations very costly
• Projection-free: While still projection-free requires

solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒While expensive can be useful if sheer speed is not a priority but sparsity is.

Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Conditional Gradients 14 / 34

The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

1: x0 ∈ P, 𝒮0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: 𝒮t+1 ← 𝒮t ∪ {vt}
5: xt+1 ← arg minx∈conv(𝒮t+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW offers much higher sparsity
• Speed: Convergence speed is (much) higher but

iterations very costly
• Projection-free: While still projection-free requires

solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒While expensive can be useful if sheer speed is not a priority but sparsity is.

Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Conditional Gradients 14 / 34

The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

1: x0 ∈ P, 𝒮0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: 𝒮t+1 ← 𝒮t ∪ {vt}
5: xt+1 ← arg minx∈conv(𝒮t+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW offers much higher sparsity
• Speed: Convergence speed is (much) higher but

iterations very costly
• Projection-free: While still projection-free requires

solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒While expensive can be useful if sheer speed is not a priority but sparsity is.

Note. Sparsity not only a function of formulation but also algorithm and its trajectory.

Sebastian Pokutta · Conditional Gradients 14 / 34

The Fully-Corrective Frank-Wolfe Algorithm
CINDy: Recovering Dynamics from Noisy Data

Algorithm Fully-Corrective FW Algorithm
(FCFW)

1: x0 ∈ P, 𝒮0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈P
⟨∇f (xt), v⟩

4: 𝒮t+1 ← 𝒮t ∪ {vt}
5: xt+1 ← arg minx∈conv(𝒮t+1) f (x)
6: end for

[Holloway, 1974]

• Sparsity: FCFW offers much higher sparsity
• Speed: Convergence speed is (much) higher but

iterations very costly
• Projection-free: While still projection-free requires

solver for subproblems

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x∗

x1

x2
x3 x4x5 x6

x7

−∇ f (x14)

Vanilla FW Algorithm

x0

0.
1

0.30.
5

0.
7

0.7

0.
9

0.9

1.
1

1.1

1.
3

1.3

1.
5

1.51.
7

1.7

x1

x2

x∗

Fully-Corrective FW Algorithm

⇒While expensive can be useful if sheer speed is not a priority but sparsity is.

Note. Sparsity not only a function of formulation but also algorithm and its trajectory.
Sebastian Pokutta · Conditional Gradients 14 / 34

Sparsity of different FW variants
CINDy: Recovering Dynamics from Noisy Data

Example. Recovery of a signal x∗ in ∥.∥7 norm, i.e., objective ∥x − x∗∥27.

Sebastian Pokutta · Conditional Gradients 15 / 34

CINDy vs SINDy: comparison of the methods
CINDy: Recovering Dynamics from Noisy Data

SINDy.
Solves approximation of

min
𝜉j∈Rd

m∑
i=1
∥ ¤xi − 𝜉T

j 𝜓(xi)∥22 + 𝛼∥𝜉j∥0 ,

via Least-Squares Step + Thresholding

CINDy.
Solves

min
∥Ξ∥1,1≤𝛼
Ξ∈Rn×d

∥ ¤X − ΞTΨ(X)∥2F

via Fully-Corrective Frank-Wolfe (or similar)

Advantages of CINDy.
1. Better sparsity
2. Better noise tolerance
3. Allows for inclusion of additional constraints (e.g., conversation laws etc)
4. Control of coefficients due to simple ball with some radius 𝛼

Sebastian Pokutta · Conditional Gradients 16 / 34

CINDy vs SINDy: comparison of the methods
CINDy: Recovering Dynamics from Noisy Data

SINDy.
Solves approximation of

min
𝜉j∈Rd

m∑
i=1
∥ ¤xi − 𝜉T

j 𝜓(xi)∥22 + 𝛼∥𝜉j∥0 ,

via Least-Squares Step + Thresholding

CINDy.
Solves

min
∥Ξ∥1,1≤𝛼
Ξ∈Rn×d

∥ ¤X − ΞTΨ(X)∥2F

via Fully-Corrective Frank-Wolfe (or similar)

Advantages of CINDy.
1. Better sparsity
2. Better noise tolerance
3. Allows for inclusion of additional constraints (e.g., conversation laws etc)
4. Control of coefficients due to simple ball with some radius 𝛼

Sebastian Pokutta · Conditional Gradients 16 / 34

CINDy vs SINDy: a recovery example
CINDy: Recovering Dynamics from Noisy Data

Kuramoto model. d = 10 weakly-coupled identical oscillators. For oscillator i:

¤xi = 𝜔i +
K
d

d∑
j=1

sin
(
xj − xi

)
+ h sin (xi)

Number of data points. 3000 generated from 100 experiments (30 per experiment with
additive random noise of 1.0−3.

Sebastian Pokutta · Conditional Gradients 17 / 34

Sample Efficiency: Fermi-Pasta-Ulam-Tsingou model
CINDy: Recovering Dynamics from Noisy Data

Left: differential formulation / Right: integral formulation.

Sebastian Pokutta · Conditional Gradients 18 / 34

CINDy vs SINDy: sparsity matters - the most parsimonious model
CINDy: Recovering Dynamics from Noisy Data

Fermi-Pasta-Ulam-Tsingou model.

Kuramoto model.

Sebastian Pokutta · Conditional Gradients 19 / 34

Stochastic Conditional Gradients

—Training Neural Networks with Frank-Wolfe—

joint work with Christoph Spiegel and Max Zimmer
[Pokutta et al., 2020]

Sebastian Pokutta · Conditional Gradients 20 / 34

The Stochastic Frank-Wolfe Algorithm (with Momentum)
Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)
1: m0 ← 0
2: for t = 0 to T − 1 do
3: uniformly sample i.i.d. i1 , . . . , ibt ∼ ⟦1,m⟧
4: ∇̃L(𝜃t) ← 1

bt

∑bt
j=1 ∇ℓij (𝜃t)

5: mt ← (1 − 𝜌t)mt−1 + 𝜌t ∇̃L(𝜃t)
6: vt ← arg minv∈P ⟨mt , v⟩
7: 𝜃t+1 ← 𝜃t + 𝛼t(vt − 𝜃t)
8: end for

e.g., [Reddi et al., 2016]

• Convergence rate: In the non-convex stochastic
smooth case O(1/

√
T)-rate

• Speed: Works well for very large data sets due to
mini-batched gradients

• Projection-free: Remains projection-free and allows
for constraints

0.5

1.0

1.5

tr
ai

ni
ng

se
tl

os
s

0 5 10 15 20
epochs

0%

25%

50%

75%

100%

te
st

se
ta

cc
ur

ac
y

0 1M 2M 3M
gradients calculated

SFW
SVRF
ORGFW
MSFW

SFW variants

Sebastian Pokutta · Conditional Gradients 21 / 34

The Stochastic Frank-Wolfe Algorithm (with Momentum)
Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)
1: m0 ← 0
2: for t = 0 to T − 1 do
3: uniformly sample i.i.d. i1 , . . . , ibt ∼ ⟦1,m⟧
4: ∇̃L(𝜃t) ← 1

bt

∑bt
j=1 ∇ℓij (𝜃t)

5: mt ← (1 − 𝜌t)mt−1 + 𝜌t ∇̃L(𝜃t)
6: vt ← arg minv∈P ⟨mt , v⟩
7: 𝜃t+1 ← 𝜃t + 𝛼t(vt − 𝜃t)
8: end for

e.g., [Reddi et al., 2016]

• Convergence rate: In the non-convex stochastic
smooth case O(1/

√
T)-rate

• Speed: Works well for very large data sets due to
mini-batched gradients

• Projection-free: Remains projection-free and allows
for constraints

0.5

1.0

1.5

tr
ai

ni
ng

se
tl

os
s

0 5 10 15 20
epochs

0%

25%

50%

75%

100%

te
st

se
ta

cc
ur

ac
y

0 1M 2M 3M
gradients calculated

SFW
SVRF
ORGFW
MSFW

SFW variants

Sebastian Pokutta · Conditional Gradients 21 / 34

The Stochastic Frank-Wolfe Algorithm (with Momentum)
Training Neural Networks with Conditional Gradients

Algorithm Stochastic FW Algorithm (SFW)
1: m0 ← 0
2: for t = 0 to T − 1 do
3: uniformly sample i.i.d. i1 , . . . , ibt ∼ ⟦1,m⟧
4: ∇̃L(𝜃t) ← 1

bt

∑bt
j=1 ∇ℓij (𝜃t)

5: mt ← (1 − 𝜌t)mt−1 + 𝜌t ∇̃L(𝜃t)
6: vt ← arg minv∈P ⟨mt , v⟩
7: 𝜃t+1 ← 𝜃t + 𝛼t(vt − 𝜃t)
8: end for

e.g., [Reddi et al., 2016]

• Convergence rate: In the non-convex stochastic
smooth case O(1/

√
T)-rate

• Speed: Works well for very large data sets due to
mini-batched gradients

• Projection-free: Remains projection-free and allows
for constraints

0.5

1.0

1.5

tr
ai

ni
ng

se
tl

os
s

0 5 10 15 20
epochs

0%

25%

50%

75%

100%

te
st

se
ta

cc
ur

ac
y

0 1M 2M 3M
gradients calculated

SFW
SVRF
ORGFW
MSFW

SFW variants

Sebastian Pokutta · Conditional Gradients 21 / 34

Relevance maps under different optimizers / feasible regions
Training Neural Networks with Conditional Gradients

SGD Adam Adagrad Adadelta L1-norm ball K-sparse polytope L2-norm ball L5-norm ball Hypercube

Sebastian Pokutta · Conditional Gradients 22 / 34

Robust Rate-Distortion Explanations
via Conditional Gradients

joint work with Mathieu Besançon and Jan Macdonald
[Macdonald et al., 2022]

Sebastian Pokutta · Conditional Gradients 23 / 34

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) B D(S,Φ, x,V) B Ey∼V

[
1
2 (Φ(x) −Φ(y))

2
]

︸ ︷︷ ︸
Stability of Φ when varying outside of S

Rate-Distortion function.

R(𝜀) B min{card(S) : D(S) ≤ 𝜀}︸ ︷︷ ︸
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : ∥s∥1 ≤ 𝜆}︸ ︷︷ ︸
given budet 𝜆 find s with lowest distortion aka most relevant pixels

⇒ Structured optimization problem over ℓ1-ball.

⇓

⇓

Sebastian Pokutta · Conditional Gradients 24 / 34

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) B D(S,Φ, x,V) B Ey∼V

[
1
2 (Φ(x) −Φ(y))

2
]

︸ ︷︷ ︸
Stability of Φ when varying outside of S

Rate-Distortion function.

R(𝜀) B min{card(S) : D(S) ≤ 𝜀}︸ ︷︷ ︸
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : ∥s∥1 ≤ 𝜆}︸ ︷︷ ︸
given budet 𝜆 find s with lowest distortion aka most relevant pixels

⇒ Structured optimization problem over ℓ1-ball.

⇓

⇓

Sebastian Pokutta · Conditional Gradients 24 / 34

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) B D(S,Φ, x,V) B Ey∼V

[
1
2 (Φ(x) −Φ(y))

2
]

︸ ︷︷ ︸
Stability of Φ when varying outside of S

Rate-Distortion function.

R(𝜀) B min{card(S) : D(S) ≤ 𝜀}︸ ︷︷ ︸
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : ∥s∥1 ≤ 𝜆}︸ ︷︷ ︸
given budet 𝜆 find s with lowest distortion aka most relevant pixels

⇒ Structured optimization problem over ℓ1-ball.

⇓

⇓

Sebastian Pokutta · Conditional Gradients 24 / 34

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) B D(S,Φ, x,V) B Ey∼V

[
1
2 (Φ(x) −Φ(y))

2
]

︸ ︷︷ ︸
Stability of Φ when varying outside of S

Rate-Distortion function.

R(𝜀) B min{card(S) : D(S) ≤ 𝜀}︸ ︷︷ ︸
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : ∥s∥1 ≤ 𝜆}︸ ︷︷ ︸
given budet 𝜆 find s with lowest distortion aka most relevant pixels

⇒ Structured optimization problem over ℓ1-ball.

⇓

⇓

Sebastian Pokutta · Conditional Gradients 24 / 34

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) B D(S,Φ, x,V) B Ey∼V

[
1
2 (Φ(x) −Φ(y))

2
]

︸ ︷︷ ︸
Stability of Φ when varying outside of S

Rate-Distortion function.

R(𝜀) B min{card(S) : D(S) ≤ 𝜀}︸ ︷︷ ︸
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : ∥s∥1 ≤ 𝜆}︸ ︷︷ ︸
given budet 𝜆 find s with lowest distortion aka most relevant pixels

⇒ Structured optimization problem over ℓ1-ball.

⇓

⇓

Sebastian Pokutta · Conditional Gradients 24 / 34

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) B D(S,Φ, x,V) B Ey∼V

[
1
2 (Φ(x) −Φ(y))

2
]

︸ ︷︷ ︸
Stability of Φ when varying outside of S

Rate-Distortion function.

R(𝜀) B min{card(S) : D(S) ≤ 𝜀}︸ ︷︷ ︸
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : ∥s∥1 ≤ 𝜆}︸ ︷︷ ︸
given budet 𝜆 find s with lowest distortion aka most relevant pixels

⇒ Structured optimization problem over ℓ1-ball.

⇓

⇓

Sebastian Pokutta · Conditional Gradients 24 / 34

Rate-Distortion Explanation: the problem formulation
Discrete Optimization in Machine Learning

[Macdonald et al., 2019]
Expected Distortion of S.

D(S) B D(S,Φ, x,V) B Ey∼V

[
1
2 (Φ(x) −Φ(y))

2
]

︸ ︷︷ ︸
Stability of Φ when varying outside of S

Rate-Distortion function.

R(𝜀) B min{card(S) : D(S) ≤ 𝜀}︸ ︷︷ ︸
smallest set of fixings S

After convex relaxation (original problem is hard).

min{D(s) : ∥s∥1 ≤ 𝜆}︸ ︷︷ ︸
given budet 𝜆 find s with lowest distortion aka most relevant pixels

⇒ Structured optimization problem over ℓ1-ball.

⇓

⇓

Sebastian Pokutta · Conditional Gradients 24 / 34

Rate-Distortion Explanation: Examples
Discrete Optimization in Machine Learning

Input PGD 4000 Lagrange 0.05 Lazy AFW 4000

All methods had the same budget for picking relevant pixels. However, sparser solutions of Conditional
Gradients focus weight on most relevant pixels rather than spreading out.

Sebastian Pokutta · Conditional Gradients 25 / 34

Rate-Distortion Explanation: Ordered Relevance
Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ℓ1-constraint.

Sebastian Pokutta · Conditional Gradients 26 / 34

Rate-Distortion Explanation: Ordered Relevance
Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ℓ1-constraint.

Sebastian Pokutta · Conditional Gradients 26 / 34

Rate-Distortion Explanation: Ordered Relevance
Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ℓ1-constraint.

Sebastian Pokutta · Conditional Gradients 26 / 34

Rate-Distortion Explanation: Ordered Relevance
Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ℓ1-constraint.

Sebastian Pokutta · Conditional Gradients 26 / 34

Rate-Distortion Explanation: Ordered Relevance
Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ℓ1-constraint.

Sebastian Pokutta · Conditional Gradients 26 / 34

Rate-Distortion Explanation: Ordered Relevance
Discrete Optimization in Machine Learning

While a good first step, often not sufficient.

Obtain Ordered Relevance. Solve structured problem over Birkhoff polytope to obtain
ordered relevance. [Macdonald et al., 2022]

Note. Works only(!) for Frank-Wolfe variant as explicit ℓ1-constraint.

Sebastian Pokutta · Conditional Gradients 26 / 34

Rate-Distortion Explanation: Ordered Relevance Test
Discrete Optimization in Machine Learning

image L-RDE sensitivity

k = 2000 k = 4000 k = 6000 k = 8000 multi-rate

FW

AFW

LCG

LAFW

Figure 7: Relevance mappings for an STL-10 image clas-
si�ed as horse by the network. Multi-rate solutions are
shown in a di�erent colormap to highlight the fact, that
they are not to be viewed as sparse relevance maps but
represent component orderings from least relevant (blue)
to most relevant (yellow).

about 33% of the total number of components. Unlike for
MNIST, there is a considerable di�erence between (L-RDE)
and (MR-RDE). The latter outperforms the original RDE
version across all rates.

Acknowledgements

Research reported in this paper was partially supported
through the Research Campus Modal funded by the Ger-
man Federal Ministry of Education and Research (fund
numbers 05M14ZAM, 05M20ZBM) and the Deutsche
Forschungsgemeinschaft (DFG) through the DFG Cluster
of Excellence MATH+.

References

Berrada, L., Zisserman, A., and Kumar, M. P. (2021).
“Deep Frank-Wolfe For Neural Network Optimization”.
Preprint, arXiv:1811.07591.

Besançon, M., Carderera, A., and Pokutta, S. (2021).
“FrankWolfe.jl: a high-performance and �exible toolbox
for Frank-Wolfe algorithms and Conditional Gradients”.
Preprint, arXiv:2104.06675.

Braun, G., Pokutta, S., and Zink, D. (Jan. 2019). “Lazifying
Conditional Gradient Algorithms”. In: J. Mach. Learn.
Res. 20.1, pp. 2577–2618.

Carderera, A., Besançon, M., and Pokutta, S. (2021). “Simple
steps are all you need: Frank-Wolfe and generalized self-
concordant functions”. Preprint, arXiv:2105.13913.

0.0

0.2

0.4

0.6

0.8

di
st

or
tio

n
(sq

ua
re

d
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

di
st

or
tio

n
(sq

ua
re

d
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

di
st

or
tio

n
(sq

ua
re

d
di

st
.)

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

rate (non-randomized components)

ac
cu

ra
cy

FW (MR-RDE) AFW (MR-RDE) LCG (MR-RDE)
LAFW (MR-RDE) PGD (L-RDE) sensitivity

Figure 8: Relevance ordering test results for STL-10. An
average result over 50 images from the test set (5 images
per class) and 64 noise input samples per image is shown
(shaded regions mark ± standard deviation).

Chakraborty, S., Tomsett, R., Raghavendra, R., Harborne,
D., Alzantot, M., Cerutti, F., Srivastava, M., Preece, A.,
Julier, S., Rao, R. M., Kelley, T. D., Braines, D., Sensoy,
M., Willis, C. J., and Gurram, P. (2017). “Interpretabil-
ity of deep learning models: A survey of results”. In:
2017 IEEE SmartWorld, Ubiquitous Intelligence Comput-
ing, Advanced Trusted Computed, Scalable Computing
Communications, Cloud Big Data Computing, Internet of
People and Smart City Innovation (SmartWorld / SCAL-
COM / UIC / ATC / CBDCom / IOP / SCI), pp. 1–6. ���:
10.1109/UIC-ATC.2017.8397411.

Cho, K., Merriënboer, B. van, Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (Oct. 2014).
“Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation”. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: As-
sociation for Computational Linguistics, pp. 1724–1734.
���: 10.3115/v1/D14-1179.

Coates, A., Ng, A., and Lee, H. (Apr. 2011). “An Analy-
sis of Single-Layer Networks in Unsupervised Feature
Learning”. In: Proceedings of the Fourteenth International
Conference on Arti�cial Intelligence and Statistics. Ed. by
G. Gordon, D. Dunson, and M. Dudík. Vol. 15. Proceed-
ings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, pp. 215–223. ���: http://proceedings.
mlr.press/v15/coates11a.html.

8

Relevance ordering test results for STL-10. An average result over 50 images from the test set (5 images per class)
and 64 noise input samples per image is shown (shaded regions mark ± standard deviation).

Sebastian Pokutta · Conditional Gradients 27 / 34

FrankWolfe.jl

a high-performance Julia package
for Conditional Gradients

joint work with Mathieu Besançon and Alejandro Carderera
[Besançon et al., 2022]

Sebastian Pokutta · Conditional Gradients 28 / 34

Overview and Features
FrankWolfe.jl

In a nutshell.

• Implemented in Julia
• Open source under MIT License
• Generic numeric types: reduced (16, 32, 64 bits) and extended (128 bits, GNU MP)

precision, rationals
• Memory-saving mode, in-place gradient computations
• Scales well (solved some problems with 1B variables)
• Switch components - bring your own LMO / ∇f / step size.

Give it a try.� �
using Pkg
Pkg.add("FrankWolfe")� �

Sebastian Pokutta · Conditional Gradients 29 / 34

Example
FrankWolfe.jl

� �
using LinearAlgebra
using FrankWolfe

n = 1000
xp = rand(n)

f(x) = norm(x - xp)ˆ2

function grad!(storage, x)
@. storage = 2 * (x - xp)
return nothing

end

create a L_1-norm ball of radius 2.5
lmo_radius = 2.5
lmo = FrankWolfe.LpNormLMO{Float64,1}(lmo_radius)

x0 = FrankWolfe.compute_extreme_point(lmo, zeros(n))

x_sol, _ = frank_wolfe(f, grad!, lmo, x0)� �
Sebastian Pokutta · Conditional Gradients 30 / 34

Shameless plug...

Thank you!

0

0.1

0.3

0.5

0.7

0.7

0.9

0.9

1.1

1.1

1.3

1.3

1.
5

1.5

1.7

1.7

1

2

3

4

5

6

Gábor Braun Alejandro Carderera Cyrille W. Combettes

Hamed Hassani Amin Karbasi Aryan Mokhtari Sebastian Pokutta

Conditional Gradient Methods

Conditional Gradient Methods

Gábor Braun, Alejandro Carderera, Cyrille W
Combettes, Hamed Hassani, Amin Karbasi, Aryan

Mokhtari, and Sebastian Pokutta

https://conditional-gradients.org/
https://arxiv.org/abs/2211.14103

Sebastian Pokutta · Conditional Gradients 31 / 34

https://conditional-gradients.org/
https://arxiv.org/abs/2211.14103

References I
F. Bach. On the effectiveness of Richardson extrapolation in machine learning. arXiv preprint 2002.02835v3, July 2020.

M. Besançon, A. Carderera, and S. Pokutta. FrankWolfe.jl: A high-performance and flexible toolbox for Frank–Wolfe algorithms and conditional gradients.
INFORMS Journal on Computing, 2 2022. URL https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2022.1191. [slides].

G. Braun and S. Pokutta. The matching polytope does not admit fully-polynomial size relaxation schemes. In Proceeedings of SODA, 2015a.

G. Braun and S. Pokutta. The matching polytope does not admit fully-polynomial size relaxation schemes. IEEE Transactions on Information Theory, 61(10):
5754–5764, 2015b. doi: 10.1109/TIT.2015.2465864.

G. Braun, S. Pokutta, and D. Zink. Inapproximability of combinatorial problems via small LPs and SDPs. Proceeedings of STOC, 2015.

G. Braun, C. Guzmán, and S. Pokutta. Unifying Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization. IEEE Transactions of Information
Theory, 63(7):4709–4724, 2017a.

G. Braun, R. Jain, T. Lee, and S. Pokutta. Information-theoretic approximations of the nonnegative rank. Computational Complexity, 26(1):147–197, 2017b.

G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. In Proceedings of the International Conference on Machine Learning (ICML), pages
566–575, 2017c. [slides].

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: The unconditioning of conditional gradients. In K. Chaudhuri and R. Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, pages 735–743, 2019a. URL
http://proceedings.mlr.press/v97/braun19a/braun19a.pdf. [slides].

G. Braun, S. Pokutta, and D. Zink. Lazifying Conditional Gradient Algorithms. Journal of Machine Learning Research (JMLR), 20(71):1–42, 2019b. [slides].

G. Braun, A. Carderera, C. W. Combettes, H. Hassani, A. Karbasi, A. Mokthari, and S. Pokutta. Conditional gradient methods. preprint available at
https://arxiv.org/abs/2211.14103, 11 2022.

S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the
national academy of sciences, 113(15):3932–3937, 2016.

A. Carderera, J. Diakonikolas, C. Y. Lin, and S. Pokutta. Parameter-free locally accelerated conditional gradients. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, pages 1283–1293, 2 2021a. [slides].

A. Carderera, S. Pokutta, C. Schütte, and M. Weiser. CINDy: Conditional gradient-based identification of non-linear dynamics – noise-robust recovery, 1 2021b.
Preprint.

C. W. Combettes and S. Pokutta. Complexity of linear minimization and projection on some sets. Operations Research Letters, 49, 7 2021.

C. W. Combettes, C. Spiegel, and S. Pokutta. Projection-Free Adaptive Gradients for Large-Scale Optimization. preprint, 10 2020.

J. Diakonikolas, A. Carderera, and S. Pokutta. Locally Accelerated Conditional Gradients. In S. Chiappa and R. Calandra, editors, Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research, pages 1737–1747, 2020. URL
http://proceedings.mlr.press/v108/diakonikolas20a/diakonikolas20a.pdf. [slides].

Sebastian Pokutta · Conditional Gradients 32 / 34

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2022.1191
http://www.pokutta.com/slides/20210710_FW-simpleSteps-SelfConcordance.pdf
https://app.box.com/s/zsp0hixjz2ha23u1vuyosijjkjdh8kj7
http://proceedings.mlr.press/v97/braun19a/braun19a.pdf
https://app.box.com/s/xbx3z7ws6dxvl3rzgj4jp6forigycooe
https://app.box.com/s/zsp0hixjz2ha23u1vuyosijjkjdh8kj7
https://arxiv.org/abs/2211.14103
http://www.pokutta.com/slides/20210716_PF_LaCG_Poster.pdf
http://proceedings.mlr.press/v108/diakonikolas20a/diakonikolas20a.pdf
https://app.box.com/s/gphkhapso7d1vrfnzqykkb3vx0agxh8w

References II
M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1-2):95–110, 1956.

R. M. Freund, P. Grigas, and R. Mazumder. An extended Frank-Wolfe method with “in-face” directions, and its application to low-rank matrix completion.
SIAM Journal on Optimization, 27(1):319–346, 2017.

D. Garber and E. Hazan. Playing non-linear games with linear oracles. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 420–428.
IEEE, 2013.

D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 1001–1009. Curran
Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-polytopes.
pdf.

E. Hazan and S. Kale. Projection-free online learning. In Proceedings of the 29th International Conference on Machine Learning, 2012.

E. Hazan and H. Luo. Variance-reduced and projection-free stochastic optimization. In International Conference on Machine Learning, pages 1263–1271, 2016.

D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse. Approximate computation of zero-dimensional polynomial ideals. Journal of Symbolic Computation, 44:
1566–1591, 2009.

C. A. Holloway. An extension of the Frank and Wolfe method of feasible directions. Mathematical Programming, 6:14–27, Dec. 1974. doi: 10.1007/BF01580219.

M. Jaggi. Revisiting Frank-Wolfe: projection-free sparse convex optimization. In Proceedings of the 30th International Conference on Machine Learning, pages
427–435, 2013.

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank–Wolfe. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 1275–1283, 2019. URL
http://proceedings.mlr.press/v89/kerdreux19a/kerdreux19a.pdf. [slides].

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Projection-free optimization on uniformly convex sets. In A. Banerjee and K. Fukumizu, editors, Proceedings of The
24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 19–27, 1 2021a. [slides].

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Local and Global Uniform Convexity Conditions. preprint, 2 2021b.

S. Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv preprint arXiv:1607.00345, 2016.

S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 496–504. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf.

G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM Journal on Optimization, 26(2):1379–1409, 2016.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics, 6(5):1–50, 1966.

Sebastian Pokutta · Conditional Gradients 33 / 34

http://papers.nips.cc/paper/6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-polytopes.pdf
http://papers.nips.cc/paper/6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-polytopes.pdf
http://papers.nips.cc/paper/6115-linear-memory-and-decomposition-invariant-linearly-convergent-conditional-gradient-algorithm-for-structured-polytopes.pdf
http://proceedings.mlr.press/v89/kerdreux19a/kerdreux19a.pdf
https://app.box.com/s/prd32r6xmuef2k4gah23rd0egllz9rv5
https://app.box.com/s/36wj0o8le96rrfdxec774wk7rrdp2vlm
http://papers.nips.cc/paper/5925-on-the-global-linear-convergence-of-frank-wolfe-optimization-variants.pdf

References III

J. Macdonald, S. Wäldchen, S. Hauch, and G. Kutyniok. A rate-distortion framework for explaining neural network decisions. arXiv preprint arXiv:1905.11092,
2019.

J. Macdonald, M. Besançon, and S. Pokutta. Interpretable neural networks with Frank–Wolfe: Sparse relevance maps and relevance orderings, 5 2022. To
appear in Proceedings of ICML.

S. Pokutta, C. Spiegel, and M. Zimmer. Deep Neural Network Training with Frank-Wolfe. preprint, 10 2020.

S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Stochastic Frank-Wolfe methods for nonconvex optimization. In 2016 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 1244–1251. IEEE, 2016.

T. Rothvoss. The matching polytope has exponential extension complexity. In Symposium on Theory of Computing, pages 263–272, 2014.

Sebastian Pokutta · Conditional Gradients 34 / 34

	Introduction
	Conditional Gradients: the basics
	Fully-Corrective Frank-Wolfe
	Stochastic Frank-Wolfe
	References

	anm1:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:
	pbs@ARFix@1:
	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@44:
	pbs@ARFix@45:
	pbs@ARFix@46:
	pbs@ARFix@47:
	pbs@ARFix@48:
	pbs@ARFix@49:
	pbs@ARFix@50:
	pbs@ARFix@51:
	pbs@ARFix@52:
	pbs@ARFix@53:
	pbs@ARFix@54:
	pbs@ARFix@55:
	pbs@ARFix@56:
	pbs@ARFix@57:
	pbs@ARFix@58:
	pbs@ARFix@59:
	pbs@ARFix@60:
	pbs@ARFix@61:
	pbs@ARFix@62:
	pbs@ARFix@63:
	pbs@ARFix@64:
	pbs@ARFix@65:
	pbs@ARFix@66:
	pbs@ARFix@67:
	pbs@ARFix@68:
	pbs@ARFix@69:
	pbs@ARFix@70:
	pbs@ARFix@71:
	pbs@ARFix@72:
	pbs@ARFix@73:
	pbs@ARFix@74:
	pbs@ARFix@75:
	pbs@ARFix@76:
	pbs@ARFix@77:
	pbs@ARFix@78:
	pbs@ARFix@79:
	pbs@ARFix@80:
	pbs@ARFix@81:
	pbs@ARFix@82:
	pbs@ARFix@83:

