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Linear Fully-Connected Networks

activation = identity & network structure = fully-connected
This network parametrizes linear maps:
W R2><4 % R3><2 ]R3><47

(Wl, W2) = W2W1.

Its function space is

Mo = {W € R¥>** | rank(W) < 2}.

In general: i : RKXko o RRexki o o Rlaxki-1 __ Rkuxko,
(Wl,Wz,...,WL) st W[_ W2W1.

Its function space M, = im(u) = {W € RkXko | yank(W) < r}, where
r := min(ko, ..., k), is an algebraic variety.
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Linear Group-Equivariant Networks
Running Example
Consider an autoencoder  : R?X? x R9%2 — R (Wy, Wh) — WolW)
with function space My = im(u) = {W € R%*® | rank(W) < 2}.

a1 | 912 | 913
Its inputs and outputs are 3 x 3 images: | ap1 | ax | a3 | € R°.

d31 | 432 | 433

Consider the clockwise rotation by 90°:

a1 | a2 | a3 a3y | a»1 | aut
B )
o RIS o' dos | —+lazy1'ass F A,

d31 | 932 | 433 d33 | 923 | 413

Which W € M, are equivariant under o7
Which are invariant?



example cont'd
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9 9
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W € R%%? is equivariant under o iff
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The linear space £7 of o-equivariant W € R%*? intersected with the function
space My = {W € R%*? | rank(W) < 2} of our autoencoder
is an algebraic variety with

o 10 irreducible components over C

& 4 irreducible components over R
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There is no neural network whose function space is £7 N M, |

Any neural network can parametrize at most one of the real irreducible
components of £7 N M.
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example cont'd
W e R9%9 is invariant under o iff
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The linear space Z° of o-invariant W € R%*? intersected with the function
space My = {W € R%*? | rank(W) < 2} is an irreducible algebraic variety
=~ {A € R?*3 | rank(A) < 2}.
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Invariance

Consider M, = {W € R™*" | rank(W) < r} and 0 € S,,.
Decompose 0 = w1 o mp 0 ... o 7k into disjoint cycles.

Lemma: The linear space Z7 of g-invariant W € R™*" consists of all
matrices W whose columns indexed by 7; are equal, for all i =1,2,..., k.
Hence, Z° N M, = {W € R™* | rank(W) < r} is an irreducible variety.

Lemma: Let G C S,
The set of G-invariant W € R™*" is Z¢ for some o € S,,.

What are all ways to parametrize /° N M, with autoencoders?

Lemma: {(A, B) € R™k x R¥*" | rank(AB) = k,AB € I°} =
{A € R™k | rank(A) = k} x {B € R¥*" | columns indexed by ; are equal}

= ¢ induces weight sharing on the encoder!
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Equivariance

Consider M, = {W € R™" | rank(W) < r} and 0 € S, represented by
P, € R™",

Idea: Let T € GL,,.
W is P,-equivariant iff T-'WT is TP, T-equivariant.

This base change also preserves rank!
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da11 | d12 | 913 da31 | d21 | d11

o:R%— ng az1 | @2 | @23 [F——|ad32 | a2 | 312

431 | 432 | a33 a33 | d23 | d13

P = diagonalization of P, P-equivariant matrices

(ls(0) 1 0) 0] _811 0] (0] 0] a1 (0] (0] (0] di13
0/ 0/0 0 0 (O o 0 (0] 0 ¢c» 0 O 0]
00 -1 0 (020 om0 0 0 b O 0]
00 0 —i 00 00 dip 000 =0 dip -0
10 0 0] ani 0 0] 0 ano 0] 0] 0] dans
0 O = 0550 0 0 o1 0 O 0 ¢ 0 -0 0]
00 -1 0 0 0 by O 0 0 by O 0]
00 0 —i 08 00" a5y [0 00 a0
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P = diagonalization of P, P-equivariant matrices

d11 d12 413
1 a1 ax a3
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[a11 a12 a13
dp1 dzp 43
d31 d32 433
b1 bio
Ye— bo1 b
C11 C12
€1 C»
di di
do1 x|

There are 10 ways how W can have rank 2:
o One of the diagonal blocks has rank 2;  ~» 4 components of £ N M,
other blocks are 0
¢ Two distinct blocks have rank 1; ~> 6 components of £ N M
other blocks are 0
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Equivariance
Consider M, = {W € R™" | rank(W) < r} and 0 € S,.

Decompose 0 = 71 ... o 7 into disjoint cycles and let ¢; := length(7;).
Diagonalize P, and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W € R™" is P-equivariant iff its block diagonal with
#(Z/mZ)* many blocks of size dy, x dp, Where dy, := #{j such that m|{;} .

1 a1 ap ai
1 ap ap ax
1 3 a31 a3 as3 g
= 11 b2
P Sk W = by1 by
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Equivariance
Consider M, = {W € R™" | rank(W) < r} and 0 € S,.

Decompose 0 = 71 ... o 7 into disjoint cycles and let ¢; := length(7;).
Diagonalize P, and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W € R™" is P-equivariant iff its block diagonal with
#(Z/mZ)* many blocks of size dy, x dp, Where dy, := #{j such that m|{;} .

1 a1 ap ai
1 ap ap ax
1 3 a31 a3 as3 g
= 11 b2
P Sk W = by1 by
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H(ZJ1Z)* = 1, #(Z/22)* = 1, #(Z/AZ)* = 2
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Equivariance
Consider M, = {W € R™" | rank(W) < r} and 0 € S,.

Decompose 0 = 71 ... o 7 into disjoint cycles and let ¢; := length(7;).
Diagonalize P, and sort the eigenvalues. This yields the diagonal matrix P.

Lemma: A matrix W € R™" is P-equivariant iff its block diagonal with
#(Z/mZ)* many blocks of size dy, x dp, Where dy, := #{j such that m|{;} .

Theorem: The irreducible components of £2 N M, over C are in 1-to-1
correspondence with the integer solutions (rp, ) of

Z Z I'my=1r, Wwhere 0 < ry, <dn.
mEZx>o ue(Z/mL)*

The component indexed by (rpm,,) is

=T} ] JacClie|ank(Ay<r,,}.

me&Zxo u€(Z/mZ)*
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Equivariance over R
Consider M, = {W € R™" | rank(W) < r} and ¢ € S,.

To diagonalize P,, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and
imaginary parts.

This new basis can be scaled to become orthonormal!

Q.20 20, 5k e 1™ 1.1
4 : 1000 Logi =1 —i
Example: to diagonalize 01 0 ol use base change A
OE 08 180 1 —j -1 |

14~ Wi -0

1L 0 a0

ol e
lhsac 0

_1\@



running example

ail | a2 | 413 as1 | a21 | 311
. ™9 9
o: R —»R", | a1 | as | as3 [—>| @32 | 3 |/a12
431 | 932 | 433 d33 | 923 | 413
P = P, after Og(R)-base change P-equivariant matrices
M1 T [aur a2 a3 ]
az1 dxp 43
d31 d32 433
=1l b1 bio
-1 bo1 b

G =€ d1 —d2
€2 "CY. d2 d1
el =t =
=R il G




running example

a11.. appesaly
ax1 ax ax
d31 432 433
by i:bio
W = b1 b2

There are 4 ways how W can have rank 2:
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d31 432 4as3
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Cla = Co)
()] (5]
S €D
L €& €
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& One of the diagonal blocks has rank 2;
other blocks are 0
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aii
an1
431

running example

ai2
az
d32

a3

a3

az3
b11
b1

bio
b2

There are 4 ways how W can have rank 2:

& One of the diagonal blocks has rank 2;
other blocks are 0

& Two first 2 blocks have rank 1;

last block is 0

a
2
€
€2

-
C1
—e
€1

d
d>
f

~~ 3 components of £7 N M>

~ 1 component of £72 N M>
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block diagonal:

& at most 2 blocks are arbitrary (corresponding to eigenvalues +1 of P,);

 all other blocks are 2m x 2m matrices consisting of m? matrices of the

form [Z _ab].
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Equivariance over R

In general: After the O,(R)-base change, the o-equivariant matrices become
block diagonal:

& at most 2 blocks are arbitrary (corresponding to eigenvalues +1 of P,);

 all other blocks are 2m x 2m matrices consisting of m? matrices of the
a —b
form .

Blocks of the latter kind have even rank!
The variety of such blocks of bounded rank is irreducible.

= we can list all irreducible components of £ N M,,
parametrize them via autoencoders,
understand their algebraic properties such as dimension, degree, ...



Which of these 4 components is best ?7

a11. ameeaiy
a1 ax ax
a3 d3g. 438

by i:bio
W = b1 b2
€1 —Ca. dy e
() (5] CI'2 d1
S €D fl —f2
& e @ LI

There are 4 ways how W can have rank 2:

& One of the diagonal blocks has rank 2; ~~ 3 components of £7 N M>
other blocks are 0

¢ Two first 2 blocks have rank 1; ~> 1 component of £2 N M
last block is 0
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Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently
generic, training a network with function space M using the squared-error
loss means to solve an optimization problem of the form

VU]iRA |W — U||%, where U is a generic matrix encoding the data.
-

The number of complex critical points of that problem measures its algebraic
complexity, called its Euclidean distance degree. Notation: EDdeg(M).

We can compute EDdeg of each real irreducible component of £7 N M, !
1. EDdeg stays invariant under orthogonal base changes.
2. EDdeg(X x ) = EDdeg(X') - EDdeg())
3. EDdeg(Xs,q) = (g) where X 4 is either the space of d x d matrices of
rank < s or of 2d x 2d matrices of rank < 2s that consist of [Z ;b}—

submatrices



Which of these 4 components is best 77

a11 dtbeediy
a1 a2 az
a1 as as
b1 b2
W= bo1 b2

There are 4 ways how W can have rank 2:
o One of the diagonal blocks has rank 2;
with EDdeg 3, 1, and 2, respectively.

¢ Two first 2 blocks have rank 1;
with EDdeg 3 -2 = 6.

1
()
€1
€

—C3.  deitl>
G O iidy

Se fi
€1 ¢ BTef e

~~ 3 components of £7 N M

~» 1 component of £7 N M>
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