Geometry of Linear Neural Networks that are Equivariant / Invariant under Permutation Groups

Kathlén Kohn
joint work with

Anna-Laura Sattelberger
Vahid Shahverdi

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebra \& Geometry \Rightarrow Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function space?
2. How does the geometry of the function space impact the training of the network?

Algebra \& Geometry \Rightarrow Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function space?
2. How does the geometry of the function space impact the training of the network?
a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of optimization algorithm)

Algebra \& Geometry \Rightarrow Neural Network Theory

Geometric questions:

1. How does the network architecture affect the geometry of the function space?
2. How does the geometry of the function space impact the training of the network?
a) static optimization properties (only depend on the loss)
b) dynamic optimization properties (depend on the loss and choice of optimization algorithm)

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture		
activation	network structure	loss
identity		
ReLU		
polynomial		

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture		
activation	network structure	loss
identity	fully-connected	
ReLU	convolutional	
polynomial	group equivariant	

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture			
activation	network structure	loss	
identity	fully-connected	squared-error loss	$=$ Euclidean dist
ReLU	convolutional	Wasserstein distance	$=$ polyhedral dist.
polynomial	group equivariant	cross-entropy	\simeq KL divergence

Algebra \& Geometry \Rightarrow Neural Network Theory

Algebraic settings:

network architecture			
activation	network structure	loss	
identity	fully-connected	squared-error loss	$=$ Euclidean dist
ReLU	convolutional	Wasserstein distance	$=$ polyhedral dist.
polynomial	group equivariant	cross-entropy	$\simeq \mathrm{KL}$ divergence

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

This network parametrizes linear maps:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

This network parametrizes linear maps:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

Its function space is

$$
\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\right\}
$$

Linear Fully-Connected Networks

activation $=$ identity \& network structure $=$ fully-connected

This network parametrizes linear maps:

$$
\begin{aligned}
\mu: \mathbb{R}^{2 \times 4} \times \mathbb{R}^{3 \times 2} & \longrightarrow \mathbb{R}^{3 \times 4} \\
\left(W_{1}, W_{2}\right) & \longmapsto W_{2} W_{1} .
\end{aligned}
$$

Its function space is

$$
\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{3 \times 4} \mid \operatorname{rank}(W) \leq 2\right\}
$$

In general: $\mu: \mathbb{R}^{k_{1} \times k_{0}} \times \mathbb{R}^{k_{2} \times k_{1}} \times \ldots \times \mathbb{R}^{k_{L} \times k_{L-1}} \longrightarrow \mathbb{R}^{k_{L} \times k_{0}}$,

$$
\left(W_{1}, W_{2}, \ldots, W_{L}\right) \longmapsto W_{L} \cdots W_{2} W_{1} .
$$

Its function space $\mathcal{M}_{r}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{k_{L} \times k_{0}} \mid \operatorname{rank}(W) \leq r\right\}$, where $r:=\min \left(k_{0}, \ldots, k_{L}\right)$, is an algebraic variety.

Linear Group-Equivariant Networks

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$

Linear Group-Equivariant Networks

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Linear Group-Equivariant Networks

Running Example

Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Its inputs and outputs are 3×3 images: | a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$\in \mathbb{R}^{9}$.

Linear Group-Equivariant Networks

Running Example
Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Its inputs and outputs are 3×3 images: | a_{11} | a_{12} | a_{13} |
| :---: | :---: | :---: |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$\in \mathbb{R}^{9}$.

Consider the clockwise rotation by 90° :

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |.

Linear Group-Equivariant Networks

Running Example
Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Its inputs and outputs are 3×3 images: | a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$\in \mathbb{R}^{9}$.

Consider the clockwise rotation by 90° :

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |.

Which $W \in \mathcal{M}_{2}$ are equivariant under σ ?

Linear Group-Equivariant Networks

Running Example
Consider an autoencoder $\mu: \mathbb{R}^{2 \times 9} \times \mathbb{R}^{9 \times 2} \longrightarrow \mathbb{R}^{9 \times 9},\left(W_{1}, W_{2}\right) \longmapsto W_{2} W_{1}$ with function space $\mathcal{M}_{2}=\operatorname{im}(\mu)=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$.

Its inputs and outputs are 3×3 images: | a_{11} | a_{12} | a_{13} |
| :---: | :---: | :---: |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |$\in \mathbb{R}^{9}$.

Consider the clockwise rotation by 90° :

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |.

Which $W \in \mathcal{M}_{2}$ are equivariant under σ ? Which are invariant?

example cont'd

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

is represented by the permutation matrix

$$
P_{\sigma}=\left[\begin{array}{llll|llll|l}
0 & 0 & 0 & 1 & & & & & \\
1 & 0 & 0 & 0 & & & 0 & & 0 \\
0 & 1 & 0 & 0 & & & & & \\
0 & 0 & 1 & 0 & & & & & \\
\hline & & & & 0 & 0 & 0 & 1 & \\
& & 0 & & 1 & 0 & 0 & 0 & \\
& & & 0 & 1 & 0 & 0 & 0 \\
& & & & 0 & 0 & 1 & 0 & \\
\hline & 0 & & & 0 & & 1
\end{array}\right]
$$

example cont'd

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

is represented by the permutation matrix

$$
P_{\sigma}=\left[\begin{array}{llll|lll|l}
0 & 0 & 0 & 1 & & & & \\
1 & 0 & 0 & 0 & & & 0 & \\
0 & 1 & 0 & 0 & & & & \\
0 & 0 & 1 & 0 & & & & \\
\hline & & & & 0 & 0 & 0 & 1 \\
& & 0 & & 1 & 0 & 0 & 0 \\
& & & & 0 & 1 & 0 & 0 \\
& & & 0 & 0 & 1 & 0 & \\
\hline & 0 & & & 0 & & 1
\end{array}\right]
$$

$$
W \in \mathbb{R}^{9 \times 9}
$$

is equivariant under σ

$$
\begin{gathered}
\Leftrightarrow \\
W \cdot P_{\sigma}=P_{\sigma} \cdot W .
\end{gathered}
$$

example cont'd

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

is represented by the permutation matrix

$$
W \in \mathbb{R}^{9 \times 9}
$$

is equivariant under σ

$$
\begin{gathered}
\Leftrightarrow \\
W \cdot P_{\sigma}=P_{\sigma} \cdot W .
\end{gathered}
$$

$$
W \in \mathbb{R}^{9 \times 9}
$$

is invariant under σ

$$
W \cdot P_{\sigma}=W
$$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right] .
$$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right]
$$

The linear space \mathcal{E}^{σ} of σ-equivariant $W \in \mathbb{R}^{9 \times 9}$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is equivariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right] .
$$

The linear space \mathcal{E}^{σ} of σ-equivariant $W \in \mathbb{R}^{9 \times 9}$ intersected with the function space $\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$ of our autoencoder is an algebraic variety with

- 10 irreducible components over \mathbb{C}
- 4 irreducible components over \mathbb{R}

takeaway message

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$

takeaway message

There is no neural network whose function space is $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$!

Any neural network can parametrize at most one of the real irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$.

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is invariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{1} & \alpha_{1} & \alpha_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \alpha_{2} & \alpha_{2} & \alpha_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \alpha_{3} & \alpha_{3} & \alpha_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \gamma_{3} \\
\alpha_{4} & \alpha_{4} & \alpha_{4} & \alpha_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \gamma_{4} \\
\alpha_{5} & \alpha_{5} & \alpha_{5} & \alpha_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \gamma_{5} \\
\alpha_{6} & \alpha_{6} & \alpha_{6} & \alpha_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \gamma_{6} \\
\alpha_{7} & \alpha_{7} & \alpha_{7} & \alpha_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \gamma_{7} \\
\alpha_{8} & \alpha_{8} & \alpha_{8} & \alpha_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \gamma_{8} \\
\alpha_{9} & \alpha_{9} & \alpha_{9} & \alpha_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \gamma_{9}
\end{array}\right] .
$$

example cont'd

$W \in \mathbb{R}^{9 \times 9}$ is invariant under σ iff

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{1} & \alpha_{1} & \alpha_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \alpha_{2} & \alpha_{2} & \alpha_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \alpha_{3} & \alpha_{3} & \alpha_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \beta_{3} & \gamma_{3} \\
\alpha_{4} & \alpha_{4} & \alpha_{4} & \alpha_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \beta_{4} & \gamma_{4} \\
\alpha_{5} & \alpha_{5} & \alpha_{5} & \alpha_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \beta_{5} & \gamma_{5} \\
\alpha_{6} & \alpha_{6} & \alpha_{6} & \alpha_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \beta_{6} & \gamma_{6} \\
\alpha_{7} & \alpha_{7} & \alpha_{7} & \alpha_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \beta_{7} & \gamma_{7} \\
\alpha_{8} & \alpha_{8} & \alpha_{8} & \alpha_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \beta_{8} & \gamma_{8} \\
\alpha_{9} & \alpha_{9} & \alpha_{9} & \alpha_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \beta_{9} & \gamma_{9}
\end{array}\right] .
$$

The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{9 \times 9}$ intersected with the function space $\mathcal{M}_{2}=\left\{W \in \mathbb{R}^{9 \times 9} \mid \operatorname{rank}(W) \leq 2\right\}$ is an irreducible algebraic variety

$$
\cong\left\{A \in \mathbb{R}^{9 \times 3} \mid \operatorname{rank}(A) \leq 2\right\}
$$

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.
What are all ways to parametrize $I^{\sigma} \cap \mathcal{M}_{r}$ with autoencoders?

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.
What are all ways to parametrize $I^{\sigma} \cap \mathcal{M}_{r}$ with autoencoders?
Lemma: $\left\{(A, B) \in \mathbb{R}^{m \times k} \times \mathbb{R}^{k \times n} \mid \operatorname{rank}(A B)=k, A B \in \mathcal{I}^{\sigma}\right\}=$

Invariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \pi_{2} \circ \ldots \circ \pi_{k}$ into disjoint cycles.
Lemma: The linear space \mathcal{I}^{σ} of σ-invariant $W \in \mathbb{R}^{m \times n}$ consists of all matrices W whose columns indexed by π_{i} are equal, for all $i=1,2, \ldots, k$. Hence, $\mathcal{I}^{\sigma} \cap \mathcal{M}_{r} \cong\left\{W \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(W) \leq r\right\}$ is an irreducible variety.

Lemma: Let $G \subset \mathcal{S}_{n}$.
The set of G-invariant $W \in \mathbb{R}^{m \times n}$ is \mathcal{I}^{σ} for some $\sigma \in \mathcal{S}_{n}$.
What are all ways to parametrize $I^{\sigma} \cap \mathcal{M}_{r}$ with autoencoders?
Lemma: $\left\{(A, B) \in \mathbb{R}^{m \times k} \times \mathbb{R}^{k \times n} \mid \operatorname{rank}(A B)=k, A B \in \mathcal{I}^{\sigma}\right\}=$ $\left\{A \in \mathbb{R}^{m \times k} \mid \operatorname{rank}(A)=k\right\} \times\left\{B \in \mathbb{R}^{k \times n} \mid\right.$ columns indexed by π_{i} are equal $\}$ $\Rightarrow \sigma$ induces weight sharing on the encoder!

running example

$\sigma: \mathbb{R}^{\mathbf{9}} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Idea: Let $T \in \mathrm{GL}_{n}$.
W is $P_{\sigma^{-}}$equivariant iff $T^{-1} \mathrm{~W} T$ is $T^{-1} P_{\sigma} T$-equivariant.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Idea: Let $T \in \mathrm{GL}_{n}$.
W is $P_{\sigma^{-}}$equivariant iff $T^{-1} \mathrm{~W} T$ is $T^{-1} P_{\sigma} T$-equivariant.
This base change also preserves rank!

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$$
P=P_{\sigma}
$$

P-equivariant matrices
$\left[\begin{array}{llll|llll|l}0 & 0 & 0 & 1 & & & & & \\ 1 & 0 & 0 & 0 & & & & & \\ 0 & 1 & 0 & 0 & & & & & \\ 0 & 0 & 1 & 0 & & & & & \\ \hline & & & & 0 & 0 & 0 & 1 & \\ & & 0 & & 1 & 0 & 0 & 0 & \\ & & & 0 & 1 & 0 & 0 & 0 \\ & & & 0 & 0 & 1 & 0 & \\ \hline & 0 & & & & 0 & & 1\end{array}\right]$
$\left[\begin{array}{llll|llll|l}\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\ \alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\ \alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\ \alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\ \hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\ \gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\ \gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\ \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\ \hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}\end{array}\right]$

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$P=$ diagonalization of P_{σ}
P-equivariant matrices
$\left[\begin{array}{cccc|cccc|c}1 & 0 & 0 & 0 & & & & & \\ 0 & i & 0 & 0 & & & 0 & & \\ 0 & 0 & -1 & 0 & & 0 & & 0 \\ 0 & 0 & 0 & -i & & & & & \\ \hline & & & 1 & 0 & 0 & 0 & \\ & 0 & & 0 & i & 0 & 0 & \\ & 0 & & 0 & -1 & 0 & 0 \\ & & & 0 & 0 & 0 & -i & \\ & & 0 & & & 0 & & 1\end{array}\right]\left[\begin{array}{cccc|cccc|c}a_{11} & 0 & 0 & 0 & a_{12} & 0 & 0 & 0 & a_{13} \\ 0 & c_{11} & 0 & 0 & 0 & c_{12} & 0 & 0 & 0 \\ 0 & 0 & b_{11} & 0 & 0 & 0 & b_{12} & 0 & 0 \\ 0 & 0 & 0 & d_{11} & 0 & 0 & 0 & d_{12} & 0 \\ \hline a_{21} & 0 & 0 & 0 & a_{22} & 0 & 0 & 0 & a_{23} \\ 0 & c_{21} & 0 & 0 & 0 & c_{22} & 0 & 0 & 0 \\ 0 & 0 & b_{21} & 0 & 0 & 0 & b_{22} & 0 & 0 \\ 0 & 0 & 0 & d_{21} & 0 & 0 & 0 & d_{22} & 0 \\ \hline a_{31} & 0 & 0 & 0 & a_{32} & 0 & 0 & 0 & a_{33}\end{array}\right]$

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$$
P=\text { diagonalization of } P_{\sigma} \quad P \text {-equivariant matrices }
$$

running example

There are 10 ways how W can have rank 2 :

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; other blocks are 0

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 4$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 4$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two distinct blocks have rank 1; other blocks are 0

running example

There are 10 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 4$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two distinct blocks have rank $1 ; \quad \rightsquigarrow 6$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by

$$
P_{\sigma} \in \mathbb{R}^{n \times n}
$$

The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$
P_{\sigma}=\left[\begin{array}{llll|lllll}
0 & 0 & 0 & 1 & & & & & \\
1 & 0 & 0 & 0 & & & 0 & & 0 \\
0 & 1 & 0 & 0 & & & & & \\
0 & 0 & 1 & 0 & & & & & \\
\hline & & & 0 & 0 & 0 & 1 & \\
& 0 & & 1 & 0 & 0 & 0 & 0 \\
& & & 0 & 1 & 0 & 0 & \\
\hline & 0 & & & & 0 & 1 & 0 & \\
\hline
\end{array}\right]
$$

$$
\boldsymbol{W}=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \varepsilon_{4} \\
\gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{4} \\
\hline \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{2} & \varepsilon_{5}
\end{array}\right]
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by $P_{\sigma} \in \mathbb{R}^{n \times n}$.

The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$
P_{\sigma}=\left[\begin{array}{cccc|c|c}
0 & 0 & 0 & 1 & & \\
1 & 0 & 0 & 0 & & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & & \\
& 0 & 0 & 0 & \\
\hline & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\hline & & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is σ-equivariant iff each block is a (possily non-square) circulant matrix.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$ represented by
$P_{\sigma} \in \mathbb{R}^{n \times n}$.
The decomposition $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles chops P_{σ} into blocks. Chop W into blocks following the same pattern!

$$
P_{\sigma}=\left[\begin{array}{llll|lllll}
0 & 0 & 0 & 1 & & & & \\
1 & 0 & 0 & 0 & & & & \\
0 & 1 & 0 & 0 & & 0 & & 0 \\
0 & 0 & 1 & 0 & & & & \\
\hline & & & 0 & 0 & 0 & 1 & \\
& 0 & & 0 & 0 & 0 & \\
& 0 & 1 & 0 & 0 & 0 \\
\hline & & & 0 & 0 & 1 & 0 & \\
\hline 0 & & 0 & & 1
\end{array}\right]
$$

$$
W=\left[\begin{array}{llll|llll|l}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \varepsilon_{3} \\
\alpha_{4} & \alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \varepsilon_{3} \\
\alpha_{3} & \alpha_{4} & \alpha_{1} & \alpha_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \beta_{2} & \varepsilon_{3} \\
\alpha_{2} & \alpha_{3} & \alpha_{4} & \alpha_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{1} & \varepsilon_{3} \\
\hline \gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \delta_{4} & \varepsilon_{4} \\
\gamma_{4} & \gamma_{1} & \gamma_{2} & \gamma_{3} & \delta_{4} & \delta_{1} & \delta_{2} & \delta_{3} & \varepsilon_{4} \\
\gamma_{3} & \gamma_{4} & \gamma_{1} & \gamma_{2} & \delta_{3} & \delta_{4} & \delta_{1} & \varepsilon_{2} & \varepsilon_{1} \\
\gamma_{2} & \varepsilon_{1} & \varepsilon_{3} & \delta_{2} & \delta_{3} & \varepsilon_{4} & \varepsilon_{2} & \varepsilon_{1} & \varepsilon_{4} \\
\varepsilon_{4} & \varepsilon_{5}
\end{array}\right]
$$

Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is σ-equivariant iff each block is a (possily non-square) circulant matrix.

$$
\left[\begin{array}{lll}
a & a & a \\
a & a & a \\
a & a & a \\
a & a & a
\end{array}\right], \quad\left[\begin{array}{lll}
a & a & a \\
a & a & a
\end{array}\right], \quad\left[\begin{array}{llll}
a & b & a & b \\
b & a & b & a
\end{array}\right], \quad \cdots
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=\operatorname{length}\left(\pi_{j}\right)$.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=\operatorname{length}\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

$$
\begin{aligned}
& \ell_{1}=4, \ell_{2}=4, \ell_{3}=1
\end{aligned}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

$$
\begin{aligned}
& \ell_{1}=4, \ell_{2}=4, \ell_{3}=1 \\
& d_{1}=3, d_{2}=2, d_{3}=0, d_{4}=2, d_{5}=0, \ldots
\end{aligned}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=\operatorname{length}\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.

$$
\begin{aligned}
& \ell_{1}=4, \ell_{2}=4, \ell_{3}=1 \\
& d_{1}=3, d_{2}=2, d_{3}=0, d_{4}=2, d_{5}=0, \ldots \\
& \#(\mathbb{Z} / 1 \mathbb{Z})^{\times}=1, \#(\mathbb{Z} / 2 \mathbb{Z})^{\times}=1, \#(\mathbb{Z} / 4 \mathbb{Z})^{\times}=2
\end{aligned}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.
Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$ over \mathbb{C} are in 1-to-1 correspondence with the integer solutions $\left(r_{m, u}\right)$ of

$$
\sum_{m \in \mathbb{Z}>0} \sum_{u \in(\mathbb{Z} / m \mathbb{Z})^{\times}} r_{m, u}=r, \quad \text { where } 0 \leq r_{m, u} \leq d_{m}
$$

Equivariance

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
Decompose $\sigma=\pi_{1} \circ \ldots \circ \pi_{k}$ into disjoint cycles and let $\ell_{j}:=$ length $\left(\pi_{j}\right)$.
Diagonalize P_{σ} and sort the eigenvalues. This yields the diagonal matrix P.
Lemma: A matrix $W \in \mathbb{R}^{n \times n}$ is P-equivariant iff its block diagonal with $\#(\mathbb{Z} / m \mathbb{Z})^{\times}$many blocks of size $d_{m} \times d_{m}$, where $d_{m}:=\#\left\{j\right.$ such that $\left.m \mid \ell_{j}\right\}$.
Theorem: The irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$ over \mathbb{C} are in 1-to-1 correspondence with the integer solutions $\left(r_{m, u}\right)$ of

$$
\sum_{m \in \mathbb{Z}} \sum_{>0} r_{u \in(\mathbb{Z} / m \mathbb{Z})^{\times}} r_{m, u}=r, \quad \text { where } 0 \leq r_{m, u} \leq d_{m}
$$

The component indexed by $\left(r_{m, u}\right)$ is

$$
\cong \prod_{m \in \mathbb{Z}>0} \prod_{u \in(\mathbb{Z} / m \mathbb{Z})^{\times}}\left\{A \in \mathbb{C}^{d_{m} \times d_{m}} \mid \operatorname{rank}(A) \leq r_{m, u}\right\} .
$$

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

This new basis can be scaled to become orthonormal!

Example: to diagonalize
$\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$, use base change
$\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right]$

Equivariance over \mathbb{R}

Consider $\mathcal{M}_{r}=\left\{W \in \mathbb{R}^{n \times n} \mid \operatorname{rank}(W) \leq r\right\}$ and $\sigma \in \mathcal{S}_{n}$.
To diagonalize P_{σ}, we need a complex base change!

Remedy: Replace complex conjugated pairs of eigenvectors by their real and imaginary parts.

This new basis can be scaled to become orthonormal!

Example: to diagonalize
$\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$, use base change $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right]$

$$
\rightsquigarrow \frac{1}{2}\left[\begin{array}{cccc}
1 & \sqrt{2} & 1 & 0 \\
1 & 0 & -1 & -\sqrt{2} \\
1 & -\sqrt{2} & 1 & 0 \\
1 & 0 & -1 & \sqrt{2}
\end{array}\right] \in O_{4}(\mathbb{R})
$$

running example

$\sigma: \mathbb{R}^{9} \longrightarrow \mathbb{R}^{9},$| a_{11} | a_{12} | a_{13} |
| :--- | :--- | :--- |
| a_{21} | a_{22} | a_{23} |
| a_{31} | a_{32} | a_{33} |\longmapsto| a_{31} | a_{21} | a_{11} |
| :--- | :--- | :--- |
| a_{32} | a_{22} | a_{12} |
| a_{33} | a_{23} | a_{13} |

$P=P_{\sigma}$ after $O_{9}(\mathbb{R})$-base change
P-equivariant matrices

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; other blocks are 0

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2;
$\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two first 2 blocks have rank 1; last block is 0

running example

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; $\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two first 2 blocks have rank 1;
$\rightsquigarrow 1$ component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ last block is 0

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 m \times 2 m$ matrices consisting of m^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 m \times 2 m$ matrices consisting of m^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Blocks of the latter kind have even rank!

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 m \times 2 m$ matrices consisting of m^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Blocks of the latter kind have even rank!
The variety of such blocks of bounded rank is irreducible.

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 m \times 2 m$ matrices consisting of m^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Blocks of the latter kind have even rank!
The variety of such blocks of bounded rank is irreducible.
\Rightarrow we can list all irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$,

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 m \times 2 m$ matrices consisting of m^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Blocks of the latter kind have even rank!
The variety of such blocks of bounded rank is irreducible.
\Rightarrow we can list all irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$, parametrize them via autoencoders,

Equivariance over \mathbb{R}

In general: After the $O_{n}(\mathbb{R})$-base change, the σ-equivariant matrices become block diagonal:

- at most 2 blocks are arbitrary (corresponding to eigenvalues ± 1 of P_{σ});
- all other blocks are $2 m \times 2 m$ matrices consisting of m^{2} matrices of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

Blocks of the latter kind have even rank!
The variety of such blocks of bounded rank is irreducible.
\Rightarrow we can list all irreducible components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$, parametrize them via autoencoders, understand their algebraic properties such as dimension, degree, ...

Which of these 4 components is best ??

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2;
$\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ other blocks are 0
- Two first 2 blocks have rank 1;
$\rightsquigarrow 1$ component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$ last block is 0

Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space \mathcal{M} using the squared-error loss means to solve an optimization problem of the form

$$
\min _{W \in \mathcal{M}}\|W-U\|_{F}^{2}, \quad \text { where } U \text { is a generic matrix encoding the data. }
$$

Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space \mathcal{M} using the squared-error loss means to solve an optimization problem of the form

$$
\min _{W \in \mathcal{M}}\|W-U\|_{F}^{2}, \quad \text { where } U \text { is a generic matrix encoding the data. }
$$

The number of complex critical points of that problem measures its algebraic complexity,

Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space \mathcal{M} using the squared-error loss means to solve an optimization problem of the form

$$
\min _{W \in \mathcal{M}}\|W-U\|_{F}^{2}, \quad \text { where } U \text { is a generic matrix encoding the data. }
$$

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: EDdeg($\mathcal{M})$.

Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space \mathcal{M} using the squared-error loss means to solve an optimization problem of the form

$$
\min _{W \in \mathcal{M}}\|W-U\|_{F}^{2}, \quad \text { where } U \text { is a generic matrix encoding the data. }
$$

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: EDdeg($\mathcal{M})$.
We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$!

Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space \mathcal{M} using the squared-error loss means to solve an optimization problem of the form

$$
\min _{W \in \mathcal{M}}\|W-U\|_{F}^{2}, \quad \text { where } U \text { is a generic matrix encoding the data. }
$$

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: EDdeg($\mathcal{M})$.
We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$!

1. EDdeg stays invariant under orthogonal base changes.

Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space \mathcal{M} using the squared-error loss means to solve an optimization problem of the form

$$
\min _{W \in \mathcal{M}}\|W-U\|_{F}^{2}, \quad \text { where } U \text { is a generic matrix encoding the data. }
$$

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: EDdeg($\mathcal{M})$.
We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$!

1. EDdeg stays invariant under orthogonal base changes.
2. $\operatorname{EDdeg}(\mathcal{X} \times \mathcal{Y})=\operatorname{EDdeg}(\mathcal{X}) \cdot \operatorname{EDdeg}(\mathcal{Y})$

Euclidean distance degree

Lemma: Given a sufficient amount of training data that is sufficiently generic, training a network with function space \mathcal{M} using the squared-error loss means to solve an optimization problem of the form

$$
\min _{W \in \mathcal{M}}\|W-U\|_{F}^{2}, \quad \text { where } U \text { is a generic matrix encoding the data. }
$$

The number of complex critical points of that problem measures its algebraic complexity, called its Euclidean distance degree. Notation: EDdeg($\mathcal{M})$.
We can compute EDdeg of each real irreducible component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{r}$!

1. EDdeg stays invariant under orthogonal base changes.
2. $\operatorname{EDdeg}(\mathcal{X} \times \mathcal{Y})=\operatorname{EDdeg}(\mathcal{X}) \cdot \operatorname{EDdeg}(\mathcal{Y})$
3. $\operatorname{EDdeg}\left(\mathcal{X}_{s, d}\right)=\binom{d}{s}$, where $\mathcal{X}_{s, d}$ is either the space of $d \times d$ matrices of rank $\leq s$ or of $2 d \times 2 d$ matrices of rank $\leq 2 s$ that consist of $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]-$ submatrices

Which of these 4 components is best ??

$$
W=\left[\begin{array}{ccccccccc}
a_{11} & a_{12} & a_{13} & & & & & & \\
a_{21} & a_{22} & a_{23} & & & & & & \\
a_{31} & a_{32} & a_{33} & & & & & & \\
& & & b_{11} & b_{12} & & & & \\
& & & b_{21} & b_{22} & & & & \\
& & & & & c_{1} & -c_{2} & d_{1} & -d_{2} \\
& & & & c_{2} & c_{1} & d_{2} & d_{1} \\
& & & & & e_{1} & -e_{2} & f_{1} & -f_{2} \\
& & & & & e_{2} & e_{1} & f_{2} & f_{1}
\end{array}\right]
$$

There are 4 ways how W can have rank 2 :

- One of the diagonal blocks has rank 2; with EDdeg 3, 1, and 2, respectively.
- Two first 2 blocks have rank 1; with EDdeg $3 \cdot 2=6$.
$\rightsquigarrow 3$ components of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$
$\rightsquigarrow 1$ component of $\mathcal{E}^{\sigma} \cap \mathcal{M}_{2}$

Data science requires us to rethink the schism between mathematical disciplines!

differential geometry \Rightarrow

 algebraic geometry \Rightarrowdata science \Rightarrow

Metric Algebraic Geometry

1 Historical Snapshot
1.1 Polars
1.2 Foci
1.3 Envelopes

2 Critical Equations
2.1 Euclidean Distance Degree
2.2 Low Rank Matrix Approximation
2.3 Invitation to Polar Degrees.

3 Computations
3.1 Gröbner Bases
3.2 The Parameter Continuation Theorem
3.3 Polynomial Homotopy Continuation.

4 Polar Degrees
4.1 Polar Varieties
4.2 Projective Duality
4.3 Chern Classes

5 Wasserstein Distance
5.1 Polyhedral Norms
5.2 Optimal Transport and Independence Models
5.3 Wasserstein meets Segre-Veronese

6 Curvature .
6.1 Plane Curves
6.2 Algebraic Varieties
6.3 Volumes of Tubular Neighborhoods

7 Reach and Offset

7.1 Medial Axis and Bottlenecks
7.2 Offset Hypersurfaces.
7.3 Offset Discriminant.

Springer Nature

8 Voronoi Cells
8.1 Voronoi Basics.
8.2 Algebraic Boundaries
8.3 Degree Formulas
8.4 Voronoi meets Eckhart-Young

9 Condition Numbers
9.1 Errors in Numerical Computations
9.2 Matrix Inversion and Eckhart-Young
9.3 Condition Number Theorems
9.4 Distance to the Discriminant

10 Machine Learning
10.1 Neural Networks
10.2 Convolutional Networks 10.3 Learning Varieties

11 Maximum Likelihood
11.1 Kullback-Leibler Divergence
11.2 Maximum Likelihood Degree
11.3 Scattering Equations.
11.4 Gaussian Models

12 Tensors
12.1 Tensors and their Rank
12.2 Eigenvectors and Singular Vectors
12.3 Volumes of Rank-One Varieties

13 Computer Vision
13.1 Multiview Varieties
13.2 Grassmann Tensors
13.3 3D Reconstruction from Unknown Cameras

14 Volumes
14.1 Calculus and Beyond
14.2 D-Modules
14.3 Lasserre's Method

15 Sampling.
15.1 Homology from Finite Samples
15.2 Sampling with Density Guarantees
15.3 Markov Chains on Varieties
15.4 Chow goes to Monte Carlo

