A brief intro to
Chow rings and Kähler package
I. Definitions
I. Properties/examples
I. Poincaré Duality Hard Lefschetz Hodge-Riemann
I. Examples

Shiyue Li
$10 \quad 2023$

Chow ring of a variety
X is an algebraic variety
A k-cycle on X is a finite form sum
of k-dimensional varieties of X with integer coefficients

$$
\sum n_{i} V_{i}
$$

$$
Z_{k}(x):=\langle\operatorname{dim}-k \text { cycles of } X\rangle \text {. }
$$

$[Y]$ is rationally equivalent to $[Z]$ if \exists a subvariety $V \subseteq X \times \mathbb{P}^{1}$ s.t
(1) $X \times \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{\prime}$ induces a dominant map $f: V \rightarrow \mathbb{P}^{\prime}$
(2) $\left[f^{-1}(0)\right]=[Y]$ and $\left[f^{-1}(\infty)\right]=[Z]$
$\operatorname{Rat}_{k}(x):=\operatorname{dim}-k$ cycles rationally equivalent to zero
The Chow group $A_{0}(x)$ of X is

$$
A_{0}(x)=\bigoplus_{k=0}^{\operatorname{dim} x} A_{k}(x)=\frac{Z_{k}(x)}{\operatorname{Rat}_{k}(x)}
$$

Functorial properties I: Pushforward

If $f: X \rightarrow Y$ is a proper morphism.

then $f_{*}: Z_{k}(X) \rightarrow Z_{k}(Y)$
$V \mapsto[R(V): R(W)] W$ if $\operatorname{dim} V=\operatorname{dim} W$, otherwise.

$$
f_{*}(\operatorname{Rat}(x)) \subseteq \operatorname{Rat}(Y) \Rightarrow f_{*}: A_{k}(x) \rightarrow A_{k}(Y) \quad \text { complete }
$$

Example If the structure morphism $f: X \rightarrow$ Spec k is proper
then $\operatorname{deg}(\alpha)=\int_{x} \alpha:=f_{*}(\alpha) \quad \begin{aligned} & \text { if } \alpha \in A_{0}(x) \\ & 0\end{aligned}$

Example If the structure morphism $f: X \rightarrow$ Spec k is proper then $\operatorname{deg}(\alpha)=\int_{x} \alpha:=f_{*}(\alpha) \quad$ if $\alpha \in A_{0}(x)$

Functorial properties I: Pullbacks
If $f: X \rightarrow Y$ is a flat morphism,
Ex open embedding, projection of vector bundle, projection of cartesian products of pure dim
Non - Ex

$$
\left.\begin{array}{ll}
\mathbb{A}^{2} & \\
& f
\end{array} \right\rvert\, \mathbb{A}^{1}
$$

$f^{-1}(0)$ is not equidim

Functorial properties I: Pullbacks
If $f: X \rightarrow Y$ is a flat morphism,
Ex open embedding, projection of vector bundle, projection of cartesian products of pure dim
then $f^{*}: Z_{k}(Y) \rightarrow Z_{k}(Y)$

$$
[V] \mapsto\left[f^{-1} V\right]
$$

is well-defined and $f^{*}(\operatorname{Rat}(Y)) \subseteq \operatorname{Rat}(X)$.

Affine Bundles
E is an affine bundle of rank n over X with $p: E \rightarrow X$ if X has an open covering $\left\{U_{\alpha}\right\}$ with the property that

$$
p^{-1}\left(u_{\alpha}\right) \cong U_{\alpha} \times \mathbb{A}^{n}
$$

Prop The pullback $p^{*}: A_{k}(x) \rightarrow A_{k+n}(E)$ is surjective. Example $\quad A_{k}\left(\mathbb{A}^{n}\right)= \begin{cases}0 & k<n, \\ \mathbb{Z} & k=n .\end{cases}$

A useful sequence
If $i: Y \hookrightarrow X$ is closed subscheme of X.
and let $j: X-Y \hookrightarrow X$ be the inclusion,
then $A_{k}(Y) \xrightarrow{i_{*}} A_{k}(x) \xrightarrow{j^{*}} A_{k}(u) \rightarrow 0$ is exact.
Example $\mathbb{P}^{n}=\mathbb{A}^{n} \sqcup \mathbb{P}^{n-1}$

$$
\Rightarrow A_{k}\left(\mathbb{P}^{n-1}\right) \rightarrow A_{k}\left(\mathbb{P}^{n}\right) \rightarrow A_{k}\left(\mathbb{A}^{n}\right) \rightarrow 0
$$

is exact.

- If X is equidimensional, codim $Y:=\operatorname{dim} X-\operatorname{dim} Y$.
- If X is smooth, $A^{k}(X):=A_{\operatorname{dim}} X-k(X)$.
- Setting $[X] \in A^{0}(X)$ as $1,[Y][Z]=[Y \cap Z]$ for smooth Y, Z intersecting transversely gives $A^{\circ}(X)$ a ring structure.
- If X smooth, $Y=\mathbb{P}^{n}$,
then $\quad A^{0}(X) \otimes A^{0}(Y) \equiv A^{0}(X \times Y)$

Chow ring of a blow-up.
If $Y \subseteq X$ is a closed smooth subscheme of X, then the smooth projective $\mathrm{Bl}_{Y} X \xrightarrow{\pi} X$ is

$\operatorname{Proj} \bigoplus_{n=0} I_{Y}^{n}$
(1) π is proper and birational
(2) π is an isomorphism on $B l_{Y} X-\pi^{-1}(Y)$.
(3)
 exceptional divisor
(1) π is proper and birational (if Y is not dense)
(a) π is an isomorphism on $B l_{Y} X-\pi^{-1}(Y)$.
(3) $E=\pi^{-1}(Y) \longrightarrow B l_{Y} X$ exceptional divisor $\stackrel{\downarrow}{Y} \longrightarrow \stackrel{\downarrow}{X}$

Proposition There is a split exact sequence of groups

$$
0 \rightarrow A_{k}(Y) \rightarrow A_{k}(E) \oplus A_{k}(X) \rightarrow A_{k}\left(B l_{y}(X)\right) \rightarrow 0
$$

Wonderful compactification of the complement of a hyperplane arrangement De Concini-Procesi 1995
$L=a$ vector space over k

$A=a$ finite set of hyperplanes intersecting only at the origin

$$
\left\{H_{e}: e \in E\right\}
$$

For each $S \subseteq E, L_{S}=\bigcap_{e \in S} H_{e}, \quad r k(S)=\operatorname{dim} L / L_{S}$ A flat is a subset $F \subseteq E$ maximal among its rank.

$$
\Phi_{A}: \mathbb{P} L \cdots \mathbb{P}\left(L / L_{F}\right)
$$

nonempty flats F
Def The wonderful variety of A is the closure of the image of $\mathbb{P L}$ under Φ_{A} :

$$
W_{A}:=\overline{\Phi_{A}(\mathbb{P L})} \subseteq \prod_{\substack{\text { nonempty } \\ \text { flats } F}} \mathbb{P}\left(L / L_{F}\right) .
$$

Def The wonderful variety of A is the closure of the image of $\mathbb{P L}$ under Φ_{A} :

$$
W_{A}:=\overline{\Phi_{A}(\mathbb{P L})} \subseteq \prod_{\substack{\text { nonempty } \\ \text { flats } F}} \mathbb{P}\left(L / L_{F}\right) .
$$

Feichtner - Yuzvinsky 2004

$$
\begin{aligned}
A\left(W_{A}\right)= & \frac{\mathbb{Z}\left[x_{F}: \text { nonempty flats }\right]}{\left\langle x_{F} x_{G}: F, G \text { incomparable }\right\rangle} \\
& +\left\langle\sum_{F \leqslant G} x_{G}: \quad \text { dk } F=1\right\rangle
\end{aligned}
$$

Feichtner - Yuzvinsky 2004

$$
\begin{aligned}
A\left(W_{A}\right)= & \frac{\mathbb{T}\left[x_{F}: \text { nonempty flats }\right]}{\left\langle x_{F} x_{G}: F, G \text { incomparable }\right\rangle} \\
& +\left\langle\sum_{F \leqslant G} x_{G}: \quad r_{k} F=1\right\rangle
\end{aligned}
$$

Backman-Eur - Simpson 2021

$$
\begin{aligned}
A\left(W_{\mathcal{A}}\right)= & \frac{\mathbb{Z}\left[h_{F}: \text { non empty flats }\right]}{\left\langle\left(h_{F}-h_{F v G}\right)\left(h_{G}-h_{F V G}\right): F, G \text { incompanable }\right\rangle} \\
& +\left\langle h_{F}: r_{k} F=1\right\rangle
\end{aligned}
$$

Key: h_{F} 's have elegant intersection properties.

Chow ring of a matroid

- N a free abelian group \mathbb{Z}^{m}
- Given a matroid $M, S \subseteq E$,

$$
\bar{e}_{S}=\text { the image of } e_{S}=\sum_{i \in S} e_{i} \text { under } \mathbb{R}^{E} \rightarrow \mathbb{R}^{E} / \mathbb{R} 1 \text {. }
$$

- $r k: 2^{E} \rightarrow N \geqslant 0 \quad S \mapsto \max _{I \subseteq S}|I|$
- A set F is a flat if it is maximal among its rank \Leftrightarrow adding non-member preserves rank.

Def The Bergman fan Σ_{M} is the fan consisting of cones of the form

$$
\sigma_{F}=\mathbb{R}_{\geqslant 0}\left\{\bar{e}_{F_{1}}, \cdots, \bar{e}_{F_{m}}\right\}
$$

for each chain of nonempty proper flats

Def A fan Σ is
(1) pure-dim if every maximal cone has the same dim.
(2) Simplicial if for every cone $\sigma, \operatorname{dim} \sigma=\mid$ generators of $\sigma \mid$.
(3) complete if the support $|\Sigma|=N_{\mathbb{R}}$.
(4) balanced if at each σ.

$$
\sum_{\substack{\tau \neq \sigma \\ \operatorname{dim} T}} u_{\tau / \sigma} \in \mathbb{\operatorname { d i m } \sigma + 1}<
$$

Example \sum_{M} is pure of dim $r-1$. simplicial, balanced, but often not complete

Chow ring of a simplicial Σ

$$
A^{\prime}(\Sigma)=\frac{\mathbb{R}\left[x_{\rho}: p a r a y\right]}{I_{\Sigma}+J_{\Sigma}}
$$

with

$$
\begin{aligned}
& I_{\Sigma}=\left\langle x_{p_{1}} \cdots x_{p_{n}} \text { if } \rho_{1}, \cdots, p_{n} \text { don't form a cone }\right\rangle \\
& J_{\Sigma}=\left\langle\sum_{\text {ray p }}\left\langle u_{p}, v\right\rangle x_{\rho}, v \in \mathbb{Z}^{m}\right\rangle
\end{aligned}
$$

$A H K$ ' 18 Balanced \Rightarrow deg: $A^{\prime}(\Sigma) \rightarrow \mathbb{R} . \prod_{\rho \in \max \sigma} x_{\rho} \mapsto 1$

Kähler package (A* deg, K)
$A^{\text {• }}$ is a finite dimensional, graded real vector space deg is a symmetric bilinear form $A^{0} \times A^{d-\bullet} \rightarrow \mathbb{R}$ K is a convex set of linear operators $L: A^{0} \rightarrow A^{0+1}$

$$
\text { s.t. } \quad \operatorname{deg}(L x, y)=\operatorname{deg}(x, L y)
$$

(1) Poincáre duality $k \leq \frac{d}{2}$ The symmetric bilinear pairing

$$
\begin{array}{ll}
A^{k} \times A^{d-k} & \rightarrow \mathbb{R} \\
\alpha & \beta
\end{array}
$$

is non-degenerate.

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.H^{0}\left(\mid \mathbb{P}^{1}\right)^{3}\right)=\frac{\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle} \xrightarrow{\operatorname{deg}} \mathbb{R}
$$

PD

$$
\begin{array}{ll}
k=0, \operatorname{deg}\left(1 \cdot x_{1} x_{2} x_{3}\right)=1 & x_{1} x_{2} x_{3} \\
k=1, \operatorname{deg}\left(x_{i} x_{i} x_{j}\right)=0 & x_{1} x_{2} \\
x_{2} x_{3} & x_{1} x_{3}
\end{array}
$$

$$
3
$$

$\operatorname{but} \operatorname{deg}\left(x_{i} x_{j} x_{k}\right)=1 . \quad x_{1} \quad x_{2} \quad x_{3}$
(2) Hard Lefschetz $\quad k \leq \frac{d}{2}$

For any $\ell_{1}, \ell_{2}, \cdots, \ell_{d-2 k}$ in K, the symmetric bilinear form

$$
\begin{aligned}
& A^{k} \longrightarrow A^{d-k} \\
& \alpha \longmapsto\left(\prod_{i=1}^{d-d k} l_{i}\right) \alpha
\end{aligned}
$$

is an isomorphism.

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.A^{\bullet}\left(\mathbb{P}^{1}\right)^{3}\right)=\frac{\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle} \xrightarrow{\text { deg }} \mathbb{R}
$$

$$
\begin{aligned}
& H L \\
& k=0 \\
& k=1 \\
& x_{1} \longmapsto x_{1} x_{2} x_{3} \\
& x_{2} \\
& x_{3}
\end{aligned} \longmapsto x_{1} x_{2}+x_{1} x_{3}
$$

The Hard Lefschetz property

$$
\Rightarrow \quad l: A^{i} \longrightarrow A^{i+1} \quad l \in K
$$

is
injective for i no greater than $\frac{d}{2}$
surjective for i no smaller than $d / 2$.

Example $\left(\mathbb{P}^{2}\right)^{3}$

$$
A^{\cdot}\left(\left(\mathbb{P}^{2}\right)^{3}\right)=\frac{\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}{ }^{2}, x_{3}^{2}\right\rangle}
$$

$\binom{3}{3} \quad 3$
$\binom{3}{2} \quad 2$
$\binom{3}{1} \quad 1$
$\binom{3}{0} \quad 0$
(3) Hodge-Riemann Relations

For any $l_{0}, \cdots, l_{d-2 k} \in K$, the symmetric bilinear form

$$
\begin{aligned}
A^{k} \times A^{k} & \longrightarrow \mathbb{R} \\
(\alpha, \beta) & \longmapsto(-1)^{k} \operatorname{deg}\left(\alpha\left(\prod_{i=1}^{d-\alpha k} l_{i}\right) \beta\right)
\end{aligned}
$$

is positive definite on the kernel of the linear map

$$
\begin{aligned}
A^{k} & \longrightarrow A^{d-k+1} \\
\alpha & \longmapsto\left(\prod_{i=0}^{d-\alpha k} l_{i}\right) \alpha .
\end{aligned}
$$

Example $\left(\mathbb{P}^{1}\right)^{3}$

$$
\left.A^{0}\left(\mathbb{P}^{1}\right)^{3}\right)=\frac{\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]}{\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right\rangle} \xrightarrow{\operatorname{deg}} \mathbb{R}
$$

$$
H R \quad k=0 \quad \operatorname{ker}\left(\begin{array}{lll}
A^{0} & \longrightarrow A^{4}=0 \\
\alpha & \longmapsto l^{4} \alpha
\end{array}\right)=A^{0}
$$

The form $A^{0} \times A^{0} \rightarrow \mathbb{R}$

$$
\alpha \quad \beta \mapsto \operatorname{deg}\left(\alpha l^{3} \beta\right)=6
$$

$k=1 \quad \operatorname{ker}\left(\begin{array}{lll}A^{1} & \longrightarrow & A^{3} \\ \alpha & \longmapsto & l^{2} \alpha\end{array}\right)$ has basis $x_{1}-x_{2}, x_{1}-x_{3}$
The form $A^{\prime} \times A^{\prime} \rightarrow \mathbb{R}$

$$
\left(x_{1}-x_{i}, x_{1}-x_{j}\right) \longmapsto-\operatorname{deg}(\alpha \ell \beta)=-1 \text { or }-2 .
$$

Example

- X is a smooth projective variety an special case of complex Kähler manifolds

The Kähler metric induces
(1) the Hodge decomposition on $H^{*}(X ; \mathbb{C})$
(2) the Lefschetz decomposition on $H^{*}(X ; \mathbb{Q})$

Example

- X is a smooth projective variety an special case of complex Kähler manifolds

The Kähler metric induces
(1) the Hodge decomposition on $H^{\circ}(X ; \mathbb{C})$

$$
H^{i}(X ; \mathbb{C})=\bigoplus_{p+q=i} \sum H^{p, q}(X ; \mathbb{C})
$$

where $H^{p, q}(X ; \mathbb{C})=$ classes of closed forms of type (p, q).

Example

- X is a smooth projective variety of dim n an special case of complex Kähler manifolds
$\left(\bigoplus_{i=0}^{n} H^{i, i}(X, \mathbb{R})\right.$, Poincaré pairing, ample divisor classes)
- M is a matroid

If \sum_{M} simplicial and complete
$\Rightarrow D=\sum^{1} C_{P} x_{P}$ gives a piecewise-linear funtion φ_{D}

- X is a smooth projective variety of dim n an special case of complex Kähler manifolds
$\left(\bigoplus_{i=0}^{n} H^{i, i}(X, \mathbb{R})\right.$, Poincaré pairing, ample divisor classes)
- M is a matroid
φ_{D} is ample if $\varphi_{D}(u)+\varphi_{D}(v)<\varphi_{D}(u+v)$
$\forall u, v \in N_{\mathbb{R}}$ in different cones.
- X is a smooth projective variety of dim n an special case of complex Kähler manifolds
$\left(\bigoplus_{i=0}^{n} H^{i, i}(X, \mathbb{R})\right.$, Poincaré pairing, ample divisor classes)
- M is a matroid

Since Σ_{M} is often not complete,
D is ample if φ_{D} is a restriction of φ_{D}^{\prime} on a complete $\Sigma^{\prime} \supseteq \Sigma_{M}$.

- X is a smooth projective variety of $\operatorname{dim} n$ an special case of complex Kähler manifolds
$\left(\bigoplus_{i=0}^{n} H^{i, i}(X, \mathbb{R})\right.$, Poincaré pairing, ample divisor classes)
- M is a matroid
$\left(A^{\bullet}(M)\right.$, deg, ample divisor classes $)$

