Sketching and Classifying Spatial Trajectories



## **Classifying Trajectories?**

Two sets of trajectories: **buses** and **cars**Just using location, how to build classifier?



### Distances between Shapes







<u>Many distances</u>: Hausdorff, Frechet, Dynamic Time Warping, Wasserstein, Kernel Distance, Turning Curve, ...

### Distances between Shapes







<u>Many distances</u>: Hausdorff, Frechet, Dynamic Time Warping, Wasserstein, Kernel Distance, Turning Curve, ...

#### Why are distances important?

- understand "shape" / model real-world properties
- search queries in shape database
- *learn* something about shapes

## Distances between Shapes







<u>Many distances</u>: Hausdorff, Frechet, Dynamic Time Warping, Wasserstein, Kernel Distance, Turning Curve, ...

#### Why are distances important?

- understand "shape" / model real-world properties
- search queries in shape database
- *learn* something about shapes

### **Feature Vectors**





 $\quad \text{shape} \ J$ 



 $\quad \text{shape} \ J$ 

landmarks Q



### $\quad \text{shape} \ J$

#### landmarks Q

#### **minDist**

$$v_i(J) = \inf_{p \in J} \|q_i - p\|$$



#### shape J

#### landmarks Q

#### **minDist**

$$v_i(J) = \inf_{p \in J} \|q_i - p\|$$







#### shape J

#### landmarks Q

#### **minDist**

$$v_i(J) = \inf_{p \in J} \|q_i - p\|$$



#### shape J

#### landmarks Q

#### **minDist**

$$v_i(J) = \inf_{p \in J} \|q_i - p\|$$



$$d_Q(J, J') = ||v(J) - v(J')||$$

Phillips and Tang SIGSPATIAL 2019

shape J

landmarks Q

#### **minDist**

$$v_i(J) = \inf_{p \in J} \|q_i - p\|$$





# OK, so is this a good distance?

$$d_Q(J, J') = ||v(J) - v(J')||$$

Phillips and Tang SIGSPATIAL 2019

## Clustering

Consider 42 (Geolife) GPS traces of car routes in Beijing

Set Q as 20 POIs

map trajectories to

$$v(\gamma_1),\ldots,v(\gamma_{42}),\in\mathbb{R}^{20}$$

run k-means!



## **Nearest Neighbor Queries**

3 million trajectory 36 GB storage

Set Q as 20 POIs

K-Graph https://github.com/aaalgo/kgraph
an optimized Euclidean distance NN search
preprocess time 62 (s)
sketch time 109 (s)

query time 0.00037 (s)

State of the art (on 10-40 GB)

Xie etal (VLDB 17)

- Hausdorff : 50 (s)

Shang etal (SIGMOD 18)

- DTW: 0.01 (s) on 256 cores



$$d_Q(J, J') = ||v(J) - v(J')||$$

For set of objects  $\mathcal{T}$  a distance  $d: \mathcal{T} \times \mathcal{T} \to \mathbb{R}^+$  is a **metric** if

- symmetry: d(a,b) = d(b,a)
- identity: d(a,b) = 0 if and only if a = b.
- triangle inequality:  $d(a,c) + d(c,b) \ge d(a,b)$

$$d_Q(J, J') = ||v(J) - v(J')||$$

For set of objects  ${\mathcal T}$ 

a distance  $d: \mathcal{T} \times \mathcal{T} \to \mathbb{R}^+$  is a **metric** if

- symmetry: d(a,b) = d(b,a)
- identity: d(a,b) = 0 if and only if a = b.
- triangle inequality:  $d(a,c) + d(c,b) \ge d(a,b)$



$$d_Q(J, J') = ||v(J) - v(J')||$$

For set of objects  $\mathcal{T}$  a distance  $d: \mathcal{T} \times \mathcal{T} \to \mathbb{R}^+$  is a **metric** if

- symmetry: d(a,b) = d(b,a)
- identity: d(a,b) = 0 if and only if a = b.
- triangle inequality:  $d(a,c) + d(c,b) \ge d(a,b)$



$$d_Q(J, J') = ||v(J) - v(J')||$$

For set of objects  $\mathcal{T}$  a distance  $d: \mathcal{T} \times \mathcal{T} \to \mathbb{R}^+$  is a **metric** if

- symmetry: d(a,b) = d(b,a)
- identity: d(a,b) = 0 if and only if a = b.
- triangle inequality:  $d(a,c) + d(c,b) \ge d(a,b)$



### **Curve Recontruction**

Shapes are k-pl curves (with  $\tau$ -separated critical points  $c_i$ ). If Q is dense enough, we can reconstruct J from sketch vector v(J).





### Classification

Compare KNN, SVM, Random Forest, CNN, etc

to KNN on discrete Frechet, DTW, Hausdorff, LCSS, Edit distance for real sequence, ...



Bus vs. Car in Aracaju



## Classification

Geolife Trajectory Data Set Predict **mode** of transportation



| Study                                           | Misclassifn Rate |
|-------------------------------------------------|------------------|
| Using CNN [ETNK2016]                            | 32.1%            |
| Using CNN [WLJL2017]                            | 25.9%            |
| Inference plus Decision Tree [ZLCXM2008]        | 23.8%            |
| Using CNN [DCHR2020]                            | 23.2%            |
| Our Model with $v_Q$ vectorization              | 18.1%            |
| Our Model with $v_Q^{\varsigma+}$ vectorization | 16.4%            |
| Our Model with $\hat{MD}v_Q^+$ vectorization    | 15.4%            |
| Using CNN [DH2018]                              | 15.2%            |
| Our Model with $v_Q^+$ vectorization            | 11.9%            |



Consider data (X, y) with  $X \sim \mu$  labels  $y_i \in \{-1, +1\}$ . Range space  $(X, \mathcal{B})$  with VC-dimension  $\nu$ 



Consider data (X, y) with  $X \sim \mu$  labels  $y_i \in \{-1, +1\}$ . Range space  $(X, \mathcal{B})$  with VC-dimension  $\nu$ 



Consider data (X,y) with  $X \sim \mu$  labels  $y_i \in \{-1,+1\}$ . Range space  $(X,\mathcal{B})$  with VC-dimension  $\nu$ Consider  $B^* \in \mathcal{B}$ , minimizing label disagreement  $\Delta_{\mu}$  on  $\mu$ 



Consider data (X,y) with  $X \sim \mu$  labels  $y_i \in \{-1,+1\}$ . Range space  $(X,\mathcal{B})$  with VC-dimension  $\nu$ Consider  $B^* \in \mathcal{B}$ , minimizing label disagreement  $\Delta_{\mu}$  on  $\mu$ 

To learn  $\hat{B} \in \mathcal{B}$  on X so  $|\Delta_{\mu}(\hat{B}) - \Delta_{\mu}(B^*)| \leq \varepsilon$ 

• if  $\Delta_{\mu}(B^*) = 0$ , then need  $X = O((\nu/\varepsilon)\log\frac{\nu}{\varepsilon})$ 



Consider data (X,y) with  $X \sim \mu$  labels  $y_i \in \{-1,+1\}$ . Range space  $(X,\mathcal{B})$  with VC-dimension  $\nu$ Consider  $B^* \in \mathcal{B}$ , minimizing label disagreement  $\Delta_{\mu}$  on  $\mu$ 

To learn  $\hat{B}\in \mathcal{B}$  on X so  $|\Delta_{\mu}(\hat{B})-\Delta_{\mu}(B^*)|\leq \varepsilon$ 

• if  $\Delta_{\mu}(B^*) = 0$ , then need  $X = O((\nu/\varepsilon)\log\frac{\nu}{\varepsilon})$ 

• if  $\Delta_{\mu}(B^*) > 0$ , then need  $X = O(\nu/\varepsilon^2)$ 











**VC** dimension  $\nu$ : how complex is learning

Hausdorff:  $v = O(d^2k^2\log(dkm))$ 

Frechet :  $v = O(d^2k^2\log(dkm))$ 

[Driemel, Nusser, Phillips, Psarros 19]

 $d=\operatorname{dimension},\ k \ \operatorname{length}\ \operatorname{of}\ \operatorname{\underline{query}}\ \operatorname{curve},\ m \ \operatorname{length}\ \operatorname{of}\ \operatorname{\underline{data}}\ \operatorname{curves}$ 



**VC** dimension  $\nu$ : how complex is learning

 $\mathsf{Hausdorff}: \ v = O(dk \log(km))$ 

Frechet :  $v = O(dk \log(km))$ 

[Driemel, Nusser, Phillips, Psarros 19] [Brunig, Driemel: SODA 2024]

 $d=\mbox{dimension, }k\mbox{ length of query curve, }m\mbox{ length of data curves}$ 



**VC** dimension  $\nu$ : how complex is learning

Hausdorff:  $v = O(dk \log(km))$ 

Frechet :  $v = O(dk \log(km))$ 

[Driemel, Nusser, Phillips, Psarros 19] [Brunig, Driemel: SODA 2024]

 $d=\mbox{dimension, }k\mbox{ length of query curve, }m\mbox{ length of data curves}$ 



For metric properties, or curve reconstruction —> fine grid



For metric properties, or curve reconstruction —> fine grid



For classification —> 20





Choose Q, for  $J,J'\in\Omega$  so:  $(1-\varepsilon)d_Q(J,J')\leq d_\Omega(J,J')\leq (1+\varepsilon)d_Q(J,J')$ 



Choose Q, for  $J,J'\in\Omega$  so:  $(1-\varepsilon)d_Q(J,J')\leq d_\Omega(J,J')\leq (1+\varepsilon)d_Q(J,J')$ 

Sensitivity sampling Feldman-Schulman-Langberg (2010,2011)



When shapes J,J' are more general, total sensitivity of Q may be unbounded.



When shapes J,J' are more general, total sensitivity of Q may be unbounded. Need  $\frac{\mathsf{Total\ Sensitivity}}{\varepsilon^2}$  samples.



When shapes J, J' are more general, total sensitivity of Q may be unbounded. Need  $\frac{\text{Total Sensitivity}}{\varepsilon^2}$  samples.



 $d_Q(J, J') > \rho$ 

When shapes J, J' are more general, total sensitivity of Q may be unbounded. Need  $\frac{\text{Total Sensitivity}}{\varepsilon^2}$  samples.



$$d_Q(J, J') > \rho$$

$$L/\rho \leq$$
 Total sensitivity  $\leq (L/\rho)^2$ 

When shapes J, J' are more general, total sensitivity of Q may be unbounded. Need  $\frac{\text{Total Sensitivity}}{\varepsilon^2}$  samples.



 $d_Q(J, J') > \rho$ 

$$L/\rho \leq$$
 Total sensitivity  $\leq (L/\rho)^2$ 

Total Sensitivity =  $O(L/\rho)$  (in d=2, optimal)

(general  $d: (L/\rho)^{\frac{2d}{2+d}})$ )

Is a bus going to or from main station? Is a bird flying to or from a lake?

Main common distances: Frechet, DTW, ...





$$p = \operatorname{argmin}_{p' \in \gamma} \|q - p'\|$$

Our MinDist distance dQ does not capture orientation!

Let  $q \in \mathbb{R}^2$  and  $\sigma > 0$ . For curve  $\gamma$  set  $p = \arg\min_{p' \in \gamma} \|q - p'\|$ 

$$v_q^{\sigma} = \langle n_p(q), q - p \rangle \frac{1}{\sigma} e^{-\frac{\|p - q\|^2}{\sigma^2}}$$



$$p = \operatorname{argmin}_{p' \in \gamma} ||q - p'||$$

**Vectorization.**  $v_Q^{\sigma}(\gamma) = (v_{q_1}^{\sigma}(\gamma), \dots, v_{q_1}^{\sigma}(\gamma))$ 

Distance. 
$$d_Q^{\sigma}(\gamma, \gamma') = \frac{1}{\sqrt{n}} ||v_Q^{\sigma}(\gamma) - v_Q^{\gamma}(\gamma')||$$



## **Signed Medial Axis**

The **medial axis** is the set of points where the nearest point on the curve is not unique.



The **signed medial axis** (SMA) is the subset of the medial axis where the nearest curve points differ in orientation.

### Signed Local Feature Size

The **signed local feature size** (slfs) is the point on the SMA with minimum distance to the curve.



## **Stability**

#### **Landmark Stability**

Under some conditions on q and q' (do not cross SMA)

$$|v_q^{\sigma}(\gamma) - v_{q'}^{\sigma}(\gamma)| \le \frac{1}{\sigma} ||q - q'||$$

#### **Curve Stability**

Under some conditions place of  $q_i$ s

$$d_Q^{\sigma}(\gamma, \gamma') \leq \frac{1}{\sigma} d_{\mathsf{Frechet}}(\gamma, \gamma')$$



If Q is dense on  $\Omega \subset \mathbb{R}^2$ 

$$d_{Q,\infty}(\gamma,\gamma') = d_{\mathsf{Hausdorff}}(\gamma,\gamma')$$

#### **MinDist Sketch**

shape J

landmarks Q

#### **minDist**

$$v_i(J) = \inf_{p \in J} \|q_i - p\|$$





## OK, so is this a good distance?

$$d_Q(J, J') = ||v(J) - v(J')||$$

Phillips and Tang SIGSPATIAL 2019

#### MinDist Sketch

shape J

1. Easy to use

landmarks Q

2. Fast to compute (NN search)

$$(J) =$$

**minDist** 

$$v_i(J) = \inf_{p \in J} \|$$
 3. Classifies well (good modeling)



# OK, so is this a good distance?

$$d_Q(J, J') = ||v(J) - v(J')||$$

**Phillips and Tang** SIGSPATIAL 2019

# Thanks & Next Steps $v(J) = \begin{bmatrix} v_2 \\ v_3 \\ \dots \end{bmatrix}$

$$v(J) = \begin{bmatrix} v_2 \\ v_3 \\ \cdots \end{bmatrix}$$

## $v_i(J) = \inf_{p \in J} \|q_i - p\|$

1. Better classifiers?

2. Rotation / shift invariant (shape)

3. Apply to higher-dimensional objects