Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

The length of the shadow boundary by

Andreas Knauf

The Length of the Shadow Boundary

Andreas Knauf*

August 1997

Abstract

Among all embedded manifolds with positive exterior curvature $\leq k$ the ratio between the length of the shadow boundary and the surface is maximized by the sphere of radius $1 / k$.

Let \tilde{M} be a d-dimensional closed oriented manifold. We consider an embedding

$$
I: \tilde{M} \rightarrow \mathbb{R}^{d+1}, \quad M:=I(\tilde{M})
$$

in Euclidean $\left(\mathbb{R}^{d+1}, \bar{g}\right)$ with the outward unit normal vector field $N: M \rightarrow$ $T_{M} \mathbb{R}^{d+1}$.
$V(M)$ denotes the volume of (M, g) w.r.t. the Riemannian metric $g:=$ $\left.\bar{g}\right|_{T M}$ or, equivalently, w.r.t. the d-form

$$
\omega:=\left.\mathbf{i}_{N} \bar{\omega}\right|_{T_{M} \mathbb{R}^{d+1}}
$$

on M. Here $\bar{\omega}:=d x \wedge \hat{\omega}$ with $\hat{\omega}:=d x_{1} \wedge \ldots \wedge d x_{d}$ is the Euclidean volume on $\mathbb{R}^{d+1} \equiv \mathbb{R} \times \mathbb{R}^{d}$.

The shadow of the hypersurface M under the vertical orthogonal projection $P: \mathbb{R}^{d+1} \equiv \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is denoted by

$$
\hat{S}:=P(M) \subset \mathbb{R}^{d},
$$

[^0]and we are interested in the d-1-dimensional Hausdorff measure $L(M)$ of its topological boundary
$$
\hat{B}:=\partial \hat{S} \subset \mathbb{R}^{d},
$$
the length of the shadow boundary.
Fixing the volume $v=V(M)$ does not lead to an upper bound of $L(M)$:

- For $d=1$ the manifold is a union $\tilde{M}=S^{1} \cup \ldots \cup S^{1}$ of n circles, so that we have $L(M)=2 n$ if the shadow intervals are disjoint, whereas we have $V(M)=v$ for circles of radius $v /(2 \pi n)$.
- For $d \geq 2$ and arbitrary $l>0$ there is a linear transformation f on \mathbb{R}^{d+1} with $V(f(M))=V(M)$ and $L(f(M))=l$.

However, if we in addition fix the maximal exterior curvature

$$
k_{\max }(M):=\max _{m \in M}\left\|A_{m}\right\|>0
$$

of the embedding, $A_{m}: T_{m} M \rightarrow T_{m} M$ being the self-adjoint Peterson operator of the second fundamental form, then the length of the shadow boundary is bounded above:

Theorem 1 For $k_{\text {max }}(M)=k$

$$
\begin{equation*}
L(M) \geq L\left(S_{k}^{d}\right) \tag{1}
\end{equation*}
$$

and if A is positive definite,

$$
\begin{equation*}
L(M) \leq \frac{V(M)}{V\left(S_{k}^{d}\right)} \cdot L\left(S_{k}^{d}\right) \tag{2}
\end{equation*}
$$

S_{k}^{d} being the d-sphere of radius $1 / k$.
Remarks 2 - The assumption $A>0$ is rather restrictive. Indeed one may weaken it by assuming that each orbit of the gradient flow (see below) meets $P^{-1}(\hat{B}) \cap M$ at most in one interval (which then projects to a single point in \hat{B}).
Even without that assumption one can show that the shadow boundary $\hat{B} \subset \mathbb{R}^{d}$ is a $(d-1)$-regular set, but in general there may be gradient orbits contributing to several points in \hat{B}.
I conjecture that the theorem holds in complete generality, without the positivity assumption.

- For the upper bound (2) \tilde{M} can be assumed to be connected, since pulling apart the components of a nonconnected M by Euclidean translations leaves the volume invariant while increasing the length of the shadow boundary.
- By a deformation argument one sees that for suitable constants $c_{l}, c_{u}>$ 0 only depending on \tilde{M} and k one can find embeddings of M with $k_{\max }(M)=k$ and arbitrarily large volume $V(M)$ with

$$
L(M) \leq L\left(S_{k}^{d}\right)+c_{l}
$$

respectively

$$
L(M) \geq \frac{V(M)}{V\left(S_{k}^{d}\right)} \cdot L\left(S_{k}^{d}\right)-c_{u} .
$$

- The theorem can be applied in entropic estimates, see [2].

The proof is based on the gradient flow

$$
\Phi_{t}: M \rightarrow M \quad(t \in \mathbb{R})
$$

of the height function $h:=\left.x\right|_{M}$ with vector field $X:=\nabla h: M \rightarrow T M$, which is the projection

$$
\begin{equation*}
X=e-(N, e) N \tag{3}
\end{equation*}
$$

of the vertical unit vector field $\bar{e}:=\bar{\nabla} x, e:=\left.\bar{e}\right|_{M}$ to $T M$.
Objects on \mathbb{R}^{d+1} are marked with a bar and those on \mathbb{R}^{d} with a hat. Whenever possible, the inner product $\bar{g}(\cdot, \cdot)$ is abbreviated by writing (\cdot, \cdot).

We prepare the proof of the upper bound (2) by a sequence of lemmas.
The gradient flow changes the angle between the normal vector field N and the vertical direction e according to

$$
\begin{equation*}
\left.\frac{d}{d t}\left(N\left(\Phi_{t}(m)\right), e\right)\right|_{t=0}=(A(m) X(m), e)=(A(m) X(m), X(m)) . \tag{4}
\end{equation*}
$$

Under our assumption $A>0$ this derivative is strictly positive on the nontrivial orbits. Thus in that case

$$
B:=P^{-1}(\hat{B}) \cap M \subset\{m \in M \mid(N(m), e)=0\}
$$

is an embedded submanifold of dimension $d-1$. By strict convexity of the region bounded by M the projection P is injective on B.

We set

$$
M_{0}:=\{m \in M \mid(N(m), e) \leq 0\}
$$

and

$$
M_{t}:=\Phi_{t}\left(M_{0}\right) \quad(t \in \mathbb{R}) .
$$

Then the boundary equals

$$
\partial M_{t}=B_{t}:=\Phi_{t}(B) .
$$

Lemma 3

$$
L(M)=\int_{B} \mathbf{i}_{X} \omega
$$

Proof. $\left.X\right|_{B}=\left.e\right|_{B}$. The projection $P \upharpoonright_{B}: B \rightarrow \hat{B}$ is a diffeomorphism (but not an isometry in general). Thus we have

$$
\begin{aligned}
\int_{B} \mathbf{i}_{X} \omega & =\int_{B} \mathbf{i}_{e} \omega=\left.\int_{B} \mathbf{i}_{e} \mathbf{i}_{N} \bar{\omega}\right|_{T_{M} \mathbb{R}^{d+1}} \\
& =-\left.\int_{B} \mathbf{i}_{N} \mathbf{i}_{e} \bar{\omega}\right|_{T_{M} \mathbb{R}^{d+1}}=-\int_{B} \mathbf{i}_{N} P^{*} \hat{\omega}=-\int_{\hat{B}} \mathbf{i}_{\hat{N}} \hat{\omega},
\end{aligned}
$$

$\hat{N}: \hat{B} \rightarrow S^{d-1}$ being the outward normal vector field.
Lemma $4 \quad V(M)-V\left(M_{0}\right) \geq \int_{0}^{\infty}\left[\int_{\partial M_{t}} \mathbf{i}_{X} \omega\right] d t$
and

$$
V\left(M_{0}\right) \geq \int_{-\infty}^{0}\left[\int_{\partial M_{t}} \mathbf{i}_{X} \omega\right] d t
$$

with equality for the sphere S_{k}^{d}.
Proof.

$$
\int_{M} \omega \geq \lim _{t \rightarrow \infty} \int_{M_{t}} \omega=\int_{M_{0}} \omega+\int_{0}^{\infty}\left(\frac{d}{d t} \int_{M_{t}} \omega\right) d t
$$

since every orbit of the gradient flow meets B in at most one point, and

$$
\begin{equation*}
\frac{d}{d t} \int_{M_{t}} \omega=\int_{\partial M_{t}} \mathbf{i}_{X} \omega \tag{5}
\end{equation*}
$$

The second equation follows similarly. For S_{k}^{d} every orbit except the two poles passes the equator B, hence the equality.

Lemma $5 \quad L_{X} \omega=-(N, e) \cdot \operatorname{tr}(A) \cdot \omega$.

Proof.

$$
L_{X} \omega=\left.\left(L_{\bar{X}} \mathbf{i}_{\bar{N}} \bar{\omega}\right)\right|_{T M}
$$

for an extension \bar{N} of the unit normal vector field N to a tubular neighbourhood of M and $\bar{X}:=\bar{e}-(\bar{N}, \bar{e}) \bar{N}$.

$$
\begin{equation*}
L_{\bar{X}} \mathbf{i}_{\bar{N}} \bar{\omega}=\mathbf{i}_{\bar{N}} L_{\bar{X}} \bar{\omega}+\mathbf{i}_{[\bar{X}, \bar{N}]} \bar{\omega} \tag{6}
\end{equation*}
$$

with

$$
\mathbf{i}_{\bar{N}} L_{\bar{X}} \bar{\omega}=\mathbf{i}_{\bar{N}} \operatorname{div}(\bar{X}) \bar{\omega}=\operatorname{div}(\bar{X}) \mathbf{i}_{\bar{N}} \bar{\omega},
$$

while

$$
\operatorname{div}(\bar{X})=-\operatorname{div}((\bar{N}, \bar{e}) \bar{N})=-(\bar{N}, \bar{e}) \cdot \operatorname{div}(\bar{N})-L_{\bar{N}}(\bar{N}, \bar{e})
$$

The first term is rewritten using the identity (see, e.g. Do Carmo, §6.3)

$$
\operatorname{div}(\bar{N}) \upharpoonright_{M}=d \cdot H=\operatorname{tr}(A)
$$

for the mean curvature $H: M \rightarrow \mathbb{R}$. The Lie derivative of the inner product consists of three terms:

$$
\begin{equation*}
L_{\bar{N}} \bar{g}(\bar{N}, \bar{e})=\left(L_{\bar{N}} \bar{g}\right)(\bar{N}, \bar{e})+\left(L_{\bar{N}} \bar{N}, \bar{e}\right)+\left(\bar{N}, L_{\bar{N}} \bar{e}\right) \tag{7}
\end{equation*}
$$

The last two terms of (7) vanish, since $L_{\bar{N}} \bar{N}=0$ and

$$
\left(\bar{N}, L_{\bar{N}} \bar{e}\right)=-\frac{1}{2} \frac{\partial}{\partial x}(\bar{N}, \bar{N})=-\frac{1}{2} \frac{\partial}{\partial x} 1
$$

By the general formula $\left(L_{Y} g\right)_{i, j}=Y_{i \mid j}+Y_{j \mid i}$ (Abraham-Marsden [1] §2.7) for the Lie derivative of a metric tensor and $(\bar{N}, \bar{N})=1$

$$
L_{\bar{N}} \bar{g}(\bar{N}, \bar{e})=\left(L_{\bar{N}} \bar{g}\right)(\bar{N}, e)=\left(\nabla \bar{N}_{0}, \bar{N}\right)
$$

\bar{N}_{0} being the vertical component of \bar{N}. So (with a slight abuse of notation) the first term in (6) equals

$$
\begin{equation*}
\mathbf{i}_{\bar{N}} L_{\bar{X}} \bar{\omega}=-\left(\operatorname{tr}(\bar{A})+\left(\nabla \bar{N}_{0}, \bar{N}\right)\right) \mathbf{i}_{\bar{N}} \bar{\omega} . \tag{8}
\end{equation*}
$$

For the second term in (6) we use the identity

$$
[\bar{X}, \bar{N}]=\frac{\partial}{\partial x} \bar{N}+\left(\nabla \bar{N}_{0}, \bar{N}\right) \bar{N}
$$

and conclude from (6) and (8) that

$$
L_{\bar{X}} \mathbf{i}_{\bar{N}} \bar{\omega}=-\operatorname{tr}(\bar{A}) \mathbf{i}_{\bar{N}} \bar{\omega}+\mathbf{i}_{\partial \bar{N} / \partial x} \bar{\omega} .
$$

However, the d-form

$$
\left.\left(\mathbf{i}_{\partial \bar{N} / \partial x} \bar{\omega}\right)\right|_{T M}=0,
$$

since $\partial \bar{N} / \partial x$ is tangential to M.
Lemma 6 For $m \in B$

$$
\begin{equation*}
\left(N\left(\Phi_{t}(m)\right), e\right) \leq \tanh (k t) \quad(t \geq 0) \tag{9}
\end{equation*}
$$

with equality for the sphere S_{k}^{d} of radius $1 / k$.
Proof. Both sides of (9) vanish for $t=0$. Let us assume that we have equality in (9) for some t. Then by (4)

$$
\begin{align*}
\frac{d}{d t}\left(N\left(\Phi_{t}(m)\right), e\right) & =(A(y) X(y), X(y)) \leq k \cdot(X(y), X(y)) \\
& =k \cdot\left(1-(N(y), e)^{2}\right) \tag{10}
\end{align*}
$$

with $y:=\Phi_{t}(m)$, using (3). So $t \mapsto\left(N\left(\Phi_{t}(m)\right), e\right)$ increases fastest for the sphere S_{k}^{d}.

There the vertical component $z \in[-1 / k, 1 / k]$ of $y \equiv\left(z, y_{1}, \ldots, y_{d}\right) \in S_{k}^{d}$ has the form $z=k \cdot(N(y), e)$, and (10) with equality is equivalent to the differential equation for y.

The gradient equation for the sphere has the explicit solution

$$
x(t)=\tanh (k t) / k, \quad x_{i}(t)=x_{i}(0) / \cosh (k t) \quad(i=1, \ldots, d),
$$

so that (9) follows.
Proof of the Theorem. We deduce the lower bound (1) from the following observation. Denote by m a point of m on which h is maximal, so that $N(m)=e$. Then \hat{S} contains a ball \hat{K} of radius $1 / k$ around $\hat{m}:=P(m)$:

Otherwise there is a point $\hat{y} \in \mathbb{R}^{d}-\hat{S}$ with $\|\hat{y}-\hat{m}\|<1 / k$, and we consider the two-plane $F \subset \mathbb{R}^{d+1}$ through m containing the vertical line $L:=P^{-1}(\hat{y})$. By assumption $M \cap F$ does not meet L, although the distance between m and L is $<1 / k$ and $T_{m} M$ is horizontal.

But this leads to a contradiction, since there is a regular curve of length $\geq \frac{1}{2} \pi / k$ in $F \cap M$ starting at m in the direction of L, which is of geodesic curvature $\leq k$.

By projecting \hat{B} to $\partial \hat{K}$ along rays through \hat{m}, one sees that the length $L(M)$ of the shadow boundary of M is larger than that of $\partial \hat{K}$. The latter equals $L\left(S_{k}^{d}\right)$.

To show the upper bound (2), we take another time derivative of (5) and obtain, using Lemma 5

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} \int_{M_{t}} \omega=\int_{\partial M_{t}} \mathbf{i}_{X} L_{X} \omega=-\int_{\partial M_{t}}(N, e) \operatorname{tr}(A) \mathbf{i}_{X} \omega . \tag{11}
\end{equation*}
$$

Setting $f(t):=\frac{d}{d t} \int_{M_{t}} \omega / L(M)$ and $f_{S}(t)$ the corresponding expression for the sphere S_{k}^{d}, we have by (11), Lemma 5 and Lemma 6

$$
\frac{d}{d t} \ln \left(f_{S}(t)\right) \leq \frac{d}{d t} \ln (f(t))<0
$$

By Gronwall's inequality ([1], Ch. 2.1) applied to

$$
f(t)=1+\int_{0}^{t} \frac{f^{\prime}(s)}{f(s)} f(s) d s
$$

we find

$$
f(t) \geq f_{S}(t) \quad(t \geq 0)
$$

By Lemma 4

$$
\frac{V(M)-V\left(M_{0}\right)}{L(M)} \geq \int_{0}^{\infty} f(t) d t
$$

and conversely

$$
\frac{V\left(M_{0}\right)}{L(M)} \geq \int_{-\infty}^{0} f(t) d t
$$

with equality for the sphere. Together this implies

$$
\frac{V(M)}{L(M)} \geq \frac{V\left(S_{k}^{d}\right)}{L\left(S_{k}^{d}\right)}
$$

which proves our claim.

References

[1] Abraham, R., Marsden, J.E.: Foundations of Mechanics. Reading: Benjamin 1978
[2] Benatti, F., Hudetz, T., Knauf, A.: Quantum Chaos and Dynamical Entropy. SFB 288, Preprint Nr. 268 (1997) (http://www-sfb288.math.tu-berlin.de)
[3] Do Carmo, M.: Riemannian Geometry. Boston: Birkhäuser 1992

[^0]: *Max-Planck-Institut für Math. in den Naturw., Inselstr. 22-26, D-04103 Leipzig, Germany. e-mail: knauf@math.tu-berlin.de

