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� What are microstructures�

Microstructures are structures on a scale between the atomic scale and the
macroscopic scale on which we usually make observations� They are abun�
dant in natural and man�made materials� and often the microstructure op�
timizes a material
s properties �maximum strength at given weight� minimal
energy� maximum or minimum permeability� ����� Some materials can change
their internal microstructure and hence their properties in response to exter�
nal in�uences� They are sometimes referred to as �smart materials
 and are
of great technological interest�

The attempt to mathematically describe and analyze the formation� in�
teraction and the macroscopic e�ects of microstructures yields new� easily
stated but deep mathematical problems� Their resolution is in its very be�
ginning and involves the interaction of a variety of branches of mathematics
including the calculus of variations� di�erential geometry� geometric measure
theory� dynamical systems and nonlinear partial di�erential equations� In
the following I try to describe some of the basic questions and how di�erent
branches of mathematics are involved in their resolution�

To simplify the exposition I focus on models of microstructures that arise
in elastic crystals due to a solid�solid phase transformation� A large part
of this article� in particular Sections ���� mainly reviews work of others� I
draw heavily on the beautiful survey of �Sver�ak �Sv ��� as well as the detailed
expositions of Ball and James �BJ 	
�� �BJ ���� Currently no exposition of
the �eld in book form is available but various projects are in preparation
�BJ �
a�� �BJ �
b�� �Mu �
a���Mu �
b�� �PZ �
�� Dacorogna
s book �Da 	�� is
a good reference for the direct method and notions of convexity�

� Microstructure in elastic crystals

Inspired by ideas of Ericksen� Ball and James �BJ 	
� �see also �CK 		��
�Fo 	��� proposed to study crystal microstructure by analyzing minimizers
and minimizing sequences for the elastic energy� They use a continuum model
based on nonlinear elasticity �a theory based on linearized elasticity was pro�
posed earlier by Khachaturyan� Roitburd and Shatalov� see �Kh �
�� �Kh 	���
�KSh ���� �Ro ���� �Ro 
	�� a comparison of the two approaches appears in
�BJ ���� Section �� �Bh ��� and �Ko 	���� The elastic energy I needed to de�
form the crystal from its reference con�guration �identi�ed with a bounded
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domain � � R�� by a map u � �� R� is given by

I�u� �
R
	

W �Du�dx� �����

where Du � � �u
i

�xj
� is the deformation gradient� The Cauchy�Born rule asserts

that the stored�energy density W �F � is the energy �per unit reference vol�
ume� needed to perform an a�ne deformation x �� Fx of the crystal lattice�
The stored energy is invariant under rigid transformations of the ambient
space �frame indi�erence� and under changes of the independent variables
that correspond lattice invariant rotations �crystal symmetry�

W �QF � � W �F � �Q � SO���� �����
W �FR� � W �F � �R � P � SO���� �����

The discrete point group P re�ects the symmetry properties of the lattice
that persist in the continuum approach �see �Er 	��� �Er 	��� �Pi 	�� for the
relevance of P and �Er 	��� �Za ��� for a discussion of the Cauchy�Born rule��

It is convenient to normalize W such that minW � �� Then the set

K � fF � W �F � � �g

containts exactly the zero�energy a�ne deformations of the lattice� By �����
and ����� this set consists of one or several disjoint copies of SO���

K � SO���U� � � � � � SO���Um� Ui � UT
i � �� �����

In general the energy W and hence the set K depend on the temperature
�� For materials that undergo solid�solid phase transitions K consists of one
component at high temperatures and of several symmetry related �through
P� components below a critical temperature �c �see �BJ �����
The relation between minimization of I and microstructure is discussed in
Section � for a model problem� situations with SO�n� symmetry are discussed
in Section ��

� Basic mathematical questions

The fundamental problem is�

Characterize minimizers and minimizing
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sequences of I�u� �
R
	
W �Du�dx

subject to suitable boundary conditions�

This is a very di�cult problem since W is typically not convex �nor rank��
convex� for materials that undergo solid�solid phase transitions� In other
words the corresponding Euler�Lagrange equations are not strongly elliptic
but of mixed elliptic�hyperbolic type� Research has therefore mostly focused
on �almost� zero energy states� i�e� pointwise minimizers of the integrand�
Generalizing the setting slightly we consider maps

u � � � Rn � Rm

on a bounded domain � �with Lipschitz boundary� and a compact set K �
Mm�n in the m� n matrices �e�g� the zero set of W ��

Problem � �exact solutions�� Characterize all Lipschitz maps u such that

Du � K a�e� in �� �����

Problem � �approximate solutions�� Characterize all sequences uj of
maps whose Lipschitz constants are uniformly bounded and which satisfy

dist�Duj� K�� � a�e� in �� �����

Problem � �relaxation ofK�� Determine the sets Kex andKapp � Mm�n

of all matrices F such that Problem � and Problem � have a solution that
satis�es in addition

u�x� � Fx on ��� �����
uj�x� � Fx on ��� �����

respectively�
A simple covering and scaling argument shows that Kex and Kapp do not

depend on ��
In the context of crystal microstructures the sets Kex and Kapp have an

important interpretation� They represent macroscopic zero �or almost zero�
energy deformations� while K represents microscopic zero energy deforma�
tions� The sets Kex and Kapp can be much larger than K� in fact it is
conjectured �and proved in two dimensions� that for many sets of the form

�



����� the sets Kex and Kapp have interior points �subject to an incompress�
ibility constraint detF � ��� This would correspond to an �experimentally
observed� �uid�like behavior� Some known results are reviewed in Section �
below�

Problems ��� also arise in many other contexts� e�g� in the classi�cation
of isometric immersions or in the theory of nonlinear elliptic and hyperbolic
partial di�erential equations� see �Sver�ak
s survey �Sv ��� and Gromov
s trea�
tise �Gr 	���

If minimizers do not exist there are often many di�erent minimizing se�
quences� Some of those� however� only di�er in rather super�cial ways�

Problem �� Develop mathematical objects that capture the �essential
features
 of minimizing sequences�

One such object is the Young measure� discussed in Section �� see also
Section 	��� Minimization of elastic energy often predicts minimizing se�
quences that develop �ner and �ner oscillations� Experimentally a limited
�neness is observed�

Problem �� Explain the length scale and �ne geometry of microstruc�
tures� possibly by including other contributions to the energy� such as inter�
facial energy�

Some attempts in this directions are discussed in Section 
�

� The two�gradient problem

Before reviewing a general framework for Problems ��� let us look at the
simplest example

K � fA�Bg�

��� Exact solutions

The simplest solution satis�es Du � A on a halfspace H and Du � B
on its complement� Due to tangential continuity of u this is only possible
if B � A � a � n� where n is the normal to H� In particular one has
rk�B � A� � �� It turns out that for an arbitrary solution of Du � K� the
gradient can only jump across hyperplanes with normal n�
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Lemma ��� ��BJ ����� Suppose that u � Rn � Rm is Lipschitz and

Du � fA�Bg a�e�

�i� If rk�B � A� � � then Du 	 A a�e or Du 	 B a�e

�ii� If rk�B � A� � � then B � A � a � n and there exists a Lipschitz
function h � R� R such that h� � f�� �g a�e and

u�x� � Ax� a h�x 
 n��

The proof is a simple exercise using the fact that the distributional curl of a
gradient vanishes�

��� Approximate solutions

Lemma ��� ��BJ ����� Suppose that rk�B � A� � � and let uj � � � Rn

be a sequence of functions with uniformly bounded Lipschitz constants that
satisfy

dist�Duj� fA�Bg�� � a�e� in ��

Then �for a subsequence� not relabelled� either

Duj � A a�e� or Duj � B a�e�

This can be proved e�g� by using the minors relations �see Section ���

��� Relaxation	 nonattainment	 microstructure

If rk�B � A� � � then Kapp � K by Lemma ����

Lemma ��� ��BJ ����� Suppose that rk�B � A� � �� Then

�i� Kex � fA�Bg�

�ii� Kapp � convK � f�A� ��� ��B � � � ��� ��g�

Moreover for any sequence u
j� that satis�es �	�
� and �	��� one has

u
j� � Fx uniformly on �� �����
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Figure �� A simple laminate�

In particular for � � ��� ��� F � �A� ��� ��B there exist approximate but
not exact solutions� The gradients Duj of minimizing sequences must oscil�
late rapidly so that uj can approach Fx� Nonexistence of a minimizer thus
leads to �ne scale oscillations and �microstructure
�

We sketch one possible construction of a minimizing sequence� Many vari�
ants are possible� and we return in Section � to the question whether all
minimizing sequences are unique up to minor details�

Assume without loss of generality that F � �� let h be a ��periodic Lipschitz
function with h� � ���� �� on ��� ��� h� � � on ��� �� and let

v�x� � h�x 
 n�� vk�x� � k��v�kx��

The functions vk are called simple laminates since the sets fDu � Ag and
fDu � Bg consist of parallel stripes �see Figure ��� We have Dvk � fA�Bg
a�e and vk � � uniformly� To adjust the boundary conditions consider the
cut�o� functions �k�x� � minfkdist�x� ���� �g� Then uk � �kvk has the
desired properties�
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Figure �� A minimizing sequence obtained by truncation of very �ne lami�
nates�

� Approximate solutions and Young measures

Young measures �also called �generalized functions
� were introduced by
L�C� Young in the ��
s to solve optimal control problems that have no classi�
cal solution but rather require an in�nitesimally fast switching between states
�see �Yo �
�� �Yo ����� The idea is to replace functions which take values in
a �compact� set K by functions that take values in the space of probability
measures on K� Thus an �in�nitesimally �ne
 mixture of two states is rep�
resented by a convex combination of two Dirac masses� For the problems
discussed above it is crucial to characterize those Young measures that are
generated by sequences of gradients� An abstract characterization is avail�
able in terms of quasiconvex functions� but already simple concrete examples
lead to challenging open questions� since very few quasiconvex functions are
known�
The presentation below follows �Ba 	��� A short selection of the rich litera�

ture on Young measures is �Ba 	��� �BL 
��� �Kr ���� �Va ���� �Va ���� Tartar
�Ta 
��� �Ta 	�� and later DiPerna �DP 	�� used Young measures in connec�
tion with the theory of compensated compactness to analyze compactness
and existence questions in nonlinear partial di�erential equations� Varifolds

	



��Al 
��� are a generalizaton of Young measures to a geometric setting�

Let E be a measurable set in Rn� K a compact set in Rl and denote
by M�K� and P�K� the space of the Radon measures and of probability
measures on K� The pairing between the space C�K� of continuous func�
tions and its dual M�K� is denoted by h�� fi �

R
K
fd�� A Young measure

� � E � P�K� is a weak�measurable map� i�e� a map such that x �� h��x�� fi
is measurable for all f � C�K��

Theorem ��� �Fundamental theorem on Young measures�
Let wj � E � K be a sequence of measurable functions� Then there exists
a subsequence wjk and a Young measure � � E � P�K� such that for all
f � C�K�

f�wjk�
�
� f� in L��E�� f��x� � h�x� fi �

R
K
fd�x� �����

Moreover if K � � K is a compact subset then�

supp�x � K � for a�e� x�
 dist �wjk� K�� � �locally� in measure� �����

Notation� We say that the sequence wjk generates the Young measure �� A
Young measure � is called a �W �����gradient Young measure if E is open
and there exists a sequence uj Lipschitz functions with uniformly bounded
Lipschitz constants such that Duj generates ��

Remark� A similar result holds for sequences wj � E � Rl if one
replaces C�K� by C��R

l�� the dual of M�Rl�� In this case� however� ��x� is
in general only a subprobability measure� Mild additional condition such as
sup
j

R
E

jwjj
s 	 � for some s � � assure that ��x� is a probability measure�

Alternatively one can work in a suitable compacti�cation of Rl�

Proof� To each wj we associate the elementary Young measure

�j�x� � 
wj
x��

The sequence f�jgj�N is bounded in the space L�w �E�M�K�� of essentially
bounded� weak� measurable maps� Since this space is a dual of L��E�C�K��
�see �Ed ���� p� �		� �IT ���� p� ��� �Me ���� p� ���� the �rst assertion follows
from the Banach�Alaoglu theorem and the fact that P�K� is weak� closed in
M�K�� The second assertion is a simple consequence of the �rst�
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Young measures are closely related to compactness by the following fact�

Corollary ��� Let wjk be as in Theorem 
��� Then

wjk � w locally in measure �
 ��x� � 
w
x� a�e�

Young measures provide a concise description of the �ne scale oscillation that
may arise in minimizing sequences�

Example ��� As in Section ��� consider A�B� F � Mm�n with rk�B �
A� � �� F � �A � �� � ��B� � � ��� ��� Let uj be a sequence with
dist�Duj� fA�Bg� � � a�e� uj�x� � Fx on ��� Then Duj generates the
�unique� Young measure �
A � ��� ��
B�

Proof� By ������ supp ��x� � fA�Bg� Hence ��x� � ��x�
A������x��
B�
Application of ����� with f � id and Lemma ��� �ii� yield ��x�A � �� �
��x��B � F � which implies the assertion�

Young measures can be seen as generalized solutions of the problem Du �

K or
R
	
W �Du�

�
� min generated by minimizing sequences� A classical so�

lution corresponds to a Young measure that is a Dirac mass at every point�
Problem � �approximate solutions� can be rephrased as follows�

Problem ��� Characterize all gradient Young measures supported in K�

To classify gradient Young measures Morrey
s notion of quasiconvexity is
fundamental�

De
nition ��� A function f � Mm�n � R is quasiconvex if for every

bounded domain � and every F �Mm�n

R
	
f�F �D�� �

R
	
f�F � � j�jf�F �� �� Lipschitz � �j�	 � �� �����

Thus f is quasiconvex if a�ne functions minimize
R
	
f�Du� subject to a�ne

boundary values� The de�nition is independent of �� and quasiconvex func�
tions are automatically continuous�
Morrey
s crucial observation was that quasiconvexity of f is equivalent

to �sequential� W ��� weak� lower semicontinuity of the functional u ��R
	
f�Du�dx� Combining this fact with careful measure�theoretic and func�

tional�analytic arguments� Kinderlehrer and Pedregal obtained the following
classi�cation�
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Theorem ��� ��KP ���� A Young measure � � �� P�Mm�n� is a �W �����
gradient Young measure if and only if the following three conditions hold

�i� supp �x is uniformly bounded �for a�e� x��

�ii� h�x� idi is the gradient of a Lipschitz function�

�iii� f�h�x� idi� � h�x� fi for all quasiconvex f �

The key point is �iii� which is in nice duality with De�nition ���� Roughly
speaking� quasiconvex function satisfy Jensen
s inequality for gradients while
gradient Young measures must satisfy Jensen
s inequality for all quasiconvex
functions� A similar result holds for Young measures generated by gradients
of sequences that are bounded in the Sobolev spaceW ��p�p � ��� see �KP ����
�Kr ���� �FMP �
�� general references on Young measures for noncompact
targets include �DPM 	
� and �Ro ����
As a consequence we obtain an abstract solution of Problem �� and Prob�

lem �� A Young measre � is called homogeneous if the map x �� ��x� is
constant �a�e��� A blow�up argument shows that if � is a gradient Young
measure then ��a� arises as a homogeneous gradient Young mesure for a�e�
a � �� see �KP ����

Corollary ��� Let K �Mm�n be compact�

�i� The set of homogeneous gradient Young measures supported on K is
given by

Mqc�K� �� f� � P�K� � f�h�� idi� � h�� fi �f �Mm�n � R quasiconvexg�

�ii� The set Kapp is the quasiconvex hull of K�

Kapp � Kqc �� fF � f�F � � infK f� �f � Mm�n � R quasiconvexg
� fh�� idi � � � Mqc�K�g �

Following �Sver�ak we say that Mqc�K� is trivial if it only contains Dirac
masses� In view of Corollary ��� this occurs if and only if all approximating
sequences are compact�
Quasiconvexity is a natural condition� but hard to verify� Therefore two al�
gebraic conditions were introduced� A function f �Mm�n � R is polyconvex
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if it can be expressed as a convex function of minors �subdeterminants�� it
is called rank���convex if it is convex on all line segments �A�B� with rank
B � A � �� One has the implications ��Mo ���� �Da 	����

f polyconvex 
 f quasiconvex 
 f rank�� convex�

For m � � or n � � all notions are equivalent to ordinary convexity� For
m�n � � quasiconvexity does not imply polyconvexity�

Conjecture ��� �Morrey� ��

�� For m�n � � rank�� convexity does not
imply quasiconvexity�

�Sver�ak �Sv ��a� proved the conjecture for m � �� The case m � � is open�
Kristensen �Kr �
� very recently proved that for m � � there is no local
condition that implies quasiconvexity�
For a minorM application of Theorem ��� to�M yields the minors relation

h�x�Mi � M�h�x� idi� �����

as a necessary condition for gradient Young measures� The following ta�
ble illustrates some solved and unsolved problems for homogeneous gradient
Young measures�
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� Exact solutions and convex integration

Approximate solutions are characterized by the quasiconvex hull Kqc and
set Mqc�K� of Young measures� The construction of exact solutions is more
delicate� In view of the negative result for the two�gradient problem �see
Lemma ��� �i�� it was widely believed that exact solutions are rather rare�
Recent results suggest that many exact solutions exist but that they have
to be very complicated� This is reminiscent of rigidity and �exibility results
on isometric immersions and other geometric problems �see �Na ���� �Ku ����
�Gr 	��� Section ��������

To illustrate some of the di�culties consider the two�dimensional two�well
problem�

Du � K a�e� in �� u � Fx on ��� �����

K � SO���A � SO���B� �����

A � Id � B � diag��� ��� � 	 � 	 � 	 �� �����

If we ignore boundary conditions the simplest solutions of Du � K are
simple laminates� see Figure �� A short analysis of the rank�� connections in
K shows that such laminates are perpendicular to one of the normals n� or
n�� determined by the two solutions of the equation

QA� B � a� n� �����

There is� however� no obvious way to combine the two laminates �see Fig�
ure ��� It was thus believed that the problem �����  ����� has no nontrivial
solutions� This is false� The construction of nontrivial solutions is based on
Gromov
s method of convex integration�

��� Existence of solutions

First� one observes that the open version of the two�gradient problem admits
a solution�

Lemma ��� ��MS ����� Suppose that rk�B�A� � �� F � �A������B� � �
��� ��� Then� for a bounded domain � and every � � � there exists a piecewise
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Figure �� Two possible laminates for the two�well problem�
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linear map u such that
u�x� � Fx on ��

dist�Du� fA�Bg� 	 ��

sup ju�x�� Fxj 	 ��

Here a map u � �� Rm is called piecewise linear if u is Lipschitz continuous
and if there exist �nite or countably many disjoint open sets �i whose union
has full measure such that uj	i

is a�ne� To iterate the result of Lemma ���
we de�ne the lamination convex hull K l of a set K � Mm�n by successive
addition of rank�� segments�

K� �� K�
K
i
�� �� K
i� � f�A� ��� ��B� � � ��� ��� A� B � K
i�� rk�B � A� � �g

K l ��
�S
i��

K
i��

Remark� In contrast with the ordinary convex hull there is no version
of Carath�eodory
s theorem that guarantees that the union of a �xed number
of the K
i� is su�cient� Generally� very little is known about the geometry
of rank�� convexity �but see �MP �����

Lemma ��� Suppose that U �Mm�n is open� Let v � �� Rm be piecewise
a�ne and Lipschitz continuous and suppose Dv � U l a�e� Then there exist
u � �� Rm such that

Du � U a�e� in �� u � v on ���

The crucial step is the passage from open to compact sets K � Mm�n�
Following Gromov we say that a sequence of sets Ui is an in�approximation
of K if

�i� the Ui are open and contained in a �xed ball

�ii� Ui � U l
i
�

�iii� Ui � K in the following sense� if Fik � Uik � ik �� and Fik � F � then
F � K�

��



Theorem ��� ��Gr ���� p� 
��� �MS ����� Suppose that K admits an in�
approximation fUig� Let v � C����Rm� with

Dv � U��

Then there exists a Lipschitz map u such that

Du � K � � a�e�� u � v on ���

The proof uses a sequence of approximations obtained by successive applica�
tion of Lemma ���� To achieve strong convergence each approximation uses
a much �ner spatial scale than the previous one� similar to the construction
of continuous but nowhere di�erentiable functions� This is one of the key
ideas of convex integration�

This theorem applies to the two�well problem �����  ����� if �� �� �� A
calculation shows that solutions exist if F � int K l� and K l is given by a
simple formula �see �Sv ����� A di�erent construction of �many� nontrivial
solutions was recently obtained by Dacorogna and Marcellini �DM ��b� using
Baire
s theorem� Other existence results appear in �DM ��a�� �DM �
�� The
case �� � � in �����  ����� requires �i� of the following re�nement�

Theorem ��� ��MS ����� Theorem ��	 remains valid if the de�nition of
in�approximation is modi�ed as follows�

�i� the sets Ui are relatively open in the set fF �Mn�n � detF � �g� n � ��

�ii� the lamination convex hull U l is replaced by the rank�� convex hull

U rc �� fF �Mm�n � f�F � � inf
U
f for

all rank�� convex f � Mm�n � Rg�

Part �i� just requires only a modi�cation in the proof of Lemma ���� A com�
pletely open problem is how many constraints on F can be prescribed� A
natural guess is that all minors can be prescribed but this is false�

Regarding part �ii� one trivially has the inclusion K l � Krc� Several au�
thors ��AH 	��� �CT ���� �Ta ���� discovered independently an example where
Krl �� Krc� Let

K �

�
�

�
� �

� �

�
��

�
� �

� �

��

�




one has K l � K but

Krc �

��
� �

� �

�
� j�j � �� j�j � �

�
�

It follows from Theorem ��� �ii� that the relation Du � U admits nontrivial
solutions for every �small� neighbourhood U of K� although U contains no
rank�� connections �i�e� no simple laminates solve the relation��
A natural question is whether one can use the quasiconvex hull U qc instead
of U rc� One key point seems to be the resolution of the following�

Conjecture ��� Let K be a compact quasiconvex set� i�e� Kqc � K and
let � � Mqc�K�� Then for every open set U � K there exists a sequence
uj � ��� ��

n � Rm such that Duj generates � and Duj � U a�e�

The conjecture is true for compact convex sets ��Mu �
a��� this re�nes a re�
sult of Zhang �Zh ��� who showed that Duj � B��� R� for a su�ciently large
ball�

The use of the rank�� convex hull U rc rather then U l is potentially relevant
for the construction of singular solutions to m� � elliptic systems

div��Dv� � �� v � � � R� � Rm�

Such a system may be written as �rst order system �see �Sv ����

Du � K �� f�F�G� �M�m��� ��F � � G�g�

where G�
i� � �Gi�� G

�
i� � Gi�� Ellipticity implies thatK l � K� but nontrivial

solutions may exist if one can show Krc �� K�

��� Regularity and rigidity

The construction outlined above yields very complicated solutions of the two�
well problem �����  ������ This raises the question whether the geometry of
the solutions can be controlled� Consider the set

E � fx � � � Du�x� � SO���Ag
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Figure �� Structure of solutions with �nite perimeter� The normals n�� n�
are determined by ������

where Du takes values in one connected component of K �or one phase in
the applications to crystals�� The perimeter of a set E � � � Rn is de�ned
as

PerE � supf

Z
E

div � dx � � � C�
����R

n�� j�j � �g�

For smooth or polyhedral sets this agrees with the �n� �� dimensional mea�
sure of �E�

Theorem ��� ��DM �
��� If u is a solution of ����� � ���	� and if PerE 	�
then u is locally a simple laminate and �E consists of straight line segments
that can only intersect at ���

The proof combines geometric and measure�theoretic ideas� The geometric
idea is that the Gauss curvature K�g� of the pull�back metric g � �Du�TDu
should vanish �in a suitable sense�� Since g only takes two values this should
give information on E�
To implement this idea one �rst establishes a version of Liouville
s theorem
�in�nitesimal rotations on an open connected set are rigid motions� for sets of
�nite perimeter� The analogue of connected components in this frame work
are indecomposable components �a set F of �nite perimeter is indecompos�
able if for every F� � F with PerF � PerF� � Per�F n F�� the set F� or
F n F� has zero measure�� To �nish the proof one decomposes Du as ei�g���

�with the usual identi�cation C � R�� and analyzes the jump conditions at
the boundary of each component to deduce that � takes only two values and
solves �in the distributional sense� a wave equation with characteristics n�

��



and n�� Using more subtle arguments Kirchheim �Ki �
� has recently proved
a similar rigidity result for

K � SO���U� � SO���U� � SO���U�

where U� � diag��� �� �� and U�� U� are obtained by permuting the en�
tries� An important additional di�culty is that SO��� is not abelian and
one can thus not derive a linear equation for a suitable lift like � in the
two�dimensional case�

� Length scales	 surface energy and singular perturba�

tions

Minimization of elastic energy does not determine the length scale of the
microstructure� If the in�mum of the energy is not attained� minimizing se�
quences develop increasingly �ner oscillations and generalized Young measure
solutions correspond to an �in�nitely �ne
 microstructure� Also the Young
measure only records the asymptotic volume fraction of each phase but not
their geometric arrangement�
It is believed that addition of small surface �or higher gradient� energy contri�
bution can remedy these de�ciencies� The precise form of the surface energy
term is not obvious� Popular choices for the total energy are

I��u� �

Z
	

W �Du� � ��jD�uj�dx

or

I��u� �

Z
	

W �Du�dx�

Z
	

�jD�uj�

where jD�uj is understood as a Radon measure� The idea is to study mini�
mizers of these functional in the limit �� �� Almost nothing is known about
the three�dimensional model with full SO��� symmetry but results on lower
dimensional models already show very interesting behaviour�

��� A one dimensional model

As a caricature of the two�gradient problem consider

��



I�u� �
�R
�

�u�x � ��� � u�dx
�
� min �
���

subject to periodic boundary conditions� Clearly I�u� � � since the condi�
tions u � � a�e� and ux � �� a�e� are incompatible� On the other hand
inf I � �� since a sequence of �nely oscillating of sawtooth functions uj can
achieve ujx � f��g� uj � � uniformly� For any such sequence ujx generates
the �unique� Young measure � � �

�

�� �

�
�

�� Note that there are many �dif�

ferent
 sequences that generate this Young measure�
Minimizers of the singularly perturbed functional

I��u� �

�Z
�

��u�xx � �u�x � ��� � u�dx

yield a very special minimizing sequence for I�

Theorem ��� ��Mu �	��� If � � � is su�ciently small then every minimizer
of I� �subject to periodic boundary conditions� is periodic with minimal period
P � � �������� �O�������

��� Surface energy and domain branching

Consider the two�dimensional scalar model problem �see �KM ��� for the
relation with three�dimensional elasticity�

I�u� �

�Z
�

LZ
�

u�x � �u�y � ���dx dy
�
� min

u � � on x � �� �
���

The integrand is minimized at Du � �ux� uy� � ������� The preferred
gradients are incompatible with the boundary condition� The in�mum of I
subject to �
��� is zero but not attained� The gradients Duj of any mini�
mizing sequence generate the Young measure �

�


����� �

�
�


����� One possible

construction of a minimizing sequence is as follows �see Figure ��� Let sh be a
periodic sawtooth function with period h and slope�� and let u�x� y� � sh�y�
for x � 
� u�x� y� � x

�
sh�y� for � � x 	 
� Then consider a limit h� �� 
 � �

such that h

 remains bounded� Similar reasoning applies if we replace �
���

��
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Figure �� Construction of a minimizing sequence�

by the condition that u vanishes on the whole boundary of ��� L�� ��� ���

To understand the in�uence of regularizing terms on the length scale and
the geometry of the �ne scale structure we consider

I��u� �

�Z
�

LZ
�

u�x � �u�y � ��� � ��u�yydx dy�

subject to �
���� Instead of the second derivatives in y one can consider other
regularizing terms� e�g� jD�uj�� The derivatives in y are� however� the most
important ones� since we expect that �ne scale oscillations arise mainly in
the y direction� It was widely believed that for small � � � the minimizers
of I� look roughly like the construction uh�� depicted in Figure � �with the
corners of the sawtooth �rounded o�
 and optimal choices 
���� h����� This
is false� Indeed a short calculation shows that 
��� � ��L����� h��� � ��L����

and I��u�h�L� � ����L���� On the other hand one has

Theorem ��� ��Sch ����� For � 	 � 	 � there exists constants c� C � �
such that

c����L��� � min
u�� at x��

I� � C����L����

The upper bound is obtained by a smooth version of the self�similar con�
struction depicted in Figure 
�
The mathematical issues become clearer if we replace I� by a sharp interface

version

��
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Figure 
� The self�similar construction with �
� 	 � 	 �
�� Only two
generations of re�nement are shown�

J ��u� �
LR
�

�R
�

u�x � �juyyjdydx �
���

subject to
juyj � � a�e� �
���

Thus y �� u�x� y� is a sawtooth function and
R �

�
juyyjdy denotes twice the

number of jumps of uy� Minimization of �
��� subject to �
��� is in fact a
purely geometric problem for the set

E � f�x� y� � uy�x� y� � �g�

The �rst term in J � is a nonlocal energy in terms of E� while the second is
essentially the length of �E �more precisely its projection to the x�axis� as
before we consider this to be the essential part since oscillations occur mainly
in the y direction�� The functional and the constraint are invariant under
the scaling

u��x� y� � ���u�����x� �y�

which suggests a self�similar construction with � �
�
�
�

����
�

Theorem ��� ��KM ����� For � 	 � 	 �

c����L��� � min

����
����

J � � C����L����

��



Moreover if !u is a minimizer of J � subject to ���	�� ����� then

c����l��� �
�R
�

lR
�

!u�x � �j!uyyj � C����l���� �
���

The scaling in �
��� is exactly the scaling predicted by the self�similar con�
struction with � � ��

�
�����

Conjecture ��� As �� �� l� � the rescaled minimizers

v��x� y� � �����l����!u� �lx� �
���l���y�

converge to a self�similar function �at least for a subsequence��

The prediction of re�nement of the microstructure �domain branching� to�
wards the boundary x � � in the simple models �
���� �
��� inspired new
experimental investigations ��Sch ����� In closely related models for mag�
netization domains in ferromagnetic materials domain branching is experi�
mentally well established ��Li ���� �Hu �
�� �Pr 
���� a rigorous mathematical
analysis is just beginning to emerge� Already a quick look at some of the
sophisticated constructions in �Pr 
�� suggests that a lot is to be discovered�


 Outlook

To close I brie�y mention three questions in the analysis of microstructures
that are widely open�
� Which mathematical object describes microstructure most e�ciently"
� What is the r#ole of dynamics"
� How can one e�ciently compute microstructures"

��� Beyond Young measures

Young measures are but one way to extract �relevant
 information from a
rapidly oscillating sequence� They describe the asymptotic local phase pro�
portions in a �ner and �ner mixture� The Young measure contains no infor�
mation about the geometry of the mixture� self correlations of the sequence
or relevant length scales�

There is an intense search for new objects that record more information�
and Tartar
s article �Ta ���� from which the title of this subsection was bor�
rowed� gives a recent survey� Due to space constraints I can only brie�y

��



mention two such objects� the H�measure and its variants which already
found many applications and the two�scale Young measure which still has to
prove its usefulness�

A typical example where knowledge of local phase proportions is insu�cient
arises in the theory of homogenization� A �ne laminate of a good and a poor
heat conductor behaves macroscopically like an anisotropic material that
conducts poorly in the direction of lamination and well in the perpendicular
directions�
To take the in�uence of the layering direction into account Tartar �Ta ���

introduced the H�measure that acts simultaneously on real space and on
Fourier space� The same object was introduced independently by G�erard
�Ge ��� under the name �microlocal defect measure
� For every sequence
uj � � L���� there exists a subsequence ujk and a Radon measure � on
!� � Sn�� �the H�measure of fujkg� such that for every pseudo�di�erential
operator A of order zero with �su�ciently regular� symbol a�x� �� one has

hAujk� ujkiL� �

Z
�	�Sn��

ad��

For Rm�valued sequences one similarly obtains a matrix�valued �hermitian�
measure �� ��ij���i�j�m� Applications of H�measures include small ampli�
tude homogenization� compensated compactness with variable coe�cients�
compactness by averaging in kinetic equations and the propagation of en�
ergy concentrations in hyperbolic systems�
Comparing H�measures and Young measures one sees that the former pre�

dicts limits that involve pseudo�di�erential operators while the latter only
yields limits of local expressions �cf� ������� On the other hand the use of
H�measures is restricted to quadratic expressions while Young measures can
handle arbitrary nonlinearities� A synthesis of the two concepts is a major
challenge for the future� So far even a good theory for a trilinear analogue
of the H�measure is outstanding� Also the relation between H�measures and
Young measures is not known �partial results were obtained by Murat and
Tartar �MT �
�� �Ta �����

As regards length scales� G�erard �Ge ��� introduced a variant of the H�
measure� called semiclassical measure� that allows one to study oscillations
with a typical length scale hj � �� A similar measure was later considered

��



by Lions and Paul �LP ����
A di�erent approach to the resolution of length scales is the notion of

two�scale Young measures or Young measures on patterns ��AM �
��� For
illustration consider a sequence of periodic functions wj � ��� ��� R that is
uniformly bounded� jwjj � M � For a given sequence of scales hj � � one
de�nes a new sequence

vj�x� y� � wj�x � hjy��

For L � � the set K � fg � L���L� L� � jgj � Mg is a compact subset
of L���L� L� equipped with the weak� topology and vj can be viewed as a
map

Vj � ��� �� � K
x �� vj�x� 
��

Since K is a compact metric space �a subsequence of� the sequence Vj gen�
erates a Young measure � � ��� �� � M�K�� This Young measure �called
the two�scale Young measure of the original sequence wj� is a probability
measure on functions� obtained by blowing up the scale hj� Using this idea
one can describe the asymptotic behaviour as �� � of minimizers of

$I��u� �

�Z
�

��u�xx �W �ux� � a�x�u��

where � 	 c � a�x� � C �cf� section 
���� If u�j is a sequence of minimizers�

�j � �� wj�x� � �
����
j u�j�x�� hj � �

���
j and � is the Young measure generated

by Vj then ��x� is supported on �translates of� sawtooth functions with
period ���a�x����� �cf� Theorem 
���� Two�scale Young measures generalize
the concept of two�scale convergence ��Ng 	��� �Al ���� which is very useful if
the sequences involved are well approximated by functions that are periodic
�with �xed period� in the fast variable�

��� Dynamics

So far we have only considered time independent situations and studied min�
imizers or almost minimizers of the energy� A typical justi�cation is that
the time dependent problem admits a natural Liapunov function �free en�
ergy� entropy� ���� and therefore the evolution of �generic
 initial data should
converge to �at least local� minimizers of the Liapunov functional�

��



Is such reasoning still reasonable if minimizers of the Liapunov functional
do not exist and minimizing sequences have to develop microstructure"
Friesecke �Fr ��� and Friesecke and McLeod �FM ��� studied a one dimen�
sional model problem �viscoelastic bar on a foundation� whose Liapunov
functional is essentially given by �
��� �strong convergence of the kinetic en�
ergy is easy�� They solved a long standing conjecture by showing that the
dynamics excludes formation of �ner and �ner microstructure and hence en�
ergy minimization� See Ball et al� �BHJPS ��� and Pego �Pe 	
� for related
models and Ball �Ba ��� for a general discussion of energy minimization ver�
sus dynamics� Virtually nothing is known for the long�time dynamics of
higher dimensional models� despite the interesting numerical simulations of
Swart �Sw ����

Another important issue is the evolution of microstructures� If the mi�
crostructure at each point in time is described by a Young measure �or some
of the objects discussed in section 	��� is it possible to deduce an evolu�
tion law for the Young measure" Conceptually this is similar to the closure
problem in turbulence models and one might thus be pessimistic� Nontheless
there has been interesting progress over the last years �see �KP ���� �FBS ����
�HR ���� �De ���� and in particular recent work of Otto �Ot ���� �Ot �
��� An
interesting new approach to dynamics that takes into account the presence
of many shallow local minima apperas in �ACJ ����

��� Computation

Computation of microstructures through numerical energy minimization is
a very challenging task� There are presumably many local minimizers for
the discrete and the continuous problem� the Euler�Lagrange equations are
mixed elliptic�hyperbolic and oscillations typically develop on the scale of
the discretization� which renders results very discretization dependent� For
a recent review of the state of the art see Luskin �Lu ��� and the references
therein� So far� most numerical methods make no use of available analytical
information such as the classi�cation of gradient Young measures� the mi�
nors relations or algorithms for rank�� convexi�cation �see sections � and 
 of
�Lu ��� for the discussion of some exceptions�� It seems to me that an impor�
tant question is how to represent microstructures numerically in an e�cient
way� Ideally a good representation should both yield a high compression rate
and be adapted to the numerical algorithm� This issue is closely related to

�




the search for better analytical descriptions of microstructure �see section 	��
above��
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