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Abstract

The article calls attention to complex dynamical phenomena, in artificial
neural systems, which are - as is asserted - of relevance also for understand-
ing biological brain functions. Examples of various dynamical effects (hys-
teresis, oscillations, deterministic chaos, synchronization and coherence)
are discussed in terms of the discrete dynamics of small recurrent net-
works. The relevance of a dynamical systems approach for understanding
the emergence of higher level information processing or cognitive abilities
of biological and artificial neural systems is discussed.
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1 Introduction

Biological brains have a massively recurrent connectivity, i.e. there are very many
directed closed signal processing loops on different scales of the brain: between
single neurons as well as between hypercolumns and different brain areas which
are functionally discernible. They involve excitatory as well as inhibitory con-
nections. From the dynamical systems point of view, this is one reason to expect
complex dynamics in biological brains. In fact oscillations of various periodicities
are observed almost everywhere in the brain, as well as synchronization effects,
wave patterns of activity, and even chaotic dynamics (Duke and Pritchard, 1991;
Kriiger, 1991; Freeman, 1992; Buzsaki et al. 1994; Elbert et al. 1994; Pantev
et al., 1995). Therefore, it seems natural to assume that complex dynamics is
the substantial basis for the cognitive abilities of biological brains (Kelso, 1995).
Nevertheless, its significances and functional principles are still obscure. The in-
tention of this article is to demonstrate with a few simple examples the abundance
of dynamical features one should be aware of, when discussing the functional role
of biological brain dynamics. Our line of arguments originates in analysis and
simulations of discrete nonlinear dynamics of small artificial neural networks with
recurrent architecture. We call them neuromodules because we are thinking of
them as being interacting parts of a larger (cognitive) system.

As was pointed out already in the days of cybernetics (e.g. von Foerster
1969), the recurrent connectivity structure of neural systems will open up a new
paradigm for discussing, modeling and understanding phenomena like perception
and cognition. Recurrences will not just result in a simple input-output, i.e.
reactive, behavior of a system, but instead, they will create certain processes,
activity patterns or “images” for given stationary or dynamical input signals (see
e.g. Johannesma et al. 1986, Harth 1993). Perception under this respect is
therefore not an uni-directional process - like a mapping from the external world
to some brain states. But it generates local dynamical activities already at lower
levels of signal processing. By virtue of cooperative or competing interactions,
these finally result in an appropriate behavior. And from this point of view
cognition can not be understood any longer as pure rule based symbol processing
(Port and van Gelder 1995). Thus, we believe that development and analysis
of artificial recurrent neural networks can generate enough background material
for controversial debates about the realization of perception, existence or non-
existence of internal representations of the external world, static versus dynamical
memories, and the like. Furthermore, artificial recurrent neural structures can
also provide an extensive test-ground for hypotheses about neural processing
principles.

Why is it so difficult to describe the possible role of complex dynamics for
cognitive or higher-level information processing in more concrete terms? This is
perhaps due to the fact, that we are still just beginning to understand the complex
properties of interacting nonlinear dynamical systems. From a theoretical point



of view, there is the need to derive complexity measures on the basis of dynamical
network properties, isomorphisms of network dynamics, more concrete definitions
of concepts like self-organization and emergent properties. To understand the role
of biological brain dynamics, one should have an idea about what kind of signals
to look for, and how they can be correlated with observable motor action, thinking
or general behavior.

With respect to artificial neural systems, one difficulty arises from the fact
that there are in general no learning rules that can implement appropriate dy-
namic attractors into the phase space of recurrent neural networks. Furthermore,
most of the time it is not at all clear what kind of recurrent architecture to use
for a specific cognitive task. Even worse, in systems acting and learning in a
given environment, knowledge of appropriate internal dynamics responding to
particular (time-varying) sensor inputs is commonly not at hand; so any kind of
supervised learning will not be applicable.

Therefore, today mainly convergent (Hirsch 1989) neural networks are exam-
ined and utilized for technical purposes. Typical representatives are the feedfor-
ward networks, Hopfield and Kohonen networks (Hertz et al. 1991). Convergent
networks are most effectively applied, if for given stationary inputs a definite sta-
tionary output signal is desired, as is the case e.g. for pattern classification tasks,
or for image recognition or completion. More complex, i.e. higher information
processing or cognitive tasks, like generation of temporal sequences, recognition,
storage and reproduction of temporal patterns, or the control of systems which
requires memory to compute derivatives or integrals, are in general not easily
achieved with convergent networks. This is the typical domain of applications
for recurrent non-convergent networks, which are themselves capable of having
complex internal dynamics.

Besides recurrent connectivity, modularity is a basic structural property of
biological brains - and also an effective design principle for artificial systems.
So, when studying the the dynamics of neuromodules, as we do in the following
section, one should keep in mind that a cognitive system will be composed of many
such modules interacting in a cooperative or competing way to produce a desired
behavior. Although the dynamical effects outlined in section 2 are found for the
discrete dynamics of neuromodules with simple formal neurons (additive units
with sigmoidal transfer functions), it is argued that a comparable complexity
should be expected also for systems with continuous time dynamics, and also for
neural networks with more biology-like spiking neurons. In section 3 we discuss
the examples of section 2 with respect to a dynamical behavior-oriented approach
(compare e.g. Mallot 1997) to cognitive systems.



2 Discrete dynamics of recurrent neuromodules

In terms of dynamical systems theory (Guckenheimer and Holmes 1983; Jackson
1991; Abraham and Shaw 1992; Ott 1993) the behavior of a (time-continuous)
system under consideration is described by the “flow” of its states in time. This
is determined usually by a system of coupled first order differential equations.
For every initial condition, i.e. a state x(0) at time ¢ = 0, there exists a unique
“stream line” of the flow passing through x(0): the corresponding solution of the
differential equations. The dynamics of dissipative systems, like neural networks,
is characterized by its attractors. These are sets of states which are permanently
revisited, either periodically (periodic attractors) or apparently “chaotic” (chaotic
attractors). There are also attracting stationary states, called fized point attrac-
tors. As the naming suggests, the states in the neighborhood of attractors are
flowing towards these sets, i.e. for t — oo they approach them arbitrarily close.
The basin of an attractor consists of all states, which flow to the attractor for
t — oo. If there exists only one attractor for the system, it is called a global at-
tractor. 1f there are co-existing attractors, the state space is partitioned into their
basins. For chaotic attractors the basin boundaries can be fractal. If a system
has only fixed point attractors we call it convergent, otherwise non-convergent.

The dynamics of a system usually depends on control parameters, that is, on
variables that vary much more slowly than the states of the system. The behavior
of a system then may change qualitatively, i.e. the type of attractors will change
at certain critical parameter values, called bifurcation points. A sequence of such
transitions is then displayed by a corresponding bifurcation diagram.

In the following we will discuss the discrete activation dynamics of neural
networks with n units corresponding to a map f : R" — R" given by

n
ai(t+1):0i+2wij-a(aj(t)), i,jzl,...,n, (1)
j=1
where a; denotes the activity of neuron ¢, w;; the synaptic strength or weight of
the connection from neuron j to neuron i, and the term 6; = 0;o + I; will be
considered here as the sum of a fixed internal bias 6, and a stationary external
input I; of the ith neuron. The output o; of neuron ¢ is given by a sigmoidal
(S-shaped) transfer function, and we use the strictly positive sigmoide given by
o(z) = (1 +e7®)~. Since it is assumed, that the bias terms 6; and the weights
w;; vary only slowly compared with the activity of the neurons, they are treated
here as parameters for the activation dynamics.

One should keep in mind that using stationary external inputs for the modules
is primarily done for the classification of dynamical module properties. Modules
in biological brains (or advanced artificial systems like autonomous robots) will
never get stationary inputs, neither from the sensors nor from other parts of the
system. So their dynamics in general will be of transient type, which is still
classified by a corresponding attractor. It is on this background, that we believe
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“cognitive entities” to be best represented by basins of attraction (Pasemann
1996).

2.1 “One-loop” networks

The simplest type of recurrent networks with n neurons have only one closed
directed loop of connections. They are called n-ring networks (Pasemann 1995a),
and their discrete dynamics is given by the map

a;(t+1):=0;,+w; 10(a; 1(t)), ap :=an, wyp =Wy, i =1,...,n.

For the special case n = 1 we have a single neuron with self-interaction (Pasemann
1993). We classify n-ring networks and their dynamical properties corresponding
to their loop property: They are called even (odd), if the number of inhibitory
connections in the signal loop is even (odd). Besides having global fixed point
attractors for large parameter domains, n-rings display the following dynamics:
For even networks there exists a parameter domain (hysteresis domain), where
two fixed point attractors co-exist with roughly (2" — 2)/n periodic attractors,
mainly with period n; for odd networks there exists a parameter domain (os-
cillation domain), where we find roughly 2"/2n co-existing periodic attractors,
mainly with period 2n. For example an even 16-ring can have 4080 period-16,
30 period-8, three period-4 and one period-2 attractors, all co-existing (for fixed
parameters) with two fixed point attractors. An odd 15-ring will have 1096 co-
existing periodic attractors: 1091 with period 30, three with period 10, one with
period 6 and one period-2 attractor (for details see Pasemann 1995a). The “firing
pattern” corresponding to one of the 1091 period-30 attractors is shown in figure
1. Note that although the pattern is periodic in time, at every time slice of the
period different neurons are active.

Not only the large number of co-existing periodic attractors is interesting, but
also a specific role of the inhibitory connections should be noted: They arrange the
neurons of a ring into groups with identical but phase shifted activity patterns.
If the outputs of the ring neurons are projected on an additional neuron then
every attractor generates a specific oscillatory wave form at its output (Pasemann
1995a). Thus for certain fixed parameters n-ring networks are able to generate a
large variety of different activity patterns or wave forms that are selected by initial
conditions. If an n-ring network is in a specific oscillatory mode, slight changes
of parameters (inside the hysteresis or oscillatory domain) will not change this
mode. On the other hand, moving the parameters - external inputs, bias terms
or weights - slowly across the bifurcation sets, ring networks may be used as
switchable multi-frequency oscillators.

For a self-excitatory single neuron (and also for even n-rings), in addition a
hysteresis effect can be observed: if parameters are varied back and forth across
the hysteresis domain, on which the system is bi-stable (plus oscillatory modes
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Figure 1: The firing pattern on a period-30 attractor of an odd 15-ring module:
high activity of neuron ¢ is marked by black dots.

in the case of n-rings), the system “jumps” from one stable state into the other
at different bifurcation points (Pasemann 1993, Pasemann 1995a).

2.2 “Two loop” networks

Networks with only two closed directed connection loops can already display the
full spectrum of complex dynamical behavior. This can be demonstrated already
for the two simplest architectures shown in figure 2. They have two neurons (5
parameters) and three neurons (7 parameters), respectively. In both cases there
is an inhibitory neuron involved. The excitatory units may represent for instance
pyramidal cells and the inhibitory ones inter-neurons like stellar cells, a standard
combination found in the columns of the cortex. The discrete dynamics of the
2-neuron network is e.g. given by

al(t + 1) = 91 “+ Wig U(ag(t)) s
as(t+1) = Oy + wo o(ai(t)) +we o(az(t)) ; (2)

and the dynamics of the 3-module by

al(t—l— 1) = 0+ wio U(GQ(t)) + wi3 U(ai’:(t)) )
ag(t + 1) = 02 “+ woy O'(Cll (t)) y (3)
az(t+1) = O3 +wso(at)) ,

For these modules we observe (e.g. Pasemann 1995b) global fixed point attrac-
tors as well as various periodic and chaotic attractors. In fact, there are period
doubling routes to chaos. But also quasi-periodic attractors can be found for cer-
tain parameter values. Figure 3, for example, shows a typical bifurcation diagram



Figure 2: Two configurations with interesting dynamical features: Stationary
states, oscillations and chaos, co-existing attractors and hysteresis effects.

for the 2-module with 6; as control parameter and o := 0.5 - (01 + 02) denoting
the averaged output of the module. Starting with period-2 attractors we observe
quasi-periodic attractors (around «), larger windows with periodic attractors
(periods 5 and 8 around () and chaotic attractors reached via period-doubling
(around 7). The distinction between attractors of higher periods, quasi-periodic
and chaotic attractors can be verified also by calculating the corresponding Lya-
punov exponents (see for example Ott 1993).

Figure 3: Bifurcation diagram for the 2-module with fixed parameters 6y = —0.44,
—wiy = Wy = 8, w9y = —16 and varied input to the excitatory neuron.

Again, in both configurations (2), (3) co-existing attractors can be found.
For example, a periodic and a chaotic attractor co-exist for the same parameter
values, as is shown for the 2-neuron network (2) in figure 4a. But even two chaotic
attractors may co-exist, as is the case for the 3-module (3). If if a chaotic attractor
co-exists with other attractors fractal basin boundaries are frequently observed.
They partition the phase space in an irregular way. This is demonstrated in figure
4b for the 2-module (2). The essential effect of this irregular decomposition of
phase space is, that different attractors can be reached from one and the same
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Figure 4: Coexisting attractors for the 2-module: a.) period-2 and chaotic at-
tractor for ) = 3.9, 6, = —0.44, —wy = we; = 8, wey = —16, b.) corresponding
basins with fractal boundary (black: period-2).

phase space domain. This is of course quite different from the regular “decision
regions” obtained for instance by fixed point attractor networks like Hopfield
networks. Keeping in mind that real neurodynamics is living on transients, the
advantage of irregular phase space partition is that switching between different
basins of attraction or represented “cognitive entities”) can be caused by small
disturbances. These can be generated, for instance, by short (or pulsed) external
signals.

2.3 More loops

It seems plausible from these observations that systems with more than two
closed signal loops can display even more complex dynamical features. We will
demonstrate this again for the simple example by bi-directional n-rings or n-
chains. Their discrete dynamics is given by

a; = 0; + Wii110(Qit1) + Wii—10(@i—1) ,  Wppt1 = W1 Wip = Wiy, , (4)

where wy,, = w,; = 0 for n-chains.

As simulations show, purely excitatory or inhibitory bi-directional n-rings,
have, besides parameter domains for global fixed point attractors, only domains
for which there is a (large) number of co-existing period-2 and fixed point at-
tractors. At least for the symmetric case (i.e. w;; = wj;) this can be proven
analytically by applying the technique of Lyapunov functions as used for instance
in (Herz 1996). Furthermore, it is observed in simulations that these period-2
attractors appear as groups of neighboring neurons with synchronously oscillat-
ing activity. This is quite different from the situation we observed for n-rings as
in figure 1. It can be read from the typical firing pattern corresponding to an
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Figure 5: The firing pattern on a period-2 attractor of a bidirectional 15-ring
module: high activity of neuron ¢ is marked by black dots, medium activity by

circles.

attractor of an (even) bi-directional 15-chain shown in figure 5. There neurons 1,
3, 13 and 15 have constant high, neurons 2, 4 and 14 constant low activity, and
neuron 9 constant medium activity. The synchronously active groups of neurons
(6,7,8) and (10,11) are alternately “firing”. Neurons 5 and 12 display periodic

activity.
6 t+1 Y -+
o] "D 1o "D
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Figure 6: a.) A chaotic attractor for the 3-module (see text), b.) Coexisting
chaotic, period-2 and fixed point attractors for a bi-directional 7-chain (see text).

Introducing only one inhibitory connection in an otherwise excitatory bi-
directional chain or ring has already a dramatic effect. This can be seen by the
following construction: Take the two loop network (3) with parameters corre-
sponding to a chaotic attractor; for example —w9 = wy; = w3; = w3 = 8.0 and



0, = 4.5, 0, = —2.7, 3 = —8.0. The corresponding chaotic attractor is displayed

in figure 6a by the first return map of the averaged output o(t) := L 7 0;() of
an n-module. Then add an excitatory neuron 4 connected bi-directionally with
the excitatory end-neuron 3 according to 6, = —8.0 and w3y = wy3 = 8.0. In

the resulting 4-dimensional phase space we now observe two chaotic attractors
co-existing with a fixed point attractor. Adding more excitatory neurons in the
same way, we observe the systematic appearance of n — 2 chaotic attractors co-
existing with several fixed point and period-2 attractors. This is shown for a
bi-directional 7-chain in figure 6b, where any crossed structure corresponds to an
additional chaotic attractor. Also some fixed points (on the main diagonal) and
period-2 attractors can be seen. Technically, there is a characteristic difference
observed in bifurcation diagrams between the “original” chaotic attractor (seen
for the 3-module) and the additional ones (in n-chains): The original one ap-
pears in a period doubling bifurcation sequence starting from a fixed point with
a strong resonance of period four; the additional chaotic attractors come from
(co-existing) period-doubling bifurcations starting with a period-2 orbit.

As with n-rings, again we have a neural structure where the total number
of co-existing attractors N(n) grows faster than n. This can be observed in
simulations, but the systematics of periodic attractor appearance may be deduced
also analytically. For example for n = 5 we have three chaotic attractors co-
existing with two fixed point and one period-2 attractor, i.e. N(5) = 6. Different
from n-rings, since chaotic attractors are involved, the basin structure will be
fractal and the phase space will be partitioned in complex “decision domains”. It
is an interesting feature that some of these attractors can be brought to extinction
by slightly varying the external inputs of corresponding added neurons. Thus,
the appearance and disappearance of specific attractors may be controlled by
slow external input signals.

2.4 Synchronization and coherence in coupled modules

Stimulus induced coherent firing of neurons in biological brains is nowadays a
well established experimental fact. In particular synchronous neuron activity is
often discussed as a fundamental temporal mechanism for feature binding and
integration of distributed brain processes (cf. among many others Eckhorn et
al., 1988; Gray et al., 1989; Singer, 1994; Engel et al., 1997). Since we are
thinking in terms of modular systems, synchronization is a result of coupling
modules. We want to point out that again the situation may be even more
complex than discussed in the standard literature on synchronization effects in
biological brains. We refer to observations made in simulations with two coupled
identical chaotic 2-modules of the type described above (figure 2a), here with
parameters fy = 0, = —1 and w;y, = wj, = —8, wy = whH; = §; O, and 0]
correspond to the varying external inputs. We consider only the (inhibitory)
coupling from the inhibitory neuron of a module to the excitatory neuron of the
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other module as shown in figure 7, where coupling weights are set to w = w' = —4.
This type of coupling seems to be most efficient with respect to synchronization
and de-synchronization of modules.

Figure 7: Coupling of two chaotic neuromodules.

The synchronization of the 2-modules appears over a large range of (approx-
imately equal) stationary external inputs to the excitatory units. This effect is
robust, that is, it appears also if the internal parameters, for instance the module
weights, are slightly varied. Modules de-synchronize immediately after the ex-
ternal input signals diverge. But the following observation is more noteworthy:
For certain (equal) input signals there co-exist different attractors in the coupled
system; for instance two periodic attractors, but also periodic attractors with
quasi-periodic or chaotic attractors. On one of these attractors the dynamics of
the modules synchronizes, on the other it is coherent in the sense, that there is a
fixed (though sometimes complex) phase relation. Furthermore, synchronization
can occur as well on periodic attractors as on quasi-periodic or chaotic attractors.
This is demonstrated in figures 8, 9, and 10) where the projections of co-existing
attractors onto the phase space of one module (figures a.) and onto the module
output space (figures b.) is depicted. Synchronized outputs will appear as states
lying on the main diagonal in (0, 0})-space.

The essential point is, that with fixed parameters and stationary (equal) input
signals synchronization of module dynamics can depend on initial conditions, that
is, on the “history” of the coupled system. Furthermore, if the coupled system
starts in a synchronized mode, then it persists in this mode even if the external
inputs [ := I, = I are varying slowly. It appears, for example, that the system
starts in a synchronous mode at I = 3.0 on the (then global) period-3 attractor
and, with increasing inputs I, switches to the synchronous chaotic mode around
I, = I} = 7.0; and back again to the period-3 mode with I decreasing. So
synchronization of these coupled modules is really a sign for time-varying signals
with fized ratio (recall, that the inputs may correspond to the weighted outputs
of other neurons of the system).
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Figure 8: Coexistent attractors in coupled 2-modules: a.) Projection onto the
phase space of one module. b.) Outputs of the excitatory units (synchronization
corresponds to points on the main diagonal). Here: synchronization on quasi-
periodic attractor, coherence on period-2 attractor.
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Figure 9: Coexistent attractors in coupled 2-modules: synchronization on chaotic
attractor, coherence on period-2 attractor.
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Figure 10: Coexistent attractors in coupled 2-modules: synchronization on

period-3 attractor, “coherence” on chaotic attractor.
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Similar observations are made with a slightly different setup, where self-
inhibition is replaced by self-excitation. This corresponds to biologically mo-
tivated configurations, which were studied for instance by Nagashino and Kelso
(1991) and Cohen et.al. (1993). They also reported the co-existence of in-phase
and anti-phase modes and the switching between them, although in a quite differ-
ent dynamical context. In this second setup, and for the corresponding discrete
dynamics, the isolated modules will have no chaotic attractors. For these cou-
pled modules synchronous modes are therefore observed only for periodic and
quasiperiodic attractors.

3 Why and what dynamics?

Is there something to learn from the simple examples presented above; can we
learn something for a theoretical description of biological brain function? The
main message is of course, that the complex dynamical properties of nonlinear
systems - and biological brains are asserted to be of this kind - provide an im-
mense reservoir for possible signal processing capabilities, a domain of intricate
procedures or methods one can hardly think of today. Therefore at least the
interest of neuro-scientists in complex neuro-dynamical phenomena is justified.
Let us first summarize the main effects reported in this paper.

For all the simple neural structures of the above examples we observed dynam-
ical attractors for specific parameter domains. As was mentioned earlier, various
kinds of oscillations, and perhaps also chaotic activity, are also characteristic for
biological brains. They are observed on different functional levels and anatomical
scales. From the last section it becomes obvious that complex dynamical prop-
erties are associated with the presence of both, excitatory as well as inhibitory
connections in recurrent neuromodules. And we can specify complex dynamics
of a neuromodule to be represented, for instance, by the existence of bifurcation
sequences involving not only periodic but also quasi-periodic and chaotic attrac-
tors (like the one in figure 3). One may infer that from the dynamical systems
point of view the essential role of inhibitory connections is to keep the system
near critical parameter values, where its behavioral flexibility is largest. This
conception is close to the idea of “computing at the edge of chaos” (Langton
1990).

All of the above described modules allowed the co-existence of dynamic at-
tractors, and often the number of of co-existing attractors grows faster than the
number of neurons in corresponding architectures. This becomes exceptionally
manifest already for the n-ring networks of section 2.1. Thinking about dynamic
attractors - or better their basins - as representing particular “cognitive entities”,
can lead to new models for dynamic memories, attention mechanisms, and the
like. The hypothesis is that dynamic attractors are a much more flexible instru-
ment for higher level information or cognitive signal processing than the fixed
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point attractors of classical neural networks. They only code for signal classes,
specific stationary patterns or images, or for probability distributions in signal
space. But dynamic attractors may store whole behavior patterns, or “world”
models for predicting external input signals. Dynamic recurrent modules may be
effectively used, for example, in situations where short-time memory is required
to “compute” derivatives or integrals, or where temporal activity patterns have
to be recognized, stored or reproduced. Moreover, there is also the technical ar-
gument that in a phase space of given dimension (= number of neurons) the set
of possible fixed point attractors is finite dimensional, where as the set of possible
dynamic attractors is an infinite dimensional space.

Very often hysteresis effects are associated with co-existing attractors. In
fact, they do not only appear for the well known example of two co-existing fixed
point attractors (Pasemann 1993), where the systems jumps from one stable state
to the other at different critical parameter values when crossing the hysteresis
domain from different sides. They can also be observed for periodic, and even
chaotic attractors; for example, in the 3-module given by equation (3). This
kind of a more general hysteresis phenomenon may also underly the behavior
observed on various levels of sensorimotor signal processing. Classical examples
the perspective ambiguity, the figure-ground ambiguity, and the ambiguity of
meaning in visual perception. Co-existing attractors can shed also new light on
synchronization phenomena observed in biological brains. Usually it is assumed
that these cooperative brain states acquire “meaning” because they are observed
as a stimulus driven effect or as associated with meaningful behavioral events.
From the example of coupled chaotic modules in section 2.5 one can learn that
synchronization of modules is a very general effect, existing for a broad range
of external input values and internal module parameters. These modules also
desynchronize immediately after input signals diverge. But we also saw that for
different values of equal inputs synchronization takes place on different periodic
or even chaotic attractors. Furthermore, for one and the same set of specific
input signals different coherent states can appear, as can be read from figure 9:
for example synchronous chaotic dynamics and asynchronous periodic dynamics.

Dynamic attractors of recurrent networks can be characterized and made “vis-
ible” by varying spatial and temporal activity patterns of corresponding groups
of neurons. Although the system may live on a periodic attractor, that is, spa-
tial patterns of activity will reappear periodically, there must not be a clustering
or “grouping” of neurons in the sense of always synchronously active neurons.
Compare, for example, the firing patterns of n-rings in figure 1). Furthermore,
attractors may “live” effectively in lower dimensional subspaces. This means
that some of the neurons have constant activity although the module dynamics
is on a periodic attractor. A typical example is that of bidirectional n-rings:
Here groups of neurons “fire” synchronously with period two, and there are also
neurons having constant low or high output (compare figure 1).

One more remark with respect to the interpretation of dynamic attractors as

14



representing “cognitive entities” should be made here. It concerns the problem of
switching between different attractors, or “cognitive entities”, respectively. We
realized already with the examples of the last section that there are different
ways of achieving this. 1.) If there are several co-existing attractors for a fixed
set of weights and bias terms then an attractors is selected by “pulsed” inputs
setting the initial conditions in one of the corresponding basins of attraction.
This corresponds, for example, to the situation given by n-ring networks (section
2.1), and it is an analog to the case of Hopfield networks where a pattern is
given as initial condition and then the network dynamics relaxes to a fixed point
attractor. 2.) An attractor may be selected for a given (stationary) input by
slowly varying a parameter like the synaptic strength of a connection along a
bifurcation sequence; or, with weights and bias terms fixed, by slowly varying
the external inputs (compare figure 3). But there exists an even more intricate
mechanism: 3.) The infinitely many unstable periodic orbits spanning a chaotic
attractor may be stabilized by a so called chaos control (see e.g. Ott 1993). It was
shown (Stollenwerk and Pasemann 1996) that this technique can be implemented
consistently in the neural network framework: a chaotic 2-module like the one
given by equation (2) is controlled by neuromodules, each of which stabilizes
a given periodic orbit. Both, deterministic and stochastic switching between
different periodic attractors is possible.

The described dynamical phenomena are of course not specific for the case
of discrete time dynamics considered here. In general they reflect the (perhaps
higher dimensional) continuous-time dynamics of corresponding neural systems.
In general they will be given in terms of ordinary differential equations with
delays. Furthermore, the described phenomena are not limited to the very small
modules of our examples. In fact, they describe also dynamical properties of
very large systems in the following sense: Given a large network consisting of
randomly coupled neuron pools, then in the limit of infinite time and infinite
network size, the network dynamics corresponds to the module dynamics, where
the activity of module units corresponds to the (synchronized) activity of pool
neurons (for details see Wennekers and Pasemann 1996). In these formal neural
systems the neuron model is of course not very biological. But in simulations
with corresponding small modules of spiking neurons (of the leaky-integrate-and-
fire type) we found at least hysteresis effects (bi-stability) and oscillations. In
this case state variables were represented by inter-spike intervals, and co-existing
periodic attractors and deterministic chaos are of course not so easily identified.

One essential point we want to re-emphasize here is that the dynamics of
recurrent modules is parametrized by quantities like synaptic strength of con-
nections, bias terms, and the like. Recall that specific variables are signified as
parameters if their time-like changes are much slower than the activity changes
of neurons. Because it is well known that in biological systems corresponding
quantities can be manipulated on various (slow) time scales by complicated elec-
trical and/or biochemical processes, for instance learning by changing synaptic
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strength, parametrized dynamics seems to be the real basis for understanding
cognitive brain functions.

It is also due to their parametrized dynamics that we understand modules as
multi-functional units of signal processing systems: during their interaction with
other modules or larger parts of the system their parameters can be changed
so that a context-dependent processing of “peripheral” signals becomes possi-
ble; and, on a slower time-scale, “learning” of parameter domains for which the
module responds with an effective dynamics to input signals becomes possible.
Following this point of view, we can further deduce that isolated modules are
functionally not determined. They receive their specific functional properties
only during cooperative or competitive interactions with other modules of the
system. This also leads us to the assumption that chaotic modules are good
candidates for basic building blocks of modular cognitive systems: not because
chaotic dynamics must be ever realized during interaction in an assemblage of
modules, but because chaotic modules are endowed with the full spectrum of
dynamical behavior. Almost every type of periodic, quasi-periodic and chaotic
dynamics can be selected by appropriate tuning of parameters (compare the bi-
furcation diagram of figure 3 as an example).

Assuming that biological brains can be modeled as modular systems, the
dynamical systems approach will assert that cognitive abilities, or cognitive pro-
cesses, of these systems will emerge as global processes through the many coop-
erative or competitive local interactions of modules. With respect to this view,
it possibly does not make sense to localize any of the various cognitive abilities
in the form of functional neural assemblies or a local connectivity structure, al-
though specific modules or ensembles of modules may be involved in processing
subtasks.

In the context of artificial neural networks dynamical properties have not
been considered as being essential up to now. This is mainly because one follows
in general a constructive approach to artificial systems, that is, one examines
convergent networks with pre-designed architectures and a given learning rule.
In fact, most of the known learning rules work effectively only on convergent
networks.

To learn something about the principles of neural signal processing we fa-
vor an emergence-oriented approach to artificial neural networks. For this type
of investigations the dynamical systems framework is fundamental. To single
out dynamical properties that relate to “cognitive” behavior we have to consider
systems acting in a sensorimotor loop. We suggest that using evolutionary al-
gorithms to generate appropriate recurrent dynamic networks (Pasemann and
Dieckmann 1997, Pasemann 1997) is a reasonable way to follow this behavior-
oriented approach.
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4

Conclusion

The aim of this article was to call attention to the large variety of dynamical
phenomena inherent in formal neural systems with recurrent connectivity. The
experimental exploration of biological brain dynamics is still in its beginning, as
well as work on the conceptual and theoretical foundations for this field. We
claimed that experiences with complex dynamical properties of artificial neural
networks can provide guiding principles for modeling biological brain functions.
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