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Abstract

The article calls attention to complex dynamical phenomena in arti�cial

neural systems� which are � as is asserted � of relevance also for understand�

ing biological brain functions� Examples of various dynamical e�ects �hys�

teresis� oscillations� deterministic chaos� synchronization and coherence�

are discussed in terms of the discrete dynamics of small recurrent net�

works� The relevance of a dynamical systems approach for understanding

the emergence of higher level information processing or cognitive abilities
of biological and arti�cial neural systems is discussed�

�submitted for publication�
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� Introduction

Biological brains have a massively recurrent connectivity� i�e� there are very many
directed closed signal processing loops on di�erent scales of the brain� between
single neurons as well as between hypercolumns and di�erent brain areas which
are functionally discernible� They involve excitatory as well as inhibitory con�
nections� From the dynamical systems point of view� this is one reason to expect
complex dynamics in biological brains� In fact oscillations of various periodicities
are observed almost everywhere in the brain� as well as synchronization e�ects�
wave patterns of activity� and even chaotic dynamics �Duke and Pritchard� �����
Kr	uger� ����� Freeman� ���
� Buzs�aki et al� ����� Elbert et al� ����� Pantev
et al�� ���
�� Therefore� it seems natural to assume that complex dynamics is
the substantial basis for the cognitive abilities of biological brains �Kelso� ���
��
Nevertheless� its signi�cances and functional principles are still obscure� The in�
tention of this article is to demonstrate with a few simple examples the abundance
of dynamical features one should be aware of� when discussing the functional role
of biological brain dynamics� Our line of arguments originates in analysis and
simulations of discrete nonlinear dynamics of small arti�cial neural networks with
recurrent architecture� We call them neuromodules because we are thinking of
them as being interacting parts of a larger �cognitive� system�

As was pointed out already in the days of cybernetics �e�g� von Foerster
������ the recurrent connectivity structure of neural systems will open up a new
paradigm for discussing� modeling and understanding phenomena like perception
and cognition� Recurrences will not just result in a simple input�output� i�e�
reactive� behavior of a system� but instead� they will create certain processes�
activity patterns or �images� for given stationary or dynamical input signals �see
e�g� Johannesma et al� ����� Harth ������ Perception under this respect is
therefore not an uni�directional process � like a mapping from the external world
to some brain states� But it generates local dynamical activities already at lower
levels of signal processing� By virtue of cooperative or competing interactions�
these �nally result in an appropriate behavior� And from this point of view
cognition can not be understood any longer as pure rule based symbol processing
�Port and van Gelder ���
�� Thus� we believe that development and analysis
of arti�cial recurrent neural networks can generate enough background material
for controversial debates about the realization of perception� existence or non�
existence of internal representations of the external world� static versus dynamical
memories� and the like� Furthermore� arti�cial recurrent neural structures can
also provide an extensive test�ground for hypotheses about neural processing
principles�

Why is it so di�cult to describe the possible role of complex dynamics for
cognitive or higher�level information processing in more concrete terms� This is
perhaps due to the fact� that we are still just beginning to understand the complex
properties of interacting nonlinear dynamical systems� From a theoretical point






of view� there is the need to derive complexity measures on the basis of dynamical
network properties� isomorphisms of network dynamics� more concrete de�nitions
of concepts like self�organization and emergent properties� To understand the role
of biological brain dynamics� one should have an idea about what kind of signals
to look for� and how they can be correlated with observable motor action� thinking
or general behavior�

With respect to arti�cial neural systems� one di�culty arises from the fact
that there are in general no learning rules that can implement appropriate dy�
namic attractors into the phase space of recurrent neural networks� Furthermore�
most of the time it is not at all clear what kind of recurrent architecture to use
for a speci�c cognitive task� Even worse� in systems acting and learning in a
given environment� knowledge of appropriate internal dynamics responding to
particular �time�varying� sensor inputs is commonly not at hand� so any kind of
supervised learning will not be applicable�

Therefore� today mainly convergent �Hirsch ����� neural networks are exam�
ined and utilized for technical purposes� Typical representatives are the feedfor�
ward networks� Hop�eld and Kohonen networks �Hertz et al� ������ Convergent
networks are most e�ectively applied� if for given stationary inputs a de�nite sta�
tionary output signal is desired� as is the case e�g� for pattern classi�cation tasks�
or for image recognition or completion� More complex� i�e� higher information
processing or cognitive tasks� like generation of temporal sequences� recognition�
storage and reproduction of temporal patterns� or the control of systems which
requires memory to compute derivatives or integrals� are in general not easily
achieved with convergent networks� This is the typical domain of applications
for recurrent non�convergent networks� which are themselves capable of having
complex internal dynamics�

Besides recurrent connectivity� modularity is a basic structural property of
biological brains � and also an e�ective design principle for arti�cial systems�
So� when studying the the dynamics of neuromodules� as we do in the following
section� one should keep in mind that a cognitive system will be composed of many
such modules interacting in a cooperative or competing way to produce a desired
behavior� Although the dynamical e�ects outlined in section 
 are found for the
discrete dynamics of neuromodules with simple formal neurons �additive units
with sigmoidal transfer functions�� it is argued that a comparable complexity
should be expected also for systems with continuous time dynamics� and also for
neural networks with more biology�like spiking neurons� In section � we discuss
the examples of section 
 with respect to a dynamical behavior�oriented approach
�compare e�g� Mallot ����� to cognitive systems�
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� Discrete dynamics of recurrent neuromodules

In terms of dynamical systems theory �Guckenheimer and Holmes ����� Jackson
����� Abraham and Shaw ���
� Ott ����� the behavior of a �time�continuous�
system under consideration is described by the ��ow� of its states in time� This
is determined usually by a system of coupled �rst order di�erential equations�
For every initial condition� i�e� a state x��� at time t � �� there exists a unique
�stream line� of the �ow passing through x���� the corresponding solution of the
di�erential equations� The dynamics of dissipative systems� like neural networks�
is characterized by its attractors� These are sets of states which are permanently
revisited� either periodically �periodic attractors� or apparently �chaotic� �chaotic
attractors�� There are also attracting stationary states� called �xed point attrac�

tors� As the naming suggests� the states in the neighborhood of attractors are
�owing towards these sets� i�e� for t �� they approach them arbitrarily close�
The basin of an attractor consists of all states� which �ow to the attractor for
t ��� If there exists only one attractor for the system� it is called a global at�

tractor� If there are co�existing attractors� the state space is partitioned into their
basins� For chaotic attractors the basin boundaries can be fractal� If a system
has only �xed point attractors we call it convergent� otherwise non�convergent�

The dynamics of a system usually depends on control parameters� that is� on
variables that vary much more slowly than the states of the system� The behavior
of a system then may change qualitatively� i�e� the type of attractors will change
at certain critical parameter values� called bifurcation points� A sequence of such
transitions is then displayed by a corresponding bifurcation diagram�

In the following we will discuss the discrete activation dynamics of neural
networks with n units corresponding to a map f � Rn

� R
n given by

ai�t� �� � �i �
nX

j��

wij � ��aj�t�� � i� j � �� � � � � n � ���

where ai denotes the activity of neuron i� wij the synaptic strength or weight of
the connection from neuron j to neuron i� and the term �i � �i� � Ii will be
considered here as the sum of a �xed internal bias �i� and a stationary external
input Ii of the ith neuron� The output oi of neuron i is given by a sigmoidal
�S�shaped� transfer function� and we use the strictly positive sigmoide given by
��x� � �� � e�x���� Since it is assumed� that the bias terms �i and the weights
wij vary only slowly compared with the activity of the neurons� they are treated
here as parameters for the activation dynamics�

One should keep in mind that using stationary external inputs for the modules
is primarily done for the classi�cation of dynamical module properties� Modules
in biological brains �or advanced arti�cial systems like autonomous robots� will
never get stationary inputs� neither from the sensors nor from other parts of the
system� So their dynamics in general will be of transient type� which is still
classi�ed by a corresponding attractor� It is on this background� that we believe
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�cognitive entities� to be best represented by basins of attraction �Pasemann
������

��� �One�loop� networks

The simplest type of recurrent networks with n neurons have only one closed
directed loop of connections� They are called n�ring networks �Pasemann ���
a��
and their discrete dynamics is given by the map

ai�t � �� �� �i � wii����ai���t�� � a� �� an � w�� �� w�n � i � �� � � � � n �

For the special case n � � we have a single neuron with self�interaction �Pasemann
������ We classify n�ring networks and their dynamical properties corresponding
to their loop property� They are called even �odd�� if the number of inhibitory
connections in the signal loop is even �odd�� Besides having global �xed point
attractors for large parameter domains� n�rings display the following dynamics�
For even networks there exists a parameter domain �hysteresis domain�� where
two �xed point attractors co�exist with roughly �
n � 
��n periodic attractors�
mainly with period n� for odd networks there exists a parameter domain �os�
cillation domain�� where we �nd roughly 
n�
n co�existing periodic attractors�
mainly with period 
n� For example an even ���ring can have ���� period����
�� period��� three period�� and one period�
 attractors� all co�existing �for �xed
parameters� with two �xed point attractors� An odd �
�ring will have ���� co�
existing periodic attractors� ���� with period ��� three with period ��� one with
period � and one period�
 attractor �for details see Pasemann ���
a�� The ��ring
pattern� corresponding to one of the ���� period��� attractors is shown in �gure
�� Note that although the pattern is periodic in time� at every time slice of the
period di�erent neurons are active�

Not only the large number of co�existing periodic attractors is interesting� but
also a speci�c role of the inhibitory connections should be noted� They arrange the
neurons of a ring into groups with identical but phase shifted activity patterns�
If the outputs of the ring neurons are projected on an additional neuron then
every attractor generates a speci�c oscillatory wave form at its output �Pasemann
���
a�� Thus for certain �xed parameters n�ring networks are able to generate a
large variety of di�erent activity patterns or wave forms that are selected by initial
conditions� If an n�ring network is in a speci�c oscillatory mode� slight changes
of parameters �inside the hysteresis or oscillatory domain� will not change this
mode� On the other hand� moving the parameters � external inputs� bias terms
or weights � slowly across the bifurcation sets� ring networks may be used as
switchable multi�frequency oscillators�

For a self�excitatory single neuron �and also for even n�rings�� in addition a
hysteresis e�ect can be observed� if parameters are varied back and forth across
the hysteresis domain� on which the system is bi�stable �plus oscillatory modes






Figure �� The �ring pattern on a period��� attractor of an odd �
�ring module�
high activity of neuron i is marked by black dots�

in the case of n�rings�� the system �jumps� from one stable state into the other
at di�erent bifurcation points �Pasemann ����� Pasemann ���
a��

��� �Two loop� networks

Networks with only two closed directed connection loops can already display the
full spectrum of complex dynamical behavior� This can be demonstrated already
for the two simplest architectures shown in �gure 
� They have two neurons �

parameters� and three neurons �� parameters�� respectively� In both cases there
is an inhibitory neuron involved� The excitatory units may represent for instance
pyramidal cells and the inhibitory ones inter�neurons like stellar cells� a standard
combination found in the columns of the cortex� The discrete dynamics of the

�neuron network is e�g� given by

a��t� �� �� �� � w�� ��a��t�� �

a��t� �� �� �� � w�� ��a��t�� � w�� ��a��t�� � �
�

and the dynamics of the ��module by

a��t� �� �� �� � w�� ��a��t�� � w�� ��a��t�� �

a��t� �� �� �� � w�� ��a��t�� � ���

a��t� �� �� �� � w�� ��a��t�� �

For these modules we observe �e�g� Pasemann ���
b� global �xed point attrac�
tors as well as various periodic and chaotic attractors� In fact� there are period
doubling routes to chaos� But also quasi�periodic attractors can be found for cer�
tain parameter values� Figure �� for example� shows a typical bifurcation diagram
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Figure 
� Two con�gurations with interesting dynamical features� Stationary
states� oscillations and chaos� co�existing attractors and hysteresis e�ects�

for the 
�module with �� as control parameter and o �� ��
 � �o� � o�� denoting
the averaged output of the module� Starting with period�
 attractors we observe
quasi�periodic attractors �around ��� larger windows with periodic attractors
�periods 
 and � around �� and chaotic attractors reached via period�doubling
�around ��� The distinction between attractors of higher periods� quasi�periodic
and chaotic attractors can be veri�ed also by calculating the corresponding Lya�
punov exponents �see for example Ott ������

Figure �� Bifurcation diagram for the 
�module with �xed parameters �� � ������
�w�� � w�� � �� w�� � ��� and varied input to the excitatory neuron�

Again� in both con�gurations �
�� ��� co�existing attractors can be found�
For example� a periodic and a chaotic attractor co�exist for the same parameter
values� as is shown for the 
�neuron network �
� in �gure �a� But even two chaotic
attractors may co�exist� as is the case for the ��module ���� If if a chaotic attractor
co�exists with other attractors fractal basin boundaries are frequently observed�
They partition the phase space in an irregular way� This is demonstrated in �gure
�b for the 
�module �
�� The essential e�ect of this irregular decomposition of
phase space is� that di�erent attractors can be reached from one and the same
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Figure �� Coexisting attractors for the 
�module� a�� period�
 and chaotic at�
tractor for �� � ���� �� � ������ �w�� � w�� � �� w�� � ���� b�� corresponding
basins with fractal boundary �black� period�
��

phase space domain� This is of course quite di�erent from the regular �decision
regions� obtained for instance by �xed point attractor networks like Hop�eld
networks� Keeping in mind that real neurodynamics is living on transients� the
advantage of irregular phase space partition is that switching between di�erent
basins of attraction or represented �cognitive entities�� can be caused by small
disturbances� These can be generated� for instance� by short �or pulsed� external
signals�

��� More loops

It seems plausible from these observations that systems with more than two
closed signal loops can display even more complex dynamical features� We will
demonstrate this again for the simple example by bi�directional n�rings or n�
chains� Their discrete dynamics is given by

ai � �i � wii����ai��� � wii����ai��� � wnn�� � wn� w�� � w�n � ���

where w�n � wn� � � for n�chains�
As simulations show� purely excitatory or inhibitory bi�directional n�rings�

have� besides parameter domains for global �xed point attractors� only domains
for which there is a �large� number of co�existing period�
 and �xed point at�
tractors� At least for the symmetric case �i�e� wij � wji� this can be proven
analytically by applying the technique of Lyapunov functions as used for instance
in �Herz ������ Furthermore� it is observed in simulations that these period�

attractors appear as groups of neighboring neurons with synchronously oscillat�
ing activity� This is quite di�erent from the situation we observed for n�rings as
in �gure �� It can be read from the typical �ring pattern corresponding to an
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Figure 
� The �ring pattern on a period�
 attractor of a bidirectional �
�ring
module� high activity of neuron i is marked by black dots� medium activity by
circles�

attractor of an �even� bi�directional �
�chain shown in �gure 
� There neurons ��
�� �� and �
 have constant high� neurons 
� � and �� constant low activity� and
neuron � constant medium activity� The synchronously active groups of neurons
������� and ������� are alternately ��ring�� Neurons 
 and �
 display periodic
activity�

Figure �� a�� A chaotic attractor for the ��module �see text�� b�� Coexisting
chaotic� period�
 and �xed point attractors for a bi�directional ��chain �see text��

Introducing only one inhibitory connection in an otherwise excitatory bi�
directional chain or ring has already a dramatic e�ect� This can be seen by the
following construction� Take the two loop network ��� with parameters corre�
sponding to a chaotic attractor� for example �w�� � w�� � w�� � w�� � ��� and
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�� � ��
� �� � �
��� �� � ����� The corresponding chaotic attractor is displayed
in �gure �a by the �rst return map of the averaged output o�t� �� �

n

Pn
i oi�t� of

an n�module� Then add an excitatory neuron � connected bi�directionally with
the excitatory end�neuron � according to �� � ���� and w�� � w�� � ���� In
the resulting ��dimensional phase space we now observe two chaotic attractors
co�existing with a �xed point attractor� Adding more excitatory neurons in the
same way� we observe the systematic appearance of n � 
 chaotic attractors co�
existing with several �xed point and period�
 attractors� This is shown for a
bi�directional ��chain in �gure �b� where any crossed structure corresponds to an
additional chaotic attractor� Also some �xed points �on the main diagonal� and
period�
 attractors can be seen� Technically� there is a characteristic di�erence
observed in bifurcation diagrams between the �original� chaotic attractor �seen
for the ��module� and the additional ones �in n�chains�� The original one ap�
pears in a period doubling bifurcation sequence starting from a �xed point with
a strong resonance of period four� the additional chaotic attractors come from
�co�existing� period�doubling bifurcations starting with a period�
 orbit�

As with n�rings� again we have a neural structure where the total number
of co�existing attractors N�n� grows faster than n� This can be observed in
simulations� but the systematics of periodic attractor appearance may be deduced
also analytically� For example for n � 
 we have three chaotic attractors co�
existing with two �xed point and one period�
 attractor� i�e� N�
� � �� Di�erent
from n�rings� since chaotic attractors are involved� the basin structure will be
fractal and the phase space will be partitioned in complex �decision domains�� It
is an interesting feature that some of these attractors can be brought to extinction
by slightly varying the external inputs of corresponding added neurons� Thus�
the appearance and disappearance of speci�c attractors may be controlled by
slow external input signals�

��� Synchronization and coherence in coupled modules

Stimulus induced coherent �ring of neurons in biological brains is nowadays a
well established experimental fact� In particular synchronous neuron activity is
often discussed as a fundamental temporal mechanism for feature binding and
integration of distributed brain processes �cf� among many others Eckhorn et
al�� ����� Gray et al�� ����� Singer� ����� Engel et al�� ������ Since we are
thinking in terms of modular systems� synchronization is a result of coupling
modules� We want to point out that again the situation may be even more
complex than discussed in the standard literature on synchronization e�ects in
biological brains� We refer to observations made in simulations with two coupled
identical chaotic 
�modules of the type described above ��gure 
a�� here with
parameters �� � ��� � �� and w�� � w�

�� � ��� w�� � w�

�� � �� �� and ���
correspond to the varying external inputs� We consider only the �inhibitory�
coupling from the inhibitory neuron of a module to the excitatory neuron of the
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other module as shown in �gure �� where coupling weights are set to w � w� � ���
This type of coupling seems to be most e�cient with respect to synchronization
and de�synchronization of modules�

Figure �� Coupling of two chaotic neuromodules�

The synchronization of the 
�modules appears over a large range of �approx�
imately equal� stationary external inputs to the excitatory units� This e�ect is
robust� that is� it appears also if the internal parameters� for instance the module
weights� are slightly varied� Modules de�synchronize immediately after the ex�
ternal input signals diverge� But the following observation is more noteworthy�
For certain �equal� input signals there co�exist di�erent attractors in the coupled
system� for instance two periodic attractors� but also periodic attractors with
quasi�periodic or chaotic attractors� On one of these attractors the dynamics of
the modules synchronizes� on the other it is coherent in the sense� that there is a
�xed �though sometimes complex� phase relation� Furthermore� synchronization
can occur as well on periodic attractors as on quasi�periodic or chaotic attractors�
This is demonstrated in �gures �� �� and ��� where the projections of co�existing
attractors onto the phase space of one module ��gures a�� and onto the module
output space ��gures b�� is depicted� Synchronized outputs will appear as states
lying on the main diagonal in �o�� o

�

���space�
The essential point is� that with �xed parameters and stationary �equal� input

signals synchronization of module dynamics can depend on initial conditions� that
is� on the �history� of the coupled system� Furthermore� if the coupled system
starts in a synchronized mode� then it persists in this mode even if the external
inputs I �� I� � I �� are varying slowly� It appears� for example� that the system
starts in a synchronous mode at I � ��� on the �then global� period�� attractor
and� with increasing inputs I� switches to the synchronous chaotic mode around
I� � I �� � ���� and back again to the period�� mode with I decreasing� So
synchronization of these coupled modules is really a sign for time�varying signals
with �xed ratio �recall� that the inputs may correspond to the weighted outputs
of other neurons of the system��
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a� b�

Figure �� Coexistent attractors in coupled 
�modules� a�� Projection onto the
phase space of one module� b�� Outputs of the excitatory units �synchronization
corresponds to points on the main diagonal�� Here� synchronization on quasi�
periodic attractor� coherence on period�
 attractor�

a� b�

Figure �� Coexistent attractors in coupled 
�modules� synchronization on chaotic
attractor� coherence on period�
 attractor�

a� b�

Figure ��� Coexistent attractors in coupled 
�modules� synchronization on
period�� attractor� �coherence� on chaotic attractor�
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Similar observations are made with a slightly di�erent setup� where self�
inhibition is replaced by self�excitation� This corresponds to biologically mo�
tivated con�gurations� which were studied for instance by Nagashino and Kelso
������ and Cohen et�al� ������� They also reported the co�existence of in�phase
and anti�phase modes and the switching between them� although in a quite di�er�
ent dynamical context� In this second setup� and for the corresponding discrete
dynamics� the isolated modules will have no chaotic attractors� For these cou�
pled modules synchronous modes are therefore observed only for periodic and
quasiperiodic attractors�

� Why and what dynamics�

Is there something to learn from the simple examples presented above� can we
learn something for a theoretical description of biological brain function� The
main message is of course� that the complex dynamical properties of nonlinear
systems � and biological brains are asserted to be of this kind � provide an im�
mense reservoir for possible signal processing capabilities� a domain of intricate
procedures or methods one can hardly think of today� Therefore at least the
interest of neuro�scientists in complex neuro�dynamical phenomena is justi�ed�
Let us �rst summarize the main e�ects reported in this paper�

For all the simple neural structures of the above examples we observed dynam�
ical attractors for speci�c parameter domains� As was mentioned earlier� various
kinds of oscillations� and perhaps also chaotic activity� are also characteristic for
biological brains� They are observed on di�erent functional levels and anatomical
scales� From the last section it becomes obvious that complex dynamical prop�
erties are associated with the presence of both� excitatory as well as inhibitory
connections in recurrent neuromodules� And we can specify complex dynamics
of a neuromodule to be represented� for instance� by the existence of bifurcation
sequences involving not only periodic but also quasi�periodic and chaotic attrac�
tors �like the one in �gure ��� One may infer that from the dynamical systems
point of view the essential role of inhibitory connections is to keep the system
near critical parameter values� where its behavioral �exibility is largest� This
conception is close to the idea of �computing at the edge of chaos� �Langton
������

All of the above described modules allowed the co�existence of dynamic at�
tractors� and often the number of of co�existing attractors grows faster than the
number of neurons in corresponding architectures� This becomes exceptionally
manifest already for the n�ring networks of section 
��� Thinking about dynamic
attractors � or better their basins � as representing particular �cognitive entities��
can lead to new models for dynamic memories� attention mechanisms� and the
like� The hypothesis is that dynamic attractors are a much more �exible instru�
ment for higher level information or cognitive signal processing than the �xed
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point attractors of classical neural networks� They only code for signal classes�
speci�c stationary patterns or images� or for probability distributions in signal
space� But dynamic attractors may store whole behavior patterns� or �world�
models for predicting external input signals� Dynamic recurrent modules may be
e�ectively used� for example� in situations where short�time memory is required
to �compute� derivatives or integrals� or where temporal activity patterns have
to be recognized� stored or reproduced� Moreover� there is also the technical ar�
gument that in a phase space of given dimension �� number of neurons� the set
of possible �xed point attractors is �nite dimensional� where as the set of possible
dynamic attractors is an in�nite dimensional space�

Very often hysteresis e�ects are associated with co�existing attractors� In
fact� they do not only appear for the well known example of two co�existing �xed
point attractors �Pasemann ������ where the systems jumps from one stable state
to the other at di�erent critical parameter values when crossing the hysteresis
domain from di�erent sides� They can also be observed for periodic� and even
chaotic attractors� for example� in the ��module given by equation ���� This
kind of a more general hysteresis phenomenon may also underly the behavior
observed on various levels of sensorimotor signal processing� Classical examples
the perspective ambiguity� the �gure�ground ambiguity� and the ambiguity of
meaning in visual perception� Co�existing attractors can shed also new light on
synchronization phenomena observed in biological brains� Usually it is assumed
that these cooperative brain states acquire �meaning� because they are observed
as a stimulus driven e�ect or as associated with meaningful behavioral events�
From the example of coupled chaotic modules in section 
�
 one can learn that
synchronization of modules is a very general e�ect� existing for a broad range
of external input values and internal module parameters� These modules also
desynchronize immediately after input signals diverge� But we also saw that for
di�erent values of equal inputs synchronization takes place on di�erent periodic
or even chaotic attractors� Furthermore� for one and the same set of speci�c
input signals di�erent coherent states can appear� as can be read from �gure ��
for example synchronous chaotic dynamics and asynchronous periodic dynamics�

Dynamic attractors of recurrent networks can be characterized and made �vis�
ible� by varying spatial and temporal activity patterns of corresponding groups
of neurons� Although the system may live on a periodic attractor� that is� spa�
tial patterns of activity will reappear periodically� there must not be a clustering
or �grouping� of neurons in the sense of always synchronously active neurons�
Compare� for example� the �ring patterns of n�rings in �gure ��� Furthermore�
attractors may �live� e�ectively in lower dimensional subspaces� This means
that some of the neurons have constant activity although the module dynamics
is on a periodic attractor� A typical example is that of bidirectional n�rings�
Here groups of neurons ��re� synchronously with period two� and there are also
neurons having constant low or high output �compare �gure ���

One more remark with respect to the interpretation of dynamic attractors as
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representing �cognitive entities� should be made here� It concerns the problem of
switching between di�erent attractors� or �cognitive entities�� respectively� We
realized already with the examples of the last section that there are di�erent
ways of achieving this� ��� If there are several co�existing attractors for a �xed
set of weights and bias terms then an attractors is selected by �pulsed� inputs
setting the initial conditions in one of the corresponding basins of attraction�
This corresponds� for example� to the situation given by n�ring networks �section

���� and it is an analog to the case of Hop�eld networks where a pattern is
given as initial condition and then the network dynamics relaxes to a �xed point
attractor� 
�� An attractor may be selected for a given �stationary� input by
slowly varying a parameter like the synaptic strength of a connection along a
bifurcation sequence� or� with weights and bias terms �xed� by slowly varying
the external inputs �compare �gure ��� But there exists an even more intricate
mechanism� ��� The in�nitely many unstable periodic orbits spanning a chaotic
attractor may be stabilized by a so called chaos control �see e�g� Ott ������ It was
shown �Stollenwerk and Pasemann ����� that this technique can be implemented
consistently in the neural network framework� a chaotic 
�module like the one
given by equation �
� is controlled by neuromodules� each of which stabilizes
a given periodic orbit� Both� deterministic and stochastic switching between
di�erent periodic attractors is possible�

The described dynamical phenomena are of course not speci�c for the case
of discrete time dynamics considered here� In general they re�ect the �perhaps
higher dimensional� continuous�time dynamics of corresponding neural systems�
In general they will be given in terms of ordinary di�erential equations with
delays� Furthermore� the described phenomena are not limited to the very small
modules of our examples� In fact� they describe also dynamical properties of
very large systems in the following sense� Given a large network consisting of
randomly coupled neuron pools� then in the limit of in�nite time and in�nite
network size� the network dynamics corresponds to the module dynamics� where
the activity of module units corresponds to the �synchronized� activity of pool
neurons �for details see Wennekers and Pasemann ������ In these formal neural
systems the neuron model is of course not very biological� But in simulations
with corresponding small modules of spiking neurons �of the leaky�integrate�and�
�re type� we found at least hysteresis e�ects �bi�stability� and oscillations� In
this case state variables were represented by inter�spike intervals� and co�existing
periodic attractors and deterministic chaos are of course not so easily identi�ed�

One essential point we want to re�emphasize here is that the dynamics of
recurrent modules is parametrized by quantities like synaptic strength of con�
nections� bias terms� and the like� Recall that speci�c variables are signi�ed as
parameters if their time�like changes are much slower than the activity changes
of neurons� Because it is well known that in biological systems corresponding
quantities can be manipulated on various �slow� time scales by complicated elec�
trical and�or biochemical processes� for instance learning by changing synaptic

�




strength� parametrized dynamics seems to be the real basis for understanding
cognitive brain functions�

It is also due to their parametrized dynamics that we understand modules as
multi�functional units of signal processing systems� during their interaction with
other modules or larger parts of the system their parameters can be changed
so that a context�dependent processing of �peripheral� signals becomes possi�
ble� and� on a slower time�scale� �learning� of parameter domains for which the
module responds with an e�ective dynamics to input signals becomes possible�
Following this point of view� we can further deduce that isolated modules are
functionally not determined� They receive their speci�c functional properties
only during cooperative or competitive interactions with other modules of the
system� This also leads us to the assumption that chaotic modules are good
candidates for basic building blocks of modular cognitive systems� not because
chaotic dynamics must be ever realized during interaction in an assemblage of
modules� but because chaotic modules are endowed with the full spectrum of
dynamical behavior� Almost every type of periodic� quasi�periodic and chaotic
dynamics can be selected by appropriate tuning of parameters �compare the bi�
furcation diagram of �gure � as an example��

Assuming that biological brains can be modeled as modular systems� the
dynamical systems approach will assert that cognitive abilities� or cognitive pro�
cesses� of these systems will emerge as global processes through the many coop�
erative or competitive local interactions of modules� With respect to this view�
it possibly does not make sense to localize any of the various cognitive abilities
in the form of functional neural assemblies or a local connectivity structure� al�
though speci�c modules or ensembles of modules may be involved in processing
subtasks�

In the context of arti�cial neural networks dynamical properties have not
been considered as being essential up to now� This is mainly because one follows
in general a constructive approach to arti�cial systems� that is� one examines
convergent networks with pre�designed architectures and a given learning rule�
In fact� most of the known learning rules work e�ectively only on convergent
networks�

To learn something about the principles of neural signal processing we fa�
vor an emergence�oriented approach to arti�cial neural networks� For this type
of investigations the dynamical systems framework is fundamental� To single
out dynamical properties that relate to �cognitive� behavior we have to consider
systems acting in a sensorimotor loop� We suggest that using evolutionary al�
gorithms to generate appropriate recurrent dynamic networks �Pasemann and
Dieckmann ����� Pasemann ����� is a reasonable way to follow this behavior�
oriented approach�
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� Conclusion

The aim of this article was to call attention to the large variety of dynamical
phenomena inherent in formal neural systems with recurrent connectivity� The
experimental exploration of biological brain dynamics is still in its beginning� as
well as work on the conceptual and theoretical foundations for this �eld� We
claimed that experiences with complex dynamical properties of arti�cial neural
networks can provide guiding principles for modeling biological brain functions�
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