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1. Introduction

The goal of this note is to expose in a simple situation the key arguments
which allow one to prove sharp energy estimates in the numerical analysis
of problems with multiple-well energy in the calculus of variations. Let us
recall that such problems arise naturally for instance in materials science.
We refer the reader for this matter to [1], [5], [6], [7], [10]. Note also that
our technique borrows widely from [8], [9] and can be extended to more
general situations - see [3].

So, we will assume that we are in dimension 2 and 2 will denote the
square (0,1) x (0,1) with boundary 0f2. Setting

W, °(Q) = {v: Q = R | v is Lipschitz continuous, v = 0 on 9Q}

we would like to consider the problem

inf / W(Vu)dzdy = inf / [ug| + | Juy| — 1| dz dy (1.1)
Wy () /0 Wy (Q) /0

where we have set

Vu = (ug,uy) , Wi, 8&) = |&af +] €] - 1]. (1.2)

More precisely we would like to address a discrete version of this problem.
We denote by 73, a regular (see [4]) family of triangulations of Q, with mesh
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size h, i.e.
h = max{diam(K)|K € m,}.

Then, if P; denotes the set of polynomials of degree one, we set

Voh ={v:Q — R | v continuous,v|, € P, Yk € 1,,v = 0 on 002}

and we consider the discretized analogue of (1.1) :

inf / W (V) di dy. (1.3)
Vi Jao

The energy density W is a nonnegative function that vanishes only on the
two wells

wy =(0,1) , w_=1(0,-1). (1.4)

They play, of course, a crucial role in the minimization process. It is easy
to establish that (1.1) does not admit a minimizer but that (1.3) does (see
for instance [2]) thus the minimizers of (1.3) provide a minimizing sequence
o (1.1). What we would like to establish here is:

Theorem 1 There exists a constant C' independent of h < 1 such that
inf/ |ug| + | |uy| — 1| dady < ChZ, (1.5)
vk Ja

Moreover, this estimate is sharp in the sense that there exists o family of
triangulation Ty, a constant ¢ independent of h such that

inf/ lug| + | Juy| — 1] dzdy > ch. (1.6)
Vi Ja
The rest of the paper will be devoted to the proof of this theorem.

2. Proof of Theorem 1
2.1. THE PROOF OF (1.5)

Let us denote by « € (0,1) a real number that we will fix later on. Define

_Jv iy e[0,n],
u(@,y) = { 2h* —y if y e [h®, 2h°)]. 27)

Assume that u is extended periodically - with period 2h® in the y direction
- on the whole R?. Clearly one has

Vu=wy or w_ ae. inQ. (2.8)



FINITE ELEMENT APPROXIMATION 3

Since u does not vanish on the boundary of € one sets

u A dist(x, 0Q)

U

and then
up, = the interpolate of 4 on 7y, (2.9)

i.e. up denotes the function of V{' that agrees with @ at the nodes of the
triangulation 75,. The two functions that are involved in the definition of
4 have a gradient that is uniformly bounded. Since the triangulation 7y, is
regular, the gradient of u is uniformly bounded independently of h (see
[4]). It then follows from (2.8) that one has

/ W (Vup) do dy — / W(Vup) dedy < Cl{un £ u}|  (2.10)
Q2 {un#u}

for some constant C, where |{u;, # u}| denotes the measure of the set where
uy, is distinct from u. First one remarks that

0<u<h®

(see (2.7)) and thus for dist(x, 9Q) > h® one has 4 = u. So, for dist(z, Q) >
h® + h the interpolate of 4 will be equal to the interpolate of u. Now, the
interpolate of u is u itself except on a strip of size 2h around each of the
lines y = kh®, k € N. Collecting this information one has clearly

{up #ul| <A(h® +h) + N2h < 8h® + (N +1)2h  (2.11)

where N is the number of strips cutting €. Note that for ~» < 1 and a €
(0,1) one has h < h*. Now, one has clearly

(N+1)h* <1
so that by (2.10), (2.11) one gets
/ W (Vup) do dy < 8C(A® + 1),
Q
Taking « = § leads to (1.5).

2.2. PROOF OF (1.6)

First remark that if we claim that (1.5) is sharp there are some particular
triangulations - related to the wells - for which (1.5) could be improved.
Indeed, choose for instance the triangulation of the (figure 1) and set
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$ W =h/V2

Figure 1.

_ [ on (0, ')
ulz,y) = { 2h' —y on (W', 2h").

Extending u periodically with 2A', and setting
up, =  the interpolate of u A dist(z, 02)

one clearly has
in}f/ W (V) dz dy < / W (Vup) dz dy < ch < ch?
vh Ja Q

for h small. However, this estimate depends on the triangulation as we are
about to see. Indeed consider now a family of triangulations as on (figure 2).
For g = kh/2, k € N we are going to consider the strip (zg, xo—i—%) x (0,1).
Let u € V! and 0 < § < % Recall that Vu is constant on each of the
triangles of 75. Then for a given u let us adopt the following definition:

Definition 1 Let T' € 1, with one side at least of length h. We will say

that T s of

type + if lug| <9, Juy,—1| <4,
type — if lug| <98, Juy+1| <4,
type 0 else.

In other words 7' is of type + or — if Vu is close to wy or w_ respectively.
Then on the strip (zg,z¢ + %) x (0,1) we have triangles of various types.
We denote by Ny = Ny(xp) the number of triangles of type 0. We say that
we have a change of phase along the line ¢ when two triangles change from
type + to type — (see figure 3). Then we can prove,
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Figure 2.

Zo

Figure 5.

Lemma 1 At each change of phase along the line x = x( the triangle
having only one vertex on x = xq is of type 0, (see figure 3).

Proof. Let us denote by (ul,w,}), (u;,u,) the gradients of u in the
triangle of type + and of type —, respectively. If A = (x,yo) one has

h h h
w(zo+ 5oyo +5) = ulzo,yo) +ug o +uy

h
2 2 ry "My
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(r0+ 30— ) = ulzn,u0) + 7y — iy o

So, in the triangle whose only vertex on = z( is A one has
uyzg(uz _uz)+§(uy +uy)

Since uy,u; € [~0,0], wuf €[l —0,146], wu, €[-1—4,—14 0] one

z) Y

deduces that |u,| < 26 so that
uy 1] > 125 > 4.

Since 0 < § < % The considered triangle is thus of type 0.

Lemma 2 Let u be a piecewise C! function on (a,b) such that u' has a
constant sign and |u'| > C. Then one has

/b lu(z)| dz > C <(b _4“)2> (2.12)

Proof. If u does not vanish on [a, b] then clearly

/ab |u(z)| dz > min (/ab lu(z) — u(a)|dz, /ab lu(z) — u(D)| dz)

So, considering possibly u — u(a) or u — u(b) instead of u one can assume
that u vanishes at some point £. Since u’ has a constant sign one has

u(2)] =

u(é) + /: u'(7) '

_ /6 , W/ (2)] dz > Cl¢ — 2.

El

Integration in z on (a,b) leads to (2.12).
Lemma 3 Assume that (No + 1)h < % then one has

1 1—94
dy > ——. 2.1
) ol dy = s (213)

Proof. Consider a maximal chain of triangles of type + or —. In other words
consider (a;, b;) such that one has a change of phase or a “boundary point”
at (20, a;), (o, b;) and all the sides of triangles of the strip (¢, zo+%)x (0, 1)
located on & = x(y between a; and b; belong to triangles of the same type +
or —. (A “boundary point” could be a vertex of one triangle of the boundary
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with all its sides strictly smaller than h .) Since u, has a constant sign and
|uy| > 1 — 6 one deduces from Lemma (2) that

i )2
[ oty > 00— 0B .19

Denote by N; the number of maximal chains as above, i.e. i = 1,..., V7.
Then from (2.14) one deduces

M b (1—0)Ny X (b; — a;)?
u(xzg,y)| dy > - -
D e I

and by a convexity argument

2
1 Ny b 1— 86N, [ b —a
/|u<x0,y)|dyzz/ julao,y)ldy > | 4) 1(2 ~ |
0 i=1"7 % !

i=1

(2.15)
Due to Lemma 1 the sides of triangles on # = ¢ which do not belong to
a chain belong to a triangle of type 0 or a small triangle of the boundary.
So, one has

N1
> bi—ai>1—(No+1)h>
=1

DO | =

and from (2.15) we deduce that

> 7
/0 |u(zo,y)| dy > 6N,

The result follows from the fact that by Lemma 1, N3 < Ng + 1.
Lemma 4 Let u € V' then one has

[ o,y < [ W) drdy (2.16)
0 Q
Proof. One has
u(zo,y) = u(0,y) + /0 Y ug(€y) dé = /0 " ua(€,y) dy.
Thus
1 1
uleo )] < [ uslen)lds < [ W(Tu(ep) dg
0 0

and the result follows by integration in y.
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Lemma 5 (Estimate of the number of changes of phase). Let u € V{ such
that

/ W (V) dz dy < Ch? (2.17)
Q

where C is a constant. If h < 64C? then one has

I
> ——h 2. .
N0+1_160h2 (2.18)

(Recall that Ny is the number of triangles of type 0 in the strip (xo,xo +
h

2) x(0,1).)

Proof. If (2.18) does not hold one has

(1—0)hs  he

1
N+ 1)h L
(No+1)h < =5~ <166 <3

Thus combining (2.13),(2.16) and (2.17) one obtains

L -0 </1|( )| dy < Ch3
16(N0+].)_ 0 U(To, Y Yy >

which leads to (2.18).
End of the proof of Theorem 1

Knowing that (1.5) holds consider a u € Vi such that
/ W (V) dz dy < Ch? (2.19)
Q

On a triangle of type 0 for such an u one has
|ug| > d or | |luy — 1] > 0,

i.e. W(Vu) > 6. Thus if Sy, = (0,70 + %) x (0,1)

2
W(Vu)dzdy > NO(S%.
S

(1—§)h"73

50— > 1 - one deduces from

Assuming that h is small - more precisely
(2.18)

1-6
Ny >-——2p-%
0= 390" ”
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which leads to

(1—6)6h2
W (V) da dy > L2002
5, W Vuldedy 2 s

Since the number of stripes S, is % one deduces that

(1 8)6hz

>
/QW(VU) dx dy > 390

which completes the proof.

Remark. The exponent 1/2 appearing in (1.6), (1.5) is related to the linear
growth of W. Other growth conditions would produce other exponents in
(1.6), (1.5). Our argument extend also to general polygonal domains and
more general functionals. For all this we refer to [3].
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