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A Nonlocal Anisotropic Model for Phase Transitions

Part II� Asymptotic Behaviour of Rescaled Energies
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Abstract� we study the asymptotic behaviour as � � �� of the nonlocal models for phase

transition described by the scaled free energy
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where u is a scalar density function� W is a double
well potential which vanishes at ��� J is a

non
negative interaction potential and J��h� �� ��NJ�h���� We prove that the functionals F�
converge in a variational sense to the anisotropic surface energy

F �u� ��

Z
Su

���u� �

where u is allowed to take the values �� only� �u is the normal to the interface Su between

the phases fu � 	�g and fu � ��g� and � is the surface tension� This paper concludes the

analisys started in �AB
�
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�� Introduction and statement of the result

In this paper we study the asymptotic behaviour as �� � of the functionals F� de�ned by
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and of their minimizers subject to suitable constraints� Here u is a real function on the open

set � � R
N � � is a positive scaling parameter� J � RN � ���	�
 is an even function and

J��y� �� ��NJ�y���� W � R � ���	�� is a continuous function which vanishes at �� only �see

paragraph ��� for precise assumptions��

The function u can be interpreted as a macroscopic density of a scalar intrinsic quantity

which describes the con�gurations of a given system� the second integral in ����� forces a mini


mizing con�guration u to take values close to the �pure� states 	� and �� �phase separation��

while the �rst integral represents an interaction energy which penalizes the spatial inhomogene


ity of the con�guration �surface tension�� A relevant example is given in equilibrium Statistical

Mechanics by the continuum limit of Ising spin systems on lattices� in that setting u represents

a macroscopic magnetization density and J is a ferromagnetic Kac potential �cf� �ABCP
 and

references therein��
If the parameter � is small� when we minimize F� subject to the volume constraint

R
�
u � c

with jcj � vol���� then the second term in ����� prevails� roughly speaking a minimizer u� takes

values close to �� or 	�� and the transition between the two phases occurs in a thin layer with

thickness of order ��

It is therefore natural to consider the asymptotic behaviour of this model as � tends to

�� accordingly we expect that the minimizers u� converge �possibily passing to a subsequence�

to a limit function u which takes values �� only� More precisely our main result states the

following �see Theorem ��� and remarks below�� as � � � the functionals F� converge� in the

sense of �
convergence in L����� to a limit energy F which is �nite only when u � �� a�e�� and

in that case is given by

F �u� ��

Z
Su

���u� dH
N�� � �����

where Su is the interface between the phases fu � 	�g and fu � ��g� �u if the normal �eld
to Su and � is a suitable strictly positive even function on RN � H N�� denotes the �N � ��


dimensional Hausdo� measure�

The de�nition of �
convergence immediately implies that the minimizers u� of F� converge

in L���� to minimizers of F � This means that when � � � the model associated with the

energy F� converge to the classical van der Waals model for phase separation associated with

the �anisotropic� surface tension ��

A �rst result of this type was proved in the isotropic case �that is� when J is radially

symmetric� in �ABCP
� although with a di�erent method and for a particular choice of W only�

In the isotropic case F �u� reduces to the measure of the interface Su multiplied by a positive

factor �� which is obtained by taking a suitable �unscaled� one
dimensional functional F �v�R�

of type ����� and computing its in�mum over all v � R � ���� �
 which tend to 	� at 	� and

to �� at ���

We show that in the general anisotropic case the value of the function � at some unit vector

e is obtained by solving a certain minimum problem on an unbounded N 
dimensional stripe�

this is called the optimal pro�le problem associated with the direction e �see paragraph ����� In

�AB
 it was proved that for every e such a problem admits at least one solution u � RN � ���� �

which is constant with respect to all directions orthogonal to e�

We emphasize that the proof of the �
convergence theorem does not depend on this exis


tence result �cf� Remark ������ Indeed our result can also be extended to the multi
phase case�

that is� when u takes values in Rm and W is a function on Rm which vanishes at �nitely many

a�nely independent points �see paragraph ������ while so far there are no existence results for

the corresponding optimal pro�le problem �cf� �AB
� section �b��

Finally we underline that the assumption J � �� which in the statistical model is addressed

as the ferromagnetic assumption� is crucial in all our proofs� while the other assumptions on J

and W are close to be optimal �see paragraphs ��� and ������
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For a �xed positive � our model closely recall the Cahn
Hilliard model for phase separation

�see �CH
�� which is described by the energy functional

I��u� ��
�

�

Z
�

jruj� 	
�

�

Z
�

W �u� � �����

Indeed F� can be obtained from I� by replacing the term
��ru�x��� in the �rst integral in �����

with the average of the �nite di�erences �
�

��u�x 	 �h� � u�x�
�� with respect to the measure

distribution J�h� dh�

The �
convergence of the functionals I� to a limit �isotropic� energy of the form ����� was

proved by L� Modica and S� Mortola �see �MM
� �Mo
� and then extended to more general

anisotropic functionals in �Bou
� �OS
� It is important to recall that the term
R
jruj� in �����

was derived in �CH
 as a �rst order approximation of a more general and complicated quadratic

form� Indeed our result shows that the asymptotic behaviour of these functionals is largely

independent of the choice of this quadratic form� A �rst result in this direction was already

obtained in �ABS
� the one
dimensional functionals considered there� were de�ned as in �����

with J�h� � ��h� �see also paragraph ���� below��

We recall here that the evolution model associated with the energy F� is described� after

a suitable time scaling� by the nonlocal parabolic equation

ut � ���
�
J� � u� u� f�u�

�
� �����

where f is the derivative of W and we assumed kJk� � �� the analog for the energy I� is the

scaled Allen
Cahn equation ut � �u� ���f�u�� The asymptotic behaviour of the solutions of

����� has been widely studied in the isotropic case �see for instance �DOPT�
�
� �KS�
�
� and

leads to a motion by mean curvature in the sense of viscosity solutions� the generalization to the

anisotropic case has been given in �KS�
� Analogous results have been proved for the solutions

of the scaled Allen
Cahn equation �see for instance �BK
� �DS
� �ESS
� �Ilm
��

An interesting mathematical feature of the functional F� is that they are not local� this

means that given disjoint sets A and A�� the energy F��u�A � A�� stored in A � A� is strictly

larger than the sum of F��u�A� and F��u�A
��� More precisely we have

F��u�A � A�� � F��u�A� 	 F��u�A
�� 	 � ��u�A�A

�� � �����

where the locality defect  ��u�A�A
�� is de�ned as

 ��u�A�A
�� ��

�

��

Z
A�A�

J��x
� � x�

�
u�x��� u�x�

��
dx�dx �����

for every A�A� � R
N and every u � A � A� � R� The meaning of  ��u�A�A

�� is quite clear�

since it represents the scaled interaction energy between A and A�� In this paper we always

assume a proper decay of J at in�nity� namely ������ in order to guarantee that  ��u�A�A
��

vanishes as �� � whenever the sets A and A� are distant�

Before passing to precise statements� we need to �x some general notation�

In the following � is a bounded open subset of RN � and it is called regular when has

Lipschitz boundary �for N � �� when it is a �nite union of distant open intervals�� Unless

di�erently stated all sets and functions are assumed to be Borel measurable�

Every set in RN is usually endowed with the Lebesgue measure LN � and we simply writeR
B f�x� dx for the integrals over B and jBj for LN �B�� while we never omit an explicit mention

�



of the measure when it di�ers from LN � As usual H
N�� denotes the �N � ��
dimensional

Hausdor� measure�

���� BV functions and sets of �nite perimeter

For every open set � in RN � BV ��� denotes the space of all functions u � � � R with

bounded variation� that is� the functions u 	 L���� whose distributional derivative Du is rep


resented by a bounded RN 
valued measure on �� We denote by BV ������ the class of all

u 	 BV ��� which take values �� only� For every function u on �� Su is the set of all essential

singularities� that is� the points of � where u has no approximate limit� if u 	 BV ��� the set

Su is recti�able� and this means that it can be covered up to an H N��
negligible subset by

countably many hypersurfaces of class C��

The essential boundary of a set E � R
N is the set ��E of all points in � where E has neither

density � nor density �� A set E � � has �nite perimeter in � if its characteristic function �E
belongs to BV ���� or equivalently� if H N�����E 
 �� is �nite� in this case ��E is recti�able�

and we may endow it with a measure theoretic normal �E �de�ned up to H N��
negligible

subsets� so that the measure derivative D�E is represented as

D�E�B� �

Z
��E�B

�E dH
N�� for every B � ��

A function u � � � �� belongs to BV ������ if and only if fu � 	�g �or fu � ��g as well�

has �nite perimeter in �� In this case Su agrees with the intersection of the essential boundary

of fu � 	�g with �� and the previous formula becomes

Du�B� �� �

Z
Su�B

�u dH
N�� for every B � �� ���!�

where �u is a suitable normal �eld to Su� We claim that Su is the interface between the phases

fu � 	�g and fu � ��g in the sense that it contains every point where both sets have density

di�erent than �� For further results and details about BV functions and �nite perimeter sets

we refer the reader to �EG
� chapter ��

���� Hypotheses on J and W

Unless di�erently stated� the interaction potential J and the double
well potentialW which

appear in ����� satisfy the following assumptions�

�i� J � RN � ���	�� is an even function �i�e�� J�h� � J��h�� in L��RN � and satis�es

Z
RN

J�h� jhj dh �� � �����

�ii� W � R � ���	�� is a continuous function which vanishes at �� only and has at least

linear growth at in�nity �cf� the proof of Lemma ������

���� The optimal pro�le problem and the de�nition of �

We �rst de�ne the auxiliary unscaled functional F by

F�u�A� ��
�

�

Z
x�A�h�RN

J�h�
�
u�x	 h�� u�x�

��
dx dh 	

Z
x�A

W
�
u�x�

�
dx �����

for every set A � R
N and every u � RN � R� Hence F�u�A� � F��u�A� 	  ��u�A�R

N nA��

�



Figure �� the sets C� QC and TC �

A function u � RN � R is called C
periodic if u�x 	 rei� � u�x� for every x and every

i � �� � � � � N � �� where r is the side length of C and e�� � � � � eN�� are its axes� We denote by

X�C� the class of all functions u � RN � ���� �
 which are C
periodic and satisfy

lim
xe���

u�x� � 	� and lim
xe���

u�x� � �� � ������

and �nally we set

��e� �� inf
�
jCj��

F�u� TC� � C 	 Ce� u 	 X�C�
�
� ������

The minimum problem ������ is called the optimal pro�le problem associated with the

direction e� and a solution is called an optimal pro�le for transition in direction e� In �AB
 we

proved that the minimum in ������ is attained� and there exists at least one minimizer u which

depends only on the variable xe� and more precisely u�x� � ��xe� where � � R � ���� �
 is the

optimal pro�le associated with a certain one
dimensional functional F e�

For the rest of this section � is a �xed regular open subset of RN �

Theorem ���� Under the previous assumptions the following three statements hold�

�i� Compactness� let be given sequences ��n� and �un� � L���� such that �n � �� and

F�n�un��� is uniformly bounded� then the sequence �un� is relatively compact in L����

and each of its cluster points belongs to BV �������

�ii� Lower bound inequality� for every u 	 BV ������ and every sequence �u�� such that

u� � u in L����� we have

lim inf
���

F��u���� � F �u� �

�iii� Upper bound inequality� for every u 	 BV ������ there exists a sequence �u�� such that

u� � u in L���� and

lim sup
���

F��u���� � F �u� �

Remark ���� Statements �ii� and �iii� of Theorem ��� can be rephrased by saying that the

functionals F������� or in short F�� �
converge in the space L
���� to the functional F given by

����� for all functions u 	 BV ������ and extended to 	� in L���� nBV �������

�



For the general theory of �
convergence we refer the reader to �DM
� for the applications

of �
convergence to phase transition problems we refer to the early paper of Modica �Mo
� and

to �Al
 for a review of some of these results and related mathematical issues�

Remark ���� As every �
limit is lower semicontinuous� we infer from the previous remark that

the functional F given in ����� is weakly� lower semicontinuous and coercive on BV �������

The coercivity of F implies that the in�mum of ��e� over all unit vectors e 	 RN is strictly

positive� while the semicontinuity implies that the �
homogeneous extension of the function �

to RN � namely the function x 
� jxj�
�
x
�
jxj
�
� is convex �see for instance �AmB
� Theorem �����

Notice that it is not immediate to recover this convexity result directly from the de�nition of

� in �������

Remark ��	� Statement �iii� of Theorem ��� can be re�ned by choosing the approximating

sequence �u�� so that
R
�
u� �

R
�
u for every � �we will not prove this re�nement of statement

�iii�� in fact one has to slightly modify the construction of the approximating sequence �u�� given

in Theorem ����� This way we can �t with a prescribed volume constraint� given c 	 ��j�j� j�j��

then the functionals F� �
converge to F also on the class Yc of all u 	 L���� which satisfy the

volume constraint
R
�
u � c�

A sequence �v�� in Yc is called a minimizing sequence if v� minimizes F������ in Yc for every

� 	 �� and is called a quasi
minimizing sequence if F��v���� � inf
�
F��u��� � u 	 Yc

�
	 o����

Using the semicontinuity result given in �AB
� Theorem ��!� and the truncation argument given

in Lemma ���� below� we can prove that a minimizer of F������ in Yc exists provided that W

is of class C� and �W �t� � �d� for every t 	 ���� �
� where d� is de�ned by

d� �� ess inf
x��

�

�

Z
�

J��x
� � x� dx� �

Notice that d� tends to
�
�kJk� as �� ��

Now by a well
known property of �
convergence and by statement �i� of Theorem ��� we

infer the following�

Corollary ���� Let �v�� be a minimizing or a quasi
minimizing sequence for F� on Yc� Then

�v�� is relatively compact in L����� and every cluster point v minimizes F among all functions

u 	 BV ������ which satisfy
R
� u � c� Equivalently� the set E �� fv � �g solves the minimum

problem

min
nZ

��E

���E� dH
N�� � E has �nite perimeter in � and jEj � �

� �c	 j�j�
o
�

���� Outline of the proof of Theorem ��� for N � �

In order to explain the idea of the proof of Theorem ��� and the connection with the

optimal pro�le problem� now we brie"y sketch the proof of statement �ii� and �iii� for the

one
dimensional case �the proof of statement �i� being slightly more delicate��
In this case � becomes the in�mum of F����R� over the class X of all u � R � ���� �
 which

converge to 	� at 	� and to �� at �� �cf� �������� We assume for simplicity that � is the

interval ���� ��� and that u�x� � �� for x � �� u�x� � 	� for x � �� Then Su � f�g� and

�H ��Su� � �� a standard localization argument can be used to prove the result in the general

case �cf� �Al
� section �a��

We �rst remark that the functionals F� satisfy the following rescaling property� given � 	 �

and u � R � R we set u��x� �� u��x�� and then a direct computation gives

F��u�R� � F��u
��R� � ������

�



Let us consider now the lower bound inequality� First we reduce to a sequence �u�� which

converges to u in L���� and satis�es ju�j � �� then we extend each u� to the rest of R by

setting u��x� �� �� for x � ��� u��x� �� � for x � �� The key point of the proof is to show

that

F��u���� � F��u��R� as �� �� ������

By identity ������ ������ can be written in term of the locality defect  �� and more precisely it

reduces to  ��u����R n �� � o���� notice that in general this equality may be false� but using

the decay estimates for the locality defect given in section � we can prove that it is true if we

replace � with another interval� which may be chosen arbitrarily close to ��

By ������ and the de�nition of � we get F��u��R� � F��u
�
��R� � �� and then ������ yields

lim inf
���

F��u���� � � �

The proof of the upper bound inequality is even more simple� we take an optimal pro�le �

�i�e�� a solution of the minimum problem which de�nes �� and we set u��x� �� ��x��� for every

� 	 �� Then u��x� converge to u�x� for every x �� �� and ������ yields

F��u���� � F��u��R� � F����R� � � �

Remark ����� It is clear from this brief sketch that the shape of the optimal pro�le plays no

r#ole in the proof of Theorem ���� nor it does the fact that the minimum in ������ is attained� in

case no optimal pro�les were available� it would su�ces to replace � with functions in X which

�almost� minimize F����R�� This could be indeed the case when one considers the vectorial

version of this problem �see paragraph �����

Nevertheless the existence of the optimal pro�le has a deeper meaning than it appears

above� Indeed if �v�� is a sequence of minimizers of F� which converges to some v 	 BV �������

then we would expect that if we blow
up the functions v� at some �xed singular point $x of v by

taking the functions ���x� �� v����x�$x��� then ���resembles� more and more an optimal pro�le�

In other words we expect the optimal pro�les to be the asymptotic shapes of the minimizers v�
about the discontinuity points of v� Yet a precise statement in this direction is far beyond the

purposes of this paper�

Concerning proofs� statements �i�� �ii�� and �iii� of Theorem ��� will be proved in sections

�� �� and � respectively� while section � is devoted to the asymptotic estimates for the locality

defect  �� In section � we study the relation between the Dirichlet integral
R
�
jruj� and the

interaction energy

G��u� ��

Z
���

J��x
� � x�

�u�x��� u�x�

�

��
dx�dx �

Warning� throughout the proof of Theorem ���� that is� in all sections from � to �� we will

always restrict ourselves to functions which take values in ���� �
� We are allowed to do this in

view of the following lemma�

Lemma ����� For every function u � � � R� let Tu denote the truncated function Tu�x� ���
u�x� � �� � ��� Then F��u��� � F��Tu��� for every � 	 �� and for every sequence �u�� such

that F��u���� is bounded in � there holds ku� � Tu�k� � � as �� ��

Proof� The inequality F��u��� � F��Tu��� is immediate� Let now be given a sequence �u��

such that F��u���� � C for every ��

Since W is strictly positive and continuous out of ��� and has growth at least linear at

in�nity �see paragraph ����� for every 
 	 � we may �nd a 	 �� M 	 � and b 	 � so that

!



W �t� � a when � 	 
 � jtj � M and W �t� � bjtj when M � jtj� Then we de�ne A� and B� as

the sets of all x 	 � where u��x� satis�es respectively � 	 
 �
��u��x��� � M and M �

��u��x����
Hence

ku� � Tu�k� � 
j�j	M jA�j	

Z
B�

ju�j � 
j�j	
�M
a
	
�

b

�Z
�

W �u�� �

Since
R
�
W �u�� � C�� passing to the limit as �� � we obtain that lim sup ku��Tu�k� � 
j�j�

and since 
 can be taken arbitrarily small the proof is complete�

We conclude this section with a short overlook of the possible generalizations of Theorem

��� and some open problems�

����� The multi	phase model

In order to describe a multi
phase system one may postulate a free energy of the form �����

where u is a vector density function on a domain of RN taking values in Rm� W � Rm � �����

is a continuous function which vanishes at k 	 � a�nely independent wells f��� � � � � �kg �and

therefore k � m�� and J is the usual interaction potential�

Theorem ��� holds provided we make the following modi�cations� BV ������ is replaced

by the class BV
�
�� f�ig

�
of all functions u 	 BV ���Rm� which takes values in f��� � � � � �kg

only� and the functional F is now de�ned by

F �u� ��
X
i�j

Z
Sij

�ij��ij� dH
N�� � ������

where Sij is the interface which separates the phases fu � �ig and fu � �jg� and precisely

Sij �� ��fu � �ig 
 ��fu � �jg 
 � �recall that both phases have �nite perimeter in ��� and

�ij is the measure theoretic normal to Sij � For every unit vector e the value �ij�e� is de�ned

by the following version of the optimal pro�le problem�

�ij�e� �� inf
�
jCj��

F�u� TC� � C 	 Ce� u 	 X ij�C�
�
� ������

here we follow the notation of paragraph ��� and X ij�C� is the class of all functions u � RN �

R
m which are C
periodic and satisfy the boundary condition

lim
xe���

u�x� � �j and lim
xe���

u�x� � �i �

This vectorial generalization of Theorem ��� can be proved by adapting the proof for the scalar

case given below� and using a suitable approximation result for the functions in BV
�
�� f�ig

�
�cf� the approach in �Ba
 for the vectorial version of the Modica
Mortola theorem��

Notice that in this case it is not known whether the optimal pro�le problem ������ admits

a solution or not �cf� �AB
� section �b��

����� The optimal assumptions on J

As already remarked� in the current approach the ferromagnetic condition J � � cannot

be removed� more precisely it plays an essential r#ole in the proof of statement �i� of Theorem

���� and in particular in the �rst step of the proof of Theorem ��� �on the other hand the proofs

of statements �ii� and �iii� do not require the non
negativity of J��

Yet it would be quite interesting to understand the asymptotic behaviour of the functionals

F� when J is allowed to take also negative values� As far as we know in that case it may well

happen that di�erent scalings should be considered for the functional F�� and that the �
limit

has a completely di�erent form�

�



About the growth assumptions on J � we can replace the hypotheses in paragraph ����

namely J 	 L��RN � and ������ with the following more general ones �cf� �AB
� section �c�� J is

even� non
negative� and satis�es

Z
RN

J�h�
�
jhj � jhj�

�
dh � 	� � ������

We remark that the proof of Theorem ��� needs no modi�cations at all if J does not belong to

L��RN � but still veri�es ������ while some additional cares have to be taken in the fully general

case� and more precisely in the proof of stament �iii� �see in particular the third step in the

proof of Theorem ��� and the decay of the locality defect in Lemma ��!�� Indeed statements

�i� and �ii� can always be recovered from the usual version of Theorem ��� by approximating J

with an increasing sequence of potentials which satisfy the assumptions in paragraph ����

Finally we notice that if ������ does not hold� then the value of ��e� as given by the optimal
pro�le problem ������ is always equal to 	� �cf� �AB
� Theorem ����� This probably means

that a di�erent scaling should be considered in the de�nition of the functionals F�� For instance�

if N � � and J�h� � ��h� the �right� scaling is given by

�

Z
���

���u�x��� u�x�

x� � x

����dx�dx 	 e���
Z
�

W
�
u�x�

�
dx �

or equivalently by multiplying the functionals F� de�ned in ����� by an in�nitesimal factor of

order j log �j��� In this case we obtain again a �
limit of the form ����� �see for instance �ABS
��

However no general result is available when J does not veri�es �������

Acknowledgements� the authors are deeply indebted with Errico Presutti for many valuable

discussions and for his constant support� They would also like to thank Marzio Cassandro�

This paper has been completed while the �rst author is visiting for one year the Max Planck

Institut for Mathematics in the Sciences in Leipzig�

�� Decay estimates for the locality defect�

In this section we study the asymptotic behaviour as � tends to � of the locality defect  ��

Roughly speaking� the goal is to show that the limit of  ��u�� A�A
�� is determined only by the

asymptotic behaviour of the sequence u� close to the intersection of the boundaries of A and

A�� The main result of this section is Theorem ����

We �rst need to �x some additional notation� We de�ne the auxiliary potential #J by

#J�h� ��

Z �

�

J
�h
t

� ���h
t

��� dt
tN

for every h 	 RN � �����

It follows immediately from the de�nition that #J is even� non
negative� and satis�es

k #Jk� �

Z
RN

J�h� jhj dh � �����

De�nition ���� Throughout this section % always denotes a subset of a Lipschitz hypersurface

in RN � and is endowed with the Hausdor� measureH N��� we often omit any explicit mention

to this measure�

�



Let A be a set of positive measure in RN � and take a sequence �un� of functions from A

into ���� �
� and a sequence ��n� of positive real numbers which tends to �� We say that the

�n
traces of un �relative to A� converge on % to v � %� ���� �
 when

lim
n��

Z
y��

h Z
fh� y��nh�Ag

#J�h�
��un�y 	 �nh�� v�y�

�� dhi dy � �� �����

Remark ���� Notice that we make no assumption on the relative position of A and %� in

particular they may be even distant� Notice moreover that the notion of �convergence of the

�n
traces� is introduced without de�ning what the �n
trace of a function is� and in fact there is

no such notion� This is due to the fact that for functions in the domain of F�� the trace on an

�N ���
dimensional manifold cannot be de�ned �while it is de�ned for functions in the domain

of the �
limit� that is� for BV functions��

In view of the de�nition of the locality defect� it would make more sense to replace the term��un�y	 �nh�� v�y�
�� in ����� with its square� But since we restrict ourselves to functions which

take values in ���� �
� the limit in ����� is independent of the exponent of
��un�y 	 �nh�� v�y�

���
and we chose � because it simpli�es many of the following proofs�

Remark ��
� We can de�ne the upper #J
density of A at the point x 	 RN as the upper limit

lim sup
���

Z
fh�x��h�Ag

#J�h� dh �

and the lower #J
density as the corresponding lower limit� notice that such densities are local�

that is� they do not depend on the behaviour of A out of any open neighborhood of x�

The function v which satis�es ����� is uniquely determined for �H N��
� almost every point

of % where A has positive J
upper density�

If ����� holds for some set A� then it is veri�ed by every A� included in A� Moreover if %

has �nite measure then ����� is also veri�ed by every A� such that A� n A has upper #J
density

� at almost every point of %� In particular if are given sets A and A� such that the symmetric

di�erence A�A� has upper #J
density � at almost every point of %� then A satis�es ����� if and

only A� does�

Remark ���� Condition ����� is not easy to verify� If % has �nite measure then ����� holds

when

lim
n��

un�y 	 �nh� � v�y� for a�e� y 	 % and a�e� h 	 A� �����

Condition ����� holds for instance when un converge locally uniformly on some open neighbor


hood of % to a function which� at every point of %� is continuous and agrees with v�

Assume now that the functions un converge to u in L
��A�� Unfortunately this is not enough

to deduce that the �n
traces of un converge to u on every Lipschitz hypersurface % � R
N � yet

this holds for �most� %� More precisely� we have the following proposition�

Proposition ��
� Take A� ��n� and �un� as in De�nition ���� let g � A � R be a Lipschitz

function� and denote by %t the t
level set of g for every t 	 R� If un � u in L��A� then�

possibly passing to a subsequence� the �n
traces of un �relative to A� converge to u on %t for

a�e� t 	 R�

�Since g admits a Lipschitz extension to RN � %t is a subset of an oriented closed Lipschitz

hypersurface in RN for almost every t 	 R��

��



Proof� To simplify the notation we write �� u� instead of �n� un� we assume that g is �
Lipschitz

and A � R
N �the general case follows in the same way�� For every � 	 �� x 	 R

N and t 	 R

we set

&��x� ��

Z
RN

#J�h�
��u��x	 �h�� u�x�

�� dh and g��t� ��

Z
�t

&��x� dx � �����

By the coarea formula for Lipschitz functions �see �EG
� section ���� we get

Z
R

g��t� dt �

Z
RN

&��x�
��rg�x��� dx �

Z
RN

&��x� dx

�

Z
R
N�RN

#J�h�
��u��x	 �h�� u�x�

�� dx dh
�

Z
RN�RN

#J�h�
h��u��x	 �h�� u�x	 �h�

��	 ��u�x	 �h�� u�x�
��i dx dh

�

Z
RN

#J�h�
�
ku� � uk� 	 k��hu� uk�

	
dh � �����

where ��hu�x� �� u�x	 �h��

Now ku� � uk� tends to � by assumption and k��hu� uk� tends to � as �� � for every h�

and since #J is summable �cf� ������ we can apply the dominated convergence theorem to the

integrals in line ������ and we get

lim
���

Z
R

g��t� dt � � �

Hence the functions g� converge to � in L
��R�� and passing to a subsequence we may assume

that they also converge pointwise to � for a�e� t 	 R� Since g��t� is equal to the double integral

in ����� �with v replaced by u�� the proof is complete�

De�nition ���� Let be given A�A� � R
N � We say that the set % divides A and A� when for

every x 	 A� x� 	 A� the segment �x� x�
 intersects %� We say that % strongly divides A and A�

when % is the �Lipschitz� boundary of some open set � such that A � � and A� � R
N n��

Now we can state and prove the �rst decay estimate for the locality defect� Let be given

disjoint sets A and A� in RN which are divided by %� then take positive numbers �n � � and

functions un � A �A� � ���� �
 and v� v� � %� ���� �
�

Lemma ���� Under the above stated hypotheses� if the �n
traces of un relative to A and A�

converge on % to v and v� respectively� then

lim sup
n��

 �n�un� A�A
�� �

�

�
k #Jk�

Z
�

��v�y�� v��y�
�� dy � ���!�

Proof� To simplify the notation we write �� u� and  � instead of �n� un�  �n � By the de�nition

of  �� and recalling that ju�j � �� we obtain

 ��u�� A�A
�� �

�

��

Z
RN

J�h�
h Z

A�h

��u��x 	 �h�� u��x�
�� dx


 �z �
I��h�

i
dh � �����

��



Figure �� the set A�h for given � 	 � and h 	 RN �

Since the Jacobian determinant of the map which takes �y� t� 	 %� ��� �
 into y� t�h does

not exceed �jhj� by applying the change of variable x � y � t�h we get

I��h� � �jhj

Z
�

h Z
Shy

��u��y 	 ��� t��h�� u��y � t�h�
�� dti dy �

where Shy is the set of all t 	 ��� �
 such that y � t�h 	 A and y 	 ��� t��h 	 A�� Hence �����

yields

 ��u�� A�A
�� �

�

�

Z
h�RN � y��

J�h� jhj
h Z
Shy

��u��y 	 ��� t��h�� u��y � t�h�
�� dti dy dh � �����

Now by the triangle inequality we can estimate
��u��y	 ��� t��h�� u��y � t�h�

�� by the sum of

the following three terms���v�y�� v��y�
��	 ��u��y � t�h�� v��y�

��	 ��u��y 	 ��� t��h�� v�y�
�� �

Accordingly we estimate the double integral at the right hand side of ����� by the sum of the

corresponding double integrals I�� � I
�
� and I

�
� � that is�

 ��u�� A�A
�� � I�� 	 I�� 	 I�� � ������

We recall now that jShyj � � for every h and every y� and then

I�� � �
�

�

Z
h�RN � y��

J�h� jhj
h Z
Shy

��v�y�� v��y�
�� dti dy dh

�
�

�

h Z
RN

J�h� jhj dh
ih Z

�

��v�y�� v��y�
�� dyi � ������

Since the �rst integral in line ������ is equal to k #Jk� �see ������� inequality ���!� will follow from

������ once we have proved that I�� and I
�
� vanish as �� �� Let us consider I�� �

I�� � �
�

�

Z
h�RN � y��

J�h� jhj
h Z

Shy

��u��y � t�h�� v�y�
�� dti dy dh

��



�	�
 �

�

Z
h��RN � y��

h Z
Shy

J
�h�
t

� ���h�
t

��� ��u��y 	 �h��� v�y�
�� dt
tN

i
dy dh�

�	�
 �

�

Z
�

h Z
fh�� y��h��Ag

#J�h��
��u��y 	 �h��� v�y�j dh�

i
dy �

Hence I�� vanishes as � � � because the �
traces of u� relative to A converge to v on %� In a

similar way one can prove that I�� vanishes as �� ��

Now we can state the main result of this section� Let be given disjoint sets A�A� � R
N �

and % such that one of the following holds�

�a� the sets A and A� are divided by % �cf� De�nition �����

�b� the sets A and A� are strongly divided by a Lipschitz boundary S with �nite measure and

% � �A 
 �A��

�c� either A or A� is a bounded set with Lipschitz boundary and % � �A 
 �A��

Take then positive numbers �n � � and functions un � A � A� � ���� �
�

Theorem ���� Under the above stated hypotheses we have

lim sup
n��

 �n�un� A�A
�� � k #Jk�H

N���%� � ������

Moreover if the �n
traces of un relative to A and A� converge on % respectively to v and v�� then

lim sup
n��

 �n�un� A�A
�� �

�

�
k #Jk�

Z
�

��v�y�� v��y�
�� dy � ������

Proof� Notice that ������ follows by applying ������ to the functions un which are equal to

� on A and to �� on A� �with v � � and v� � ��� and then using the obvious inequality

 �n�un� A�A
�� �  �n�un� A�A

���

Let us prove ������� When �a� holds it is enough to apply Lemma ��!� while �c� clearly

implies �b�� Assume that �b� holds�

First of all we notice that in this case we can always modify the boundary S so that

S 
 �A � S 
 �A� � %� Now we extend v and v� to � in S n %� and then the �n
traces of un
relative to A and A� converge on S to v and v� respectively �use Remark ���� recalling that both

A and A� have upper J
density � at every point of S n %�� Now it is enough to apply Lemma

��! with S instead of %�

�� Proof of the compactness result

The following theorem implies statement �i� of Theorem ���� and shows that the domain

of the �
limit of the functionals F� is included in BV �������

Theorem ���� Let � be a regular open set and let be given sequences ��n� and �un� such

that �n � �� un � �� ���� �
� and F�n�un��� is bounded� Then the sequence �un� is relatively

compact in L���� and each of its cluster points belongs to BV �������

	�
 Apply the change of variable h � �h��t�
	�
 Recall ����� and that jShyj � ��

��



Proof� In order to simplify the notation we replace as usual �n� un� and F�n with �� u�� and F��

We need the following inequality� which may be proved by a direct computation� for every

non
negative g 	 L��RN � and every u � RN � R there holdsZ
RN�RN

�g � g��y�
��u�x	 y�� u�x�

�� dy dx � �kgk�

Z
RN�RN

g�y�
��u�x	 y�� u�x�

�� dy dx � �����

The proof of the theorem is now divided into two steps�

Step �� We �rst prove the thesis under the assumption that each u� takes values �� only�

We extend each function u� to � in R
N n�� and then we observe thatZ

RN�RN

J��y�
��u��x	 y�� u��x�

�� dy dx � O��� � �����

Indeed the assumption u� � �� implies
��u��x��� u��x�

�� � �
�

�
u��x

��� u��x�
��
� and then by the

de�nition of F� we obtain

�

�

Z
RN�RN

J��x
� � x�

��u��x��� u��x�
�� dx�dx �

� �F��u��R
N � � �F��u���� 	 � ��u����R

N n�� �

We apply inequality ������ with A � � and A� � R
N n � to show that  ��u����R

N n �� is

uniformly bounded in � �recall that we are considering only a subsequence �n which converges

to ��� while F��u���� is uniformly bounded by assumption� Hence ����� is proved�

Now we combine inequality ����� with g �� J� and inequality ������ and we obtainZ
RN�RN

�J� � J���y�
��u��x	 y�� u��x�

�� dy dx � O��� � �����

Since J � J is a non
negative continuous function� we may �nd a non
negative smooth function


 �not identically �� with compact support such that


 � J � J and jr
j � J � J � �����

We set c ��
R
RN


�y� dy and for every y 	 RN and every � 	 � we de�ne


��y� ��
�

c�N 
�y��� and w��y� �� 
� � u� �y� � �����

The functions 
� are smooth and non
negative� have integral equal to �� and converge to the

Dirac mass centered at � as �� �� We claim that the sequence �w�� is asymptotically equivalent

to �u�� in L
��RN �� and that the gradients rw� are uniformly bounded in L

��RN �� Once this

claim is proved we could infer that the sequence �w�� is relatively compact in L
���� and each

of its cluster points belongs to BV ������� and the same holds for the sequence �u���
Now it remains to prove the claim� We haveZ

RN

jw� � u�j dx �

Z
RN

���
Z
RN


��y�
�
u��x	 y�� u��x�

�
dy
��� dx

�

Z
RN�RN

��
��y��� ��u��x 	 y�� u��x�
�� dy dx

�	�
 �

c

Z
RN�RN

�J� � J���y�
��u��x	 y�� u��x�

�� dy dx �	�
 O��� �

	�
 By ����� and ����� we obtain 
� �
�
cJ� � J��

	�
 Apply estimate ������

��



Moreover Z
R
N

jrw�j dx �

Z
R
N

���
Z
R
N

r
��y�u��x	 y� dy
��� dx

�	�


Z
RN

���
Z
RN

r
��y�
�
u��x 	 y�� u��x�

�
dy
��� dx

�

Z
RN�RN

��r
��y�����u��x	 y�� u��x�
�� dy dx

�	�
 �

c�

Z
R
N�RN

�J� � J���y�
��u��x	 y�� u��x�

�� dy dx �	

 O��� �

and the claim is proved�

Step �� We consider now the general case� For every s 	 R we set

T �s� ��



�� if s � ��
	� if s � ��

�����

and then we de�ne

v� �� T �u�� � ���!�

The functions v� takes values �� only� and we claim that the sequence �v�� is asymptotically

equivalent to �u�� in L
���� and that F��v���� is uniformly bounded� Once proved this claim

the thesis will follow from Step ��

Take 
 so that � � 
 � �� and let K� be the set of all x 	 � such that u��x� 	 ���	
� ��

�

Then ju� � v�j � 
 in � nK�� and we deduce

Z
�

ju� � v�j dx � 
j�j	

Z
K�

�
ju�j	 jv�j

�
dx � 
j�j	 �jK�j � �����

Since 
 	 � and W is zero only at ��� there exists a positive constant � �which depends on 
�

such that W �t� � � for every t 	 ��� 	 
� �� 

� Hence

jK�j �
�

�

Z
K�

W
�
u��x�

�
dx �

�

�
F��u���� �

O���

�
� �����

Inequalities ����� and ����� imply

lim sup
���

Z
�

ju� � v�j dx � 
j�j �

As 
 is arbitrary� the sequences �u�� and �v�� are asymptotically equivalent in L
�����

It remains to prove that F��v���� is uniformly bounded in �� Since
R
�
W �v�� dy � �� we

have only to estimate the �rst integral in the de�nition of F�� Given s�� s� 	 ���� �
 we have

that

either js�j � ��� or
��T �s��� T �s��

�� � �js� � s�j �

	�
 Recall that
R
RN

r
��y� dy � � because 
� has compact support�
	�
 By ����� and ����� we obtain jr
�j �

�
c�J� � J��

	

 Apply estimate ������

��



Hence� if we denote by H� the set of all x 	 � such that
��u��x��� � ���� we deduce

F��v���� �
�

��

Z
���

J��x
� � x�

�
Tu��x

��� Tu��x�
��
dx�dx

�
�

�

Z
���

J��x
� � x�

�
u��x

��� u��x�
��
dx�dx	

�

�

Z
H���

J��x
� � x� dx�dx

� ��F��u���� 	
�

�
kJk�jH�j � ������

By the properties of W there exists a positive constant � such that W �t� � � for every t such

that jtj � ���� and reasoning as in ����� we get jH�j � O���� together with ������ this proves

that F��v���� is uniformly bounded in ��

�� Proof of the lower bound inequality

In this section we prove statement �ii� of Theorem ����

We begin with some notation� For every � 	 �� A � R
N and u � RN � ���� �
 we de�ne

the rescaling of the functional F given in ����� by

F��u�A� ��
�

��

Z
x�A�h�RN

J��h�
�
u�x	 h�� u�x�

��
dx dh	

�

�

Z
x�A

W
�
u�x�

�
dx � �����

Recalling the de�nitions of F� and  � we obtain�

F��u�A� � F��u�A� 	  ��u�A�R
N nA� � �����

Let be given now a function u de�ned on �a subset of� RN � a point $x 	 R
N and a positive

number r� We de�ne the blow
up of u centered at $x with scaling factor r the function R�x�ru

given by

�R�x�ru��x� �� u�$x	 rx� � �����

when $x � � we write Rru instead of R��ru� For every set A � R
N we set� as usual� $x 	 rA ��

f$x	 rx � x 	 Ag� and then we easily obtain the following scaling identities�

F��u� $x	 rA� � rN��F��r�R�x�ru�A� �����

F��u� $x	 rA� � rN��
F��r�R�x�ru�A� � �����

In the proof we also make use of the following well
known results about the blow
up of

�nite perimeter sets and measures�

���� Some blow	up results

Let S be a recti�able set in RN with normal vector �eld �� let � be the restriction of the

Hausdor� measure H N�� to the set S� that is� � ��H N�� S� and let � be a �nite measure

on RN � Then for H N��
a�e� $x 	 S the density of � with respect to � at $x is given by the

following limit�
d�

d�
�$x� � lim

r��

�
�
$x	 rQ

�
rN��

�����

where Q is any unit cube centered at � such that ��x� is one of its axes�

��



Let u be a �xed function in BV ������� For every $x 	 Su we denote by v�x � R
N � �� the

step function

v�x�x� ��



	� if hx� �u�$x�i � ��
�� if hx� �u�$x�i � ��

���!�

Then for H N��
a�e� $x 	 Su� and more precisely for all $x 	 Su such that the density of the

measure Du with respect to jDuj exists and is equal to �u�$x�� there holds

R�x�ru �� v�x in L�
loc�R

N � as r � � �����

�if u is not de�ned on the whole of RN we take an arbitrary extension��

���� Proof of statement 
ii� of Theorem ���

We can now begin the proof of statement �ii� of Theorem ���� We assume therefore that

is given a sequence �u�� which converges to u 	 BV ������ in L����� we have to prove that

lim inf
���

F��u���� �

Z
Su

���u� dH
N�� � �����

In the following u� and u are �xed� We shall often extract from all positive � a subsequence ��n�

which converges to zero� to simplify the notation we shall keep writing �� F�� and u� instead of

�n� F�n � u�n �

First of all we notice that it is enough to prove inequality ����� when the lower limit at the

left hand side is �nite and then� passing to a subsequence we may assume as well that it is a

limit�

Now we follow the approach of �FM
� the main feature of this method consists in the

reduction of the lower bound inequality ����� to a density estimate �see ������� which has to be
veri�ed point by point� What follows� up to equation ������� is a straightforward adaptation of

this general method �see also �BF
� �BFM
��

For every � 	 � we de�ne the energy density associated with u� at the point x 	 � as

g��x� ��
�

��

Z
�

J��x
� � x�

�
u��x

��� u��x�
��
dx� 	

�

�
W
�
u��x�

�
� ������

and then we consider the corresponding energy distribution

�� �� g� �LN � � ������

Thus the total variation k��k of the measure �� �on �� is equal to F��u����� and since F��u����

is equibounded with respect to �� possibly passing to a subsequence we can assume that there

exists a �nite positive measure � on � such that

�� � � weakly� on � as �� ��

Since F��u���� � k��k and lim inf
���

k��k � k�k� inequality ����� is implied by the following�

k�k �

Z
Su��

���u� dH
N�� � ������

In fact� we prove a stronger result� the density of � with respect to � ��H N�� Su is greater

than or equal to ���u� at H
N��
a�e� point of Su� that is

d�

d�
�$x� � �

�
�u�$x�

�
for H N��
a�e� $x 	 Su� ������

�!



More precisely� we have the following lemma�

Lemma ���� With the previous notation� inequality ������ holds for every $x 	 Su which

veri�es ����� and ������

Proof�We �x such a point $x 	 Su� and we denote by � the vector �u�$x� and by v the step function

v�x de�ned in ���!�� Following the notation of paragraph ��� we �x an �N � ��
dimensional unit

cube C 	 C� � and we take Q � QC and T � TC accordingly�

As the measures �� weak� converge to � on � as � � �� we have that ���A� � ��A� for

every set A such that ���A� � �� Since �
�
$x	r��Q�

�
� � for all positive r up to an exceptional

countable set N � we deduce that ���$x	 rQ�� ��$x	 rQ� for every positive r �	 N � Therefore�

recalling ����� we write

lim
r��
r��N

�
lim
���

���$x	 rQ�

rN��

�
� lim

r��
r��N

��$x 	 rQ�

rN��
�
d�

d�
�$x� � ������

Since u� � u in L���� by assumption and ����� holds� we also have

lim
r��

�
lim
���

R�x�ru�
�
� lim

r��
R�x�ru � v in L��Q�� ������

Therefore by a diagonal argument we may choose sequences �rn� and ��n� so that

lim
n��

rn � lim
n��

�
�n
�
rn
�
� � � ������

lim
n��

��n�$x 	 rnQ�

rN��
n

�
d�

d�
�$x� � ����!�

lim
n��

R�x�rnu�n � v in L��Q�� ������

and then we set �
$n

�� �n�rn� vn �� R�x�rnu�n � To simplify the notation in the following we

write �� �
$
� r� u� and v�

�
instead of �n� �

$n
� rn� u�n and vn respectively�

'From the scaling identity ����� and the de�nition of �� we infer

���$x 	 rQ�

rN��
�
F��u�� $x	 rQ�

rN��
� F�

�
�v�

�
� Q� � ������

Keeping in mind ����!� and ������� we can try to prove ������ by establishing a precise relation

between F�
�
�v�

�
� Q� and ���� �see paragraph �����

One possibility is the following� we extend v�
�
to the strip T by setting v�

�
�� v in T nQ�

and then we take the C
periodic extension in the rest of RN � Now� by the scaling identity �����

we know that

F�
�
�v�

�
� T � � ���� �

and then it would remain to prove that the di�erence between F�
�
�v�

�
� T � and F�

�
�v�

�
� Q� vanishes

as �
$
� �� this di�erence can be written as �cf� ������ below�

F�
�
�v�

�
� T �� F�

�
�v�

�
� Q� �  �

�
�v�

�
� T�RN n T � 	 � �

�
�v�

�
� Q� T nQ� �

but unfortunately we cannot use Theorem ��� to show that it vanishes as �
$
� � because we

have no information about the convergence of the �
$

traces of v�

�
on the boundaries �Q and �T �

We overcome this di�culty as follows� as v�
�
� v in L��Q�� Theorem ��� shows that for

a�e� t 	 ��� �� the �
$

traces of v�

�
converge to v on the boundary %t of the cube tQ �notice that

each %t is the t
level set of the Lipschitz function g�x� �� dist�x� �Q���

��



We �x for the moment such a t� and we de�ne (v�
�
on the stripe tT as

(v�
�
�x� ��

��
�
v�
�
�x� if x 	 tQ�

v�x� if x 	 tT n tQ�

and then we take the tC
periodic extension in the rest of RN � Hence (v�
�
belongs to X�tC� �cf�

paragraph ����� and since (v�
�
� v�

�
in tQ

F�
�
�v�

�
� Q� � F�

�
�v�

�
� tQ� � F�

�
�(v�

�
� tQ� �

� F�
�
�(v�

�
� tT �� � �

�
�(v�

�
� tQ� tT n tQ�

� F�
�
�(v�

�
� tT ��  �

�
�(v�

�
� tT�RN n tT �
 �z �
L�
�
�

��  �
�
�(v�

�
� tQ� tT n tQ�
 �z �
L�
�
�

� ������

Now we claim that both locality defects L�
�
�
and L�

�
�
vanish as �

$
� �� once this is proved we

could deduce from the previous formula that

lim sup
�
�
��

F�
�
�v�

�
� Q� � lim sup

�
�
��

F�
�
�(v�

�
� tT � � ������

Let us consider �rst L�
�
�
� the sets tQ and tT n tQ are divided by the boundary %t of tQ� and by

the choice of t the �
$

trace of (v�

�
relative to tQ converge to v on %t �recall that (v�

�
� v�

�
on tQ��

On the other hand (v�
�
� v in tT n tQ� and then also the �

$

trace relative to tT n tQ converge to

v on %t� Hence Theorem ��� applies� and L�
�
�
vanishes as �

$
� ��

In a similar way one can prove that also L�
�
�
vanishes as �

$
� � �it is enough to verify that

the �
$

trace of (v�

�
relative to RN converge to v on the boundary of tT ��

Eventually we use the scaling identity ����� and the de�nition of ���� to get

F�
�
�(v�

�
� tT � � �

$
N��

F
�
R�
�
(v�
�
� t�
�
T
�
� tN������ � ������

and putting together ����!�� ������� ������ and ������ we obtain

d�

d�
�$x� � tN������ �

the proof of inequality ������ is thus completed by taking t arbitrarily close to ��

�� Proof of the upper bound inequality

Throughout this section � is always a regular open set�

De�nition 
��� A N
dimensional polyhedral set in RN is an open set E whose boundary is

a Lipschitz manifold contained in the union of �nitely many a�ne hyperplanes� the faces of

E are the intersections of the boundary of E with each one of these hyperplanes� and an edge

point of E is a point which belongs to at least two di�erent faces �that is� a point where �E is

not smooth�� We denote by �E the inner normal to �E �de�ned for all points in the boundary

which are not edge points��

A k
dimensional polyhedral set in R
N is a polyhedral subset of a k
dimensional a�ne

subspace of RN � A polyhedral set in � is the intersection of a polyhedral set in RN with ��

��



We say that u 	 BV ������ is a polyhedral function if there exists an N 
dimensional

polyhedral set E in RN such that �E is transversal to �� �that is� H N����E 
 ��� � �� and

u�x� � � for every x 	 � 
 E� u�x� � �� for every x 	 � nE�

Theorem 
��� Let u 	 BV ������ be a polyhedral function� Then there exists a sequence of

functions �u�� de�ned on � such that ju�j � � for every �� u� converge to u uniformly on every

compact set K � � n Su� and

lim sup
���

F��u���� �

Z
Su

���u� dH
N�� � �����

Proof� Let us �x some notation� E is the polyhedral set associated with u in De�nition ���� we

denote by S the set of all edge points of E which belongs to � and by % a general face of Su

�that is� a face of E�� Then S is a �nite union of �N � ��
dimensional polyhedral sets in ��

�E � Su� and we may choose the orientation of Su so that �E � �u �for every point in Su nS��

Given open sets A�� A� let A� t A� we denote the interior of A� � A�� We de�ne G as the

class of all sets A such that

�i� A is an N 
dimensional polyhedral set in �� and �A and Su are transversal �that is�

H
n���Su 
 �A� � ���

�ii� there exists a sequence of functions �u�� de�ned on A such that ju�j � � and

u� � u uniformly on every compact set K � A n Su� �����

lim sup
���

F��u�� A� �

Z
A�Su

���u� dH
N�� � �����

The proof of Theorem ��� is achieved by showing that � 	 G� this is a consequence of the

following three statements�

�a� if A is an N 
dimensional polyhedral set in � such that H N���A 
 Su� � �� then A 	 G�

�b� let % be a face of Su and let � be the projection map on the a�ne hyperplane which contains

%� if A is an N
dimensional polyhedral set in � such that Su
A � % and ��A� � %� then

A 	 G�

�c� if A�� A� belong to G and are disjoint� then A� t A� 	 G�

Step �� proof of statement �a��

In this case H N����A 
 Su� � � and A 
 Su � �� then u is constant ��� or �� in A� and

it is enough to take u� �� u for every � 	 ��

Step �� proof of statement �b��

Property �i� is immediate� let us prove �ii�� We denote by e the �constant� inner normal to

%� therefore % lies on some a�ne hyperplane which is parallel to M � without loss of generality

we may assume that % lies exactly in M �

Following the notation of paragraph ���� for every �xed � 	 �� we can �nd C 	 Ce and

w 	 X�C� such that

jCj��
F�w� TC� � ��e� 	 � � �����

and then we de�ne

u��x� �� w�x��� for every x 	 RN � �����

Property ����� holds because w�x�� �� as xe � �� �see paragraph ����� We claim that

lim sup
���

F��u�� A� �H
N���%� �

�
��e� 	 �

�
� �����

��



Without loss of generality� we may assume that C is a unit cube� In order to prove inequality

������ for every � 	 � we cover % with the closures of a �nite number h � h��� of pairwise

disjoint copies of the �N � ��
dimensional cube �C� that is� we choose x�� � � � � xh 	M so that

% �

h�
i��

�
xi 	 �C

�
�

Moreover� since % is a polyhedral set in M � the previous covering can be chosen so that

h�N�� �H N��
�
� �xi 	 �C�

�
��H

N���%� as �� �� ���!�

Notice that� since % is the projection of A on M � then A � �i�xi 	 �TC�� Then by de�nition

����� we have

F��u�� A� � F�
�
u���i�xi 	 �TC�

�
� F�

�
u���i�xi 	 �TC�

�
�

hX
i��

F��u�� �TC� � �����

where the last equality follows from the fact that F��u�� �� is translation invariant and addi


tive� Applying now the scaling identity ����� with $x � � and � � r we get F��u�� �TC� �

�N��F�w� TC�� so that by ����� and ����� we deduce

F��u�� A� � h�N��
�
��e� 	 �

�
�

Taking into account ���!� we get ������

Since e agrees with �u in % � Su 
 A� ����� follows from inequality ����� by a simple

diagonal argument� and the proof of statement �b� is complete�

Step �� proof of statement �c��

Given disjoint A�� A� 	 G� we set A �� A� t A� and we take sequences �u
�
��� �u

�
�� which

satisfy property �ii� for A� and A� respectively� Then we set

u��x� ��

��
�
u���x� if x 	 A��

u���x� if x 	 A��

One can check that properties �i� and ����� are satis�ed� and that ����� reduces to

lim
���

 ��u�� A�� A�� � � �

Notice that by ����� the �
traces of ui� relative to Ai converge to u on every Lipschitz hyper


surface % � Ai such that H
N���% 
 Su� � � for i � �� � �cf� Remark ����� in particular this

holds true for % � �A� Hence the previous identity follows from Theorem ����

Step �� proof of Theorem ����

It may be veri�ed that � may be written as � � tAi where the sets Ai are �nitely many�

pairwise disjoint� and satisfy the hypothesis of statements �a� or �b��

��



Figure �� decomposition of � as union of A�� � � � � A� 	 G�

Therefore � belongs to G by statement �c�� and Theorem ��� follows from property �ii��

In order to complete the proof of Theorem ��� we need the following lemma�

Lemma 
��� The function � de�ned in paragraph ��
 is upper semicontinuous on the unit

sphere of RN �

Proof� Fix a unit vector � in RN � and for every linear isometry I of RN set

#��I� �� inf
�
jCj��

F�u � I� TC� � C 	 C� � u 	 X�C�
�

�����

�here we follow the notation of paragraph ����� One easily veri�es that for every u 	 X�C� the

map I 
� F�u� I� TC� is continuous on the space I of all linear isometries of RN � and therefore

#� is upper semicontinuous on I because it is de�ned in ����� as an in�mum of continuous

functions� We deduce the thesis by remarking that ��e� � #��I� whenever e � I��


��� Proof of statement �iii� of Theorem ���

For every RN 
valued Borel measure � on � we set

G��� ��

Z
�

�
�
�
�
j�j
�
dj�j � ������

where �
�
j�j stands for the density of � with respect to its total variation� Now statement �iii�

of Theorem ��� reads as follow� for every function u 	 BV
�
����

�
there exists a sequence �u��

such that u� � u in L���� and lim supF��u���� � G�Du��

By Theorem ��� this is true when u is a polyhedral function� and then the general

case follows by a simple diagonal argument once we have proved that every function u 	
BV

�
����

�
can be approximated �in L����� by a sequence of polyhedral functions �un� so that

lim supG�Dun� � G�Du��

It is well
known that every u 	 BV
�
����

�
can be approximated by polyhedral functions

�un� in variation� that is� un � u in L���� and kDunk � kDuk �in fact� when � is regular�

every set of �nite perimeter can be approximated in variation by smooth sets� and then also by

polyhedral sets� see for instance �Gi
� Theorem ������ and then it is enough to prove that G is

upper semicontinuous with respect to convergence in variation of measures�

Since � is a non
negative upper semicontinuous function on the unit sphere of RN �Lemma

����� then it can be obtained as the limit of an increasing sequence of non
negative continuous

��



functions �n� therefore G is the supremum of the corresponding functionals Gn� and these

functionals are continuous with respect to convergence in variation by a well
known result due

to Reshetnyak �see for instance the appendix of �LM
�� Hence G is upper semicontinuous with

respect to convergence in variation� and the proof of statement �iii� of Theorem ��� is complete�

�� Appendix

In this appendix we prove a �
convergence result concerning the �gradient part� of the
functionals F� de�ned in ������ Let J � R

N � R be a non
negative function in L��RN � �not

almost everywhere ��� L � R � R a positive convex function with superlinear growth at in�nity�

and � a bounded open subset of RN �

For every y 	 R
N we denote by �y the translation operator which takes every function u

in the function �yu given by �yu�x� �� u�x	 y� for every x� We set

M�z� ��

Z
RN

L
�
hz� yi

�
J�y� dy � z 	 RN � �����

Since J is non
negative and L is convex and has superlinear growth at in�nity� alsoM is convex

and has superlinear growth at in�nity�

De�nition ���� We de�ne the functionals G� and G� for every � 	 � and u 	 L���� as

G��u� ��

Z
���

J��x
� � x�L

�u�x��� u�x�

�

�
dx�dx �����

where� as usual� J��y� �� ��NJ�y���� and

G��u� ��

��
�
Z
�

M�Du� dx if u 	W �������

	� otherwise�

�����

Note that the functional G� is lower semicontinuous on L
����� because M is convex and has

superlinear growth at in�nity� The following result holds�

Theorem ���� Assume that � is convex� Then G� � G� for every � 	 �� and G� is the

pointwise limit of G�� Therefore the functionals G� �
converge to G� in L�����

Proof� Let us prove that G� � G� for every � 	 �� It is enough to prove this inequality when

u 	W ������ �otherwise it is trivial�� Since � is convex� for almost every couple �x� x�� 	 ���

there holds

u�x��� u�x� �

Z �

�

�
Du�tx� 	 ��� t�x�� x� � x

�
dt � �����

so

G��u� �

Z
���

J��x
� � x� L

�Z �

�

D
Du�tx� 	 ��� t�x��

x� � x

�

E
dt
�
dx�dx

�	�


Z
x�x���
t������

J��x
� � x� L

�D
Du�tx� 	 ��� t�x��

x� � x

�

E�
dt dx�dx

	�
 Apply Jensen)s inequality�

��



�	�


Z
y��� h�RN

t������

J�h�L
�
hDu�y�� hi

�
dt dh dy �

Z
�

M
�
Du�y�

�
dy �

In order to complete the proof of the theorem� we have to show that for every u 	 L����

lim inf
���

G��u� � G��u� � �����

We shall prove inequality ����� when J has compact support �the general case may be recovered

by approximating J with an increasing sequence of non
negative functions Jn with compact

support�� We take r 	 � so that the support of J is included in B��� r�� If the left term of

inequality ����� is in�nite� there is nothing to prove� and then we can assume that it is �nite�

Let A be an open set relatively compact in �� For every � 	 � such that dist �A�RN n�� 	

�r and every u 	 L���� the following inequality holds�

G��u� �

Z
RN

h Z
A

��NJ
�y
�

�
L
�u�x	 y�� u�x�

�

�
dx
i
dy

�

Z
R
N

h Z
A

L
���hu� u

�

�
dx
i
J�h� dh �

By applying Fatou)s lemma we obtain

G��u� � lim inf
���

G��u� �

Z
RN

h
lim inf
���

Z
A

L
���hu� u

�

�
dx
 �z �

P 	h


i
J�h� dh � �����

Since G��u� is �nite� P �h� must be �nite for almost every h such that J�h� 	 �� Let be given

h so that P �h� is �nite� and let ��n� be any subsequence converging to � so that

Z
A

L
���nhu� u

�n

�
dx is uniformly bounded with respect to n�

Since L has superlinear growth at in�nity by assumption� we obtain that the sequence ��	�nh
u�

u���n is relatively compact in the weak topology of L
��A�� and taking into account that it

converges to the partial derivative �u��h in the sense of distributions on A 	��
� we obtain that

the partial derivative �u��h belongs to L��A�� the sequence
�
�	�nh
u � u

��
�n converges to

�u��h weakly in L��A�� and then well
known semicontinuity theorems yield

lim inf
n��

Z
A

L
��	�nh
u� u

�n

�
dx �

Z
A

L
��u
�h

�
dx � ���!�

	�
 We make the change of variable �t� x� x�� � �t� h� y� where h �� �x� � x��� and y ��
tx� 	 ��� t�x� the corresponding Jacobian determinant is �N � and since � is convex� y belongs
to � for every x� x� 	 �� t 	 ��� �
�
	��
 Let be given a test function � 	 D�A�� since

�
�� ���h�

�
�� converges to ����h uniformly

on A� we have that

Z
A

��hu� u

�
� dx �

Z
A

���h�� �

�
u dx �� �

Z
A

��

�h
u dx �

D�u
�h

� �
E
�

��



By repeating the previous arguments when h ranges in a basis of RN � we prove that u belongs to

W ����A�� and since this holds for every A relatively compact in �� then u belongs to W ���
loc ����

Moreover� taking ���!� into account� ����� yields

lim inf
���

G��u� �

Z
RN

�Z
A

L
��u
�h

�
dx
�
J�h� dh

�

Z
A

�Z
RN

J�h�L
�
hDu� hi

�
dh
�
dx �

Z
A

M�Du�dx �

Taking the supremum over all A relatively compact in � we get

lim inf
���

G��u� �

Z
�

M�Du�dx �

Then u belongs toW ������ becauseM has �super
� linear growth at in�nity� and ����� is proved�

The fact that the functionals �G�� �
converges to G� is an immediate consequence of the

previous results and the L����
lower semicontinuity of G� �see �DM
� Proposition ��!��

Remark ��
� The convexity assumption for the domain � is needed only in the proof of the

inequality G� � G�� in order to have that formula ����� makes sense� In fact� it could be

replaced by other conditions� e�g�� by assuming the existence of an extension operator T which

takes each u 	 W ������ such that
R
�
M�Du� is �nite into a function Tu 	W ����RN � such thatR

A
M�D�Tu�� is �nite for some neighbourhood A of � �we do not need that T is either linear

or continuous��

Remark ���� In the particular case L�t� �� jtjp with � � p � � and J is radially symmetric�

M may be easily computed� and we obtain that

M�z� � cpjzj
p with cp ��

Z
RN

J�y�
��hy� ei��pdy �����

�here e is any unit vector in RN ��
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