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Abstract: we study the asymptotic behaviour as € — 0, of the nonlocal models for phase

transition described by the scaled free energy
1 1
F.(u):=— [ Jo(z'—2)(u(z') — u(w))de'dw + —/ W (u(z)) dz ,
4e Jaxa € Ja

where u is a scalar density function, W is a double-well potential which vanishes at £1, J is a
non-negative interaction potential and J.(h) := e~~.J(h/e). We prove that the functionals F.
converge in a variational sense to the anisotropic surface energy

F(u) = /S ()

where u is allowed to take the values +1 only, v, is the normal to the interface Su between
the phases {u = +1} and {u = —1}, and o is the surface tension. This paper concludes the
analisys started in [AB].

Keywords: phase transitions, singular perturbations, ['-convergence, nonlocal integral function-
als.

1991 AMS Subject Classification: 49J45, 49N45, 82B24

1. Introduction and statement of the result

In this paper we study the asymptotic behaviour as € — 0 of the functionals F; defined by

F.(u,Q) := % i ‘éf(wl —z)(u(a') - u(m))2dm’dm + E/QW(U(;U)) dz (1.1)
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and of their minimizers subject to suitable constraints. Here w is a real function on the open
set @ C RV, ¢ is a positive scaling parameter, J : RY — [0,+00] is an even function and
Je(y) == NJ(y/e), W : R — [0, +00) is a continuous function which vanishes at +1 only (see
paragraph 1.2 for precise assumptions).

The function u can be interpreted as a macroscopic density of a scalar intrinsic quantity
which describes the configurations of a given system; the second integral in (1.1) forces a mini-
mizing configuration u to take values close to the “pure” states +1 and —1 (phase separation),
while the first integral represents an interaction energy which penalizes the spatial inhomogene-
ity of the configuration (surface tension). A relevant example is given in equilibrium Statistical
Mechanics by the continuum limit of Ising spin systems on lattices; in that setting u represents
a macroscopic magnetization density and J is a ferromagnetic Kac potential (cf. [ABCP] and
references therein).

If the parameter ¢ is small, when we minimize F subject to the volume constraint fQ u=-c
with |¢|] < vol(€2), then the second term in (1.1) prevails; roughly speaking a minimizer u. takes
values close to —1 or +1, and the transition between the two phases occurs in a thin layer with
thickness of order €.

It is therefore natural to consider the asymptotic behaviour of this model as € tends to
0; accordingly we expect that the minimizers u. converge (possibily passing to a subsequence)
to a limit function w which takes values £1 only. More precisely our main result states the
following (see Theorem 1.4 and remarks below): as e — 0 the functionals F. converge, in the
sense of I'-convergence in L'(f2), to a limit energy F which is finite only when u = +1 a.e., and
in that case is given by

F(u) := /a(yu) da N (1.2)
Su
where Su is the interface between the phases {u = +1} and {u = —1}, v, if the normal field
to Su and ¢ is a suitable strictly positive even function on RY; # ¥~ denotes the (N — 1)-
dimensional Hausdoff measure.

The definition of I'-convergence immediately implies that the minimizers u. of F. converge
in L1(Q) to minimizers of F. This means that when ¢ — 0 the model associated with the
energy F. converge to the classical van der Waals model for phase separation associated with
the (anisotropic) surface tension o.

A first result of this type was proved in the isotropic case (that is, when J is radially
symmetric) in [ABCP], although with a different method and for a particular choice of W only.
In the isotropic case F'(u) reduces to the measure of the interface Su multiplied by a positive
factor o, which is obtained by taking a suitable (unscaled) one-dimensional functional F (v, R)
of type (1.1) and computing its infimum over all v : R — [—1, 1] which tend to +1 at +o0 and
to —1 at —oo.

We show that in the general anisotropic case the value of the function ¢ at some unit vector
e is obtained by solving a certain minimum problem on an unbounded N-dimensional stripe;
this is called the optimal profile problem associated with the direction e (see paragraph 1.3). In
[AB] it was proved that for every e such a problem admits at least one solution u : RY — [—1,1]
which is constant with respect to all directions orthogonal to e.

We emphasize that the proof of the I'-convergence theorem does not depend on this exis-
tence result (cf. Remark 1.10). Indeed our result can also be extended to the multi-phase case,
that is, when u takes values in R™ and W is a function on R™ which vanishes at finitely many
affinely independent points (see paragraph 1.12), while so far there are no existence results for
the corresponding optimal profile problem (cf. [AB], section 4b).

Finally we underline that the assumption J > 0, which in the statistical model is addressed
as the ferromagnetic assumption, is crucial in all our proofs, while the other assumptions on J
and W are close to be optimal (see paragraphs 1.2 and 1.13).
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For a fixed positive € our model closely recall the Cahn-Hilliard model for phase separation
(see [CH]), which is described by the energy functional

L(u) = g/Q|Vu|2+§/QW(u). (1.3)

Indeed F; can be obtained from I. by replacing the term |Vu(w)| in the first integral in (1.3)
with the average of the finite differences %|u(m + eh) — u(ac)| with respect to the measure
distribution J(h) dh.

The I'-convergence of the functionals I to a limit (isotropic) energy of the form (1.2) was
proved by L. Modica and S. Mortola (see [MM], [Mo]) and then extended to more general
anisotropic functionals in [Bou], [OS]. It is important to recall that the term [ |Vu|* in (1.3)
was derived in [CH] as a first order approximation of a more general and complicated quadratic
form. Indeed our result shows that the asymptotic behaviour of these functionals is largely
independent of the choice of this quadratic form. A first result in this direction was already
obtained in [ABS]; the one-dimensional functionals considered there, were defined as in (1.1)
with J(h) = 1/h? (see also paragraph 1.13 below).

We recall here that the evolution model associated with the energy F. is described, after
a suitable time scaling, by the nonlocal parabolic equation

w=e?(Jexu—u— f(u)), (1.4)

where f is the derivative of W and we assumed ||J||1 = 1; the analog for the energy I. is the
scaled Allen-Cahn equation u; = Au — =2 f(u). The asymptotic behaviour of the solutions of
(1.4) has been widely studied in the isotropic case (see for instance [DOPT1-3], [KS1-2]) and
leads to a motion by mean curvature in the sense of viscosity solutions; the generalization to the
anisotropic case has been given in [KS3]. Analogous results have been proved for the solutions
of the scaled Allen-Cahn equation (see for instance [BK], [DS], [ESS], [Ilm]).

An interesting mathematical feature of the functional F; is that they are not local; this
means that given disjoint sets A and A’, the energy F.(u, AU A’) stored in AU A’ is strictly
larger than the sum of F;(u, A) and F.(u, A"). More precisely we have

F.(u,AUA") = F.(u, A) + F(u, A") + 2A.(u, A, A") | (1.5)
where the locality defect A.(u, A, A") is defined as

Ac(u, A, A') = % . AJIE(:&' — ) (u(a') - u(m))zdm’dm (1.6)

for every A, A’ ¢ RY and every u : AU A’ — R. The meaning of A.(u, A, A") is quite clear,
since it represents the scaled interaction energy between A and A’. In this paper we always
assume a proper decay of J at infinity, namely (1.8), in order to guarantee that A.(u, A, A")
vanishes as ¢ — 0 whenever the sets A and A’ are distant.

Before passing to precise statements, we need to fix some general notation.

In the following ) is a bounded open subset of RY, and it is called reqular when has
Lipschitz boundary (for N = 1, when it is a finite union of distant open intervals). Unless
differently stated all sets and functions are assumed to be Borel measurable.

Every set in RY is usually endowed with the Lebesgue measure #y, and we simply write
[ f(x) dx for the integrals over B and |B| for .£x(B), while we never omit an explicit mention
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of the measure when it differs from Zy. As usual s ~! denotes the (N — 1)-dimensional
Hausdorff measure.

1.1. BV functions and sets of finite perimeter

For every open set Q in RY, BV (Q) denotes the space of all functions u : @ — R with
bounded variation, that is, the functions u € L'(Q) whose distributional derivative Du is rep-
resented by a bounded R”-valued measure on Q. We denote by BV (Q,+1) the class of all
u € BV () which take values £1 only. For every function u on €, Su is the set of all essential
singularities, that is, the points of 2 where u has no approximate limit; if u € BV (Q) the set
Su is rectifiable, and this means that it can be covered up to an %N_l—negligible subset by
countably many hypersurfaces of class C'.

The essential boundary of aset E C RY is the set 8, E of all points in 2 where E has neither
density 1 nor density 0. A set E C (2 has finite perimeter in (Q if its characteristic function 1g
belongs to BV (), or equivalently, if %Nfl(a*E N ) is finite; in this case 0, F is rectifiable,
and we may endow it with a measure theoretic normal vy (defined up to N_l—negligible
subsets) so that the measure derivative D1 is represented as

D1g(B) :/ vpd# Nt for every B C Q.

0.ENB

A function u : © = £1 belongs to BV (2, 1) if and only if {u = +1} (or {u = —1} as well)
has finite perimeter in 2. In this case Su agrees with the intersection of the essential boundary
of {u = +1} with ©, and the previous formula becomes

Du(B) = Z/Vu ds# N~ for every B C Q, (1.7

SunB

where v, is a suitable normal field to Su. We claim that Su is the interface between the phases
{u = +1} and {u = —1} in the sense that it contains every point where both sets have density
different than 0. For further results and details about BV functions and finite perimeter sets
we refer the reader to [EG], chapter 5.

1.2. Hypotheses on J and W

Unless differently stated, the interaction potential J and the double-well potential W which
appear in (1.1) satisfy the following assumptions:
(i) J: RN = [0, +00) is an even function (i.e., J(h) = J(—h)) in L'(RY) and satisfies

J(h) |h|dh < . (1.8)
RN

(i) W : R — [0,400) is a continuous function which vanishes at £1 only and has at least
linear growth at infinity (cf. the proof of Lemma 1.11).

1.3. The optimal profile problem and the definition of o

We first define the auxiliary unscaled functional .# by

Flu, A) = % / J(h) (u(x + 1) — u(@))*dedh + /W(u(:c)) dx (1.9)
zEA, heRN zEA

for every set A C RY and every u: RY — R. Hence #(u, A) = Fy (u, A) + A (u, A, RN \ A).
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Figure 1: the sets C, Q¢ and T¢.

A function u : RY — R is called C-periodic if u(z + re;) = u(z) for every z and every
i=1,...,N —1, where r is the side length of C and e;,...,en_1 are its axes. We denote by
X(C) the class of all functions u : RY — [~1,1] which are C-periodic and satisfy

wel_l)rﬂl_oou(:c) =+1 and hl_l)rgoou(:c) =-1, (1.10)
and finally we set
o(e) :=inf {|C| " F(u,Tc): C € 6., ue X(C)} . (1.11)

The minimum problem (1.11) is called the optimal profile problem associated with the
direction e, and a solution is called an optimal profile for transition in direction e. In [AB] we
proved that the minimum in (1.11) is attained, and there exists at least one minimizer v which
depends only on the variable z., and more precisely u(xz) = y(z,) where v: R — [—1,1] is the
optimal profile associated with a certain one-dimensional functional F°.

For the rest of this section € is a fixed regular open subset of RY.

Theorem 1.4. Under the previous assumptions the following three statements hold:

(i) Compactness: let be given sequences (g,,) and (u,) C L'(Q) such that e, — 0, and
F., (un,Q) is uniformly bounded; then the sequence (u,) is relatively compact in L'(Q)
and each of its cluster points belongs to BV (2, +1).

(ii) Lower bound inequality: for every u € BV (Q,£1) and every sequence (u:) such that
us — u in LY(Q), we have

liminf F. (u., Q) > F(u) ;
e—0

(iii) Upper bound inequality: for every u € BV (Q, 1) there exists a sequence (uz) such that
ue — u in LY(Q) and
limsup F. (u:, Q) < F(u) .

e—0

Remark 1.5. Statements (i) and (iii) of Theorem 1.4 can be rephrased by saying that the
functionals F.(-,Q), or in short F., [-converge in the space L(f2) to the functional F given by
(1.2) for all functions u € BV (Q, £1) and extended to +oo in L*(Q) \ BV (2, £1).
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For the general theory of I'-convergence we refer the reader to [DM]; for the applications
of I'-convergence to phase transition problems we refer to the early paper of Modica [Mo], and
to [Al] for a review of some of these results and related mathematical issues.

Remark 1.6. As every I'-limit is lower semicontinuous, we infer from the previous remark that
the functional F' given in (1.2) is weakly* lower semicontinuous and coercive on BV (2, £1).

The coercivity of F' implies that the infimum of o (e) over all unit vectors e € RY is strictly
positive, while the semicontinuity implies that the 1-homogeneous extension of the function o
to R, namely the function z — |z| o (z/|z]), is convex (see for instance [AmB], Theorem 3.1).
Notice that it is not immediate to recover this convexity result directly from the definition of
o in (1.11).

Remark 1.7. Statement (iii) of Theorem 1.4 can be refined by choosing the approximating
sequence (u.) so that fQ U = fQ u for every e (we will not prove this refinement of statement
(iii); in fact one has to slightly modify the construction of the approximating sequence (u.) given
in Theorem 5.2). This way we can fit with a prescribed volume constraint: given ¢ € (—|Q],[€]),
then the functionals F. T'-converge to F also on the class Y, of all u € L*(Q2) which satisfy the
volume constraint fQ u = c.

A sequence (v.) in Y, is called a minimizing sequence if v. minimizes F(-, Q) in Y. for every
e >0, and is called a quasi-minimizing sequence if F.(ve,Q) = inf {F.(u,Q) : u € Yo} + o(1).
Using the semicontinuity result given in [AB], Theorem 4.7, and the truncation argument given
in Lemma 1.11 below, we can prove that a minimizer of F_(-, ) in Y, exists provided that W
is of class C? and W (t) > —d. for every t € [—1, 1], where d. is defined by

1
d. := eiseiélf 3/ Je(z' —z)dx' .

Notice that d. tends to L[| J||; as e — 0.

Now by a well-known property of I'-convergence and by statement (i) of Theorem 1.4 we
infer the following;:

Corollary 1.8. Let (ve) be a minimizing or a quasi-minimizing sequence for F. on'Y.. Then
(v.) is relatively compact in L* (), and every cluster point v minimizes F' among all functions
u € BV (Q,£1) which satisfy [, u = c. Equivalently, the set E := {v = 1} solves the minimum
problem

min{/ o(vp)d#' N " E has finite perimeter in Q and |E| = e+ |Q|)} .
0+ E

1.9. Outline of the proof of Theorem 1.4 for N =1

In order to explain the idea of the proof of Theorem 1.4 and the connection with the
optimal profile problem, now we briefly sketch the proof of statement (i) and (iii) for the
one-dimensional case (the proof of statement (i) being slightly more delicate).

In this case o becomes the infimum of Fj (-, R) over the class X of all u : R — [—1, 1] which
converge to +1 at +o00 and to —1 at —oo (cf. (1.11)). We assume for simplicity that Q is the
interval (—1,1), and that u(z) = —1 for « < 0, u(z) = +1 for z > 0. Then Su = {0}, and
o#°(Su) = 0; a standard localization argument can be used to prove the result in the general
case (cf. [Al], section 3a).

We first remark that the functionals F; satisfy the following rescaling property: given e > 0
and v : R = R we set u®(z) := u(ex), and then a direct computation gives

F.(u,R) = F («*,R) . (1.12)
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Let us consider now the lower bound inequality. First we reduce to a sequence (u.) which
converges to u in L'(Q)) and satisfies |u.| < 1; then we extend each u. to the rest of R by
setting u.(z) := —1 for ¢ < —1, u.(x) := 1 for £ > 1. The key point of the proof is to show
that

F.(us,Q) ~ F.(u;,R) ase—0. (1.13)

By identity (1.5), (1.13) can be written in term of the locality defect A., and more precisely it
reduces to Ac(ue, Q, R\ ) = o(1); notice that in general this equality may be false, but using
the decay estimates for the locality defect given in section 2 we can prove that it is true if we
replace 2 with another interval, which may be chosen arbitrarily close to (2.

By (1.12) and the definition of o we get F_(u., R) = F;(u,R) > o, and then (1.13) yields

liminf F. (u.,Q) > o .
e—0
The proof of the upper bound inequality is even more simple: we take an optimal profile ~y
(i.e., a solution of the minimum problem which defines o) and we set u.(z) := y(x/¢) for every
€ > 0. Then u.(x) converge to u(z) for every x # 0, and (1.12) yields

FE(UE:Q) < FE(UE:R) = Fl(’yv]R) =0.

Remark 1.10. 1t is clear from this brief sketch that the shape of the optimal profile plays no
role in the proof of Theorem 1.4, nor it does the fact that the minimum in (1.11) is attained: in
case no optimal profiles were available, it would suffices to replace v with functions in X which
“almost” minimize Fi(-,R). This could be indeed the case when one considers the vectorial
version of this problem (see paragraph 1.12)

Nevertheless the existence of the optimal profile has a deeper meaning than it appears
above. Indeed if (v.) is a sequence of minimizers of F. which converges to some v € BV (2, £1),
then we would expect that if we blow-up the functions v, at some fixed singular point Z of v by
taking the functions . (z) := v:(e(z—7)), then v “resembles” more and more an optimal profile.
In other words we expect the optimal profiles to be the asymptotic shapes of the minimizers v,
about the discontinuity points of v. Yet a precise statement in this direction is far beyond the
purposes of this paper.

Concerning proofs, statements (i), (ii), and (iii) of Theorem 1.4 will be proved in sections
3, 4, and 5 respectively, while section 2 is devoted to the asymptotic estimates for the locality
defect A.. In section 6 we study the relation between the Dirichlet integral [, |Vu|? and the
interaction energy
u(z') — u(z)

2dav'dav .
—)

Go(u) = [ J.(2' - w)(

QxQ

Warning: throughout the proof of Theorem 1.4, that is, in all sections from 2 to 5, we will
always restrict ourselves to functions which take values in [—1,1]. We are allowed to do this in
view of the following lemma:

Lemma 1.11. For every function u : Q@ — R, let Tu denote the truncated function Tu(x) :=
(u(z) A1)V —1. Then F.(u,) > F.(Tu,Q) for every e >0, and for every sequence (u.) such
that Fe(ue, Q) is bounded in e there holds ||uc — Tue|ly — 0 as € — 0.

Proof. The inequality Fr(u,Q) > F.(Tu,(Q) is immediate. Let now be given a sequence (u.)
such that F,(ue, Q) < C for every e.

Since W is strictly positive and continuous out of +1, and has growth at least linear at
infinity (see paragraph 1.2), for every 6 > 0 we may find @ > 0, M > 0 and b > 0 so that
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W(t) > awhen 1+ < |t| < M and W (t) > bjt| when M < |t|. Then we define A, and B, as
the sets of all z €  where u.(z) satisfies respectively 1+ 6 < |u.(z)| < M and M < |u.(z)|.
Hence

M 1
lue = Tucll < 310+ M + [ fucl <100+ (5 +5) [ W
B, a b/ Jo

Since [, W(u.) < Ce, passing to the limit as ¢ — 0 we obtain that limsup [Ju. — Tu.||; < d]Q,
and since § can be taken arbitrarily small the proof is complete. O

We conclude this section with a short overlook of the possible generalizations of Theorem
1.4 and some open problems.

1.12. The multi-phase model

In order to describe a multi-phase system one may postulate a free energy of the form (1.1)
where u is a vector density function on a domain of RY taking values in R™, W : R™ — [0, 00)
is a continuous function which vanishes at k + 1 affinely independent wells {ay,...,ax} (and
therefore k£ < m), and J is the usual interaction potential.

Theorem 1.4 holds provided we make the following modifications: BV (Q,+1) is replaced
by the class BV (2, {;}) of all functions u € BV (Q,R™) which takes values in {aq,...,ax}
only, and the functional F' is now defined by

F(u) = Z/S?ij(wj)d%”]v*l ; (1.14)

1<j

where S;; is the interface which separates the phases {u = «;} and {u = «;}, and precisely
Sij = 0:«{u = a;} N O{u = a;} NQ (recall that both phases have finite perimeter in (2), and
v;; is the measure theoretic normal to S;;. For every unit vector e the value o;;(e) is defined
by the following version of the optimal profile problem:

oij(e) == inf {|C|7'" F(u,Tc) : C € 6., ue X9 (O)} , (1.15)

here we follow the notation of paragraph 1.3 and X (C) is the class of all functions u : R —
R™ which are C-periodic and satisfy the boundary condition

zlirgoou(m) =a; and welirgoou(m) =aq; .
This vectorial generalization of Theorem 1.4 can be proved by adapting the proof for the scalar
case given below, and using a suitable approximation result for the functions in BV(Q, {ai})
(cf. the approach in [Ba] for the vectorial version of the Modica-Mortola theorem).
Notice that in this case it is not known whether the optimal profile problem (1.15) admits
a solution or not (cf. [AB], section 4b).

1.13. The optimal assumptions on J

As already remarked, in the current approach the ferromagnetic condition J > 0 cannot
be removed; more precisely it plays an essential role in the proof of statement (i) of Theorem
1.4, and in particular in the first step of the proof of Theorem 3.1 (on the other hand the proofs
of statements (ii) and (iii) do not require the non-negativity of J).

Yet it would be quite interesting to understand the asymptotic behaviour of the functionals
F. when J is allowed to take also negative values. As far as we know in that case it may well
happen that different scalings should be considered for the functional F., and that the I'-limit
has a completely different form.



About the growth assumptions on J, we can replace the hypotheses in paragraph 1.3,
namely J € L*(R") and (1.8), with the following more general ones (cf. [AB], section 4c): J is
even, non-negative, and satisfies

/ J(h) (1] A [B2) dh < 400 - (1.16)
RN

We remark that the proof of Theorem 1.4 needs no modifications at all if J does not belong to
LY(RY) but still verifies (1.8), while some additional cares have to be taken in the fully general
case, and more precisely in the proof of stament (iii) (see in particular the third step in the
proof of Theorem 5.2 and the decay of the locality defect in Lemma 2.7). Indeed statements
(i) and (ii) can always be recovered from the usual version of Theorem 1.4 by approximating .J
with an increasing sequence of potentials which satisfy the assumptions in paragraph 1.2.

Finally we notice that if (1.16) does not hold, then the value of o(e) as given by the optimal
profile problem (1.11) is always equal to +oo (cf. [AB], Theorem 4.6). This probably means
that a different scaling should be considered in the definition of the functionals F;. For instance,
if N =1 and J(h) = 1/h? the “right” scaling is given by

u(@') —u(z) 9, , 1/e
E/QXQ‘i dz'dr + e/ /QW(u(ac))dm,

o —x

or equivalently by multiplying the functionals F; defined in (1.1) by an infinitesimal factor of
order |loge|~!. In this case we obtain again a -limit of the form (1.2) (see for instance [ABS]).
However no general result is available when J does not verifies (1.16).

Acknowledgements: the authors are deeply indebted with Errico Presutti for many valuable
discussions and for his constant support. They would also like to thank Marzio Cassandro.
This paper has been completed while the first author is visiting for one year the Max Planck
Institut for Mathematics in the Sciences in Leipzig.

2. Decay estimates for the locality defect.

In this section we study the asymptotic behaviour as € tends to 0 of the locality defect A..
Roughly speaking, the goal is to show that the limit of A.(u., A, A") is determined only by the
asymptotic behaviour of the sequence u. close to the intersection of the boundaries of A and
A’. The main result of this section is Theorem 2.8.

We first need to fix some additional notation. We define the auxiliary potential J by
1
4 h\ |h| dt
J(h) = /0 J(?) ‘?‘ N for every h € RY. (2.1)
It follows immediately from the definition that J is even, non-negative, and satisfies

= [ 70 Injan 22)

Definition 2.1. Throughout this section ¥ always denotes a subset of a Lipschitz hypersurface
in RY, and is endowed with the Hausdorff measure 2 ~!; we often omit any explicit mention
to this measure.



Let A be a set of positive measure in RY, and take a sequence (up,) of functions from A
into [—1,1], and a sequence (g,) of positive real numbers which tends to 0. We say that the
en-traces of u, (relative to A) converge on ¥ to v: ¥ — [—1,1] when

lim [ / J(h) [un(y + enh) —v(y)] dh] dy = 0. (2.3)

n—o0
y€X {h:y+e,h€A}

Remark 2.2. Notice that we make no assumption on the relative position of A and ¥; in
particular they may be even distant. Notice moreover that the notion of “convergence of the
en-traces” is introduced without defining what the e,,-trace of a function is, and in fact there is
no such notion. This is due to the fact that for functions in the domain of F., the trace on an
(N — 1)-dimensional manifold cannot be defined (while it is defined for functions in the domain
of the I'-limit, that is, for BV functions).

In view of the definition of the locality defect, it would make more sense to replace the term
|un(y +enh) — v(y)| in (2.3) with its square. But since we restrict ourselves to functions which
take values in [—1, 1], the limit in (2.3) is independent of the exponent of |un(y +eph) —v(y) |,
and we chose 1 because it simplifies many of the following proofs.

Remark 2.3. We can define the upper j—density of A at the point z € RY as the upper limit

lim sup / J(h)dh ,
e—0
{h:z+che€A}

and the lower j—density as the corresponding lower limit; notice that such densities are local,
that is, they do not depend on the behaviour of A out of any open neighborhood of z.

The function v which satisfies (2.3) is uniquely determined for (¥ ~1-) almost every point
of ¥ where A has positive J-upper density.

If (2.3) holds for some set A, then it is verified by every A’ included in A. Moreover if ¥
has finite measure then (2.3) is also verified by every A’ such that A’ \ A has upper J-density
0 at almost every point of X. In particular if are given sets A and A’ such that the symmetric
difference AAA' has upper J-density 0 at almost every point of , then A satisfies (2.3) if and
only A’ does.

Remark 2.4. Condition (2.3) is not easy to verify. If ¥ has finite measure then (2.3) holds
when
lim u,(y +exh) =v(y) for a.e. y € X and a.e. h € A. (2.4)
n—oo

Condition (2.4) holds for instance when u,, converge locally uniformly on some open neighbor-
hood of ¥ to a function which, at every point of X, is continuous and agrees with v.

Assume now that the functions u,, converge to v in L' (A). Unfortunately this is not enough
to deduce that the e,-traces of u,, converge to u on every Lipschitz hypersurface ¥ C RY, yet
this holds for “most” 3. More precisely, we have the following proposition:

Proposition 2.5. Take A, (g,) and (uyp) as in Definition 2.1; let g : A — R be a Lipschitz
function, and denote by X! the t-level set of g for every t € R. If u, — u in L'(A) then,
possibly passing to a subsequence, the ,-traces of u, (relative to A) converge to u on Xt for
a.e. t € R.

(Since g admits a Lipschitz extension to RY, ¥t is a subset of an oriented closed Lipschitz
hypersurface in RY for almost every ¢ € R.)
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Proof. To simplify the notation we write €, u. instead of &,,, u,,, we assume that g is 1-Lipschitz
and A = RY (the general case follows in the same way). For every ¢ > 0, z € R and t € R
we set

O (z) := /RN |uE x +¢eh) —u(x |dh and g<(t) = /Et O, (z)dx . (2.5)

By the coarea formula for Lipschitz functions (see [EG], section 3.3) we get

/Rgs(t)dtz/RN z) |[Vg(z |dx</RN . (x) da

:/ h) |uc(z + €h) — u(z)| dz dh
RNXRN

</ [|usx+5h)—u(x+5h|+|ux+5h)—u( )Hdmdh

RNXRN

< [0 e = ull + e =] (2.6)
RN

where T.pu(z) ;= u(z + €h).

Now ||us — ul|1 tends to 0 by assumption and ||7.pu — u|1 tends to 0 as e — 0 for every h,
and since J is summable (cf. (2.2)) we can apply the dominated convergence theorem to the
integrals in line (2.6), and we get

lim [ g.(t)dt =0.

e—0 R

Hence the functions g. converge to 0 in L*(R), and passing to a subsequence we may assume
that they also converge pointwise to 0 for a.e. t € R. Since g.(¢) is equal to the double integral
n (2.3) (with v replaced by u), the proof is complete. O

Definition 2.6. Let be given A, A’ C RY. We say that the set ¥ divides A and A’ when for
every x € A, ' € A’ the segment [z, 2] intersects X. We say that ¥ strongly divides A and A’
when ¥ is the (Lipschitz) boundary of some open set Q such that A C Q and A’ ¢ RV \ Q.

Now we can state and prove the first decay estimate for the locality defect. Let be given
disjoint sets A and A’ in RY which are divided by ¥, then take positive numbers e, — 0 and
functions u,, : AUA" — [-1,1] and v,v’ : ¥ — [-1,1].

Lemma 2.7. Under the above stated hypotheses, if the e,-traces of u, relative to A and A’
converge on X to v and v’ respectively, then

limsup A, (un,, A, A") < —||J||1/ lv(y) — ' (y)| dy - (2.7)

n—oo

Proof. To simplify the notation we write €, u. and A. instead of ,, u,, A, . By the definition
of A., and recalling that |u.| < 1, we obtain

Ac(ue, A, A') < % /RN J(h) [/A |uo (@ + ch) — ue ()] dw] dh (2.8)
L.(h) J

11



Figure 2: the set A, for given e > 0 and h € RV

Since the Jacobian determinant of the map which takes (y,t) € £ x [0,1] into y — teh does
not exceed e|h|, by applying the change of variable z =y — teh we get

L) <elbl [ [ [ fucty+ (0= )eh) = wely = et @] dy

where Sy, is the set of all ¢ € [0, 1] such that y — teh € A and y + (1 — t)eh € A’. Hence (2.8)
yields

Ac(ue, A, A" < % / J(h) |h| [/ luc(y + (1= t)eh) — u.(y — teh)| dt] dydh . (2.9)
heERN  yex Shy

Now by the triangle inequality we can estimate |u(y + (1 — t)eh) — uc(y — teh)| by the sum of
the following three terms:
|[v(y) = V' (y)| + Jus(y — teh) = v'(y)| + Jus(y + (1 = t)eh) — v(y)| .

Accordingly we estimate the double integral at the right hand side of (2.9) by the sum of the

corresponding double integrals I, I? and I2, that is,

Ac(ue, AAY ST+ T2+ 12 . (2.10)
We recall now that |Shy| < 1 for every h and every y, and then

1;::% /J(h)|h|[/ [o(y) — o/ (5)] dt] dy di

heRN , yex

Shy
3L, smman][ [ o) -] (211)

IN

Since the first integral in line (2.11) is equal to ||.J||1 (see (2.2)), inequality (2.7) will follow from
(2.10) once we have proved that I2? and I? vanish as € — 0. Let us consider I2:

1
=3 / J(h) |h| [/ |u.(y — teh) —v(y)|dt] dy dh
heRN  yeX Shy
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dt
[u(y + k') = v(y)| 5] dy i’

<3 [ 1@

h!'ERN  yeX
o 1 A
<5 [1 ] 300ty + et~ vl an] dy

Y {h':y+eh'€A}

Hence I? vanishes as € — 0 because the e-traces of u. relative to A converge to v on ¥. In a
similar way one can prove that I2 vanishes as € — 0. O

Now we can state the main result of this section. Let be given disjoint sets A4, A’ ¢ R,
and ¥ such that one of the following holds:
(a) the sets A and A’ are divided by ¥ (cf. Definition 2.6);
(b) the sets A and A’ are strongly divided by a Lipschitz boundary S with finite measure and
Y =0ANoA;
(c) either A or A" is a bounded set with Lipschitz boundary and ¥ = 0AN0A’.

Take then positive numbers €, — 0 and functions u,, : AU A" — [-1,1].

Theorem 2.8. Under the above stated hypotheses we have

lim sup A, (un, 4, A") < ||J|1 2N 71(2) . (2.12)

n—oo

Moreover if the e,,-traces of u,, relative to A and A' converge on X respectively to v and v', then

1 -
i sup A, (s 4. 4) < 11 [ Jolw) = ') dy (2.13)
X

n—oo

Proof. Notice that (2.12) follows by applying (2.13) to the functions @, which are equal to
1on A and to —1 on A’ (with v = 1 and v = —1) and then using the obvious inequality
Ac, (up, A, A" < A, (Tn, A, A").

Let us prove (2.13). When (a) holds it is enough to apply Lemma 2.7, while (c) clearly
implies (b). Assume that (b) holds.

First of all we notice that in this case we can always modify the boundary S so that
SNJA=SN0A" =%. Now we extend v and v’ to 0 in S\ X, and then the ¢,-traces of u,,
relative to A and A’ converge on S to v and v’ respectively (use Remark 2.3, recalling that both
A and A’ have upper J-density 0 at every point of S\ ¥). Now it is enough to apply Lemma
2.7 with S instead of X. O

3. Proof of the compactness result

The following theorem implies statement (i) of Theorem 1.4, and shows that the domain
of the I'-limit of the functionals F; is included in BV (2, £1).

Theorem 3.1. Let Q be a regular open set and let be given sequences (e,) and (up) such
that €, = 0, uy : Q@ = [—1,1], and F;, (up, Q) is bounded. Then the sequence (uy) is relatively
compact in L' (Q) and each of its cluster points belongs to BV (Q, £1).

(1) Apply the change of variable h = —h'/t.
(2) Recall (2.1) and that |Sp,| < 1.
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Proof. In order to simplify the notation we replace as usual €, uy, and F;_ with ¢, u., and F.
We need the following inequality, which may be proved by a direct computation: for every
non-negative g € L*(R") and every u : RV — R there holds

[ @rawlutz+v) - u@)|dyds <2lgls [ s@lute+y) - u@@|dydz. @)
RN xRN RN xRN
The proof of the theorem is now divided into two steps.

Step 1. We first prove the thesis under the assumption that each u. takes values £1 only.
We extend each function u. to 1 in RY \ €2, and then we observe that

Je(y) |us (@ +y) — ue(z)| dy dz = O(e) . (3.2)
RN xRN
Indeed the assumption u. = +1 implies |u.(2') — u(z)| = 3 (ue(¢') — ue (m))Q, and then by the
definition of F. we obtain

1
R / Jo(a' = ) Jue(2) — ue(z)| da'de =
RN xRN
= 2F. (ue,RY) = 2F. (uc, Q) + 4A. (u, Q, RV \ Q) .
We apply inequality (2.12) with 4 = Q and A’ = RY \ Q to show that A.(u.,Q,RY \ Q) is
uniformly bounded in e (recall that we are considering only a subsequence €,, which converges
to 0), while F_ (uc, ) is uniformly bounded by assumption. Hence (3.2) is proved.
Now we combine inequality (3.1) with g := J. and inequality (3.2), and we obtain

/(JE * T) ) ue(@ +y) — us(0)| dy dz = O(e) | (3.3)
RN xRN

Since J % J is a non-negative continuous function, we may find a non-negative smooth function
¢ (not identically 0) with compact support such that

e<JxJ and |Vo|<Jx.J. (3.4)
We set ¢ := fRN ©(y) dy and for every y € RY and every e > 0 we define

e(y) == Zwe(y/e) and we(y) = pe * uc (y) - (3.5)
The functions ¢, are smooth and non-negative, have integral equal to 1, and converge to the
Dirac mass centered at 0 as £ — 0. We claim that the sequence (w.) is asymptotically equivalent
to (ue) in L*(R™), and that the gradients Vw,. are uniformly bounded in L'(RY). Once this
claim is proved we could infer that the sequence (w.) is relatively compact in L'(Q) and each
of its cluster points belongs to BV (€2, £1), and the same holds for the sequence (u.).
Now it remains to prove the claim. We have

/RN fwe — .| do = /RN | /RN 0 (9) (e + ) — (@) dy da

< / l0: ()] |us (@ + y) — ue()| dy dz
RN xRN

S(B) % /(Js * J:)(y) |u6($ +y) — u6($)| dy dx =W O(e) -

RN xRN

(3) By (3.4) and (3.5) we obtain ¢. < LJ. * J..
(4) Apply estimate (3.3).
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Moreover

/ |Vw, |dz = / ‘ Ve (y) us(z + y) dy‘dm
RN RN | JrN
=0 [ ][ Veitn) (uato ) = uete) do o

< / IV 0 ()| [ (& + ) — ue ()| dy da
RN xRN

<©) é /(JE 5 1) () |ue (@ + y) — ue(2)| dy de =7 O(1)

RN xRN

and the claim is proved.

Step 2. We consider now the general case. For every s € R we set

-1 ifs<0,
T(s) = { +1 ifs>0, (3.6)
and then we define
Ve 1= T (ue) . (3.7

The functions v. takes values £1 only, and we claim that the sequence (v.) is asymptotically
equivalent to (u:) in L'(Q) and that F.(v.,Q) is uniformly bounded. Once proved this claim
the thesis will follow from Step 1.

Take ¢ so that 0 < § < 1, and let K. be the set of all z € Q such that u.(z) € [-1+4§,1—4].
Then |ue —ve| < 0 in 2\ K., and we deduce

/|u5—v5|dm§6|ﬂ|+/ (Jue| + |ve|) do < 619 + 2| K| . (3.8)
Q KE

Since § > 0 and W is zero only at %1, there exists a positive constant p (which depends on 6)
such that W(t) > p for every t € [-1+ 0,1 — d]. Hence

IK.| < %/ W (ue(x)) dz < %Fg(ug,n) =06, (3.9)

. P

Inequalities (3.8) and (3.9) imply

limsup/ |ue — ve| dz < 8|9 .
Q

e—0

As § is arbitrary, the sequences (u.) and (v.) are asymptotically equivalent in L*(f2).

It remains to prove that F.(v., () is uniformly bounded in €. Since fQ W(v:)dy = 0, we
have only to estimate the first integral in the definition of F.. Given s1,s2 € [—1,1]
that

we have

either |s1| <1/2 or |T(31) — T(32)| < A4|sy — sa| .

(5) Recall that Ja~ Ve (y) dy = 0 because ¢, has compact support.
() By (3.4) and (3.5) we obtain |Vi.| < L J. * J..
(7 Apply estimate (3.3).
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Hence, if we denote by H. the set of all z € © such that |u.(z)| <1/2, we deduce

F.(v:,Q) = i/Jg(ac' — ) (Tu(2") — Tug(m))2dac'dac

4e
QxQ
4 1
< g/JE(x' — ) (ue(a') — us(:c))Qdm'dx + g/JE(x' — x)da'dx
QxQ H.xQ
1
< 16F5(usaﬂ)+g||J||l|Hs| . (3.10)

By the properties of W there exists a positive constant p such that W (t) > p for every ¢ such
that |t| < 1/2, and reasoning as in (3.9) we get |H.| = O(g); together with (3.10) this proves
that F(ve, ) is uniformly bounded in e. O

4. Proof of the lower bound inequality

In this section we prove statement (ii) of Theorem 1.4.
We begin with some notation. For every ¢ > 0, A ¢ RY and u : RV — [—1,1] we define
the rescaling of the functional .# given in (1.9) by

Fe(u, A) := % / J-(h) (u(z + h) — u(:c))Qd:c dh + é / W (u(z)) dz . (4.1)
zEA, heRN z€EA

Recalling the definitions of F. and A, we obtain:
Fo(u, A) = Fo(u, A) + Ac(u, A, RN \ 4) . (4.2)

Let be given now a function u defined on (a subset of) RY, a point Z € R and a positive
number r. We define the blow-up of u centered at T with scaling factor r the function Rz ,u
given by

(Rzyu)(z) :=u(Z + 1) ; (4.3)
when Z = 0 we write R,u instead of Ry ,u. For every set A C RY we set, as usual, z + rA :=
{Z +rxz : z € A}, and then we easily obtain the following scaling identities:

F.(u,z +rA) =1 "'F. /(R ru, A) (4.4)

Fe(u, T +1A) = rN_lﬁg/r(R@ru, A). (4.5)

In the proof we also make use of the following well-known results about the blow-up of
finite perimeter sets and measures:

4.1. Some blow-up results

Let S be a rectifiable set in RY with normal vector field v; let u be the restriction of the
Hausdorff measure ¥ 7! to the set S, that is, W= 2N S, and let \ be a finite measure
on RY. Then for " '-ae. z € S the density of A with respect to p at z is given by the
following limit:

(4.6)
where @) is any unit cube centered at 0 such that v(z) is one of its axes.
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Let u be a fixed function in BV (€, £1). For every Z € Su we denote by vz : RY — +1 the
step function
41 if (v, () >0,
va(2) := { “1if (2, (2)) < 0. (4.7)

Then for s# Y '-ae. z € Su, and more precisely for all z € Su such that the density of the
measure Du with respect to |Du| exists and is equal to v, (Z), there holds

Rz,u—> vz in LL (RY)asr —0 (4.8)

(if u is not defined on the whole of RY we take an arbitrary extension).

4.2. Proof of statement (ii) of Theorem 1.4

We can now begin the proof of statement (ii) of Theorem 1.4. We assume therefore that
is given a sequence (u.) which converges to u € BV (2, £1) in L*(£2); we have to prove that

e—0

lim inf F} (u, Q) > / o(vy)da Nt (4.9)
Su

In the following u. and u are fixed. We shall often extract from all positive € a subsequence (e,)
which converges to zero; to simplify the notation we shall keep writing e, F;, and u. instead of
en, Fe, s ue

First of all we notice that it is enough to prove inequality (4.9) when the lower limit at the
left hand side is finite and then, passing to a subsequence we may assume as well that it is a
limit.

Now we follow the approach of [FM]; the main feature of this method consists in the
reduction of the lower bound inequality (4.9) to a density estimate (see (4.13)) which has to be
verified point by point. What follows, up to equation (4.18), is a straightforward adaptation of
this general method (see also [BF], [BFM]).

For every ¢ > 0 we define the energy density associated with u. at the point z € ) as

1
ge(z) == 1e

1
/ Jo(2' — x) (ue(2") — uE(:c))de' + EW(us(x)) , (4.10)
Q
and then we consider the corresponding energy distribution
Ae i =g - L Q. (4.11)

Thus the total variation || Ac|| of the measure \; (on ) is equal to F(ue, 2), and since F_(uc, ()
is equibounded with respect to €, possibly passing to a subsequence we can assume that there
exists a finite positive measure A on () such that

Ae = A weakly* on Q as e — 0.

Since F.(ue, ) = ||A¢]| and lim iélf [[Acl] > [|All, inequality (4.9) is implied by the following:
E—r

NE / o(va) dA N (4.12)

SunQ

In fact, we prove a stronger result: the density of A with respect to pu := AN Suis greater
than or equal to o(vy,) at AN~ a.e. point of Su, that is

%(a‘c) > 0 (vy(T)) for N -ae. T € Su. (4.13)
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More precisely, we have the following lemma.

Lemma 4.3. With the previous notation, inequality (4.13) holds for every & € Su which
verifies (4.6) and (4.8).

Proof. We fix such a point Z € Su, and we denote by v the vector v, (Z) and by v the step function
vz defined in (4.7). Following the notation of paragraph 1.3 we fix an (N — 1)-dimensional unit
cube C € 6,, and we take QQ = Q¢ and T = T accordingly.

As the measures A\ weak* converge to A on ) as € — 0, we have that A.(4) — A(A) for
every set A such that A(A) = 0. Since A\(Z+7(0Q)) = 0 for all positive r up to an exceptional
countable set N, we deduce that A:(Z +rQ) — A(Z + rQ) for every positive r ¢ N. Therefore,
recalling (4.6) we write

. CA(E@4rQ)y L Mz4rQ)  dh
tim (liy =) = fm = = @) 1
r¢ N rgN

Since u. — u in L'()) by assumption and (4.8) holds, we also have

lim (lim Rfvrus) = lirr(1) Rz,u=v in LYQ). (4.15)
r—

r—0 "e—0

Therefore by a diagonal argument we may choose sequences (r,,) and (e;,) so that

711520 Tp = 711520 (z—:n/rn) =0, (4.16)
A, (@ +TQ)  dX

Jim. TN @(fﬂ) ; (4.17)
lim Rz, u., =v in LY(Q), (4.18)

n—00

and then we set ¢, := €/rpn, Uy := Rz, ue,. To simplify the notation in the following we
write €, €, 7, u. and v, instead of ey, €,,, ™n, us, and v, respectively.
iFrom the scaling identity (4.4) and the definition of A. we infer

)‘6 X FE =) 15
(thfQ) z (u,;j Q) - Fe(ve, Q) (4.19)

Keeping in mind (4.17) and (4.19), we can try to prove (4.13) by establishing a precise relation
between F;(ve, ) and o(v) (see paragraph 1.3).
One possibility is the following: we extend v, to the strip 7' by setting v, := v in T\ Q,
and then we take the C-periodic extension in the rest of R™. Now, by the scaling identity (4.5)
we know that
Fe(ve, T) > 0(v) ,

and then it would remain to prove that the difference between %, (v.,T) and Fg (v, Q) vanishes
as € — 0; this difference can be written as (cf. (4.20) below)

Fe(ve, T) — Fo(ve,Q) = Ac(ve, T, RY \T) +2A:(ve, Q, T\ Q) ,

but unfortunately we cannot use Theorem 2.8 to show that it vanishes as ¢ — 0 because we
have no information about the convergence of the e-traces of v, on the boundaries Q) and 9T

We overcome this difficulty as follows: as v. = v in L*(Q), Theorem 2.8 shows that for
a.e. t € (0,1) the e-traces of v, converge to v on the boundary %t of the cube tQ (notice that
each Xt is the t-level set of the Lipschitz function g(z) := dist(z, 0Q)).
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We fix for the moment such a ¢, and we define 9. on the stripe tT" as
ve(x) if z € tQ,
v(z) ifzetT\tQ,

and then we take the tC-periodic extension in the rest of R". Hence @, belongs to X (tC) (cf.
paragraph 1.3), and since 9. = v, in tQ

F.(v,Q) > F.(v.,tQ) = F.(0.,1Q) =
= F,(0,tT) — 2A.(0,tQ, tT \ tQ)
0o, tT) — Ao (02, 8T, RN \ tT) =2 A (9, 1Q, tT \ tQ) . (4.20)

~

L L

Now we claim that both locality defects Lé and Lg vanish as € — 0; once this is proved we
could deduce from the previous formula that

lim sup Fy (ve, Q) > limsup %, (0., tT) . (4.21)

e—0 e—0

Let us consider first L?: the sets t@Q and tT'\ tQ are divided by the boundary ! of @), and by
the choice of ¢ the g-trace of @, relative to tQ converge to v on X* (recall that 9. = v, on tQ).
On the other hand 9, = v in ¢T' \ ¢Q), and then also the e-trace relative to 1"\ tQ) converge to
v on X, Hence Theorem 2.8 applies, and L? vanishes as ¢ — 0.

In a similar way one can prove that also L; vanishes as € — 0 (it is enough to verify that
the e-trace of ¥, relative to RY converge to v on the boundary of tT).

Eventually we use the scaling identity (4.5) and the definition of o(v) to get
Fo(0:,tT) = N P (R0, LT) >tV o (v) (4.22)

and putting together (4.17), (4.19), (4.21) and (4.22) we obtain

d\
@2t o) ;
the proof of inequality (4.13) is thus completed by taking ¢ arbitrarily close to 1. O

5. Proof of the upper bound inequality

Throughout this section ) is always a regular open set.

Definition 5.1. A N-dimensional polyhedral set in RY is an open set E whose boundary is
a Lipschitz manifold contained in the union of finitely many affine hyperplanes; the faces of
E are the intersections of the boundary of E with each one of these hyperplanes, and an edge
point of E is a point which belongs to at least two different faces (that is, a point where OF is
not smooth). We denote by vg the inner normal to 0F (defined for all points in the boundary
which are not edge points).

A k-dimensional polyhedral set in RY is a polyhedral subset of a k-dimensional affine
subspace of R™Y. A polyhedral set in 2 is the intersection of a polyhedral set in RY with Q.
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We say that u € BV (Q,=£1) is a polyhedral function if there exists an N-dimensional
polyhedral set E in RY such that OE is transversal to dQ (that is, 2~ (dE N dQ) = 0) and
u(z) =1 for every x € QN E, u(x) = —1 for every z € Q \ E.

Theorem 5.2. Let u € BV(Q,£1) be a polyhedral function. Then there exists a sequence of
functions (u.) defined on Q such that |uc| <1 for every e, u. converge to u uniformly on every
compact set K C Q\ Su, and

lim sup F; (ue, Q) < /O'(Vu)d%N71 . (5.1)
S

e—0 u

Proof. Let us fix some notation: F is the polyhedral set associated with u in Definition 5.1; we
denote by S the set of all edge points of E which belongs to 2 and by ¥ a general face of Su
(that is, a face of E). Then S is a finite union of (N — 2)-dimensional polyhedral sets in €,
OF = Su, and we may choose the orientation of Su so that vy = v, (for every point in Su\ 5).
Given open sets A1, A, let A; U Ay we denote the interior of 41 U Ay. We define ¢ as the
class of all sets A such that
(i) A is an N-dimensional polyhedral set in Q, and dA4 and Su are transversal (that is,
A" SundA) = 0);
(ii) there exists a sequence of functions (u.) defined on A such that |u.| < 1 and

u. — u uniformly on every compact set K C A\ Su, (5.2)
lim sup F (uc, A) g/ o(vy)d Nt (5.3)
e—0 ANSu

The proof of Theorem 5.2 is achieved by showing that Q0 € ¢; this is a consequence of the

following three statements:

(a) if A is an N-dimensional polyhedral set in Q such that N (AN Su) =0, then A € ¥;

(b) let X be a face of Su and let 7 be the projection map on the affine hyperplane which contains
Y: if A is an N-dimensional polyhedral set in Q) such that SunA =% and 7(A) = X, then
Ae;

(c) if A1, Ay belong to & and are disjoint, then A; U Ay € .

Step 1: proof of statement (a).

In this case " 1 (0AN Su) =0 and AN Su = ¢; then u is constant (—1 or 1) in A, and
it is enough to take u. := u for every ¢ > 0.

Step 2: proof of statement (b).

Property (i) is immediate; let us prove (ii). We denote by e the (constant) inner normal to
3}; therefore X lies on some affine hyperplane which is parallel to M; without loss of generality
we may assume that X lies exactly in M.
Following the notation of paragraph 1.3, for every fixed n > 0, we can find C' € %, and
w € X(C) such that
O L2 (w, To) < ole) +1 (5.4)

and then we define
u.(z) == w(x/e) for every z € RY. (5.5)

Property (5.2) holds because w(z) — +1 as x, — +oo (see paragraph 1.3). We claim that

limsup F. (u., A) < AV 71(D) - (o(e) +m) - (5.6)

e—0
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Without loss of generality, we may assume that C' is a unit cube. In order to prove inequality
(5.6), for every ¢ > 0 we cover ¥ with the closures of a finite number h = h(e) of pairwise
disjoint copies of the (N — 1)-dimensional cube C, that is, we choose @1, ...,z € M so that

ECCJ(mH—EU).

i=1

Moreover, since X is a polyhedral set in M, the previous covering can be chosen so that
heN Tt = NN (U (2 +eC)) — AN THE) ase — 0. (5.7)

Notice that, since ¥ is the projection of A on M, then A C U;(z; +eT¢). Then by definition
(4.1) we have

h
Fe(ue, A) < Fr (ue, Ui(wi + €T0)) < Fe (ue, Uil + eTe)) = Y Fe(ue,eT0) (5.8)
i=1

where the last equality follows from the fact that %, (u.,-) is translation invariant and addi-
tive. Applying now the scaling identity (4.5) with Z = 0 and € = r we get Fc(u.,elc) =
N1 Z(w, T¢), so that by (5.8) and (5.4) we deduce

F.(uc, A) < he™ o(e) +1) .

Taking into account (5.7) we get (5.6).
Since e agrees with v, in ¥ = Sun A, (5.3) follows from inequality (5.6) by a simple
diagonal argument, and the proof of statement (b) is complete.

Step 3: proof of statement (c).

Given disjoint A;, A2 € 4, we set A := A; U Ay and we take sequences (ul), (u?) which
satisfy property (ii) for A; and A, respectively. Then we set

ul(z) ifre A,

ue(x) := :
u?(x) if x € As.

One can check that properties (i) and (5.2) are satisfied, and that (5.3) reduces to

EII_I)I(I) AS(UE,Al,Ag) =0.

Notice that by (5.2) the e-traces of u! relative to A; converge to u on every Lipschitz hyper-
surface ¥ C A4; such that " (2N Su) = 0 for i = 1,2 (cf. Remark 2.4); in particular this
holds true for ¥ = 9A. Hence the previous identity follows from Theorem 2.8.

Step 4: proof of Theorem 5.2.

It may be verified that ) may be written as Q = LUA; where the sets A; are finitely many,
pairwise disjoint, and satisfy the hypothesis of statements (a) or (b):
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Figure 3: decomposition of Q as union of Ag,...,Ag € ¥.

Therefore 2 belongs to ¢ by statement (c), and Theorem 5.2 follows from property (ii). O
In order to complete the proof of Theorem 1.4 we need the following lemma:

Lemma 5.3. The function o defined in paragraph 1.3 is upper semicontinuous on the unit
sphere of RY.

Proof. Fix a unit vector v in RY, and for every linear isometry I of RY set
6(I):=inf {|C|" " FluoI,Tc): C €%,,ue X(O)} (5.9)

(here we follow the notation of paragraph 1.3). One easily verifies that for every v € X (C) the
map [ — F(uol,T¢) is continuous on the space .# of all linear isometries of RY, and therefore
¢ is upper semicontinuous on .# because it is defined in (5.9) as an infimum of continuous
functions. We deduce the thesis by remarking that o(e) = 6(I) whenever e = Iv. O

5.4. Proof of statement (iii) of Theorem 1.4

For every R” -valued Borel measure p on Q we set

G0 == | (/) dll (5.10)

where p/|p| stands for the density of p with respect to its total variation. Now statement (iii)
of Theorem 1.4 reads as follow: for every function v € BV (£, £1) there exists a sequence (u.)
such that u. — u in L'(Q) and lim sup F. (u., ) < G(Du).

By Theorem 5.2 this is true when u is a polyhedral function, and then the general
case follows by a simple diagonal argument once we have proved that every function u €
BV(Q, :i:l) can be approximated (in L!(Q2)) by a sequence of polyhedral functions (u,) so that
lim sup G(Du,) < G(Du).

It is well-known that every u € BV(Q, :i:l) can be approximated by polyhedral functions
(uy,) in variation, that is, u, — w in L*(Q) and ||Duy,|| — ||Du|| (in fact, when € is regular,
every set of finite perimeter can be approximated in variation by smooth sets, and then also by
polyhedral sets, see for instance [Gi], Theorem 1.24), and then it is enough to prove that G is
upper semicontinuous with respect to convergence in variation of measures.

Since o is a non-negative upper semicontinuous function on the unit sphere of RN (Lemma
5.3), then it can be obtained as the limit of an increasing sequence of non-negative continuous
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functions o,; therefore G is the supremum of the corresponding functionals G,,, and these
functionals are continuous with respect to convergence in variation by a well-known result due
to Reshetnyak (see for instance the appendix of [LM]). Hence G is upper semicontinuous with
respect to convergence in variation, and the proof of statement (iii) of Theorem 1.1 is complete.
|

6. Appendix

In this appendix we prove a I'-convergence result concerning the “gradient part” of the
functionals F. defined in (1.4). Let J : RN — R be a non-negative function in L'(R") (not
almost everywhere 0), L : R — R a positive convex function with superlinear growth at infinity,
and Q a bounded open subset of RY.

For every y € RY we denote by T, the translation operator which takes every function u
in the function 7yu given by ,u(z) := u(zx + y) for every z. We set

M(z) := /RN L({z,y)) J(y) dy VzeRY. (6.1)

Since J is non-negative and L is convex and has superlinear growth at infinity, also M is convex
and has superlinear growth at infinity.

Definition 6.1. We define the functionals Gy and G. for every ¢ > 0 and u € L*(f2) as
N _—
G.(u) = / I (&' — ) L(M) dz'de (6.2)
QxQ
where, as usual, J.(y) := e~ NJ(y/e), and

) / M(Du)dx if u € WH(Q),
= Q

Golu (6.3)

+o00 otherwise.

Note that the functional Gy is lower semicontinuous on L'(f), because M is convex and has
superlinear growth at infinity. The following result holds.

Theorem 6.2. Assume that Q is convex. Then G. < Gy for every € > 0, and Gq is the
pointwise limit of G.. Therefore the functionals G. T'-converge to Gg in L'(Q).

Proof. Let us prove that G. < Gy for every € > 0. It is enough to prove this inequality when
u € WHH(Q) (otherwise it is trivial). Since  is convex, for almost every couple (z,z') € Q x Q
there holds

u(z') —u(x) = /01 (Du(tz’ + (1 —t)z),2' —z)dt, (6.4)
$0
Ge(u) = ngg(w' —x) L(/0 <Du(tac' + (1 —1t)x), - m> dt) dz'dz
3(8)/ J.(z' - ) L(<Du(m’ =), B ”’>) dt dz' dz
z,z' €Q
te[0,1]

(8) Apply Jensen’s inequality.
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3(9) /J(h) L((Du(y),h)) dtdhdy = / M(Du(y)) dy .
yeQ[,he]RN Q

In order to complete the proof of the theorem, we have to show that for every u € L*(2)

liminf G, (u) > Go(u) . (6.5)
e—0
We shall prove inequality (6.5) when J has compact support (the general case may be recovered
by approximating J with an increasing sequence of non-negative functions J, with compact
support). We take r > 0 so that the support of J is included in B(0,r). If the left term of
inequality (6.5) is infinite, there is nothing to prove, and then we can assume that it is finite.
Let A be an open set relatively compact in Q. For every e > 0 such that dist (4, RY \ Q) >
er and every u € L'(Q) the following inequality holds:

ez [ [ (2) (D)

:/RN {AL(#) dx] J(h) dh .

By applying Fatou’s lemma we obtain

Go(u) > liminf G, (u) > /
e—0

RN e—0 £

iminf | L7 g | J(h) dh . (6.6)
g [ ()]

v~

P(h)

Since Go(u) is finite, P(h) must be finite for almost every h such that J(h) > 0. Let be given
h so that P(h) is finite, and let (¢,) be any subsequence converging to 0 so that

Te bl — U
/ L(L) dr  is uniformly bounded with respect to n.
A En

Since L has superlinear growth at infinity by assumption, we obtain that the sequence (7., pyu—
u) /e, is relatively compact in the weak topology of L'(A), and taking into account that it
converges to the partial derivative du/Oh in the sense of distributions on A 19 we obtain that
the partial derivative du/0h belongs to L'(A), the sequence (7., pyu —u)/e, converges to
Ou/Oh weakly in L'(A), and then well-known semicontinuity theorems yield

lim inf AL(%) dmz/AL(g—Z)dm. (6.7)

) We make the change of variable (t,z,z') — (t,h,y) where h := (2' — z)/e and y :=
tz' + (1 — t)x; the corresponding Jacobian determinant is ¢V, and since  is convex, y belongs
to Q for every z, 2’ € Q, t € [0,1].

(10) Let be given a test function ¢ € D(A): since (¢ — 7_-5¢) /e converges to d¢/Oh uniformly
on A, we have that

TehU — U _ [ T = _/3_¢ _/0u
/1475 ¢dm—[476 udr — Aahud:c—<ah,¢>.
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By repeating the previous arguments when h ranges in a basis of RY , we prove that u belongs to
W11(A), and since this holds for every A relatively compact in €2, then u belongs to Wﬁ)cl(ﬂ)
Moreover, taking (6.7) into account, (6.6) yields

lim nf G (u) Z/RN (/AL(%) dr) J(h) dh

:/A(/RN J(h) L((Du, b)) dh) d:c:/AM(Du)d:c.

Taking the supremum over all A relatively compact in Q2 we get

liminf G (u) > / M(Du)dz .

e—0 Q

Then u belongs to W1 (Q2) because M has (super-) linear growth at infinity, and (6.5) is proved.
The fact that the functionals (G.) -converges to Gg is an immediate consequence of the

previous results and the L!(2)-lower semicontinuity of Gy (see [DM], Proposition 5.7). O

Remark 6.3. The convexity assumption for the domain 2 is needed only in the proof of the
inequality Gy > G., in order to have that formula (6.4) makes sense. In fact, it could be
replaced by other conditions, e.g., by assuming the existence of an extension operator 7" which
takes each u € W1 () such that [, M(Du) is finite into a function Tu € W51 (RY) such that
J4 M(D(Tw)) is finite for some neighbourhood A of  (we do not need that T is either linear
or continuous).

Remark 6.4. In the particular case L(t) := |t|P with 1 < p < oo and J is radially symmetric,
M may be easily computed, and we obtain that

M(z) = ¢plz|P with ¢, := /RN J(y) |<y,e>|pdy (6.8)

(here e is any unit vector in RY).
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