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Abstract�

A class of stored energy densities that includes functions of the form W �F� �
ajFjp�g�F� adjF��h�detF� with a � �� g and h convex and smooth� and � � p � �
is considered� The main result shows that for each such W in this class there is a
k � � such that� if a � by � matrix F� satis	es h��detF��jF�j��p � k� then W is
W ��p
quasiconvex at F� on the restricted set of deformations u that satisfy condition
�INV� and detru � � a�e� �and hence that are one
to
one a�e��� Condition �INV� is
�essentially� the requirement that u be monotone in the sense of Lebesgue and that
holes created in one part of the material not be 	lled by material from other parts�
The key ingredient in the proof is an isoperimetric estimate that bounds the integral
of the di�erence of the Jacobians of F�x and u by the Lp
norm of the di�erence of
their gradients� These results have application to the determination of lower bounds
on critical cavitation loads in elastic solids�
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�� Introduction�

We take � � p � 	 and consider a class of stored energy functions that includes

W 
F� � ajFjp 
 g
F� adjF� 
 h
detF�� 
����

where a � �� g and h are C� and convex� and detF is the determinant of the 	 by

	 matrix F� while adjF is the adjugate matrix� i�e�� the transpose of the cofactor

matrix� We show that for each such W there is a constant k � � such that if

h�
detF��jF�j
��p � k 
����

then W is W ��p�quasiconvex at F� 
on a restricted class of deformations�� i�e�� for

every bounded open region � � R
��Z

�

W 
F�� dx �

Z
�

W 
ru
x�� dx� 
��	�

for all u in the Sobolev space W ��p
��R�� that satisfy u
x� � F�x on �� 
in the

sense of trace�� detru � � a�e�� and whose extension to all of R� 
as the linear

deformation F�x� satis�es condition 
INV��

Roughly speaking� condition 
INV� is the requirement that the deformation u

be monotone in the sense of Lebesgue and that holes created in one part of � are not

�lled by material from another part of �� The condition detru � � a�e� together

with condition 
INV� prohibits interpenetration of matter� that is� these conditions

together imply that u is one�to�one almost everywhere� If the deformations are not

required to satisfy a condition such as 
INV� then results of Ball and Murat �BM

��� show that W will not be W ��p�quasiconvex at such an F�� According to �JS

��� this is sometimes due to the ability of the material to interpenetrate matter

in order to reduce energy� 
There is no apparent energetic penalty to the use of a

noninjective deformation in 
���� and 
��	���

The heart of our proof is an isoperimetric estimate that bounds the di�erence

of two Jacobians� for every n � � and p � 
n� �� n� there is a constant � � �
n� p�

such that for every n by n matrix F� with positive determinant and for every

bounded open region � � R
n

Z
�

�detF� � detru
x�� dx � �jF�j
n�p

Z
�

jF� �ru
x�j
p dx 
����

for all deformations u � W ��p
��Rn� that satisfy u
x� � F�x on ��� detru � �

a�e�� and whose extension to all of Rn 
as the linear deformation F�x� satis�es
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condition 
INV�� If p � n this estimate is clear since the left�hand side of 
����

is zero due to the fact that the Jacobian is a null Lagrangian 
see� e�g�� �Ba �����

For n � � � p � n one can express the left�hand side of 
���� in terms of the

singular part of the distributional Jacobian of u� which is a Radon measure 
cf� �M�u

���� under our hypotheses� This singular measure is then estimated locally via the

isoperimetric inequality and a standard covering argument �nishes the proof�

An important application of these results is to cavitation problems in elastic

solids� Experimental observations on elastomers 
see� e�g�� �GL ���� �OB ���� or �GP

���� indicate that� when the material is subjected to tensile loads� a major failure

mechanism in such materials is the formation and growth of holes� The fundamental

analysis that viewed cavitation as the spontaneous creation of such holes was done

by Ball� In �Ba ��� he analyzed the radial problem on the unit ball B � R
n for a

class of isotropic� stored energy functions of slow growth 
p � n�� He showed in

particular that when F is of the form � times the identity matrix there is a critical

value �cr such that for all � � �cr and p � ��� n� the energy density W is not W ��p�

quasiconvex at the deformation �x� This failure of W ��p�quasiconvexity is due to

the existence of a radial equilibrium solution of lower energy that creates a hole at

the center of the ball�

Following Ball�s work there have been a number of results on cavitation in

elastic materials 
see the survey �HP ��� and the references therein�� Most of this

work has concentrated on the radial problem� In regard to the nonradial problem

�JS ��� have shown that for � � p �� 
see �Me ��� for W ����quasiconvexity� any

energy minimizing deformation u �W ��p
��Rn� must be W ��p�quasiconvex at each

point of smoothness of u� An existence theory for minimizers that may create voids

has been given by �MS ���� Not much else is known about the creation of holes by

nonradial deformations� The major unanswered question in this area is�


�� Are the radial solutions obtained by Ball� and many others� in fact global

minimizers of the energy�

Since the above question is 
essentially�� unanswered at present� it is of interest to

answer some potentially simpler questions�


�� Are the radial solutions local minimizers of the energy�


	� Are the radial solutions minimizers if the class of competing deformations

is restricted to those that open a single cavity� What if one requires� in

addition� that this cavity be located at the center of the ball�

�The radial minimizer is a global minimizer for an elastic �uid� A special class of constitutive
relations of very slow growth �� � p � n��� for which the radial minimizer is not a global minimizer
has been given in �JS 
���
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�� Are radial minimizersW ��p�quasiconvex at each value of the deformation

gradient that they assume�


�� Is the value of �cr that is obtained in the radial problem also the crit�

ical boundary deformation at which cavitation �rst occurs or might a

nonradial hole open for some � � �cr�

At present very little is known concerning these questions although partial

results can be found in �Sp ���� �Si ���� and �Si ���� In particular� for a large

class of materials� radial minimizers are local minimizers with respect to small

perturbations with support away from the cavity that open no further holes in

the material� and� for one particular constitutive relation W � the radial minimizer

is indeed the minimizer among deformations that only create a single hole at the

center of a ball� Unfortunately� the proof of this last result depends crucially upon

the use of the stored energy density

W 
F� � ajFj� 
 b detF


a � �� b � ��� whose radial minimizers may destroy matter by mapping some set

of positive measure onto a set of measure zero�

The current paper gives a partial answer to 
�� since Theorem ��� increases

the lower bound for the critical cavitation load over that previously determined in

�Sp ��� 
see also �St �	� for the purely radial problem�� At this point it is unclear

whether the results in this paper will also help answer 
�� since it has not been

determined whether the values of the deformation gradient that are assumed by

radial minimizers� which have been computed in the literature� do indeed satisfy


�����

We note that W ��p�quasiconvexity 
especially with p � �� is a general hy�

pothesis used to obtain the existence of minimizers in the calculus of variations�

Results of Morrey �Mo ��� 
see also �AF ���� as well as more recent results of Ball

and Murat �BM ��� show that one must require that W be W ��p�quasiconvex in

order to obtain the sequential weak 
weak star� if p � �� lower semicontinuity of

the corresponding total energy

E
u� �

Z
�

W 
ru
x�� dx

on the space W ��p� Sequential weak lower semicontinuity is the condition that

is used in the direct method of the calculus of variations to obtain existence of

minimizers�
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Finally� we note that Marcellini �Ma ��� 
see also �Ma ���� has proposed a

di�erent de�nition of the energy in situations where cavitation may occur� He

�rst de�nes the energy functional for smooth deformations and then considers that

functional�s lower semicontinuous extension to W ��p� Due to this di�erence the

results in this paper do not help determine bounds on a critical cavitation load for

his theory�

�� Preliminaries� The Distributional Jacobian and condition �INV��

In the following� D will denote a nonempty� open subset of Rn� n � �� By

Lp
D� andW ��p
D� we denote the usual Lebesgue and Sobolev spaces� respectively�

We use the notation Lp
D�Rm�� etc�� for vector�valued maps� A function � is in

W ��p
loc 
D� if � �W ��p
U� for all open sets U �� D� Sobolev functions on manifolds

are de�ned by the use of local charts 
see� e�g�� �Mo ����� Henceforth � will denote

a bounded open set whose boundary� ��� is 
strongly� Lipschitz 
see� e�g�� �Mo ���

x	��� or �EG ��� x�������� We point out that we do not identify functions that agree

almost everywhere�

The n�dimensional Lebesgue measure will be denoted by Ln and the k�dimensional

Hausdor� measure by Hk� We write

B
a� r� �� fx � R
n � jx� aj � rg�

for the ball of radius r centered at a � R
n� For a � D we let

ra �� dist
a� �D��

i�e�� the distance from a to the boundary of D�

We write Lin for the set of all linear maps from R
n into Rn with norm

jLj� � trace
LTL��

We denote by Lin� those L � Lin with positive determinant� The mapping adj �

Lin� Lin will be the unique continuous function that satis�es

L
adjL� � 
detL�Id

for all L � Lin� where detL is the determinant of L and Id � Lin is the identity

mapping� Thus� with respect to any orthonormal basis� the matrix corresponding

to adjL is the transpose of the cofactor matrix corresponding to L�
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We brie�y recall some facts about the Brouwer degree 
see� e�g�� �Sc ��� or

�FG ��� for more details�� Suppose that D is bounded and let u � D � R
n be a C�

map� If y� � Rnnu
�D� is such that detru
x� �� � for all x � u��
y��� one de�nes

deg
u� D�y�� �
X

x�u���y��

sgn detru
x��

If � is a C� function supported in the connected component of Rnnu
�D� that

contains y�� one can show thatZ
D


� � u� detru dx � deg
u� D�y��

Z
Rn

�dy� 
����

Using this formula and approximating by C� functions� one can de�ne deg
u� D�y��

for any continuous function u � D � R
n and any y� � R

nnu
�D�� Moreover�

the degree only depends on uj�D� Accordingly� we write deg
u� �D�y�� instead of

deg
u� D�y���

Indeed� if D has smooth boundary and u � C�
D�Rn�� then one can use the

divergence theorem and 
���� to express the degree as a boundary integral�

deg
u� �D�y��

Z
Rn

div g dy �

Z
�D


g � u� 	 
adjru�T� dHn�� 
��	�

for any C� function g � Rn � R
n such that � � div g is supported in the connected

component of Rnnu
�D� that contains y�� Here � denotes the outward normal to

�D� Since 
adjru�T� only depends upon tangential derivatives of u� one can use


��	� to show that� for p � n � �� the degree can be de�ned on W ��p
�D�Rn� 


C�
�D�Rn��

Proposition ���� 
see� e�g���VG ���� �Sv ���� �MTY ����� Let p � n�� and let � �

R
n be a bounded open set whose boundary is �strongly� Lipschitz� Suppose that u is

the continuous representative of a function in W ��p
���Rn�� Then deg
u� ���y��

is well�de�ned� i�e�� if u � C�
��Rn� satis�es u � u on �� then deg
u� ���y�� �

deg
u� ���y�� for every y� � Rnnu
����

Remark� For interesting new developments in degree theory� including a de�nition

for recti�able currents� approximately di�erentiable maps� maps with nonintegrable

Jacobian� and even maps that are merely in VMO see �GMS ���� �GISS ���� �BN

���� and �BN ����

Our results will make crucial use of the isoperimetric inequality and the fol�

lowing consequence of the area formula for Sobolev functions on a manifold�
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Proposition ���� 
�MM �	�� �Fe ��� Corollary 	�������� Let � be an oriented�

smooth� 
n� ���dimensional manifold� Suppose that u � W ��p
��Rn� 
 C�
��Rn��

with p � n� �� Then for any Hn�� measurable A � ��

Hn��
u
A�� � 
n� �����n���
Z
A

jDujn�� dHn���

Here Du� the tangential gradient of u� is viewed as a map from the tangent space

of � to R
n�

Proposition ���� Isoperimetric Inequality 
see� e�g�� �Fe �� p� ����� �EG ��� p� ����

p� ������ For n � � let � � n��Ln
B
�� ������n� Then

Ln
A�
n��

n � �Hn��
��A�

for every bounded measurable set A � R
n of �nite perimeter� where ��A denotes

the reduced boundary of A�

Let u � W ��p
D�Rn�� with � � p � n� Since we are interested in pointwise

properties of u as well as restrictions of u to lower dimensional sets� it is useful

to consider a particular representative� We de�ne the precise representative

u� � D � R
n by

u�
x� �

��
�

lim
r���

�
R

B�x�r�

u
z� dz� if the limit exists�

�� otherwise�

where �
R
A

denotes the average value of the integrand over A� i�e�� the integral of the

function over A divided by the n�dimensional Lebesgue measure of A� 
The de�ni�

tion of u� at points where the above limit does not exist is somewhat arbitrary� For

a thorough discussion of precise representatives and capacities we refer to �EG ���

or �Zi ����� The precise representative satis�es many important properties� In par�

ticular� if u � W ��p
D�Rn� and B
a� 	� � D then u�j�B�a�r� � W ��p
�B
a� r��Rn�

for a�e� r � 
�� 	�� Furthermore� if p � n � � then u�j�B�a�r� � C�
�B
a� r��Rn�

for such values of r� i�e�� u� is the continuous representative given by the Sobolev

imbedding�

In nonlinear elasticity one is interested in globally invertible maps since� in

general� matter cannot interpenetrate itself� We say that u � W ���
D�Rn� is in�

vertible almost everywhere 
or equivalently� one�to�one almost everywhere�

if there is a Lebesgue null set N � D such that ujDnN is injective� We note that

invertibility almost everywhere is a property of the equivalence class and not merely
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of the representative� This notion seems to �rst appear in �Ba ��� where it occurs in

an intermediate step of a proof that� under suitable hypotheses� minimizers for the

pure displacement 
Dirichlet� problem in nonlinear elasticity are homeomorphisms�

Later Ciarlet and Ne�cas �CN ��� used the area formula to show that invertibility

a�e� is preserved under weak convergence in W ��p
p � n�� They were thus able to

ensure the existence of minimizers for the mixed displacement�traction 
Dirichlet�

Neumann� problem in the class of almost everywhere invertible maps�

More recently it has also been observed that the notion of invertibility almost

everywhere is not as useful in function classes that allow for the formation of cavities�

In fact the topological properties of such maps can di�er drastically from everywhere

invertible maps� The source of the di�culties is that a cavity formed at one point

may be �lled by material from elsewhere� In order to exclude such behavior the

invertibility condition 
INV� was introduced in �MS ����

Let B
a� r� � D and suppose that u � �B
a� r�� R
n is continuous� We de�ne

the topological image of B
a� r� under u by

imT 
u� B
a� r�� �� fy � R
nnu
�B
a� r�� � deg
u� �B
a� r��y� �� �g�

Thus the topological image of a ball under u is the topological image of the ball

under any continuous function that assumes the same boundary values�

De�nition ��	� We say that u � D � R
n satis�es condition 
INV� provided that

for every a � D there exists an L� null set Na such that� for all r � 
�� ra�nNa�

uj�B�a�r� is continuous�


i� u
x� � imT 
u� B
a� r��� u
�B
a� r�� for Ln a�e� x � B
a� r�� and


ii� u
x� � R
nn imT 
u� B
a� r�� for Ln a�e� x � DnB
a� r��

Here ra �� dist
a� �D��

Remarks� �� Condition 
i� is equivalent to the monotonicity 
in the sense of Lebesgue�

of the mapping u� See �VG ���� �Sv ���� and �Ma ��� for related results on mono�

tonicity� Condition 
ii� is� essentially� the requirement that holes created in one part

of D are not �lled by material from other parts of D�

�� An example of a map that satis�es 
i� but not 
ii� is given in Section �� of

�MS ���� while a map that satis�es 
ii� but not 
i� is given in Section � of �MST ����

Deformations that satisfy condition 
INV� and have nonzero Jacobian are

more regular than other elements of the Sobolev spaces W ��p� n � � � p � n� In

particular� in �MS ��� it is shown that such deformations are one�to�one a�e� and

continuous Hn�p a�e� In addition the following result will be used�



W��p
QUASICONVEXITY IN ELASTICITY 


Proposition ��
� �MS ��� Lemma 	��
i� step ��� Let u � W ��p
loc 
D�Rn� with p �

n � �� Assume that u� satis�es condition �INV� and that detru �� � a�e� Then

for every a � D and almost every r � 
�� ra� the set imT 
u� B
a� r�� has �nite

perimeter� Moreover� for such r� the reduced boundary satis�es

�� imT 
u� B
a� r�� � u
�B
a� r���

If u �W ��p
loc 
D�Rn�� with p � n�

n
��� then the linear functional 
Detru� �

C�� 
D�� R given by


Detru�
�� �� �
�

n

Z
D

r� 	 
adjru�u dx

is a well�de�ned distribution� which is called the distributional Jacobian� If

u � W ��p
loc 
D�Rn�� with p � n then the identity Div
adjru�T � � can be used to

show that Detru is the distribution induced by the function detru� 
In general

this need not be the case and in fact it will not be when cavitation occurs��

Now suppose that u � W ��p
loc 
D�Rn�� with p � n � �� Then the precise rep�

resentative u� is continuous on the sphere �B
a� r� for almost every r and hence

u�
�B
a� r�� is compact for such r� If� in addition� u� satis�es condition 
INV� then

it follows that u� � L�loc
D�Rn� and hence that the above functional is once again a

well�de�ned distribution on D� The next result shows that in fact this distribution

is a nonnegative Radon measure�

Proposition ���� 
see �M�u ���� �MS ��� Lemma ������ Let u � W ��p
loc 
D�R

n� with

p � n � �� Suppose that detru � � a�e� and that u� satis�es condition �INV��

Then Detru � � and hence Detru is a Radon measure� Furthermore�

Detru � 
detru�Ln 
m� 
����

where m is singular with respect to Lebesgue measure and for L� a�e� r � 
�� ra�

one has


Detru� 
B
a� r�� � Ln
�
imT 
u� B
a� r��

�
� 
����
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�� Main Lemma�

Let L � Lin� and p � �� If u � W ��p
��Rn� satis�es u� Lx � W ��p
� 
��Rn�

then we de�ne its 
homogeneous� extension ue � Rn � R
n by

ue
x� ��

�
u�
x�� x � ��

Lx� x 
� ��

	���

and note that ue �W ��p
loc 
R

n�Rn�� For n� � � p � n de�ne

AL�p
�� �� fu � W ��p
��Rn� � u�Lx �W ��p
� 
��Rn�� detru � � a�e��ue satis�es 
INV�g�

Given such linear boundary values� our main result gives an upper bound for

the hole volume created by a deformation that assumes these boundary values�

Main Lemma� Let n � �� n� � � p � n� and n� � � q � p� Then there exists a

constant � � �
n� q� � �� which is independent of domain� such that

Z
�

�detL� detru
x�� dx � �jLjn�q
Z
�

���jLj � jru
x�j���q dx
and hence Z

�

�detL� detru
x�� dx � �jLjn�q
Z
�

jL�ru
x�jq dx

for all bounded open sets � � R
n� all L � Lin�� and all u � AL�p
���

Remarks� �� It is clear from 
	��� below that condition 
INV� also implies that the

left�hand side of the above inequalites is nonnegative�

�� In order to determine bounds upon the critical load at which cavitation

�rst occurs 
see the Introduction� it is of interest to obtain numerical bounds on

the constant ��

	� Although the requirement that the extension satisfy condition 
INV� seems

to us to be a bit arti�cial� we have been unable to prove that it follows from a more

natural condition such as�

u
x� � L� for a�e� x � �

or� for every a � � and almost every r � ��

u satis�es 
i� and 
ii� of 
INV� with B
a� r� replaced by B
a� r� 
 �� 
	���



W��p
QUASICONVEXITY IN ELASTICITY ��

The speci�c technical problem that is encountered is that one does not appear to be

able to get information about the degree in a region whose boundary includes part

of L
���� This is due to the possibility that either u may not be approximately

di�erentiable or the normal component of its approximate derivative may be zero

on ��� If this were not the case then one could use ideas from �MS ��� to show that


	��� implies that the extension ue satis�es condition 
INV��

Proof� We �rst note that the �rst inequality together with the triangle inequality

yield the second inequality� Without loss of generality assume that � � �� If we

replace u in the inequality by the scaling u�
x� � �u
x
�� we �nd that the inequality

is independent of the size of the domain� Thus we may assume that � � B
�� ���

Let p � 
n� �� n�� u � AL�p
��� and de�ne ue by 
	���� Then by 
����

Detrue � 
detrue�Ln 
m� 
	�	�

where m � � is a Radon measure that is singular with respect to Lebesgue measure�

Since � �� B
�� �� the de�nition of the topological image and 
	��� imply that

imT 
u
e� B
�� ��� � LB
�� ���

Thus� if we evaluate Detrue on the ball B
�� �� and make use of 
���� and 
	�	�

we �nd that


detL�Ln
B
�� ��� � 
Detrue�
B
�� ���

� m
B
�� ��� 


Z
B�����

detrue
x� dx

� m
�� 
 
detL�
�
Ln
B
�� ���� Ln
��

�



Z
�

detru
x� dx�

since rue � L on B
�� ��n� and the support ofm is contained in �� If we rearrange

terms we �nd that Z
�


detL� detru� dx � m
��� 
	���

Next� letM � � be the support ofm� Then there is anN �M withm
N� � �

such that

lim
r���

m
	
B
a� r�



rn

� 
� for every a �MnN� 
	���

since m is singular with respect to Lebesgue measure 
see� e�g�� �EG ��� Section

������



�� S� M�ULLER� J� SIVALOGANATHAN� AND S� SPECTOR

Our strategy now will be to use an isoperimetric estimate to bound the local

hole volume created at each point of MnN by the deformed surface area enclosing

this volume� An integration will then change the surface integral to the Ln���norm

and a suitable covering theorem will yield the desired bound 
when q � n� ���

Let a �MnN � By 
����


Detrue� 
B
a� t�� � Ln
�
imT 
u

e� B
a� t��
�


	���

for a�e� t � �� while Propositions ���� ��	� and ��� imply� that for such t�

Ln
�
imT 
u

e� B
a� t��
�n��

n � �Hn��
�
�� imT 
u

e� B
a� t��
�

� �Hn��
�
ue
�B
a� t��

�
� �

Z
�B�a�t�

jruejn�� dHn���


	���

In view of 
	�	� and the nonnegativity of m and detrue we can combine 
	��� and


	��� to conclude that 
cf� the equation preceding eqn� 
��� in �Ge �	��h
m
	
B
a� r�


in��
n

� C

Z
�B�a�t�

jruejn�� dHn��

for almost every t � r� where C will now be a generic constant that may vary from

line to line�

If we integrate the last inequality with respect to t over the interval �r� �r� we

conclude that

r
h
m
	
B
a� r�


in��
n

� C

Z
B�a��r�nB�a�r�

jruejn�� dx

� C

Z
B�a��r�

jruejn�� dx� 
	���

De�ne �������
m

��

�Z
B�a��r�

j�
x�jm dx


 �
m

�

Then� by the triangle inequality�Z
B�a��r�

jruejn�� dx �
���jruej���n��

n��
�

����jruej � jLj���
n��



���jLj���

n��

�n��

� C

����jruej � jLj���n��

n��


���jLj���n��

n��

�

� C

�Z
B�a��r�

���jruej � jLj���n��

dx
 rnjLjn��



�


	���
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Let q � �n� �� p�� Then j
jn�� � j
jq 
 � for every 
 � R and hence if we choose


 � 
jruej � jLj�
jLj we �nd that

���jruej � jLj���n��

� jLjn�q��
���jruej � jLj���q 
 jLjn��� 
	����

Therefore� if we integrate 
	���� over the ball B
a� �r� and combine the result with


	��� and 
	��� we �nd that

�
m
B
a� r��

rn

�n��
n

� C

�
jLjn���q �

Z
B�a��r�

���jruej � jLj���q dx
 jLjn��

�
� 
	����

De�ne

�a
r� �� jLjn���q �

Z
B�a�r�

���jruej � jLj���q dx�
Then �a � 
���� � 
���� is a continuous function which� in view of 
	���� 
	�����

and the compact support of the integrand� satis�es

lim
r���

�a
�r� � 
�� lim
r���

�a
�r� � ��

Thus

	a �� inffr � � � �a
�r� � jLjn��g

is well�de�ned� Note that� by the continuity of �a and the de�nition of 	a

�a
	a� � �a
�	a� � jLjn��� 
	����

If we now evaluate 
	���� at r � 	a and make use of 
	���� and the de�nition

of �a we conclude that

�
m
B
a� 	a��

	na

�n��
n

� C

�
jLjn���q �

Z
B�a���a�

���jruej � jLj���q dx
 jLjn��

�

� �C�a
�	a�

� �C
h
�a
�	a�

in��
n

h
�a
�	a�

i �
n

� �C
h
�a
	a�

in��
n

h
�a
�	a�

i �
n

� �C

�
jLjn���q �

Z
B�a��a�

���jruej � jLj���q dx�
n��

n

�
jLjn��

� �
n
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and hence

m
B
a� 	a�� � CjLjn�q
Z
B�a��a�

���jruej � jLj���q dx� 
	��	�

De�ne

M �� fB
a� 	a� � a �MnNg�

Note that �a
r� is independent of a �M for r � � and hence that

supf	a � a �MnNg ���

Therefore� by the Besicovitch covering theorem 
see� e�g�� �EG ��� Theorem �� p�

	���� there is a constant Cn� which only depends on the dimension n� and families

Gi �M� i � �� �� 	� ���� Cn� of pairwise disjoint closed balls� that satisfy

MnN �

Cn�
i��

�
B�a��a��Gi

B
a� 	a�� 
	����

Finally� by 
	��	�� 
	����� the de�nitions of M and N � and that fact that the

balls in each family Gi are pairwise disjoint

m
�� � m
MnN� �
CnX
i��

X
B�a��a��Gi

m
B
a� 	a��

� CjLjn�q
CnX
i��

X
B�a��a��Gi

Z
B�a��a�

���jruej � jLj���q dx

� CjLjn�q
CnX
i��

Z
�

���jruej � jLj���q dx
� CnCjLj

n�q

Z
�

���jruej � jLj���q dx�
which together with 
	��� gives the desired result� �

Remark� For q � n�� 
but not q � n��� an alternative proof of the above lemma

can be obtained by replacing the isoperimetric inequality� the area formula� and

the inequality j
jn�� � j
jq 
 � by the isodiametric inequality and the standard

imbedding

sup
x�z��B�a�t�

ju�
x�� u�
z�jq � Ctq�n��

Z
�B�a�t�

jrujq dHn���
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	� W ��p�quasiconvexity�

We consider a homogeneous body that� for convenience� will be identi�ed

with the bounded region � � R
� that it occupies in a �xed homogeneous reference

con�guration� We assume that the body is hyperelastic with continuous stored

energy density W � Lin� ������ The quantity W 
ru
x�� gives the energy stored

per unit volume in �� at any point x � � when the body is deformed by a smooth

deformation u� Further� we assume that W 
F� � 
� whenever detF � ��

In particular we are interested in stored�energy functions that satisfy

W 
F� � �g
F� adjF� 
 h
detF� 
����

for all F � Lin�� where h � C�

����� ������ is convex and �g � Lin��Lin� �

����� satis�es the following conditions�


a� There are constants c� � � and q � ��� 	� such that for every K�M �

Lin� there exist A�B � Lin such that

�g
N�P� � �g
K�M� 
A 	 
N�K� 
B 	 
P�M� 
 c�jN�Kjq

for all N�P � Lin��


b� There are constants p � 
�� 	�� c� � �� and c�� with p � q� such that

�g
F� adjF� � c�jFj
p 
 c��

Remarks� �� Condition 
b� ensures that deformations with �nite energy belong to

a Sobolev space in which condition 
INV� makes sense�

�� If q � � then 
a� implies 
b� with p � q�

	� Condition 
a� is slightly stronger than the requirement that the mapping

�g be convex� In particular when q � � such functions are uniformly strictly quasi�

convex in the sense of Evans �Ev ���� A result in �Ev ��� 
see the appendix of this

paper� shows that 
a� is satis�ed by

�g
F� adjF� � ajFjq 
 g
F� adjF�

where a � � and g is C� and convex� Conditions 
a� and 
b� are also satis�ed 
see�

e�g�� �Ba ��� pp� ��� �	��� by certain Ogden �Og ��� materials�

�g
F� adjF� � bjFj� 

�X
i��

�
�i� 

X
i�j

�
�i�j�

where � and � are convex and nondecreasing� b � �� and there is a p � 
�� 	� and

a c � � such that �
�� � cj�jp for all � � �� Here ��� ��� �� denote the eigenvalues

of the square root of FFT �
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Theorem 	��� Let the stored energy density W satisfy ������ where h is C� and

convex and �g satis�es �a� and �b�� Then any linear deformation w
x� � Lx that

satis�es

h�
detL�jLj��q � c�
�

is a global minimizer of the total elastic energy

E
u� ��

Z
�

W 
ru
x�� dx

in the class AL�p
��� Here � is the optimal constant from the lemma in section 	�

Remarks� �� In the terminology of Ball and Murat �BM ��� the function W isW ��p�

quasiconvex at each such L 
on the restricted class of deformations AL�p�� Results

of �BM ��� 
see also �JS ���� imply that this result is false if the class of deformations

is not restricted�

�� Suppose that h satis�es h�
H� � � for some 
unique� H � �� Then the

theorem implies that there is an � � � such that �x is a global minimizer of E

whenever �� � 
�� H 
 ��� In �Sp ��� it was shown that� for a slightly more general

class of energy densities and admissible deformations� the conclusion of the theorem

was valid provided �� � 
�� H�� A physical interpretation of such results is that� for

the displacement problem� cavitation can not occur in compression�

Proof of the Theorem� By 
a� and the convexity of h

W 
H� � W 
L� 
A 	 �H� L� 
B 	 �adjH� adjL�


 h�
detL��detH� detL� 
 c�jH� Ljq

����

for every H � Lin��

Let u � AL�p� Then Z
�

�ru
x�� L� dx � �� 
��	�

and 
see� e�g�� �Ba ��� Lemma 	�	a��

Z
�

�adjru
x�� adjL� dx � �� 
����
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If we take H � ru
x� in 
���� and integrate over � we conclude� with the aid

of 
��	� and 
����� that

Z
�

�W 
ru
x���W 
L�� dx � h�
detL�

Z
�

�detru
x�� detL� dx


c�

Z
�

jru
x�� Ljq dx�


����

and hence� in view our main lemma� thatZ
�

�W 
ru
x���W 
L�� dx � �
c�

�jLj��q
� h�
detL��

Z
�

�detL� detru
x�� dx�

which together with the �rst remark following the lemma in section 	 yields the

desired result� �

Remarks� �� Supose one replaces 
���� by the hypothesisW 
F� � f
F� adjF� detF�

where 
cf� �Ba ��� and �Ev ���� f is p�uniformly strictly polyconvex� i�e� there is a

p � 
�� 	� and a constant c� � � such that for every K�M � Lin� and � � � there

exist A�B � Lin and 
 � R� which may depend on K�M and � � �� such that

f
N�P� �� � f
K�M� �� 
A 	 
N�K� 
B 	 
P�M� 
 

� � �� 
 c�jN�Kjp

for all N�P � Lin� and � � �� Then it is clear from the proof that the conclusions

of the theorem will remain valid whenever 
 � 

L� adjL� detL� � c�

�jLj
��p��

However� the physics that leads to such an inequality at a particular L is unclear�

�� Equation 
���� and our main lemma also imply that

E
u�� E
Lx� � min
�
c�� c� � �jLj��qh�
detL�

�Z
�

jru
x�� Ljq dx� 
����

Suppose now that q � � 
so that hypothesis 
a� implies hypothesis 
b� with p � q��

Then� whenever L satis�es c� � �jLj��qh�
detL�� one can conclude from 
���� that

the mapping Lx is the unique global minimizer of E 
among maps in AL�p
���

and� furthermore� Lx lies in a potential well� This may have implications for the

dynamic stability of such maps�
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Appendix�

We here present an alternative proof of a result of Evans �Ev ��� Lemma ����


see also �Zh ��� Lemma ������ since our proof gives a bound on the optimal constant

��

Proposition A��� Let p � ������ Then there is a constant � � �
p� � �� which

is independent of dimension� such that

jajp � jbjp 
 pjbjp��b 	 
a� b� 
 �ja� bjp 
A���

for every a�b � R
n� Moreover� the largest such � satis�es ���p � � � p���p�

Proof� For p � � inequality 
A��� is clear with � � �� We therefore suppose that

p � � and �rst consider the case when n � �� If b � � then 
A��� holds with

� � �� By homogeneity we may therefore assume that jbj � �� Thus letting

t � sgn
b�
a � b�� jbj � �� and dividing 
A��� by jtjp we �nd that the optimal

constant �� which is nonnegative since t 
� jtjp is convex� is given by

� � inf
Rnf�g

�� �
t� �
j� 
 tjp � �� pt

jtjp
�

De�ne

�
s� �� �
�
s� � js
 �jp � jsjp � pjsjp�� sgn
s��

Then inf � � inf � and

��
s� � p
�
js
 �jp�� sgn
s
 ��� jsjp�� sgn
s�� 
p� ��jsjp��

�
is positive on 
���� and negative on 
������ since � 
� j�jp�� is convex� There�

fore � attains its in�mum at �� � ���� ��� If �� � 
��� �� then

� � p����
��� � 
�� ��p�� 
 �p�� � 
p� ���p���

and hence

� � �
��� �
�� ��p � �p 
 p�p��

�
�� ��p 
 �
�� ��p�� � 
p� ���p�� 
 p�p��

�
�� ��p�� 
 �p�� � �����p� � ���p�

where we have used the convexity of � 
� �p��� Moreover� � � �
��
�� � p���p �

�� Finally� �
�� � � and �
��� � p� � � �� Thus if � were not in the interior we

could conclude that � � �� which is not possible�
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Now consider n � �� Once again by homogeneity we may assume that jbj � ��

Let a � te 
 b and � � e 	 b� where t � ���
��� jej � �� and 
consequently�

� � ���� ��� Then by 
A��� the optimal constant � � � is given by

� � inf
������	����


�� �
t� �� ��
�� 
 ��t
 t��p�� � �� �pt

tp
�

For �xed t � � we minimize � on the compact set �� � � � �� If the in�mum

occurs at � � �� then the vectors a and b are colinear and hence the problem

reduces to the case n � �� Otherwise� we di�erentiate � with respect to � and set

the result equal to zero to conclude that � � �t
�� which necessitates t � �� In

this case we �nd that

� � �
t��t
�� �
�

�
pt��p � p���p� �
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