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ABSTRACT.

A class of stored energy densities that includes functions of the form W (F) =
a|F|P+g(F,adjF)+ h(det F) with a > 0, g and h convex and smooth, and 2 < p < 3
is considered. The main result shows that for each such W in this class there is a
k > 0 such that, if a 3 by 3 matrix Fq satisfies h’(det Fo)|Fo|3~? < k, then W is
WhP-quasiconvex at Fg on the restricted set of deformations u that satisfy condition
(INV) and det Vu > 0 a.e. (and hence that are one-to-one a.e.). Condition (INV) is
(essentially) the requirement that u be monotone in the sense of Lebesgue and that
holes created in one part of the material not be filled by material from other parts.
The key ingredient in the proof is an isoperimetric estimate that bounds the integral
of the difference of the Jacobians of Fox and u by the LP-norm of the difference of
their gradients. These results have application to the determination of lower bounds
on critical cavitation loads in elastic solids.
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1. Introduction.

We take 2 < p < 3 and consider a class of stored energy functions that includes
W (F) = a|F|P + g(F,adj F) + h(det F), (1.1)

where @ > 0, g and h are C! and convex, and det F is the determinant of the 3 by
3 matrix F, while adj F is the adjugate matrix, i.e., the transpose of the cofactor
matrix. We show that for each such W there is a constant £ > 0 such that if

B (det Fo)|Fo|>™? < k (1.2)

then W is WlP_quasiconvex at Fy (on a restricted class of deformations), i.e., for
every bounded open region 2 C R3,

/Q W (Fo) dx < /Q W (Vu(x)) dx, (1.3)

for all u in the Sobolev space W1P(Q; R?) that satisfy u(x) = Fox on 9 (in the
sense of trace), det Vu > 0 a.e., and whose extension to all of R® (as the linear
deformation Fox) satisfies condition (INV).

Roughly speaking, condition (INV) is the requirement that the deformation u
be monotone in the sense of Lebesgue and that holes created in one part of €2 are not
filled by material from another part of 2. The condition det Vu > 0 a.e. together
with condition (INV) prohibits interpenetration of matter, that is, these conditions
together imply that u is one-to-one almost everywhere. If the deformations are not
required to satisfy a condition such as (INV) then results of Ball and Murat [BM
84] show that W will not be WP-quasiconvex at such an Fg. According to [JS
92] this is sometimes due to the ability of the material to interpenetrate matter
in order to reduce energy. (There is no apparent energetic penalty to the use of a
noninjective deformation in (1.1) and (1.3).)

The heart of our proof is an isoperimetric estimate that bounds the difference
of two Jacobians; for every n > 2 and p € (n — 1,n) there is a constant o = a(n, p)
such that for every n by n matrix Fy with positive determinant and for every
bounded open region 2 C R"

/[det Fo — det Vu(x)] dx < a|F0|”_p/ Fo — Vu(x)|P dx (1.4)
Q Q

for all deformations u € WP (Q;R") that satisfy u(x) = Fox on 95, det Vu > 0
a.e., and whose extension to all of R" (as the linear deformation Fx) satisfies
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condition (INV). If p > n this estimate is clear since the left-hand side of (1.4)
is zero due to the fact that the Jacobian is a null Lagrangian (see, e.g., [Ba 77]).
For n — 1 < p < n one can express the left-hand side of (1.4) in terms of the
singular part of the distributional Jacobian of u, which is a Radon measure (cf. [Mii
90]) under our hypotheses. This singular measure is then estimated locally via the
isoperimetric inequality and a standard covering argument finishes the proof.

An important application of these results is to cavitation problems in elastic
solids. Experimental observations on elastomers (see, e.g., [GL 58], [OB 65], or [GP
84]) indicate that, when the material is subjected to tensile loads, a major failure
mechanism in such materials is the formation and growth of holes. The fundamental
analysis that viewed cavitation as the spontaneous creation of such holes was done
by Ball. In [Ba 82] he analyzed the radial problem on the unit ball B C R™ for a
class of isotropic, stored energy functions of slow growth (p < n). He showed in
particular that when F is of the form A times the identity matrix there is a critical
value )., such that for all A > . and p € [1,n) the energy density W is not W1.?-
quasiconvex at the deformation Ax. This failure of WP-quasiconvexity is due to
the existence of a radial equilibrium solution of lower energy that creates a hole at
the center of the ball.

Following Ball’s work there have been a number of results on cavitation in
elastic materials (see the survey [HP 95] and the references therein). Most of this
work has concentrated on the radial problem. In regard to the nonradial problem
[JS 92] have shown that for 1 < p < oo (see [Me 65] for W*°-quasiconvexity) any
energy minimizing deformation u € W1H?(Q; R") must be WP-quasiconvex at each
point of smoothness of u. An existence theory for minimizers that may create voids
has been given by [MS 95]. Not much else is known about the creation of holes by

nonradial deformations. The major unanswered question in this area is:

(1) Are the radial solutions obtained by Ball, and many others, in fact global

minimizers of the energy?

Since the above question is (essentially!) unanswered at present, it is of interest to

answer some potentially simpler questions:
(2) Are the radial solutions local minimizers of the energy?

(3) Are the radial solutions minimizers if the class of competing deformations
is restricted to those that open a single cavity? What if one requires, in
addition, that this cavity be located at the center of the ball?

I The radial minimizer is a global minimizer for an elastic fluid. A special class of constitutive

relations of very slow growth (1 < p < n—1) for which the radial minimizer is not a global minimizer
has been given in [JS 91].
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(4) Are radial minimizers W1-P-quasiconvex at each value of the deformation
gradient that they assume?

(5) Is the value of A, that is obtained in the radial problem also the crit-
ical boundary deformation at which cavitation first occurs or might a
nonradial hole open for some A < A..7

At present very little is known concerning these questions although partial
results can be found in [Sp 94], [Si 92], and [Si 95]. In particular, for a large
class of materials, radial minimizers are local minimizers with respect to small
perturbations with support away from the cavity that open no further holes in
the material; and, for one particular constitutive relation W, the radial minimizer
is indeed the minimizer among deformations that only create a single hole at the
center of a ball. Unfortunately, the proof of this last result depends crucially upon
the use of the stored energy density

W(F) = a|F|* + bdet F

(a > 0, b > 0), whose radial minimizers may destroy matter by mapping some set

of positive measure onto a set of measure zero.

The current paper gives a partial answer to (5) since Theorem 4.1 increases
the lower bound for the critical cavitation load over that previously determined in
[Sp 94] (see also [St 93] for the purely radial problem). At this point it is unclear
whether the results in this paper will also help answer (4) since it has not been
determined whether the values of the deformation gradient that are assumed by
radial minimizers, which have been computed in the literature, do indeed satisfy
(1.2).

We note that W1P-quasiconvexity (especially with p = co) is a general hy-
pothesis used to obtain the existence of minimizers in the calculus of variations.
Results of Morrey [Mo 52] (see also [AF 84]) as well as more recent results of Ball
and Murat [BM 84] show that one must require that W be W1P-quasiconvex in
order to obtain the sequential weak (weak star, if p = oo) lower semicontinuity of
the corresponding total energy

E(u) = /QW(Vu(x)) dx

on the space WP, Sequential weak lower semicontinuity is the condition that
is used in the direct method of the calculus of variations to obtain existence of

minimizers.
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Finally, we note that Marcellini [Ma 86] (see also [Ma 89]) has proposed a
different definition of the energy in situations where cavitation may occur. He
first defines the energy functional for smooth deformations and then considers that
functional’s lower semicontinuous extension to W'?. Due to this difference the
results in this paper do not help determine bounds on a critical cavitation load for
his theory.

2. Preliminaries. The Distributional Jacobian and condition (INV).

In the following, D will denote a nonempty, open subset of R", n > 2. By
LP(D) and W?(D) we denote the usual Lebesgue and Sobolev spaces, respectively.
We use the notation LP(D;R™), etc., for vector-valued maps. A function ¢ is in
W,oP(D) if ¢ € WHP(U) for all open sets U CC D. Sobolev functions on manifolds

loc

are defined by the use of local charts (see, e.g., [Mo 66]). Henceforth Q will denote
a bounded open set whose boundary, 012, is (strongly) Lipschitz (see, e.g., [Mo 66,
§3.4] or [EG 92, §4.2.1]). We point out that we do not identify functions that agree

almost everywhere.

The n-dimensional Lebesgue measure will be denoted by £™ and the k-dimensional
Hausdorff measure by H*. We write

B(a,r):={x € R": |x —a|] <r},
for the ball of radius r centered at a € R"™. For a € D we let
ra := dist(a, dD),

i.e., the distance from a to the boundary of D.

We write Lin for the set of all linear maps from R" into R"™ with norm
IL|? = trace(LTL).

We denote by Lin~ those L € Lin with positive determinant. The mapping adj :
Lin — Lin will be the unique continuous function that satisfies

L(adjL) = (det L)Id

for all L € Lin, where det L is the determinant of L and Id € Lin is the identity
mapping. Thus, with respect to any orthonormal basis, the matrix corresponding
to adj L is the transpose of the cofactor matrix corresponding to L.
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We briefly recall some facts about the Brouwer degree (see, e.g., [Sc 69] or
[FG 95] for more details). Suppose that D is bounded and let u: D — R™ be a C™
map. If yo € R™\u(dD) is such that det Vu(x) # 0 for all x € u=1(yo), one defines

deg(u, D,yo) = Z sgndet Vu(x).

xeu~!(yo)

If ¢ is a C function supported in the connected component of R™\u(dD) that
contains yg, one can show that

n

/ (pou)det Vudx = deg(u,D,yo)/ pdy. (2.2)
D

Using this formula and approximating by C'*° functions, one can define deg(u, D, yy)
for any continuous function u : D — R™ and any y, € R™\u(dD). Moreover,
the degree only depends on u|gp. Accordingly, we write deg(u, dD,yq) instead of
deg(u, D, yo).

Indeed, if D has smooth boundary and u € C°(D;R"), then one can use the
divergence theorem and (2.2) to express the degree as a boundary integral:

deg(u,0D,yy) / divgdy = / (gou) - (adj Vu)Tv dH™ ! (2.3)
n oD

for any C*° function g : R™ — R" such that ¢ = div g is supported in the connected
component of R™\u(0D) that contains yo. Here v denotes the outward normal to
OD. Since (adj Vu)Tv only depends upon tangential derivatives of u, one can use
(2.3) to show that, for p > n — 1, the degree can be defined on W?(9D;R™) N
C°(OD;R™).

Proposition 2.1. (see, e.g.,[VG 76], [Sv 88], [MTY 94]). Let p > n—1 and let Q C
R™ be a bounded open set whose boundary is (strongly) Lipschitz. Suppose that @ is
the continuous representative of a function in WHP(9Q;R™). Then deg(u, 9, yo)
is well-defined, i.e., if u € C°(Q; R™) satisfies u = u on 0Q then deg(u, 9Q,yo) =
deg(u, 09Q,y0) for every yo € R™\u(092).

Remark. For interesting new developments in degree theory, including a definition
for rectifiable currents, approximately differentiable maps, maps with nonintegrable
Jacobian, and even maps that are merely in VMO see [GMS 94], [GISS 95], [BN
95|, and [BN 96].

Our results will make crucial use of the isoperimetric inequality and the fol-
lowing consequence of the area formula for Sobolev functions on a manifold.
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Proposition 2.2. ([MM 73], [Fe 69, Corollary 3.2.20]). Let I' be an oriented,
smooth, (n — 1)-dimensional manifold. Suppose that u € WP (I;R™) N C°(I; R™),
with p > n — 1. Then for any H" ' measurable A C T,

ML (u(A)) < (n — 1)<1—n>/2/ \Du|* "t dH Y,
A

Here Du, the tangential gradient of u, is viewed as a map from the tangent space
of I' to R"™.

Proposition 2.3. Isoperimetric Inequality (see, e.g., [Fe 69 p. 278], [EG 92, p. 190,
p. 205]). Forn > 2 let w =n~*L"(B(0,1))~™. Then

LMA)T < wH" 0" A)

for every bounded measurable set A C R™ of finite perimeter, where 0* A denotes
the reduced boundary of A.

Let u € WHP(D;R™), with 1 < p < n. Since we are interested in pointwise
properties of u as well as restrictions of u to lower dimensional sets, it is useful
to consider a particular representative. We define the precise representative
u*: D — R" by

lim+ f u(z)dz, if the limit exists,
u*(x) =<4 "7 B
0, otherwise,

where f denotes the average value of the integrand over A, i.e., the integral of the
A
function over A divided by the n-dimensional Lebesgue measure of A. (The defini-

tion of u* at points where the above limit does not exist is somewhat arbitrary. For
a thorough discussion of precise representatives and capacities we refer to [EG 92]
or [Zi 89].) The precise representative satisfies many important properties. In par-
ticular, if u € WH?(D;R") and B(a, p) C D then u*|sp(a,) € W'*(9B(a,r); R")
for a.e. r € (0,p). Furthermore, if p > n — 1 then u*|gp(a,) € C°(0B(a,r);R")
for such values of r, i.e., u* is the continuous representative given by the Sobolev
imbedding.

In nonlinear elasticity one is interested in globally invertible maps since, in
general, matter cannot interpenetrate itself. We say that u € W1 1(D;R") is in-
vertible almost everywhere (or equivalently, one-to-one almost everywhere)
if there is a Lebesgue null set N C D such that u|p\y is injective. We note that
invertibility almost everywhere is a property of the equivalence class and not merely
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of the representative. This notion seems to first appear in [Ba 81] where it occurs in
an intermediate step of a proof that, under suitable hypotheses, minimizers for the
pure displacement (Dirichlet) problem in nonlinear elasticity are homeomorphisms.
Later Ciarlet and Necas [CN 87| used the area formula to show that invertibility
a.e. is preserved under weak convergence in WP(p > n). They were thus able to
ensure the existence of minimizers for the mixed displacement-traction (Dirichlet-

Neumann) problem in the class of almost everywhere invertible maps.

More recently it has also been observed that the notion of invertibility almost
everywhere is not as useful in function classes that allow for the formation of cavities.
In fact the topological properties of such maps can differ drastically from everywhere
invertible maps. The source of the difficulties is that a cavity formed at one point
may be filled by material from elsewhere. In order to exclude such behavior the
invertibility condition (INV) was introduced in [MS 95].

Let B(a,r) C D and suppose that u: dB(a,r) — R" is continuous. We define
the topological image of B(a,r) under u by

imr(u, B(a,r)) :={y € R"\u(0B(a,r)) : deg(u,dB(a,r),y) # 0}.

Thus the topological image of a ball under u is the topological image of the ball

under any continuous function that assumes the same boundary values.

Definition 2.4. We say that u : D — R" satisfies condition (INV) provided that
for every a € D there exists an £! null set N, such that, for all 7 € (0,74)\Na,
u|9B(a,r) is continuous,

(i) u(x) € imp(u, B(a,r))Uu(dB(a,r)) for L™ a.e. x € B(a,r), and

(i7) u(x) € R"\ imp(u, B(a,r)) for L™ a.e.x € D\B(a,r).
Here 7, := dist(a, dD).

Remarks. 1. Condition (i) is equivalent to the monotonicity (in the sense of Lebesgue)
of the mapping u. See [VG 76], [Sv 88], and [Ma 94] for related results on mono-
tonicity. Condition (ii) is, essentially, the requirement that holes created in one part
of D are not filled by material from other parts of D.

2. An example of a map that satisfies (i) but not (ii) is given in Section 11 of
[MS 95], while a map that satisfies (ii) but not (i) is given in Section 5 of [MST 96].

Deformations that satisfy condition (INV) and have nonzero Jacobian are
more regular than other elements of the Sobolev spaces WP, n —1 < p < n. In
particular, in [MS 95] it is shown that such deformations are one-to-one a.e. and
continuous H" P a.e. In addition the following result will be used.
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Proposition 2.5. [MS 95, Lemma 3.5(i) step 2]. Let u € Wli’f(D;R") with p >
n — 1. Assume that u* satisfies condition (INV) and that det Vu # 0 a.e. Then
for every a € D and almost every r € (0,7,) the set imp(u, B(a,r)) has finite

perimeter. Moreover, for such r, the reduced boundary satisfies
0" imp(u, B(a,r)) C u(dB(a,r)).

If u € W,'(D;R"), with p > n?/(n+1), then the linear functional (Det Vu) :

loc

C§°(D) — R given by

1
(Det Via)(¢) = —— / Vo - (adj V)u dx
nJp
is a well-defined distribution, which is called the distributional Jacobian. If
u € Wli’f(D;R”), with p > n then the identity Div(adj Vu)?T = 0 can be used to

show that Det Vu is the distribution induced by the function det Vu. (In general
this need not be the case and in fact it will not be when cavitation occurs.)

Now suppose that u € Wli’cp(D;R"), with p > n — 1. Then the precise rep-
resentative u* is continuous on the sphere 0B(a,r) for almost every r and hence
u*(0B(a,r)) is compact for such r. If, in addition, u* satisfies condition (INV) then
it follows that u* € L{S (D;R™) and hence that the above functional is once again a
well-defined distribution on D. The next result shows that in fact this distribution

is a nonnegative Radon measure.

Proposition 2.6. (see [Mi 90], [MS 95, Lemma 8.1]). Let u € Wli’f(D,R”) with

p > n — 1. Suppose that det Vu > 0 a.e. and that u* satisfies condition (INV).
Then Det Vu > 0 and hence Det Vu is a Radon measure. Furthermore,

Det Vu = (det Vu)L" 4 m, (2.4)

where m is singular with respect to Lebesque measure and for L' a.e. r € (0,7,)
one has

(Det Vu) (B(a,r)) = L™ (imz(u, B(a,r))). (2.5)
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3. Main Lemma.

Let L € Lin” and p > 1. If u € WhP(Q; R") satisfies u — Lx € W, ?(; R")
then we define its (homogeneous) eztension u®: R™ — R™ by

e Jui(x), xeQ,
u(x) := { Lx, X9, (3.1)

and note that u® € W,2?(R"; R"). For n — 1 < p < n define

loc

Ar p(Q) := {u € WYP(Q;R") : u—Lx € W, P(Q;R"), det Vu > 0 a.e., u® satisfies (INV)}.

Given such linear boundary values, our main result gives an upper bound for

the hole volume created by a deformation that assumes these boundary values.

Main Lemma. Letn>2,n—1<p<mn, andn—1<q <p. Then there exists a
constant o = a(n, q) > 0, which is independent of domain, such that

/[detL — det Vu(x)] dx < a|L|"_q/ ‘|L| _ [Vu)||” dx
Q Q
and hence

/ (et L — det Vu(x)] dx < a|L|"_q/ L — Vu(x)|? dx
Q Q

for all bounded open sets Q@ C R™, all L € Lin~, and all u € Ay, ,(£2).
7p

Remarks. 1. It is clear from (3.4) below that condition (INV) also implies that the
left-hand side of the above inequalites is nonnegative.

2. In order to determine bounds upon the critical load at which cavitation
first occurs (see the Introduction) it is of interest to obtain numerical bounds on
the constant .

3. Although the requirement that the extension satisfy condition (INV) seems
to us to be a bit artificial, we have been unable to prove that it follows from a more

natural condition such as:
u(x) € LQ for a.e. x € Q
or, for every a € Q and almost every r > 0,

u satisfies (i) and (ii) of (INV) with B(a,r) replaced by B(a,r) N Q. (3.2)
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The specific technical problem that is encountered is that one does not appear to be
able to get information about the degree in a region whose boundary includes part
of L(0€2). This is due to the possibility that either u may not be approximately
differentiable or the normal component of its approximate derivative may be zero
on 0. If this were not the case then one could use ideas from [MS 95] to show that
(3.2) implies that the extension u® satisfies condition (INV).

Proof. We first note that the first inequality together with the triangle inequality
yield the second inequality. Without loss of generality assume that 0 € Q. If we
replace u in the inequality by the scaling u.(x) = eu(x/¢) we find that the inequality
is independent of the size of the domain. Thus we may assume that  C B(0,1).
Let p e (n—1,n), u € A ,(Q2), and define u® by (3.1). Then by (2.4)

Det Vu® = (det Vu®)L" + m, (3.3)

where m > 0 is a Radon measure that is singular with respect to Lebesgue measure.
Since 2 CC B(0,2) the definition of the topological image and (3.1) imply that

img(u®, B(0,2)) = LB(0,2).

Thus, if we evaluate Det Vu® on the ball B(0,2) and make use of (2.5) and (3.3)
we find that

(det L)£™(B(0,2)) = (Det Vu®)(B(0,2))

=m(B(0,2)) + / det Vu®(x) dx
B(0,2)

— m(@) + (det L) [£"(B(0,2)) — L™(Q)] + / det Vu(x) dx,
Q
since Vu® = L on B(0,2)\Q and the support of m is contained in Q. If we rearrange
terms we find that
(det L — det Vu) dx = m(Q). (3.4)
Q
Next, let M C Q be the support of m. Then there isan N C M with m(N) = 0
such that
m (B(a, 7'))
lim ———= = +oo for every a € M\N, (3.5)
r—0+t rh
since m is singular with respect to Lebesgue measure (see, e.g., [EG 92, Section
1.6]).
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Our strategy now will be to use an isoperimetric estimate to bound the local
hole volume created at each point of M\ N by the deformed surface area enclosing
this volume. An integration will then change the surface integral to the L™~ !-norm
and a suitable covering theorem will yield the desired bound (when ¢ = n — 1).

Let a € M\N. By (2.5)
(Det Vu®) (B(a,t)) = L (imz(u®, B(a, t))) (3.6)
for a.e. t > 0, while Propositions 2.2, 2.3, and 2.5 imply, that for such ¢,
£ (imp(ué, B(a,1)) ™ < wH™ (0" imr(u’, B(a, 1))
< wH" ! (u®(0B(a,1))) (3.7)

< w/ Vue [Pt gy,
OB(a,t)

In view of (3.3) and the nonnegativity of m and det Vu® we can combine (3.6) and
(3.7) to conclude that (cf. the equation preceding eqn. (28) in [Ge 73])

[ ()] T s ), e

for almost every ¢t > r, where C' will now be a generic constant that may vary from

line to line.

If we integrate the last inequality with respect to ¢ over the interval [r, 2r] we
conclude that

n—1

T S0

<C |Vue|" ! dx. (3.8)
B(a,2r)

o] = ( [ |¢<x>|mdx) =

Then, by the triangle inequality,

/ Vue* i = V)
B(a,2r)

<c [leﬂ q

<c(/
B(a,2r)

Define

n—1
n—1:|

n—1
< [waﬂ L

+ H|L|
n—1
n—1
n—1:|

n—1
|Vu®| — |L|‘ dx +7‘"|L|"_1) :

n—1
+ H|L|
n—1

(3.9)
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Let ¢ € [n — 1,p]. Then |B|"~! < |B|? + 1 for every 3 € R and hence if we choose
B = (|JVu®| — |L|)/|L| we find that

n—1 q
vus — L) < L vul - )| L (3.10)

Therefore, if we integrate (3.10) over the ball B(a,2r) and combine the result with
(3.8) and (3.9) we find that

n—1

4B o
m( (av’r))] < C|:|L|n—1—q ][ ‘|Vue| — |L|‘qu—+— |L|n_1:|. (311)
1
B(a,2r)
Define

q
our) = (Lp 1 f [ jvae] - ) ax
B(a,r)
Then 6, : (0,00) — (0,00) is a continuous function which, in view of (3.5), (3.11),

and the compact support of the integrand, satisfies

lim 6,(2r) = +o0, lim 6,(2r)=0.

r—0t r—+00

Thus
pa == inf{r > 0:6,(2r) = [L|"~*}

is well-defined. Note that, by the continuity of 6, and the definition of p,
Oa(pa) > 0a(2pa) = |L|" 1. (3.12)

If we now evaluate (3.11) at r = p, and make use of (3.12) and the definition

of 6, we conclude that

n—1

m(B(a, pa))

q
. <ol [ e ulf s e

B(a,2pa)

= 2C00,(2pa)

- 20[93(2pa)] "

3=

0a200)] < 20 [0un)] T [ra(200)]

n—1— e 4 o n—1 %
:20[|L| 4 ][ ‘|Vu|—|L|‘ dx] {|L| }

B(a:Pa)
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and hence

m(Bla pa)) < C|L|" /

q
‘|Vue| - |L|‘ dx. (3.13)
B(a,pa)

Define

M :={B(a,pa) :a € M\N}.

Note that 6,(r) is independent of a € M for r > 2 and hence that
sup{pa :a € M\N} < 0.

Therefore, by the Besicovitch covering theorem (see, e.g., [EG 92, Theorem 2, p.
30]), there is a constant C,,, which only depends on the dimension n, and families
G CcM,1=1,2,3,...,C,, of pairwise disjoint closed balls, that satisfy

Cn
M\Ncl) | Bara) (3.14)
=1B(a,pa)€Gi

Finally, by (3.13), (3.14), the definitions of M and N, and that fact that the
balls in each family G; are pairwise disjoint

L7 D SR NN SR

=1 - B a,Pa
i=1 Bla,pa)€0: P

C'n
q
§C|L|"_‘IZ/‘|Vue|— [ ix
i=17%
q
:CnC|L|”_q/‘|Vue|— |L|‘ dx,
Q

which together with (3.4) gives the desired result. O

Remark. For ¢ > n—1 (but not ¢ = n— 1) an alternative proof of the above lemma
can be obtained by replacing the isoperimetric inequality, the area formula, and
the inequality |8|"~! < |B|? + 1 by the isodiametric inequality and the standard
imbedding

sip [ut(x) — u*(2)[9 < Cra-nH / Vul? dHn1.
x,z€E0B(a,t) dB(a,t)
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4. WhP-quasiconvexity.

We consider a homogeneous body that, for convenience, will be identified
with the bounded region Q C R3 that it occupies in a fixed homogeneous reference
configuration. We assume that the body is hyperelastic with continuous stored
energy density W : Lin — [0, oco]. The quantity W (Vu(x)) gives the energy stored
per unit volume in €2, at any point x € {2 when the body is deformed by a smooth
deformation u. Further, we assume that W(F) = 400 whenever det F < 0.

In particular we are interested in stored-energy functions that satisfy
W(F) = g(F,adjF) + h(det F) (4.1)
for all F € Lin~, where h € C*((0,0c),[0,00)) is convex and § : Lin” x Lin”~ —
[0, 00) satisfies the following conditions.
(a) There are constants ¢; > 0 and ¢ € [2,3) such that for every K, M €
Lin~ there exist A, B € Lin such that
JN,P) > g(K,M)+A- (N-K)+B:-(P—-M)+;|]N - K|?

for all N, P € Lin~.
(b) There are constants p € (2,3), ca > 0, and ¢3, with p > ¢, such that

Q(F,adj F) Z 02|F|p -+ C3.

Remarks. 1. Condition (b) ensures that deformations with finite energy belong to
a Sobolev space in which condition (INV) makes sense.

2. If ¢ > 2 then (a) implies (b) with p = gq.

3. Condition (a) is slightly stronger than the requirement that the mapping
g be convex. In particular when ¢ = 2 such functions are uniformly strictly quasi-

convez in the sense of Evans [Ev 86]. A result in [Ev 86] (see the appendix of this
paper) shows that (a) is satisfied by

§(F,adjF) = a|F|? + g(F, adj F)

where a > 0 and g is C! and convex. Conditions (a) and (b) are also satisfied (see,
e.g., [Ba 77, pp. 229-230]) by certain Ogden [Og 72] materials:

§(F,adjF) = bF[> + ) (X)) + > _1h(Aid))

i=1 i>j
where ¢ and v are convex and nondecreasing, b > 0, and there is a p € (2,3) and
a ¢ > 0 such that p(A\) > ¢|A]P for all A > 0. Here Ay, A2, A3 denote the eigenvalues
of the square root of FFT.
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Theorem 4.1. Let the stored energy density W satisfy (4.1), where h is C* and
convex and g satisfies (a) and (b). Then any linear deformation w(x) = Lx that
satisfies

B (det L)|L|>79 < ¢/«

18 a global minimizer of the total elastic energy
E(u) ;:/ W (Vu(x)) dx
Q

in the class Ay, ,(€2). Here « is the optimal constant from the lemma in section 3.

Remarks. 1. In the terminology of Ball and Murat [BM 84] the function W is W1P-
quasiconvex at each such L (on the restricted class of deformations Ay, ;). Results
of [BM 84] (see also [JS 92]) imply that this result is false if the class of deformations

1s not restricted.

2. Suppose that h satisfies h'(H) = 0 for some (unique) H > 0. Then the
theorem implies that there is an € > 0 such that Ax is a global minimizer of F
whenever A3 € (0, H + ¢). In [Sp 94] it was shown that, for a slightly more general
class of energy densities and admissible deformations, the conclusion of the theorem
was valid provided A* € (0, H]. A physical interpretation of such results is that, for

the displacement problem, cavitation can not occur in compression.
Proof of the Theorem. By (a) and the convexity of h

W(H) > W(L)+ A [H—L]+B-[adj H — adj L]

4.2
+ h/(det L)[det H — det L] + ¢;|H — L|? (4.2)

for every H € Lin”~.
Let u € Ay, . Then

/ Vu(x) — L] dx = 0, (4.3)
Q
and (see, e.g., [Ba 77, Lemma 3.3a])

/Q[adj Vu(x) — adjL]dx = 0. (4.4)
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If we take H = Vu(x) in (4.2) and integrate over 2 we conclude, with the aid
of (4.3) and (4.4), that

/ W(Va(x)) — W(L)] dx > I/ (det L) / (et Vu(x) — det L] dx
@ « (4.5)
tor /Q Vu(x) — L|7 dx.

and hence, in view our main lemima, that

C1
a|L[3~4

/Q (W (Vu(x)) — W(L)] dx > | — W(det L)] / (et L — det Vu(x)] dx,

Q
which together with the first remark following the lemma in section 3 yields the
desired result. [J

Remarks. 1. Supose one replaces (4.1) by the hypothesis W(F) = f(F,adjF,det F)
where (cf. [Ba 77] and [Ev 86]) f is p-uniformly strictly polyconver, i.e, there is a
p € (2,3) and a constant ¢; > 0 such that for every K,M € Lin~ and p > 0 there
exist A, B € Lin and € R, which may depend on K, M and p > 0, such that

FIN,Pwv) > f(K,M, )+ A (N-K)+B- (P-M)+f(r—p)+a|N-KJP

for all N, P € Lin~ and v > 0. Then it is clear from the proof that the conclusions
of the theorem will remain valid whenever 3 = B(L,adjL,det L) < ¢1/(a|L|>7P).
However, the physics that leads to such an inequality at a particular L is unclear.

2. Equation (4.5) and our main lemma also imply that
E(u) — E(Lx) > min {c1,¢; — a|LI*7R/(det L)}/ |[Vu(x) — L|%dx.  (4.6)
Q

Suppose now that ¢ > 2 (so that hypothesis (a) implies hypothesis (b) with p = q).
Then, whenever L satisfies ¢; > o|L|>7%h/(det L), one can conclude from (4.6) that
the mapping Lx is the unique global minimizer of E (among maps in Ay, ,(12))
and, furthermore, Lx lies in a potential well. This may have implications for the
dynamic stability of such maps.
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Appendix.

We here present an alternative proof of a result of Evans [Ev 86, Lemma 8.2]
(see also [Zh 91, Lemma 2.15]) since our proof gives a bound on the optimal constant

K.

Proposition A.1. Let p € [2,00). Then there is a constant k = k(p) > 0, which

18 independent of dimension, such that
|al” > [b[P + p|b|P~*b - (a — b) + Kla — b|? (A.1)
for every a,b € R™. Moreover, the largest such k satisfies 227P < k < p217P.

Proof. For p = 2 inequality (A.1) is clear with kK = 1. We therefore suppose that
p > 2 and first consider the case when n = 1. If b = 0 then (A.1) holds with
k = 1. By homogeneity we may therefore assume that |b| = 1. Thus letting
t = sgn(b)(a — b), |b| = 1, and dividing (A.1) by |¢|? we find that the optimal

constant x, which is nonnegative since ¢ — [t|P is convex, is given by

1+tP—1—
k= inf 6, 0(t) = 1+ pt
R\ {0} |t|P

Define
P(s) = 0(1/s) = |s + 1|7 — [s[? — p|s[P* sgn(s).

Then infvy = inf# and

Y'(s) =p(Is+ 1" sgu(s + 1) — [s[" sgn(s) — (p — 1)[s["7%)

is positive on (0, 00) and negative on (—oo, —1) since o +— |o[P~1 is convex. There-
1

fore ¢ attains its infimum at —7 € [—1,0]. If —7 € (—1,0) then

0=p7W/(-r) = (= - 1)
and hence

k=1(—7) =(1 = 71)P — 7P 4 prP~1
=(1-7)P+1(1 -7t = (p—1)rP~ + prr~t
(1—7)P~t 4+ 7271 > 2[217P] = 2277,

where we have used the convexity of o — o?~1. Moreover, k < ¢(—1/2) = p2'7P <
1. Finally, 4(0) =1 and ¢(—1) = p—1 > 1. Thus if 7 were not in the interior we
could conclude that x = 1, which is not possible.
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Now consider n > 1. Once again by homogeneity we may assume that |b| = 1.
Let a = te + b and o = e - b, where t € [0,+00), |e] = 1, and (consequently)
a € [—1,1]. Then by (A.1) the optimal constant £ > 0 is given by

1+ 2at + t2]P/2 — 1 — apt
K= inf  w, w(t, ) = [L+ 20t + ¢7) o
(0,00)x[—1,1] tp

For fixed ¢ > 0 we minimize w on the compact set —1 < o < 1. If the infimum
occurs at @ = £1 then the vectors a and b are colinear and hence the problem
reduces to the case n = 1. Otherwise, we differentiate w with respect to a and set
the result equal to zero to conclude that « = —t/2, which necessitates ¢ < 2. In
this case we find that

1
k=w(t,—t/2) = iptz_p <p2t=P. O
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