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De�nitions of Sobolev classes on metric spaces

Bruno Franchi� Piotr Haj�lasz and Pekka Koskela�

Abstract

There have been recent attempts to develop the theory of Sobolev spacesW ��p

on metric spaces that do not admit any di�erentiable structure� We prove that
certain de�nitions are equivalent� We also de�ne the spaces in the limiting case
p � ��

�� Introduction� Let � � IRn be an open set� By the classical Sobolev space
W ��p��� we mean the Banach space of those p�summable functions whose distributional
gradients are p�summable as well� The space is equipped with the norm kukW ��p �
kukp � krukp� Here and in what follows by k � kp we denote the Lp norm�

There are several ways to generalize the notion of the Sobolev space to the setting of
metric spaces equipped with a Borel measure� Two natural de�nitions are the following�
For � � p � �	 de�ne the Sobolev space M��p�S� d� �� as the set of all u � Lp�S� for
which there exists 
 � g � Lp�S� such that the inequality

ju�x�� u�y�j � d�x� y��g�x� � g�y�� ���

holds ��a�e� In the classical setting g corresponds to the maximal function of jruj�
By P ��p�S� d� �� we denote the set of all functions u � Lp�S� such that there exist

 � g � Lp�S�	 C � 
 and � � � so that the ��� p��Poincar�e inequality

Z
B
ju� uBj d� � Cr

�Z
�B

gp d�
���p

holds on every ball B in S	 where r is the radius of B� uB is the average value of u on
B	 and

R
denotes the average value of the integral� Notice that when S � IRn� � is

the Lebesgue measure and d the euclidean distance	 u � W ��p�IRn� and g � jruj this
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inequality follows from the usual Poincar�e inequality� These two di�erent approaches
both result in the usual Sobolev class when p � �� S � IRn� and � is the Lebesgue
measure and d the euclidean distance�

In this paper we compare these two di�erent de�nitions in the setting of metric
spaces and show that the Poincar�e inequality for pairs of functions and upper gradients
plays a key role in the subject� See Section 
 below for the de�nitions� More precisely	
we shall use a fairly new self�improving property of the right hand side of a Poincar�e
inequality �see Theorem ��	 instead of the known self�improving property of the left
hand side �see Theorem ���

The central examples of metric spaces we have in mind are given by the so�called
Carnot�Carath�eodory metrics associated with a family of Lipschitz continuous vector
�elds� As there is a natural way to de�ne the Sobolev classes in terms of a family
of vector �elds identi�ed with �rst order di�erential operators	 a crucial test for our
de�nitions of Sobolev spaces associated with a metric is to check compatibility with
this de�nition� It has been inquired by Garofalo and Strichartz whether the Sobolev
space de�ned by the pointwise inequality ��� above for the Carnot�Carath�eodory metric
associated with a system of vector �elds satisfying H�ormander�s condition coincides with
the space obtained as the closure of smooth functions in the Sobolev norm generated
by the family of vector �elds� Theorems �	 �� �see the discussion preceding this result�
and �
 and Corollary �� below give a complete answer to this question� Some partial
results have been obtained earlier in ����	 �
��	 ��
�	 ����	 �����
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�� Sobolev spaces on a metric space� Our notation is fairly standard� By
L�Lipschitz functions we mean Lipschitz functions with the Lipschitz constant L� The
average value will be denoted by

uB �
Z
B
u d� �

�

��B�

Z
B
u d��

The space Lploc is the space of functions Lp�summable on every ball� The characteristic
function of a set E will be denoted by �E� Balls will be denoted by B� The ball
concentric with B and with the radius � times that of B will be denoted by �B�
General constants will be denoted by C� The value of C may change even in the same
string of estimates� By Borel measure we will mean nonnegative Borel�regular measure�

Fix a triple �S� d� ��	 where �S� d� is a metric space and � is a Borel measure that is
�nite on every ball� For � � p ��	 Haj�lasz �
��	 de�nes the Sobolev spaceM��p�S� d� ��
as the set of all u � Lp�S� for which there exists 
 � g � Lp such that the inequality

ju�x�� u�y�j � d�x� y��g�x� � g�y�� �
�

holds ��a�e� From now on	 we shall write a�e� instead of ��a�e�






The space M��p�S� d� �� is equipped with the Banach norm

kukM��p � kukp � inf
g
kgkp�

where the in�mum is taken over the set of all functions 
 � g � Lp that satisfy �
� a�e�

If � � IRn or if � � IRn is an open bounded set with smooth boundary	 j � j is the
Euclidean metric	 and Hn is the Lebesgue measure	 then for � � p ��

W ��p��� � M��p��� j � j� Hn�� ���

see �
�� and also ����� However	 these spaces are di�erent for p � �	 see �
�� or the
example below� The inclusion W ��p �M��p for � � p �� follows from the well known
pointwise inequality

ju�x�� u�y�j � Cjx� yj�M jruj�x� �M jruj�y��� ���

where Mg�x� � supr��

R
B�x�r�jg�z�j dz denotes the Hardy�Littlewood maximal opera�

tor� The opposite inclusion requires another argument that we shall not discuss now�
Since the maximal operator fails to be bounded on L�	 it is not surprising that in
general W ��� ��M���� The following example is taken from �
���

Let � � ����
� ��
�	 and u�x� � �x��jxj log jxj�� Then u � W ������	 since u��x� �
jxj���log jxj��� � L�����
� ��
�� Suppose that there exists g � L�����
� ��
�	 such
that �
� holds with d�x� y� � jx � yj� Then for 
 � x � ��
	 we would have ju�x� �
u��x�j � 
x�g�x� � g��x�� and hence

�


log x
� 
x�g�x� � g��x���

Thus Z ���

����
g�x� dx �

Z ���

�
�g�x� � g��x�� dx �

Z ���

�

�dx

x logx
� ��

This contradicts the summability of g	 proving that W ��� �� M���	 and hence that the
equivalence ��� fails for p � ��

Roughly speaking	 the function g in �
� corresponds to the maximal function of
the gradient� It does not re�ect pointwise properties of the gradient	 but it has good
properties in average � the Lp norms are comparable i�e� krukp � infg kgkp	 for
� � p ���

In the remaining part of this paper we assume that S is a metric space of homoge�
neous type	 i�e� that the measure � is Borel	 �nite on every ball	 and that it satis�es a
doubling condition� This means that there exists a constant Cd � 
 such that for every
ball B

��
B� � Cd��B��

�



Integrating the pointwise inequality �
� with respect to x and y	 we obtain the
Poincar�e type inequality Z

B
ju� uBj d� � Cr

Z
B
g d�� ���

This inequality seems weaker than �
�	 but	 as we will see later on	 the two inequalities
are almost equivalent�

Theorem � Let � � p ��� The following conditions are equivalent�

�� u �M��p�S� d� ���

�� u � Lp�S� and there exist C � 
� � � �� 
 � g � Lp�S�� and � � q � p such that
the Poincar�e inequality

Z
B
ju� uBj d� � C r

�Z
�B

gq d�
���q

���

holds on every ball B of radius r�

This result is due to Haj�lasz and Koskela ��
�� Moreover	 under some additional
assumptions a version of it for q � � has been proved by Franchi	 Lu	 and Wheeden
using a representation formula	 ����	 �

�� For further generalizations	 see �
��	 ����	 �����

Implication �� 	 
� follows form ���� The opposite implication 
� 	 �� is a conse�
quence of the following proposition ��
	 Theorem ��
� and the maximal theorem�

Proposition � Assume that the pair �u� g�� u � L�
loc� 
 � g � Lqloc� q � �� satis�es

inequality ��� for every ball B of radius r� Then

ju�x�� u�y�j � Cd�x� y�
�
�Mgq�x����q � �Mgq�y����q

�
for almost every x� y � S� where Mh�x� � supr��

R
B�x�r�jhj d��

The maximal theorem states that for � � p � �	 kMhkLp�S� � CkhkLp�S�� In the
limiting case p � � we obtain the following weak type estimate

��fMh � tg� �
C

t

Z
jhj d�� ���

The maximal theorem for doubling measures is due to Coifman and Weiss ���� the proof
follows almost the same argument as in the Euclidean case�

As we already noticed	 the function g in �
� corresponds to the maximal function
of the gradient	 while the functions g in ��� looks more like the norm of the gradient�

�



Let u � L�
loc�S� and g � S 
 �
��� be Borel measurable functions� We say that the

pair �u� g� satis�es a �q� p��Poincar�e inequality	 p� q � � if there exist C � 
 and � � �
such that the inequality�Z

B
ju� uBj

q d�
���q

� Cr
�Z

�B
gp d�

���p

���

holds on every ball B of radius r� We do not put any integrability conditions upon g
here	 so that we can take for example g � ��

By P q�p
loc we denote the set of all functions u � Lqloc such that there exist 
 � g � Lp	

C � 
 and � � � which make the pair �u� g� satisfy the �q� p��Poincar�e inequality ���
on every ball B of radius r�

Obviously	 inequality ��� with � � � implies ��� with � � �� However	 in general
the converse implication does not hold �i�e� � � � cannot be replaced by � � ��	 see
��
�� However	 if the metric space satis�es some additional geometric properties	 then
one can replace � � � in ��� by � � � in the sense that if the pair �u� g� satis�es ���
with � � � on every ball	 then there exists a bigger constant C	 such that �u� g� satis�es
��� with � � � on every ball� A su�cient geometric condition for the replacement of
� � � by � � � is that bounded and closed sets are compact and the distance between
any pair of points equals the in�mum of lengths of curves joining the two points� For
details	 see ����	 ���	 Section ��	 ���	 Section ��	 �
��	 �
��	 ��
��

The following imbedding theorem is due to Haj�lasz and Koskela �
��	 ��
	 Theo�
rem ���� �see also ������

Theorem � Let �S� d� �� be a metric space with � doubling� Assume that the pair
�u� g� satis�es a ��� p�	Poincar�e inequality� Then there exists q� � p such that for every
� � q � q� the pair �u� g� satis�es �q� p�	Poincar�e inequality� The exponent q� depends
only on the doubling constant and on p�

The constants C and � for the ��� p� and �q� p��Poincar�e inequalities in the above
theorem may be di�erent�

Thus for the given range � � q � q�� the class P q�p
loc is the same as the class P ��p

loc � For
that reason we restrict our attention to the class P ��p only� We denote all Lp�integrable
functions in P ��p

loc by P ��p�S� d� �� or simply by P ��p�S� or by P ��p�

Theorem � states that u �M��p	 p � �	 if and only if u � Lp and there exist g � Lp

and � � q � p such that the pair �u� g� satis�es ��� q��Poincar�e inequality� This suggests
the following question� Is it true that M��p�S� d� �� � P ��p�S� d� �� for � � p � � In
the case p � � the answer is negative �see remark after Theorem ��� In the case p � �
the answer is positive provided we assume that in addition the space supports a ��� q��
Poincar�e inequality for some � � q � p �see the de�nition below�� We do not know
if any additional condition is necessary� The positive answer is due to Koskela and
MacManus �����

�



A related question was also raised by Haj�lasz and Koskela	 ��
�� Is it true that if the
pair �u� g� satis�es ��� p��Poincar�e inequality	 � � p � �	 then there exists � � q � p
such that the pair �u� g� satis�es ��� q��Poincar�e inequality Note that the positive
answer to that question together with Theorem � would imply M��p � P ��p� Below we
give a positive answer to the question under the same additional assumption as before�
the space supports a ��� q��Poincar�e inequality for some � � q � p�

First we need some de�nitions�

Let �S� d� �� be a triple as above� Following Heinonen and Koskela ���� we say that a
Borel function g � S 
 �
��� is an upper gradient of another Borel function u � S 
 IR
if for every ��Lipschitz curve � � �
� T �
 S we have

ju���
��� u���T ��j �
Z T

�
g���t�� dt

�remember that a curve � is called ��Lipschitz if d���	�� ��
�� � j	 � 
j for all 
 �

 � 	 � T �� Moreover	 we stress the fact that we could de�ne upper gradients using
the class of recti�able curves	 due to the fact that every recti�able curve admits an
arc�length parametrization	 �see� ���	 ������

We say that the space �S� d� �� supports a ��� p�	Poincar�e inequality	 � � p ��� if
there exist C � 
 and � � � such that if u is a continuous function and g is an upper
gradient of u	 then the pair �u� g� satis�es a ��� p��Poincar�e inequality with given C and
��

The above notions have been developed in ����	 �
�	 ��
�	 ����	 ��
�	 �����

The theorem of Koskela and MacManus ���� reads as follows�

Theorem � Let � � p � �� If the space supports a ��� q�	Poincar�e inequality for
some � � q � p� then P ��p�S� d� �� � M��p�S� d� ���

The most important example is IRn with the Euclidean metric j � j and the Lebesgue
measure Hn� The space supports a ��� ���Poincar�e inequality and hence

P ��p�IRn� j � j� Hn� � M��p�IRn� j � j� Hn�� ���

for all � � p � �� As we already noted both spaces coincide with W ��p�IRn�	 see
���� Later we will generalize this result to the case p � � and prove that W ����IRn� �
P ����IRn� j � j� Hn�� As W ��� �� M��� by the above example	 we will also obtain that
P ��� �� M����

Theorem � is a consequence of the following stronger result and of Theorem ��

Theorem � Let � � p � � and let the space support a ��� q�	Poincar�e inequality
for some � � q � p with given � � �� Let � � � and assume that the pair �u� g��

�



u � L�
loc�S�� 
 � g � Lp�S�� satis�es the family

Z
B
ju� uBj d� � Cr

�Z
�B

gp d�
���p

��
�

of Poincar�e inequalities on every ball B with radius r� Then there exists another con	
stant C � � 
 such that for every ball B of radius r

Z
B
ju� uBj d� � C �r

�Z
�B

gq d�
���q

� ����

Remarks� �� Compare the case q � p with the discussion preceding Theorem �� The
novelty here is that �might be smaller than �� 
� The idea of the proof is to approximate
u by !convolutions"� The approximating sequence satis�es a ��� q��Poincar�e inequality
and by passing to the limit we obtain ����� Similar techniques of approximation were
employed in ��
�	 �
��	 ����� The case q � p requires new ideas�

Proof of Theorem �� We start with a construction of an approximating sequence�
Fix � � 
 and let fB�

i g be a covering of S by balls with radii � and the property that
the balls �

�
B�
i are pairwise disjoint� Put now Bi � 
B�

i � the doubling property implies
that there is a constant C such that no point of S belongs to more than C balls Bi�
Let f
ig be a Lipschitz partition of unity associated to the given family of balls i�e�	P

i 
i � �	 
 � 
i � �	 supp
i � Bi and all the functions 
i are Lipschitz with the
same constant C���� To this end it is enough to choose


i �
�
�
d�xi�x�

�

�
P

k �
�
d�xk�x�

�

� �
where � is a smooth function	 � � � on �
� ��	 � � 
 on ���
���	 
 � � � �	
and xi is the center of Bi for i � �� 
� � � � We can de�ne now u� �

P
i 
iuBi

� ThenR
B ju � u�j d� 
 
 as � 
 
 on every ball B� Indeed	 this is obvious when u is
continuous and the general case follows by approximating u by continuous functions in
the L� norm� For the following lemma	 see ���	 Lemma �����

Lemma � Let u be an arbitrary locally integrable function� If d�b� a� � �� then

ju��b�� u��a�j � Cd�b� a�h��a��

where

h� �
X
i

�Z
�Bi

Z
�Bi

ju�y�� u�x�j

�
d��y� d��x�

�
�Bi

�

We do not prove this lemma� Later we will prove a similar result �Lemma ���	 but in
a di�erent setting� The proof given there may be easily modi�ed to cover Lemma ��

�



As was noticed in ����	 the above lemma implies that Ch� is an upper gradient for
u�� Indeed	 let � � �
� T � 
 S be a ��Lipschitz curve� Then for 
 � 
 � t � 	 � T 	
	 � 
 � �� we have

ju����	��� u����
��j � ju����	��� u����t��j� ju����
��� u����t�j

� Cj	 � 
jh����t��� ��
�

The last inequality follows from Lemma � as � is ��Lipschitz� Since 
 � t � 	 was
arbitrary	 taking the average of ��
� over t we obtain

ju����	��� u����
��j � C
Z �

�
h����t�� dt�

Let now t� � 
 � t� � � � � � tN � T be a partition of �
� T � into N congruent intervals
of length less than �� Then

ju���T ��� u���
��j �
NX
j��

ju���tj��� u���tj����j �
Z T

�
h����t�� dt�

and the assertion is proved�

If the space supports a ��� q��Poincar�e inequality	 we conclude that the pair �u�� h��
satis�es a ��� q��Poincar�e inequality�

Assume now that the pair �u� g� satis�es the assumptions of Theorem �� It remains
to prove that if we pass to the limit as �
 
 in the ��� q��Poincar�e inequality for �u�� h��
then we arrive at the desired inequality �����

As a direct consequence of the de�nition of h� and the ��� p��Poincar�e inequality for
�u� g� we obtain the following result�

Lemma � If the pair �u� g� satis�es the family ��
� of ��� p�	Poincar�e inequalities� then

h� � C
X
i

�Z
��Bi

gp d�
���p

�Bi
�

The following lemma that seems to be of independent interest is the main new ingredient
in our argument�

Lemma � Let Y be a metric space equipped with a doubling measure �� Let 
 � g �
Lp�Y �� � � p � �� and suppose � � �� To every � � 
 we associate a covering fBigi
as above� Let

g� �
X
i

�Z
�Bi

gp d�
���p

�Bi
�

�



Then lim sup��� g� � Cg a�e� Moreover� for every ball B and each � � q � p� the
family fgq�g� is uniformly integrable and

lim sup
���

Z
B
gq� d� � C

Z
B
gq d�� ����

Here the constant C depends only on q and on the doubling constant�

We recall that the uniform integrability of the family fgq�g� on B means that for
every � � 
 there exists � � 
 such that if A � B	 ��A� � �	 then sup�

R
A g

q
� � ��

Note that Theorem � is a direct consequence of the above two lemmas and the fact
that �u�� h�� satis�es the ��� q��Poincar�e inequality�

Proof of Lemma �� First note that lim sup��� g��x� � Cg�x� whenever x is a
Lebesgue point of gp� Indeed	 if x � Bi	 then �Bi � B�x� 
�� � ����	 and hence

lim sup
���

g��x� � lim sup
���

C

�Z
B�x���������

gp d�

���p

� Cg�x��

The constant C is independent of � due to the fact that both the number of balls Bi

such that x � Bi and the ratio ��B�x� 
������������Bi� can be bounded by a constant
depending only on the doubling constant�

Let us show now that the family fgq�g� is uniformly integrable on B� Since the sum
in the de�nition of g� is locally �nite	 we have

gp� � C
X
i

�Z
�Bi

gp d�
�
�Bi

and hence sup�
R
B g

p
� d� � C

R
Y g

p d�� This and the H�older inequality imply uniform
integrability when � � q � p	 so that we can restrict ourselves to the case q � p� If the
family failed to be uniformly integrable on B	 then there would exist � � 
	 a sequence
of sets Kn � B and a sequence �n such that

��Kn� 
 
 and
Z
Kn

gp�n d� � �

Then we would have

� �
Z
Kn

gp�n d� � C
X
i

Z
Kn�Bi

�Z
�Bi

gp d�
�
d�

� C
X

Kn�Bi ���

��Kn 
Bi�

���Bi�

Z
�Bi

gp d� � An� ����

Given � � 
 we can �nd � � 
 such that

��E� � � �	
Z
E
gp d� � ��

�



By the doubling property	 there exists a constant C � such that
P

i �Bi
�
P

i ��Bi
� C ��

Fix a positive integer m and choose n so large that ��Kn� � ���C �m�� Divide now the
set of indices i such that Kn
Bi �� � into two classes� the class I� consists of all those i
such that ��Kn 
Bi�����Bi� � ��m	 whereas the class I� consists of all the remaining
indices� We have

��
�
i�I�

�Bi� � m
X
i�I�

��Kn 
 Bi� � m
X
i�I�

Z
Kn

�Bi
d� � mC ���Kn� � ��

Hence

An �
X
i�I�

�
X
i�I�

�
X
i�I�

Z
�Bi

gp d� �
X
i�I�

�

m

Z
�Bi

gp d� � C �
�
��

�

m

Z
Y
gp d�

�
�

Since we can choose an � arbitrary small and an m arbitrary large we arrive to a
contradiction with ����� This completes the proof of the uniform integrability�

We now proceed to prove ����� Fix � � q � p and a ball B� It is enough to prove
that for every sequence �n 
 
 for which the limit on the left hand side of ���� exists	
we have

lim
n��

Z
B
gq�n d� � C

Z
B
gq d�

with some constant C depending on q and the doubling constant only� Fix such a
sequence f�ngn� We need the following theorem of Dunford and Pettis	 see ��
� or �����

Theorem 	 Let Z be a measurable space equipped with a �nite measure � and let
fn � L��Z� ��� Then the sequence ffngn is weakly relatively compact in L��Z� �� if and
only if the family fjfnjgn is uniformly integrable�

Due to the above theorem we can �nd a subsequence of gq�n �also denoted by gq�n� and
h � L��B� such that gq�n � h weakly in L��B�� Then due to Mazur�s lemma a sequence
of convex combinations of gq�n converges to h a�e�

Since lim supn�� g�n � Cg a�e� we conclude that h � Cgq a�e� and hence ����
follows�

This completes the proof of Lemma � and hence those of Theorem � and Theorem ��

In the case � � q � p of Lemma � we could provide a more direct proof� Namely
we could avoid the proof of the uniform integrability of the family fgq�g�	 and replace
Dunford�Pettis� theorem by the re�exivity of the space Lp�q and the fact that the
sequence gq�n is bounded in Lp�q�

The case � � q � p of Lemma � implies Theorem � for � � q � p and hence it is
su�cient for the proof of Theorem �� The case p � q of Lemma � will be used in the
next section�

�




�� Sobolev spaces arising from vector 
elds� One of the central applications
of the theory of Sobolev spaces on metric spaces concerns the theory of Sobolev spaces
associated with a family of vector �elds that we next describe�

Let X � �X�� � � � � Xk� be a family of vector �elds in � � IRn with real valued	
locally Lipschitz continuous coe�cients� One can de�ne the Sobolev space W ��p

X ���	
� � p � �	 associated with the family X as the space of all the functions with �nite
norm kukW ��p

X
� kukp � kXukp	 where jXuj� �

P
jXjuj� and the derivatives Xju are

understood in the sense of distributions�

Another way to de�ne the space for � � p �� is to take the closure of C� functions
in the above norm� As in the Euclidean case	 the two approaches are equivalent� This
was obtained independently in �
�� and �
��� The method goes	 however	 back to
Friedrichs �
���

For the sake of simplicity	 we assume from now on that � � IRn�

It is well known that we can canonically associate with X a metric �the so�called
Carnot�Carath�eodory metric	 or control metric� as follows� we say that an absolutely
continuous curve � � �a� b� 
 IRn is admissible if there exist measurable functions ci�t�	
a � t � b� satisfying

Pk
j�� cj�t�

� � � and #��t� �
Pk

j�� cj�t�Xj���t�� a�e�

Then we can de�ne the distance ��x� y� between x� y � IRn as the in�mum of those
T � 
 for which there exists an admissible curve � � �
� T � 
 IRn with ��
� � x	
��T � � y� If there is no admissible curve joining x to y� then we set ��x� y� � ��

In general � may not be a metric	 since it need not be �nite� However	 in many
important situations � is �nite for every pair of points and hence it is a metric� for
instance	 this happens when the family X satis�es H�ormander�s condition �i�e�	 when
the rank of the Lie algebra generated by X equals n at any point� ����	 or when X is
a system of Grushin type vector �elds like those in ����	 ����	 and ����� In what follows
we assume in addition that the identity map induces a homeomorphism between IRn

endowed with the Euclidean topology and IRn endowed with the Carnot�Carat�eodory
metric� This assumption excludes pathological situations like typically �x	 x��y in IR��

To avoid misunderstandings	 by eB we will denote balls with respect to the Carnot�
Carath�eodory metric and we will call themmetric balls� Lipschitz functions with respect
to � will be called metric Lipschitz�

It was proved independently by Garofalo and Nhieu �
�	 Theorem ���� and by
Franchi	 Serapioni and Serra Cassano �
�	 Proposition 
��� that if u is metric Lips�
chitz	 then Xju � L�loc for j � �� 
� � � � � k	 where Xju is understood in the sense of
distributions� A careful examination of the estimates given in �
�� and �
�� leads	 how�
ever	 to a stronger result�

Theorem �� If u is metric L	Lipschitz� then jXuj � L a�e�

��



Proof� By �
��	 �
�� we know that Xju � L�loc for j � �� 
� � � � � k� Fix any point x
where Xu�x� is de�ned� We can assume that jXu�x�j � 
	 otherwise the inequality is
obvious� Since Xu � X�u� const�� we can assume that u�x� � 
�

Let Y �
Pk

j�� cjXj	 where cj � Xju�x��jXu�x�j and let B�x� �� denote the Eu�
clidean ball� Since u�x� � 
	 supB�x��� juj � L diam 	�B�x� ���� Now the estimates in
�
�� imply that for every 
 � C�

� �B�x� ���

jhY u� 
ij � CL diam 	�B�x� ���k
kL�

� lim sup
t���

Z
B�x���

�����u�z�� u�expz��tY ��

t

����� j
�z�j dz� ����

where t �
 expz��tY � denotes the integral curve of �Y passing through z at t � 
�

Note that t �
 expz��tY � is an admissible curve and hence ju�z��u�expz��tY ��j �
L��z� expz��tY �� � Ljtj	 so that

jhY u� 
ij � �CLdiam 	�B�x� ��� � L�k
kL� �

This implies that
sup
B�x���

jY uj � CLdiam 	�B�x� ��� � L�

Note that diam 	�B�x� ��� 
 
 as � 
 
 �because of the assumption that the identity
map is a homeomorphism between � and the Euclidean metric�	 so that	 taking the
limit as �
 
	 we get jY uj � L a�e�

In ����	 D� Jerison proved that if the vector �elds satisfy H�ormander�s condition
then the following version of the Poincar�e inequality holds�Z

eB ju� ueBjp dx
���p

� Cr
�Z
eB jXujp dx

���p

����

for any � � p � �� Here we integrate with respect to the Lebesgue measure� A
similar inequality for Grushin type vector �elds has been obtained earlier by Franchi
and Lanconelli	 ���� �see also ���� and ������ After those papers many other results have
been obtained� The references in the subject include ���	 ���	 ���	 ����	 ����	 ����	 �

�	
�
��	 �
��	 ��
�	 ����	 ��
��

We shall formulate our results in an abstract setting that does not rely on any
speci�c smoothness or structure assumption on X� As e�g� in �
��	 �
��	 �
��	 ��
� we just
assume that the vector �elds are such that for every locally metric Lipschitz function
u	 the pair �u� jXuj� satis�es a kind of ��� p��Poincar�e inequality� More precisely	 we
assume that there is a Borel measure �	 doubling with respect to �	 � � �	 C � 
� and
� � p �� such that for every metric ball eB of radius r

Z
eB ju� ueBj d� � Cr

�Z
�eB jXujp d�

���p

� ����

�




Note that	 as we pointed out above	 without loss of generality we may assume � � ��
However	 this will not play any role in our proofs�

As examples show	 ��
�	 ����	 even in the Euclidean setting it sometimes happens
that a ��� p��Poincar�e inequality holds for some p � � but the ��� ���Poincar�e inequality
fails�

Let d� � � dx	 � � 
 a�e�	 � � L�
loc� We de�ne the Sobolev spaces H��p

X �IRn� ��	
� � p � �� associated with the family of vector �elds as a completion of locally metric
Lipschitz functions in the norm

kukH��p

X
�IRn�
� � kukLp�
� � kXukLp�
��

If � � p � �	 then every metric Lipschitz function can be approximated by C�

functions in the Sobolev norm	 so equivalentlyH��p
X �IRn� �� can be de�ned as the closure

of C� functions� Indeed	 let u be metric Lipschitz with compact support� Then by the
argument of Friedrichs	 �
��	 �
��	 �
��	 the usual convolution approximation u� � 
� �u
satis�es u� 
 u uniformly	 Xu� 
 Xu in Lp �with respect to the Lebesgue measure�
and Xu� is uniformly bounded	 as we can see since

Xju� � �Xj�u � ���� �Xju� � ��� � �Xju� � ���

Indeed	 the last term is bounded since Xju is bounded �again by �
�� and �
���	 whereas
the �rst term can be bounded by writing it explicitly as in the proof of Proposition ���
of �
��� This easily implies that u� 
 u in H��p

X �IRn� ���

Under an additional assumption on � all the above de�nitions are equivalent with
the distributional de�nition	 see �
��	 �
��� However in the case of general weights it is
more appropriate to de�ne the Sobolev space as a closure of locally metric Lipschitz
functions�

Recently	 N� Garofalo and R� Strichartz independently raised the following question�
does the Sobolev space H��q

X �IRn� associated with a system of vector �elds satisfying
�for instance� H�ormander
s condition coincide with the Sobolev space de�ned using the
Carnot	Carath�eodory distance as in de�nition ����

As we have seen	 even in the classical Euclidean setting the answer is no when q � �	
so that we assume in the question that q � ��

If Poincar�e inequality ���� holds for some p � �	 then Theorem � implies the
inclusion H��q

X �IRn� �� � M��q�IRn� �� � P ��q�IRn� �� for p � q � �� Thus the question
concerns the opposite inclusions�

In the following theorems we give an a�rmative answer� Moreover we give a !met�
ric" characterization of the Sobolev space even for q � � which is a more striking result�
Let as start with the following abstract result�

��



Theorem �� Let �S� d� �� be a metric space equipped with a doubling measure and let
N be a positive integer� Suppose that there is a linear operator which associates with
each locally Lipschitz function u a measurable function Du � S 
 IRN in such a way
that

�� If u is L	Lipschitz with L � �� then jDuj � CL a�e�

�� If u is locally Lipschitz and constant in an open set � � S� then Du � 
 a�e� in
��

Let H��p�S� be the Banach space de�ned as the closure of the set of locally Lipschitz
functions with �nite norm kuk � kukp � kDukp� Then P ��p�S� � H��p�S� for � � p �
��

It seems that in general there may be a problem with the de�nition of Du for a given
u � H��p�S�� Namely	 suppose that uk and vk are two sequences of locally Lipschitz
functions such that both sequences converge to u in Lp	 but Duk 
 g in Lp	 Dvk 
 h
in Lp	 g �� h� Then �u� g� and �u� h� represent two di�erent elements in H��p�S�	 which
means that the gradient is not uniquely determined �for related examples	 see ��
	 p�
���	 ����� This makes the situation very unpleasant� Fortunately	 for a reasonable class
of spaces we have the uniqueness of the gradient�

We say that the uniqueness of the gradient holds if the following condition is sat�
is�ed� if un is a sequence of locally Lipschitz functions such that un 
 
 in Lp and
Du
 g in Lp	 then g � 
� In such a situation we can associate a unique Du obtained
by taking the limit of $gradients� of the approximating sequence of locally Lipschitz
functions to each u � H��p�S��

Theorem �� Let �S� d� �� be a metric space equipped with a doubling measure and let
N be a positive integer� Suppose that there is a linear operator which associates with
each locally Lipschitz function u a measurable function Du � S 
 IRN in such a way
that

�� If u is L	Lipschitz with L � �� then jDuj � CL a�e�

�� If u is locally Lipschitz and constant in a measurable set E � S� then Du � 

a�e� in E�

Let � � p � �� Assume that there exist C � 
 and � � � such that for every locally
Lipschitz function u� the pair �u� jDuj� satis�es a ��� p�	Poincar�e inequality with given
C and �� De�ne H��p�S� as in Theorem ��� Then H��p�S� � P ��p�S�� the uniqueness
of the gradient holds and jDuj � Cg a�e�� whenever �u� g� satis�es the ��� p�	Poincar�e
inequality�

��



Corollary �� Assume that the system X of vector �elds on IRn is such that the identity
map gives a homeomorphism between the Carnot�Carath�eodory metric � and the Eu	
clidean metric� Let � be doubling with respect to the metric � and such that d� � � dx�
� � 
 a�e�� � � L�

loc� Let � � p � �� Assume that there exist C � 
 and � � � such
that for every locally metric Lipschitz function uZ

eB ju� ueBj d� � Cr
�Z

�eB jXujp d�
���p

����

for all metric balls� De�ne H��p
X �IRn� �� as before �completion of the space of all locally

metric Lipschitz functions�� Then H��p
X �IRn� �� � P ��p�IRn� �� ��� the uniqueness of the

gradient holds and jXuj � Cg whenever �u� g� satis�es a ���p�	Poincar�e inequality �with
constants which may be di�erent from C and � in ���� ��

The assumptions of the corollary are satis�ed for instance by a system of vector
�elds satisfying H�ormander�s condition	 by Grushin�type vector �elds like those in ����	
����	 and ���� or by the general vector �elds considered in �
��	 �
��	 ���	 ��
��

Proof of Theorem ��� Assume that u � P ��p i�e�	 there exists 
 � g � Lp and
C � 
	 � � � such that the ��� p��Poincar�e inequalityZ

B
ju� uBj d� � Cr

�Z
�B

gp d�
���p

holds on every ball B of radius r�

Fix � � 
 and de�ne the covering fBig	 the Lipschitz partition of unity f
ig	 and
u� as in the proof of Theorem �� First we show that u� 
 u in Lp�S� as �
 
�

Due to Theorem � there exists � � � such that�Z
B
ju� uBj

p d�
���p

� Cr
�Z

�B
gp d�

���p

on every ball B of radius r� Here the constant C is not necessarily the same as in the
�rst inequality�

Using the fact that the sum in the de�nition of u� only has a uniformly bounded
number of nonzero terms we obtain

ju� u�j
p � C

X
i

j
ij
pju� uBi

jp � C
X
i

ju� uBi
jp�Bi

�

and henceZ
S
ju� u�j

p d� � C
X
i

Z
Bi

ju� uBi
jp d� � C�

X
i

Z
�Bi

gp d� � C�
Z
S
gp d��

Thus u� 
 u in Lp�S� as �
 
�

The following lemma is a variant of Lemmas � and �� For the sake of completeness
we provide a proof�

��



Lemma �� Assume that the pair �u� g� is as above� Then

jDu�j � C
X
i

�Z
	�Bi

gp d�
���p

�Bi
�

Proof� For x � S �x a ball in the covering that contains x� Denote the ball by B��
Then

jDu��x�j � jD�u� � uB�
��x�j �

X
i
x�Bi

jD
i�x�jjuBi
� uB�

j

� C���
X

i
x�Bi

Z
B�

Z
Bi

ju�y�� u�z�j d��y� d��z�

� C���
Z
	B�

ju�y�� u	B�
j d��y�

� C
�Z

	�B�

gp d�
���p

�

In the proof of the �rst inequality we used �nite additivity of D and property 
� of D�
The proof of the lemma is complete�

We claim that we can subtract a subsequence of Du�n weakly convergent in Lp�
Assume for a moment that we have already proved this claim and we show how to
complete the proof of the theorem� indeed	 by Mazur�s lemma a sequence of convex
combinations of u�n is a Cauchy sequence for the norm in the space H��p and this
sequence converges to u� Thus u � H��p and Theorem �� is proved once the claim is
proved� Thus we are left with the proof of the claim�

Assume �rst that p � �� By Lemma ��	 sup�
R
S jDu�j

p � C
R
S g

p	 so that the
sequence Du� is bounded in Lp and the claim follows from the re�exivity of the space�
The case p � � requires more e�ort� By Lemma � and Lemma �� the family jDu�nj
is uniformly integrable and lim supn�� jDu�nj � Cg� Hence	 by the Dunford�Pettis
theorem	 we �nd a function h � L�

loc and a subsequence of Du�n �also denoted by Du�n�
that converges weakly to h in L� on every bounded set� Now it su�ces to prove that
the given subsequence converges weakly in L��S��

As in the last step of the proof of Lemma �	 Mazur�s lemma implies that jhj � Cg
and hence h � L�� We have to prove that for every 
 � L�	Z

S
Du�n
d�


Z
S
h
 d�� ����

We know that this property holds for 
 with bounded support� By B�R� we will denote
the ball with radius R centred at a �xed point� Fix 
 � L�� We have����Z

S
�Du�n � h�


���� �
�����
Z
B�R�

�Du�n � h�


������ k
k�

Z
SnB�R�

jhj� k
k�

Z
SnB�R�

jDu�nj

��



The �rst term on the right hand side goes to 
 as n 
 �� The second term is very
small provided R is su�ciently large� To estimate the last term we apply Lemma ��	Z

SnB�R�
jDu�nj � C

Z
SnB�R����n�

g�

This term is very small �independently on n� provided R is large� The estimates imply
convergence ����� The proof of Theorem �� is complete�

Proof of Theorem ��� First we prove the uniqueness of the gradient by modifying
the argument of Semmes ��
�� Let un be a sequence of locally Lipschitz functions such
that un 
 
 in Lp and Dun 
 g in Lp� We have to prove that g � 
�

By selecting a subsequence we may assume thatZ
S
�jun�� � unj

p � jDun�� �Dunj
p d�� � �
�np� �

�

This implies that the sequences un and Dun converge a�e� Let un���un � vn� Since by
assumption �u� jDuj� satis�es the ��� p��Poincar�e inequality	 by Proposition 
 we have

j�un�� � un��x�� �un�� � un��y�j � Cd�x� y�
�
�M jDvnj

p�x����p � �M jDvnj
p�y����p

�
�

Hence for l � k � k�

j�ul � uk��x�� �ul � uk��y�j � Cd�x� y� �gk��x� � gk��y�� �

where

gk��x� �
�X

n�k�

�M jDvnj
p�x����p �

Taking the limit as l 
� we obtain

juk�x�� uk�y�j � Cd�x� y��gk��x� � gk��y�� � �
��

for all k � k� and almost every x and y� Now we estimate the size of the level sets of
the function gk��

��fgk� � tg� �
�X

n�k�

�
��

�M jDvnj
p���p �

t


n�k���

	�

�
�X

n�k�

C

�n�k����p

tp

Z
S
jDvnj

p d�

� C �t�p�
�k�p�

In the middle inequality we used the weak type estimate for the maximal function ���	
while in the last inequality we invoked �

��

Let Ek��t � fgk� � tg� Note that �
�� implies that ukjSnEk��t
is Lipschitz with the

Lipschitz constant Ct�

��



Observe now that if u is locally Lipschitz and ujF is Lipschitz with the Lipschitz
constant L	 then jDuj � CL almost everywhere in F � Indeed	 ujF can be extended to a
globally Lipschitz function %u on S with the Lipschitz constant L �see	 ���	 Theorem ����	
���	 Section 
��
����� Hence jD%uj � CL a�e� Since u� %u � 
 in F 	 then jD�u� %u�j � 

a�e� in F and thus jDuj � CL a�e� in F �

Returning to the theorem we get jDukj � Ct a�e� in S n Ek��t	 and hence jgj � Ct
a�e� in S n Ek��t� Thus ��fjgj � Ctg� � ��Ek��t� 
 
 as k� 
 �� Since t � 
 can be
arbitrary small we conclude that g � 
 a�e� and the uniqueness of the gradient follows�

By Theorem �� we know that P ��p�S� � H��p�S�� The converse inclusion follows
from the de�nition of H��p�S� and the fact that we have a ��� p��Poincar�e inequality for
locally Lipschitz functions�

Thus it remains to prove that if the pair �u� g� satis�es ��� p��Poincar�e inequality	
then jDuj � Cg a�e�

As in the proof of Theorem �� we �nd a sequence u�n such that u�n 
 u in Lp

and Du�n is weakly convergent in Lp� Then by Mazur�s lemma a sequence of convex
combinations of u�n is a Cauchy sequence in the norm of H��p�

By Lemma � and Lemma ��	 lim supn�� jDu�nj � Cg a�e� Since convex combina�
tions of Du�n converge to Du in Lp	 we conclude that jDuj � Cg a�e� This completes
the proof�

Proof of Corollary ��� According to Theorem �
	 we need only to prove the
following lemma which is of independent interest�

Lemma �� Assume that the system of vector �elds on IRn is such that the identity map
gives a homeomorphism between the Carnot�Carath�eodory metric � and the Euclidean
metric� If u is locally metric Lipschitz and it is constant in a measurable set E� then
Xu � 
 a�e� in E�

Proof� Obviously	 we may assume that u � 
 in E� Let x � E be simultaneously
a Lebesgue point of Xu and a density point of E	 both with respect to the Lebesgue
measure�

Let 
 � C�
� �B�
� ���	 
 � 
	

R

�z� dz � �	 and 
��z� � ��n
�z���� Inequality ����

holds with Y replaced by any of the Xj�s	 so that we get

j�Xju � 
���x�j � CL diam 	�B�x� ���

� C lim sup
t���

Z
B�x���

�����u�z�� u�expz��tXj��

t

����� dz �

�

Now �Xju � 
���x� 
 Xju�x� as � 
 
	 and thus it remains to show that the right
hand side of the above inequality tends to 
 as � 
 
� This is obviously true for the
�rst term on the right hand side	 so we are left with the second one�

��



Let E�
��t and E

�
��t denote the sets of all z � B�x� �� with u�z� �� 
 or u�expz��tXj�� ��


 respectively� Since the integrand in �

� is bounded by the Lipschitz constant of u
in a neighborhood of x �cf� the proof of Theorem �
�	 it su�ces to prove that to every
� � 
	 there is t��� � 
 such that sup��t�t��� jE

i
��tj�jB�x� ��j 
 
 as �
 
 for i � �� 
�

This is obvious for i � �	 as x is a density point of E and u � 
 on E� Now it remains
to show that sup��t�t��� jE

�
��tj � o��n��

Assume that t � 
 is su�ciently small� Let &t�z� � expz�tXj�� The inverse mapping
is &�t�z� � expz��tXj�� By �
�	 p� �
��	 the mapping z �
 &t�z� is bi�Lipschitz on
B�x� ��� Moreover for T � 
 small	 the Jacobian of the mapping	 which is de�ned a�e�
�by Rademacher�s theorem�	 satis�es J�z� t� � ��J��z� t�	 jJ��z� t�j � Ct for 
 � t � T 	
z � B�x� ��	 with the constant C not depending on x and t�

Note that jE 
 B�x� �� ���j � jB�x� ��j� o��n� as �
 
� Indeed	

jE 
 B�x� �� ���j � jE 
 B�x� ��j � jE 
 �B�x� �� nB�x� �� ����j�

Now since x is a density point of E	 jE
B�x� ��j � jB�x� ��j�o��n�	 and jE
�B�x� ��n
B�x� � � ����j � jB�x� �� n B�x� � � ���j � o��n�� For � � 
 we can �nd t��� such that
t��� 
 
 as �
 
 and such that &t�B�x� �� ���� � B�x� �� for 
 � t � t���� Hence by
the change of variables formula

j&t�E 
B�x� �� ���j �
Z
E�B�x������

�� Ct��� � jB�x� ��j� o��n�� �
��

Observe now that if z � &t�E
B�x� ������	 then expz��tXj� � &�t�z� � E
B�x� ��
���	 so u�expz��tXj�� � 
� Hence &t�E 
 B�x� � � ���� � B�x� �� n E�

t��	 and then by
�
��	 jE�

t��j � o��n�� This ends the proof of the lemma and hence that for the corollary�

In the metric setting a good counterpart of the length of the gradient would be for
example

Du�x� � lim sup
y�x

ju�y�� u�x�j�d�y� x��

Note that Du is an upper gradient of a given metric Lipschitz function u� However	 this
operator is not linear	 and thus it is not covered by the above theorem� Thus it seems
that the following modi�cation of the above theorem would be more suitable for the
general metric setting� Because this operator D is not linear	 we cannot use Mazur�s
lemma to turn a sequence uk convergent in Lp with Duk weakly convergent in Lp into
a Cauchy sequence in W ��p� Thus we replace in the assumption that our space be a
Banach space by the property of being closed under a kind of weak convergence�

Theorem �� Let �S� d� �� be a metric space equipped with a doubling measure� Suppose
that with each locally Lipschitz function u we can associate a nonnegative measurable
function Du �called the length of the gradient� in such a way that

�� D�u � v� � C�Du � Dv� and D��u� � Cj�jDu a�e� whenever u� v are locally
Lipschitz and � is a real�

��



�� If u is L	Lipschitz� then Du � CL a�e�

�� If u is locally Lipschitz and constant on an open set � � S� then Du � 
 a�e� in
��

Assume that W ��p�S�� � � p � � is a function space equipped with a norm k � k and
with the following properties

�� If u � Lp�S� is locally Lipschitz and such that Du � Lp�S� then u � W ��p�S� and
kuk � C�kukp � kDukp��

�� If uk � W ��p converges in Lp to w and Duk is a sequence weakly convergent in Lp

then w � W ��p�

Then P ��p�S� � W ��p�S��

As the proof is almost the same as that for Theorem ��	 we leave it to the reader�
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