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Definitions of Sobolev classes on metric spaces

Bruno Franchi, Piotr Hajlasz and Pekka Koskela*

Abstract

There have been recent attempts to develop the theory of Sobolev spaces WP
on metric spaces that do not admit any differentiable structure. We prove that
certain definitions are equivalent. We also define the spaces in the limiting case

p=1.

1. Introduction. Let 2 C IR" be an open set. By the classical Sobolev space
W1P(Q) we mean the Banach space of those p-summable functions whose distributional
gradients are p-summable as well. The space is equipped with the norm ||ul[y1, =
lu|l, + IVul|,- Here and in what follows by || - ||, we denote the LP norm.

There are several ways to generalize the notion of the Sobolev space to the setting of
metric spaces equipped with a Borel measure. Two natural definitions are the following.
For 1 < p < oo, define the Sobolev space M'(S,d, i) as the set of all u € LP(S) for
which there exists 0 < g € LP(S) such that the inequality

[u(z) —u(y)| < d(z,y)(g(x) + g9(y)) (1)

holds p-a.e. In the classical setting g corresponds to the maximal function of |Vul.
By P'?(S,d, ) we denote the set of all functions u € LP(S) such that there exist
0<gelLP(S),C>0and A >1so that the (1,p)-Poincaré inequality

1/p
7[ lu —ugldu < Cr <][ gpdu>
B AB

holds on every ball B in S, where r is the radius of B, ug is the average value of v on
B, and + denotes the average value of the integral. Notice that when S = IR", pu is
the Lebesgue measure and d the euclidean distance, u € W'(IR") and g = |Vu]| this
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inequality follows from the usual Poincaré inequality. These two different approaches
both result in the usual Sobolev class when p > 1, S = IR", and p is the Lebesgue
measure and d the euclidean distance.

In this paper we compare these two different definitions in the setting of metric
spaces and show that the Poincaré inequality for pairs of functions and upper gradients
plays a key role in the subject. See Section 2 below for the definitions. More precisely,
we shall use a fairly new self-improving property of the right hand side of a Poincaré
inequality (see Theorem 5), instead of the known self-improving property of the left
hand side (see Theorem 3).

The central examples of metric spaces we have in mind are given by the so-called
Carnot—Carathéodory metrics associated with a family of Lipschitz continuous vector
fields. As there is a natural way to define the Sobolev classes in terms of a family
of vector fields identified with first order differential operators, a crucial test for our
definitions of Sobolev spaces associated with a metric is to check compatibility with
this definition. It has been inquired by Garofalo and Strichartz whether the Sobolev
space defined by the pointwise inequality (1) above for the Carnot—Carathéodory metric
associated with a system of vector fields satisfying Hormander’s condition coincides with
the space obtained as the closure of smooth functions in the Sobolev norm generated
by the family of vector fields. Theorems 1, 11 (see the discussion preceding this result)
and 12 and Corollary 13 below give a complete answer to this question. Some partial
results have been obtained earlier in [18], [26], [30], [36], [38].

Acknowledgement. The authors wish to thank Juha Heinonen for his comments.

2. Sobolev spaces on a metric space. Our notation is fairly standard. By
L-Lipschitz functions we mean Lipschitz functions with the Lipschitz constant L. The
average value will be denoted by

1
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The space LE . is the space of functions LP-summable on every ball. The characteristic
function of a set E will be denoted by yg. Balls will be denoted by B. The ball
concentric with B and with the radius A times that of B will be denoted by AB.
General constants will be denoted by C'. The value of C' may change even in the same

string of estimates. By Borel measure we will mean nonnegative Borel-regular measure.

Fix a triple (S, d, i), where (S, d) is a metric space and p is a Borel measure that is
finite on every ball. For 1 < p < oo, Hajlasz [26], defines the Sobolev space M?(S, d, )
as the set of all u € LP(S) for which there exists 0 < g € LP such that the inequality

[u(z) —u(y)| < d(z,y)(g(x) + g9(y)) (2)

holds p-a.e. From now on, we shall write a.e. instead of p-a.e.



The space M'?(S,d, i) is equipped with the Banach norm
[ullare = [lull, + inf{|g]l,,

where the infimum is taken over the set of all functions 0 < g € LP that satisfy (2) a.e.

If Q =1IR" orif 2 C R" is an open bounded set with smooth boundary, |- | is the
Euclidean metric, and H" is the Lebesgue measure, then for 1 < p < oo

WHP(Q) = MMP(Q, |- | H), (3)

see [26] and also [31]. However, these spaces are different for p = 1, see [27] or the
example below. The inclusion W? C M for 1 < p < oo follows from the well known
pointwise inequality

u(z) — u(y)| < Clz - y|[(M[Vul(z) + M|Vul(y)), (4)

where Mg(z) = sup,q g, |9(2)| dz denotes the Hardy-Littlewood maximal opera-
tor. The opposite inclusion requires another argument that we shall not discuss now.
Since the maximal operator fails to be bounded on L', it is not surprising that in
general Wht ¢ ML, The following example is taken from [27].

Let Q = (=1/2,1/2), and u(z) = —x/(|z|log|z|). Then u € W(Q), since v/(z) =
|z|7*(log |z])™% € L'(—1/2,1/2). Suppose that there exists g € L'(—1/2,1/2), such
that (2) holds with d(z,y) = |z — y|. Then for 0 < x < 1/2, we would have |u(z) —
u(—z)| < 2z(g(x) + g(—=)) and hence

oz < 2z(g(x) + g(—x)).

Thus
—dzx

xlogx

/1/2 g(x)dr = /01/2(9(1‘) g(a))de > /01/2 .

—-1/2

This contradicts the summability of g, proving that W' ¢ MU' and hence that the
equivalence (3) fails for p = 1.

Roughly speaking, the function g in (2) corresponds to the maximal function of
the gradient. It does not reflect pointwise properties of the gradient, but it has good
properties in average — the LP norms are comparable i.e. |Vul|, ~ inf,|g||,, for
1 <p<oo.

In the remaining part of this paper we assume that S is a metric space of homoge-
neous type, i.e. that the measure y is Borel, finite on every ball, and that it satisfies a

doubling condition. This means that there exists a constant Cy > 0 such that for every
ball B

u(2B) < Cap(B).



Integrating the pointwise inequality (2) with respect to x and y, we obtain the
Poincaré type inequality

7[ |u—uB|d,u§Cr][ gdj. (5)
B B

This inequality seems weaker than (2), but, as we will see later on, the two inequalities
are almost equivalent.

Theorem 1 Let 1 < p < oo. The following conditions are equivalent.

1. uw e M"Y2(S,d, ).

2. u € LP(S) and there exist C >0, A>1,0< g € LP(S), and 1 < q < p such that
the Poincaré inequality

1/q
f|u—uB|duscr(f quu) (6)
B AB

holds on every ball B of radius r.

This result is due to Hajlasz and Koskela [30]. Moreover, under some additional
assumptions a version of it for ¢ = 1 has been proved by Franchi, Lu, and Wheeden
using a representation formula, [18], [22]. For further generalizations, see [28], [33], [38].

Implication 1. = 2. follows form (5). The opposite implication 2. = 1. is a conse-
quence of the following proposition [30, Theorem 3.2] and the maximal theorem.

q > 1, satisfies

q
loc»

Proposition 2 Assume that the pair (u,g), v € LL., 0 < g € L
inequality (6) for every ball B of radius r. Then

lu(z) — u(y)| < Cd(z,y) (Mg"(x))"* + (Mg"(y))"?)

for almost every x,y € S, where Mh(x) = sup,.oFp(,|hl du.

The maximal theorem states that for 1 < p < oo, ||Mh|zesy < C||h||ze(s)- In the
limiting case p = 1 we obtain the following weak type estimate

C
u({Mh > 1)) < = [ bl dp. (7
The maximal theorem for doubling measures is due to Coifman and Weiss [8]; the proof
follows almost the same argument as in the Euclidean case.

As we already noticed, the function g in (2) corresponds to the maximal function
of the gradient, while the functions ¢ in (6) looks more like the norm of the gradient.



Let u € L, .(S) and g : S — [0, 00| be Borel measurable functions. We say that the
pair (u, g) satisfies a (g, p)-Poincaré inequality, p,q > 1 if there exist C' > 0 and A > 1
such that the inequality

<]€9 lu— upl? du) v <Cr <]§B g du>1/p (8)

holds on every ball B of radius r. We do not put any integrability conditions upon g
here, so that we can take for example g = .

By PZ? we denote the set of all functions u € L. such that there exist 0 < g € L?,

C' > 0 and A > 1 which make the pair (u, g) satisfy the (¢, p)-Poincaré inequality (8)
on every ball B of radius r.

Obviously, inequality (8) with A = 1 implies (8) with A > 1. However, in general
the converse implication does not hold (i.e. A > 1 cannot be replaced by A = 1), see
[30]. However, if the metric space satisfies some additional geometric properties, then
one can replace A > 1 in (8) by A = 1 in the sense that if the pair (u, g) satisfies (8)
with A > 1 on every ball, then there exists a bigger constant C, such that (u, g) satisfies
(8) with A = 1 on every ball. A sufficient geometric condition for the replacement of
A >1by A =1 is that bounded and closed sets are compact and the distance between
any pair of points equals the infimum of lengths of curves joining the two points. For
details, see [34], [15, Section 5], [17, Section 3], [25], [29], [30].

The following imbedding theorem is due to Hajlasz and Koskela [29], [30, Theo-
rem 5.1] (see also [19)]).

Theorem 3 Let (S,d, ) be a metric space with u doubling. Assume that the pair
(u, g) satisfies a (1, p)-Poincaré inequality. Then there exists qo > p such that for every
1 < ¢ < qo the pair (u,g) satisfies (q, p)-Poincaré inequality. The exponent gy depends
only on the doubling constant and on p.

The constants C' and A for the (1,p) and (g, p)-Poincaré inequalities in the above
theorem may be different.

Thus for the given range 1 < ¢ < go, the class P%? is the same as the class P,”. For

that reason we restrict our attention to the class P only. We denote all LP-integrable
functions in Pl%)f by PY?(S,d, ;1) or simply by P%?(S) or by PP.

Theorem 1 states that u € MY?, p > 1, if and only if v € L? and there exist g € L?
and 1 < ¢ < p such that the pair (u, g) satisfies (1, ¢)-Poincaré inequality. This suggests
the following question: Is it true that MP(S,d, u) = PYP(S,d, p) for 1 < p < oo? In
the case p = 1 the answer is negative (see remark after Theorem 4). In the case p > 1
the answer is positive provided we assume that in addition the space supports a (1, q)-
Poincaré inequality for some 1 < ¢ < p (see the definition below). We do not know
if any additional condition is necessary. The positive answer is due to Koskela and
MacManus [38].



A related question was also raised by Hajlasz and Koskela, [30]: Is it true that if the
pair (u, g) satisfies (1, p)-Poincaré inequality, 1 < p < oo, then there exists 1 < ¢ < p
such that the pair (u,g) satisfies (1, ¢)-Poincaré inequality? Note that the positive
answer to that question together with Theorem 1 would imply M*? = P'?. Below we
give a positive answer to the question under the same additional assumption as before:
the space supports a (1, ¢)-Poincaré inequality for some 1 < ¢ < p.

First we need some definitions.

Let (S, d, i) be a triple as above. Following Heinonen and Koskela [33] we say that a
Borel function g : S — [0, 00] is an upper gradient of another Borel function u : S — R
if for every 1-Lipschitz curve v : [0,7] — S we have

u((0) ~ u(x (D) < [ gl (0)

(remember that a curve 7 is called 1-Lipschitz if d(v(8),v(a)) < |f — af for all 0 <
a < # <T). Moreover, we stress the fact that we could define upper gradients using
the class of rectifiable curves, due to the fact that every rectifiable curve admits an
arc-length parametrization, (see. [3], [45]).

We say that the space (S, d, u) supports a (1, p)-Poincaré inequality, 1 < p < oo, if
there exist C' > 0 and A > 1 such that if u is a continuous function and ¢ is an upper
gradient of u, then the pair (u, g) satisfies a (1, p)-Poincaré inequality with given C' and
A

The above notions have been developed in [33], [2], [30], [38], [42], [44].
The theorem of Koskela and MacManus [38] reads as follows.

Theorem 4 Let 1 < p < oo. If the space supports a (1,q)-Poincaré inequality for
some 1 < q < p, then PY?(S,d, u) = MYP(S,d, j1).

The most important example is R" with the Euclidean metric | - | and the Lebesgue
measure H". The space supports a (1, 1)-Poincaré inequality and hence

PLp(]Rn7|'|=Hn):Ml’p(]an|'|=Hn)7 (9)

for all 1 < p < co. As we already noted both spaces coincide with WHP(IR"), see
(3). Later we will generalize this result to the case p = 1 and prove that WHH(IR") =
PLYR™, |- |, H"). As Whl £ MY by the above example, we will also obtain that
Pl,l 7£ Ml’l.

Theorem 4 is a consequence of the following stronger result and of Theorem 1.

Theorem 5 Let 1 < p < oo and let the space support a (1,q)-Poincaré inequality
for some 1 < q < p with given A\ > 1. Let 7 > 1 and assume that the pair (u,g),
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u € L (S), 0 < ge LP(S), satisfies the family

1/p
][ lu —upldp < Cr (7[ gpdu> (10)
B 7B

of Poincaré inequalities on every ball B with radius r. Then there exists another con-
stant C" > 0 such that for every ball B of radius r

1/q
7[ lu —ug|dp < C'r (7[ quu> : (11)
B AB

Remarks. 1) Compare the case ¢ = p with the discussion preceding Theorem 3. The
novelty here is that A might be smaller than 7. 2) The idea of the proof is to approximate
u by “convolutions”. The approximating sequence satisfies a (1, ¢)-Poincaré inequality
and by passing to the limit we obtain (11). Similar techniques of approximation were
employed in [42], [21], [38]. The case ¢ = p requires new ideas.

Proof of Theorem 5. We start with a construction of an approximating sequence.
Fix £ > 0 and let {B}} be a covering of S by balls with radii € and the property that
the balls %Bf are pairwise disjoint. Put now B; = 2B}: the doubling property implies
that there is a constant C' such that no point of S belongs to more than C balls B;.
Let {¢;} be a Lipschitz partition of unity associated to the given family of balls i.e.,
Yiei=1,0<¢; <1, suppy; C B; and all the functions ¢; are Lipschitz with the
same constant Ce~!. To this end it is enough to choose

Yi = d(z,2) )’

Sy (At
where 9 is a smooth function, » = 1 on [0,1], ¥ = 0 on [3/2,00), 0 < ¥ < 1,
and z; is the center of B; for i = 1,2,... We can define now u. = >, ¢;up,. Then

Jplu —uduy — 0 as € — 0 on every ball B. Indeed, this is obvious when u is
continuous and the general case follows by approximating « by continuous functions in
the L' norm. For the following lemma, see [38, Lemma 4.7].

Lemma 6 Let u be an arbitrary locally integrable function. If d(b,a) < €, then
lue(b) — us(a)| < Cd(b,a)h.(a),
where

he = Z <7£B 7£Bi luly) ~ u(z)] du(y) du@)) XB;-

€

We do not prove this lemma. Later we will prove a similar result (Lemma 14), but in
a different setting. The proof given there may be easily modified to cover Lemma 6.



As was noticed in [38], the above lemma implies that C'h. is an upper gradient for
ue. Indeed, let v : [0,7] — S be a 1-Lipschitz curve. Then for 0 < o <t < < T,
0 —a < e, we have

Jue(v(5)) = ue(v(a))] |ue(v(8)) = u(v(0)] + |uc(v(c)) = ue(v(2)]

ClB — alhe(v(1)). (12)

The last inequality follows from Lemma 6 as 7 is 1-Lipschitz. Since a < t < [ was
arbitrary, taking the average of (12) over ¢ we obtain

<
<

B
luc(v(8)) — ue(v(e))| < C /a he(+(1)) dt.

Let now ty =0 < t; < ... <ty =T be a partition of [0, 7] into N congruent intervals
of length less than €. Then

|u(2(T)) = u(v(0))] < 2_:1 u((t;)) — u(y(t;1))] < /OT he(~(1)) dt,

and the assertion is proved.

If the space supports a (1, ¢)-Poincaré inequality, we conclude that the pair (u., h.)
satisfies a (1, ¢)-Poincaré inequality.

Assume now that the pair (u, g) satisfies the assumptions of Theorem 5. It remains
to prove that if we pass to the limit as e — 0 in the (1, ¢)-Poincaré inequality for (ue, h.)
then we arrive at the desired inequality (11).

As a direct consequence of the definition of k. and the (1, p)-Poincaré inequality for
(u, g) we obtain the following result.

Lemma 7 If the pair (u, g) satisfies the family (10) of (1, p)-Poincaré inequalities, then
1/p
he <CY (7[ gpdu) XB;-
i 471 B;

The following lemma that seems to be of independent interest is the main new ingredient
in our argument.

Lemma 8 Let Y be a metric space equipped with a doubling measure v. Let 0 < g €
LP(Y), 1 < p < o0, and suppose o > 1. To every e > 0 we associate a covering {B;};

as above. Let
1/p
9= (7[3 g dV) XB;i-
i 9B



Then limsup,_,59. < Cg a.e. Moreover, for every ball B and each 1 < q < p, the
family {g?}c is uniformly integrable and

lim sup ng dv < C’/ng dv. (13)

e—0

Here the constant C' depends only on q and on the doubling constant.

We recall that the uniform integrability of the family {¢?}. on B means that for
every 1 > 0 there exists ¢ > 0 such that if A C B, u(A) < 9, then sup, [, g2 < .

Note that Theorem 5 is a direct consequence of the above two lemmas and the fact
that (ue, he) satisfies the (1, ¢)-Poincaré inequality.

Proof of Lemma 8. First note that limsup,_,g.(z) < Cg(x) whenever z is a
Lebesgue point of ¢g?. Indeed, if 2 € B;, then 0B; C B(x,2(1 + 0)¢), and hence

1p
lim sup g.(z) < limsupC <][ g* du) = Cyg(x).
B(z,2(140)e)

e—0 e—0

The constant C' is independent of € due to the fact that both the number of balls B;
such that € B; and the ratio v(B(z,2(1+0)¢))/v(0B;) can be bounded by a constant
depending only on the doubling constant.

Let us show now that the family {g?}. is uniformly integrable on B. Since the sum
in the definition of g, is locally finite, we have

g <Oy, (7[ i dV> XB:
P oB;

and hence sup, [z ¢?dv < C [y ¢? dv. This and the Holder inequality imply uniform
integrability when 1 < ¢ < p, so that we can restrict ourselves to the case ¢ = p. If the
family failed to be uniformly integrable on B, then there would exist n > 0, a sequence
of sets K,, C B and a sequence ¢,, such that

v(K,) —0 and /K gt dv>n

Then we would have

<[ #a < C / (7[ pd)d
g /KngE" vo= ;KnﬁBi aBig v)

= C Z M/ ¢’ dv = A,. (14)
KB 40 V(OBZ') oB;

Given € > 0 we can find § > 0 such that

v(E)<o = /gpdy<5.
B

9



By the doubling property, there exists a constant C’ such that >; x5, < > xon, < C'.
Fix a positive integer m and choose n so large that v(K,) < 6/(C'm). Divide now the
set of indices 4 such that K, NB; # @) into two classes: the class I; consists of all those ¢
such that v(K, N B;)/v(0B;) > 1/m, whereas the class I, consists of all the remaining
indices. We have

v(lJoB) <m > v(K,NB)=m)_ /K xg,dv < mC'v(K,) < 4.

i€l i€l 1€l
Hence
1
A, = < / v d —/ rd <c’< —/ pd).
+Z_Z o‘B-g V+Z o'B.L-g V= g+m Yg v

Since we can choose an ¢ arbitrary small and an m arbitrary large we arrive to a
contradiction with (14). This completes the proof of the uniform integrability.

We now proceed to prove (13). Fix 1 < ¢ < p and a ball B. It is enough to prove
that for every sequence ¢, — 0 for which the limit on the left hand side of (13) exists,
we have

lim/ggndng/qul/
B B

n— 00

with some constant C' depending on ¢ and the doubling constant only. Fix such a
sequence {&,},. We need the following theorem of Dunford and Pettis, see [10] or [11].

Theorem 9 Let Z be a measurable space equipped with o finite measure v and let
fn € LY(Z,v). Then the sequence {f,}, is weakly relatively compact in L*(Z,v) if and
only if the family {|f.|}n is uniformly integrable.

Due to the above theorem we can find a subsequence of g¢ (also denoted by g¢ ) and
h € L'(B) such that g? — h weakly in L'(B). Then due to Mazur’s lemma a sequence
of convex combinations of g¢ converges to h a.e.

Since limsup,_,., g., < Cg a.e. we conclude that h < Cg¢? a.e. and hence (13)
follows.

This completes the proof of Lemma 8 and hence those of Theorem 5 and Theorem 4.

In the case 1 < ¢ < p of Lemma 8 we could provide a more direct proof. Namely
we could avoid the proof of the uniform integrability of the family {g?}., and replace
Dunford-Pettis’ theorem by the reflexivity of the space LP/? and the fact that the
sequence g? is bounded in e/,

The case 1 < g < p of Lemma 8 implies Theorem 5 for 1 < ¢ < p and hence it is
sufficient for the proof of Theorem 4. The case p = ¢ of Lemma 8 will be used in the
next section.

10



3. Sobolev spaces arising from vector fields. One of the central applications
of the theory of Sobolev spaces on metric spaces concerns the theory of Sobolev spaces
associated with a family of vector fields that we next describe.

Let X = (X1,...,X%) be a family of vector fields in Q@ C R"™ with real valued,
locally Lipschitz continuous coefficients. One can define the Sobolev space Wy (Q),
1 < p < o0, associated with the family X as the space of all the functions with finite
norm [Jully e = [lull, + || Xull,, where | Xul? = Y |X;ul? and the derivatives X;u are
understood in the sense of distributions.

Another way to define the space for 1 < p < oo is to take the closure of C'* functions
in the above norm. As in the Euclidean case, the two approaches are equivalent. This
was obtained independently in [21] and [25]. The method goes, however, back to
Friedrichs [23].

For the sake of simplicity, we assume from now on that {2 = IR".

It is well known that we can canonically associate with X a metric (the so-called
Carnot-Carathéodory metric, or control metric) as follows: we say that an absolutely
continuous curve v : [a,b] — IR" is admissible if there exist measurable functions ¢;(t),
a <t < b, satisfying Z?Zl ¢j(t)? <1 and 4(t) = Z?Zl ci(t)X;(v(2)) a.e.

Then we can define the distance p(z,y) between z,y € IR" as the infimum of those
T > 0 for which there exists an admissible curve v : [0,7] — R" with v(0) = =,
v(T) = y. If there is no admissible curve joining x to y, then we set p(z,y) = oo.

In general p may not be a metric, since it need not be finite. However, in many
important situations p is finite for every pair of points and hence it is a metric: for
instance, this happens when the family X satisfies Hormander’s condition (i.e., when
the rank of the Lie algebra generated by X equals n at any point) [41], or when X is
a system of Grushin type vector fields like those in [16], [14], and [15]. In what follows
we assume in addition that the identity map induces a homeomorphism between IR"
endowed with the Euclidean topology and IR" endowed with the Carnot—Caratéodory
metric. This assumption excludes pathological situations like typically J,, 240, in R?.

To avoid misunderstandings, by B we will denote balls with respect to the Carnot—
Carathéodory metric and we will call them metric balls; Lipschitz functions with respect
to p will be called metric Lipschitz.

It was proved independently by Garofalo and Nhieu [24, Theorem 1.3] and by
Franchi, Serapioni and Serra Cassano [21, Proposition 2.9] that if u is metric Lips-
chitz, then X;u € L5 for j = 1,2,...,k, where X;u is understood in the sense of
distributions. A careful examination of the estimates given in [21] and [24] leads, how-

ever, to a stronger result.
Theorem 10 If u is metric L-Lipschitz, then | Xu| < L a.e.
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Proof. By [21], [24] we know that X,u € LS, for j = 1,2,.... k. Fix any point =
where Xu(z) is defined. We can assume that | Xu(x)| > 0, otherwise the inequality is
obvious. Since Xu = X (u — const.) we can assume that u(xz) = 0.

Let Y = Zle ¢;X;, where ¢; = Xju(z)/|Xu(x)| and let B(z,e) denote the Eu-
clidean ball. Since u(x) = 0, supp,.. |u| < Ldiam ,(B(z,¢)). Now the estimates in
[21] imply that for every ¢ € C§°(B(z,¢))

[(Yu, )| < CLdiam ,(B(z,¢))ll¢l|r:

u(z) — ufexp, (—tY))

+ limsup ;

t—0+ JB(z.e)

|o(2)| dz, (15)

where ¢ — exp,(—tY’) denotes the integral curve of —Y passing through z at ¢t = 0.

Note that ¢ — exp,(—tY") is an admissible curve and hence |u(z) —u(exp,(—tY))| <
Lp(z,exp,(—tY)) < L|t|, so that

[(Yu, )| < (CLdiam ,(B(z,¢)) + L)||]| -

This implies that

sup |Yu| < CLdiam ,(B(z,€)) + L.

B(z,)
Note that diam ,(B(z,e)) — 0 as € — 0 (because of the assumption that the identity
map is a homeomorphism between p and the Euclidean metric), so that, taking the
limit as € — 0, we get [Yu| < L a.e.

In [34], D. Jerison proved that if the vector fields satisfy Hormander’s condition
then the following version of the Poincaré inequality holds

1/p 1/p
(7[5 lu — ugl? dx) <Cr <7% | X ul? dx) (16)

for any 1 < p < oo. Here we integrate with respect to the Lebesgue measure. A
similar inequality for Grushin type vector fields has been obtained earlier by Franchi
and Lanconelli, [16] (see also [14] and [15]). After those papers many other results have
been obtained. The references in the subject include [1], [4], [5], [17], [18], [19], [22],
[25], [29], [30], [39], [40].

We shall formulate our results in an abstract setting that does not rely on any
specific smoothness or structure assumption on X. Ase.g. in [24], [25], [21], [30] we just
assume that the vector fields are such that for every locally metric Lipschitz function
u, the pair (u, |Xul) satisfies a kind of (1, p)-Poincaré inequality. More precisely, we
assume that there is a Borel measure p, doubling with respect to p, A > 1, C' > 0, and
1 < p < oo such that for every metric ball B of radius r

1/p
7%|u—u§|d,u§ Cr <7£§|Xu|pd,u> : (17)
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Note that, as we pointed out above, without loss of generality we may assume A = 1.
However, this will not play any role in our proofs.

As examples show, [30], [33], even in the Euclidean setting it sometimes happens
that a (1, p)-Poincaré inequality holds for some p > 1 but the (1, 1)-Poincaré inequality
fails.

Let dp = wdz, w > 0 a.e., w € LL .. We define the Sobolev spaces HP(IR", 1),
1 < p < o0, associated with the family of vector fields as a completion of locally metric
Lipschitz functions in the norm

el gty = Mallzrgy + 11Xl zog.

If 1 < p < oo, then every metric Lipschitz function can be approximated by C*
functions in the Sobolev norm, so equivalently Hy”(IR", 1) can be defined as the closure
of C'* functions. Indeed, let u be metric Lipschitz with compact support. Then by the
argument of Friedrichs, [23], [21], [24], the usual convolution approximation u. = ¢, *u
satisfies u. — u uniformly, Xu, — Xwu in L? (with respect to the Lebesgue measure)
and Xu, is uniformly bounded, as we can see since

Xjue = [Xj(u* o) — (Xju) x ¢c] + (Xju) * .

Indeed, the last term is bounded since X;u is bounded (again by [21] and [24]), whereas
the first term can be bounded by writing it explicitly as in the proof of Proposition 1.4
of [21]. This easily implies that u, — u in Hy"(IR", ).

Under an additional assumption on p all the above definitions are equivalent with
the distributional definition, see [21], [24]. However in the case of general weights it is
more appropriate to define the Sobolev space as a closure of locally metric Lipschitz
functions.

Recently, N. Garofalo and R. Strichartz independently raised the following question:
does the Sobolev space H)l(’q(]R") associated with a system of vector fields satisfying
(for instance) Hérmander’s condition coincide with the Sobolev space defined using the
Carnot-Carathéodory distance as in definition (2)?

As we have seen, even in the classical Euclidean setting the answer is no when ¢ = 1,
so that we assume in the question that ¢ > 1.

If Poincaré inequality (17) holds for some p > 1, then Theorem 1 implies the
inclusion H¢!(IR™, 1) € M“(IR", i) C PY(IR™, i) for p < ¢ < oo. Thus the question
concerns the opposite inclusions.

In the following theorems we give an affirmative answer. Moreover we give a “met-
ric” characterization of the Sobolev space even for ¢ = 1 which is a more striking result.
Let as start with the following abstract result.

13



Theorem 11 Let (S,d, p) be a metric space equipped with a doubling measure and let
N be a positive integer. Suppose that there is a linear operator which associates with
each locally Lipschitz function u a measurable function Du : S — R” in such a way
that

1. If w is L-Lipschitz with L > 1, then |Du| < CL a.e.

2. If u s locally Lipschitz and constant in an open set 2 C S, then Du =0 a.e. in
Q.

Let HY(S) be the Banach space defined as the closure of the set of locally Lipschitz
functions with finite norm ||u|| = ||u|l, + ||Dul|,. Then P(S) C H'?(S) for 1 <p <
00.

It seems that in general there may be a problem with the definition of Du for a given
u € H"(S). Namely, suppose that u; and vy are two sequences of locally Lipschitz
functions such that both sequences converge to u in LP, but Duy — g in LP, Dy, — h
in LP, g # h. Then (u, g) and (u, h) represent two different elements in H'*(S), which
means that the gradient is not uniquely determined (for related examples, see [12, p.
91], [7]). This makes the situation very unpleasant. Fortunately, for a reasonable class
of spaces we have the uniqueness of the gradient.

We say that the uniqueness of the gradient holds if the following condition is sat-
isfied: if wu, is a sequence of locally Lipschitz functions such that w, — 0 in LP and
Du — g in LP, then g = 0. In such a situation we can associate a unique Du obtained
by taking the limit of ‘gradients’ of the approximating sequence of locally Lipschitz
functions to each u € H"“?(S).

Theorem 12 Let (S,d, pu) be a metric space equipped with a doubling measure and let
N be a positive integer. Suppose that there is a linear operator which associates with
each locally Lipschitz function u a measurable function Du : S — RY in such a way
that

1. If w is L-Lipschitz with L > 1, then |Du| < CL a.e.

2. If u is locally Lipschitz and constant in a measurable set E C S, then Du = 0
a.e. in E.

Let 1 < p < o0. Assume that there exist C > 0 and X\ > 1 such that for every locally
Lipschitz function u, the pair (u,|Du|) satisfies a (1, p)-Poincaré inequality with given
C and ). Define H'"*(S) as in Theorem 11. Then H'“P(S) = PY?(S), the uniqueness
of the gradient holds and |Du| < Cg a.e., whenever (u, g) satisfies the (1, p)-Poincaré
inequality.

14



Corollary 13 Assume that the system X of vector fields on IR" is such that the identity
map gives a homeomorphism between the Carnot-Carathéodory metric p and the FEu-
clidean metric. Let p be doubling with respect to the metric p and such that dy = w dzx,
w>0ae,we€Ll. Letl<p<oo. Assume that there exist C > 0 and A > 1 such
that for every locally metric Lipschitz function u

1/p
7%|u—u§|du <Cr <7£§|Xu|pdu> (18)

for all metric balls. Define H)l(’p(IR", w) as before (completion of the space of all locally
metric Lipschitz functions). Then Hy?(R", u) = PY*(IR", p, 1), the uniqueness of the
gradient holds and | Xu| < Cg whenever (u, g) satisfies a (1,p)-Poincaré inequality (with
constants which may be different from C' and X in (18) ).

The assumptions of the corollary are satisfied for instance by a system of vector
fields satisfying Hormander’s condition, by Grushin-type vector fields like those in [16],
[14], and [15] or by the general vector fields considered in [24], [25], [9], [30].

Proof of Theorem 11. Assume that u € P'? i.e., there exists 0 < g € L? and
C >0, A > 1 such that the (1, p)-Poincaré inequality

1/p
7[ lu—ugldp < Cr <][ gpd,u>
B AB

holds on every ball B of radius r.

Fix € > 0 and define the covering {B;}, the Lipschitz partition of unity {¢;}, and
u. as in the proof of Theorem 5. First we show that u. — u in LP(S) as ¢ — 0.

Due to Theorem 3 there exists 7 > 1 such that

1/p 1/p
()" <o (f, v
B B

on every ball B of radius r. Here the constant C' is not necessarily the same as in the
first inequality.

Using the fact that the sum in the definition of u. only has a uniformly bounded
number of nonzero terms we obtain

lu—uclP < CY |gilPlu—up,|P < CY |u—up,
7 7

pXBia

and hence
/|u—ug|de§CZ/ Iu—uBiI”dMSCsZ/ g”dﬂﬁcgfgpdﬂ-
S 7 /B i 'TBi o

Thus u. — w in LP(S) as € — 0.

The following lemma is a variant of Lemmas 6 and 7. For the sake of completeness
we provide a proof.

15



Lemma 14 Assume that the pair (u, g) is as above. Then

|Du,| < c;(jg

1/p
q" du) XB;-
AB;

Proof. For x € S fix a ball in the covering that contains x. Denote the ball by B,.
Then

Du(e)| = | —up) @) < Y |Di(a)llus, — us|
< Ct B o, f, lul) — )| duly) dp(2)

< Ce it fuly) — sl du(y)

1/p
)"
3By

In the proof of the first inequality we used finite additivity of D and property 2. of D.
The proof of the lemma is complete.

IN

We claim that we can subtract a subsequence of Du,., weakly convergent in LP.
Assume for a moment that we have already proved this claim and we show how to
complete the proof of the theorem: indeed, by Mazur’s lemma a sequence of convex
combinations of u, is a Cauchy sequence for the norm in the space H'? and this
sequence converges to u. Thus u € H*” and Theorem 11 is proved once the claim is
proved. Thus we are left with the proof of the claim.

Assume first that p > 1. By Lemma 14, sup, [¢ |Du.|P < C [4¢P, so that the
sequence Du, is bounded in LP and the claim follows from the reflexivity of the space.
The case p = 1 requires more effort. By Lemma 8 and Lemma 14 the family |Du,, |
is uniformly integrable and limsup,,_,. |Du.,| < Cg. Hence, by the Dunford—Pettis
theorem, we find a function h € L} and a subsequence of Du,, (also denoted by Du.,)
that converges weakly to h in L' on every bounded set. Now it suffices to prove that
the given subsequence converges weakly in L'(.5).

As in the last step of the proof of Lemma 8, Mazur’s lemma implies that |h| < Cyg
and hence h € L'. We have to prove that for every ¢ € L™,

/Dusnwdu—)/hgpdu. (19)
s s

We know that this property holds for ¢ with bounded support. By B(R) we will denote
the ball with radius R centred at a fixed point. Fix ¢ € L*°. We have

D € —h =+ oo/ h + oo/ D €
g P = 00| il [ 0+l [ 1D
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The first term on the right hand side goes to 0 as n — oo. The second term is very
small provided R is sufficiently large. To estimate the last term we apply Lemma 14,

Sy 1Pl < € g
S\B(R S\B(R—8Xe,,)

This term is very small (independently on n) provided R is large. The estimates imply
convergence (19). The proof of Theorem 11 is complete.

Proof of Theorem 12. First we prove the uniqueness of the gradient by modifying
the argument of Semmes [32]. Let u,, be a sequence of locally Lipschitz functions such
that u, — 0 in L? and Du,, — ¢ in L. We have to prove that g = 0.

By selecting a subsequence we may assume that
/5 (Jtnsr — tn]? + | Dttnys — Dug|? dp) < 1077, (20)

This implies that the sequences u,, and Du,, converge a.e. Let u,+1 —u, = v,. Since by
assumption (u, |Dul) satisfies the (1, p)-Poincaré inequality, by Proposition 2 we have

(g1 = 1) () = (i1 — ) (y)] < Cd(@,y) (M| Do [P(2)) 7 + (M|Dv, P ()7 .
Hence for I > k > kg

(= up) () = (w = we)(y)] < C(x,y) (gro (%) + gro ()

where
o

gro(2) = 32 (M| Du, ()7

n=ko

Taking the limit as [ — oo we obtain

|u(2) = un(y)| < Cd(z, y)(gro (%) + g (9)) (21)

for all £ > ko and almost every x and y. Now we estimate the size of the level sets of
the function gy,:

g > 1) < 3 n({rDuy > o))

n=ko
(n ko+1)p
<y T / | Do, P dps
n=ko
< O’t*Pm*’“op.

In the middle inequality we used the weak type estimate for the maximal function (7),
while in the last inequality we invoked (20).

Let Er,r = {gr, > t}. Note that (21) implies that ug[s\s, , is Lipschitz with the
Lipschitz constant C't.
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Observe now that if u is locally Lipschitz and u|z is Lipschitz with the Lipschitz
constant L, then |Du| < C'L almost everywhere in F'. Indeed, u|p can be extended to a
globally Lipschitz function @ on S with the Lipschitz constant L (see, [43, Theorem 5.1],
[13, Section 2.10.4]). Hence |Du| < C'L a.e. Since u — @ = 0 in F', then |D(u—@)| =0
a.e. in F' and thus |Du| < CL a.e. in F.

Returning to the theorem we get |Duy| < Ct a.e. in S\ Ej,, and hence |g| < Ct
a.e. in S\ Ej, . Thus p({|g| > Ct}) < p(Eky,r) — 0 as kg — oo. Since ¢ > 0 can be
arbitrary small we conclude that ¢ = 0 a.e. and the uniqueness of the gradient follows.

By Theorem 11 we know that PP(S) C H'?(S). The converse inclusion follows
from the definition of H*(S) and the fact that we have a (1, p)-Poincaré inequality for
locally Lipschitz functions.

Thus it remains to prove that if the pair (u, g) satisfies (1, p)-Poincaré inequality,
then |Du| < Cg a.e.

As in the proof of Theorem 11 we find a sequence u., such that u. — w in L?
and Du, is weakly convergent in LP. Then by Mazur’s lemma a sequence of convex
combinations of u,, is a Cauchy sequence in the norm of H?.

By Lemma 8 and Lemma 14, limsup,,_, ., |Du.,| < Cg a.e. Since convex combina-
tions of Du,, converge to Du in LP, we conclude that |Du| < Cg a.e. This completes
the proof.

Proof of Corollary 13. According to Theorem 12, we need only to prove the
following lemma which is of independent interest.

Lemma 15 Assume that the system of vector fields on IR™ is such that the identity map
gives a homeomorphism between the Carnot—Carathéodory metric p and the Euclidean

metric. If u is locally metric Lipschitz and it is constant in a measurable set E, then
Xu=0a.e mnkE.

Proof. Obviously, we may assume that u = 0 in E. Let x € E be simultaneously
a Lebesgue point of Xu and a density point of E, both with respect to the Lebesgue
measure.

Let ¢ € C°(B(0,1)), ¢ >0, [@(2)dz =1, and ¢.(z) = e "p(z/e). Inequality (15)
holds with Y replaced by any of the Xj’s, so that we get
|(Xjuxp.)(z)] < CLdiam ,(B(z,¢))

u(z) — u(exp, (~1X;))
t

+ Climsup dz (22)

t—0+ JB(z.e)

Now (Xju* ¢.)(z) = Xu(x) as ¢ — 0, and thus it remains to show that the right
hand side of the above inequality tends to 0 as ¢ — 0. This is obviously true for the
first term on the right hand side, so we are left with the second one.
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Let B!, and E?, denote the sets of all z € B(z, ¢) with u(z) # 0 or u(exp,(—tX;)) #
0 respectively. Since the integrand in (22) is bounded by the Lipschitz constant of u
in a neighborhood of = (cf. the proof of Theorem 10), it suffices to prove that to every
e > 0, there is t(¢) > 0 such that supy,,.) |EL,|/|B(z,e)| = 0 as e — 0 for i = 1,2.
This is obvious for ¢ = 1, as x is a density point of F and u = 0 on E. Now it remains
to show that supg,ye) | EZ,| = o(e™).

Assume that ¢ > 0 is sufficiently small. Let ®;(z) = exp,(¢X;). The inverse mapping
is ®_,(z) = exp,(—tX;). By [21, p. 101], the mapping z +— ®,(z) is bi-Lipschitz on
B(z,e). Moreover for T' > 0 small, the Jacobian of the mapping, which is defined a.e.
(by Rademacher’s theorem), satisfies J(z,t) = 14+J1(2,t), |J1(2,t)] < Ctfor 0 <t < T,
z € B(x,¢), with the constant C' not depending on = and t.

Note that |F N B(z,e — &?)| = |B(z,¢)| + 0o(") as € — 0. Indeed,
|EN B(z,e —¢*)| = |EN B(x,e)| — |[EN (B(x,¢) \ B(w, e —&%))|.

Now since z is a density point of E, |[ENB(x,¢)| = |B(z,¢)|+0(e"), and |[EN(B(z,¢)\
B(z,e — %)) < |B(x,¢) \ B(z,e —€?)| = o(¢"). For € > 0 we can find #(¢) such that
t(e) = 0 as ¢ = 0 and such that ®;(B(z,e — ¢?)) C B(z,¢) for 0 < ¢t < t(¢). Hence by
the change of variables formula

1B,(E N B(z,e — £2)| z/ 1 - Ct(e) = |B(z, )| + o(e"). (23)
ENB(z,e—¢2)

Observe now that if 2 € ®,(ENB(z,c—e?)), then exp,(—tX;) = ®_4(2) € ENB(x,e—

€?), so u(exp,(—tX;)) = 0. Hence ®(E N B(x,e —€?)) C B(xz,¢) \ E7., and then by

(23), |EZ.| = o(¢™). This ends the proof of the lemma and hence that for the corollary.

In the metric setting a good counterpart of the length of the gradient would be for
example
Du(z) = limsup fu(y) = u(a) /d(y, 7).

Note that Du is an upper gradient of a given metric Lipschitz function u. However, this
operator is not linear, and thus it is not covered by the above theorem. Thus it seems
that the following modification of the above theorem would be more suitable for the
general metric setting. Because this operator D is not linear, we cannot use Mazur’s
lemma to turn a sequence u; convergent in LP with Duy, weakly convergent in L? into
a Cauchy sequence in WP, Thus we replace in the assumption that our space be a
Banach space by the property of being closed under a kind of weak convergence.

Theorem 16 Let (S, d, i) be a metric space equipped with a doubling measure. Suppose
that with each locally Lipschitz function u we can associate a nonnegative measurable
function Du (called the length of the gradient) in such a way that

1. D(u+v) < C(Du+ Dv) and D(Au) < C|A\|Du a.e. whenever u,v are locally
Lipschitz and X\ is a real.
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2. If u is L-Lipschitz, then Du < CL a.e.
3. If w 1s locally Lipschitz and constant on an open set 2 C S, then Du =10 a.e. in
Q.
Assume that WHP(S), 1 < p < oo is a function space equipped with a norm || - || and

with the following properties

1.

2.

If u € LP(S) is locally Lipschitz and such that Du € LP(S) then u € WP(S) and
[ull < C(ully + [|Dullp)-

If up, € WHP converges in LP to w and Duy, is a sequence weakly convergent in LP
then w € WP,

Then PY*(S) C Whr(8S).

As the proof is almost the same as that for Theorem 11, we leave it to the reader.
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