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Abstract

We consider solutions of the three well problem� These are maps u satisfying
ru � SO���A� � SO���A� � SO���A� a�e� in � � R

� where the Ai are the diagonal

matrices representing the cubic to tetragonal transformation� It is known that such

maps can behave rather irregular� Under the additional assumption that the phase

sets Ei � fx �ru�x� � SO���Aig are of �nite perimeter we conclude that u is locally

a function of one variable only�

� Introduction

We consider the following kind of problem

Let K be a compact set of m� n matrices� What are properties of
Lipschitz mappings u � �� R

m satisfying ru�x� � K a�e� in ��
In particular� which regularity can nontrivial solutions posses�

�����

Here � is a bounded domain in Rn and nontriviality of a solution umeans its nona�nity�
The latter is usually enforced by suitable boundary conditions

u�x� 	 ��x� on ���

Existence and further properties of solutions of this problem were systematically studied
and well understood essentially in the scalar case m 	 � only� These results are based
on the methods of viscosity solutions� see e�g� 
��� 
�� or 
���� which has no satisfactory
generalization to the vectorial case being addressed here� For this case existence results
have been obtained only recently in 
�� and 
��� but one should also recall the older
existence results for the C��case 
����
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The most interesting questions arise� of course� if K is not convex �and even not quasi�
convex� see 
� or 
�� for the de�nition�� A prototype of such problems is given by choices
like

K 	
k�
i��

SO�n� � Ai� Ai being n� n symmetric� positive� �����

This particular form of K is also motivated by its physical relevance� In fact� the zero
energy deformation gradients in the phase transition of shape memory alloy crystals form
precisely sets K of this type �with n 	 ��� See 
�� for a mathematical description of the
situation� The problem ����� given by a set K like in ����� is called the k�well problem�
Because of the �ne scale oscillating patterns observed in the shape memory crystals� the
notion microstructure refers sometimes in the literature to nontrivial solutions of ����� and
����� and the structures the induce in their domain and target�

The most simple set K to start with are of course those consisting of two matrices X
and Y � Just for simplicity �compare with 
��� we assume moreover that the gradient takes
these values on two sets MX �MY � � which touch along a su�ciently regular �e�g� C��
boundary �M � Then continuity of u along the �n� ���dimensional tangent spaces of �M
implies that

X � Y 	 a� n

where a � R
n and n is the normal of an hyperplane locally containing �M � In this situation

we say that X and Y are rank�� connected �across an interface with normal n��
Such rank�� connections exists for instance if

K 	 SO���

�
� �
� �

�
� SO���

�
� �
� �

�
� where � � � � � � ��

Been given this set K it is in fact possible to construct solutions to ����� which are so called
local laminates� These are mappings u which have locally a very simple structure� Around
each point x � � there is a su�ciently small ball Bx on which the gradient ru takes only
two values and is a function of one variable only �in a suitably chosen coordinate system��
However� since any X � K is rank�one connected to two matrices in K the gradient can
take altogether more than two values�

But since these laminates locally not really di�er from a�ne maps� the question arises
if it is possible to construct for such K mappings u which have a substantially more
complicated local structure� Simultaneously one would like to know if this nonlaminatial
solutions can keep at least some regularity or if they have to be very wild�

The �rst question was answered by 
�� in the a�rmative using Gromov�s ideas on
convex integration� see 
���� The solutions constructed in 
�� are obtained as limits of
sequences un of approximate solutions with rapidly increasing variations ofrun� Therefore�
the exact solutions are Lipschitz without any known additional regularity properties� In

�� solutions to ����������� are obtained using the Baire category principle� Even if this
shows that such solutions prevail in a certain sense� category arguments do not allow us to
conclude additional regularity�
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The second question reminds problems in geometry were also partial di�erential re�
lations like in ����� play an important role� There are already classical examples that
regularity conditions have to be added in order to exclude unexpected solutions� One of
the most famous concerns isometric immersions S� � R� � Due to work by Hilbert such
maps are trivial provided they are of class C� but C��immersions with images of arbitrarily
small diameters can be found� see 
����
���� We refer to Gromov�s book 
��� for a systematic
exposition�

First progress in our question was obtained in 
�� where it was shown that in the ��
well case already mild additional regularity is su�cient to rule out solutions which are
not local laminates� The regularity assumption required is essentially that ru � BV ����
This condition arises naturally from physical situations where not only the bulk energy likeR
�
W �ru�x�� dx but also surface energy is taken into account� It re�ects the fact that we

require some kind of �nite interface between the phases� i�e� between the two sets where
the gradients belongs to one �xed well� For � � R� open and convex� K 	

S�
j SO��� � Aj

the authors of 
�� proved the following�

Theorem ��� Let u � � � R
� be a Lipschitz solution of ����� such that the sets fx �

� � ru�x� � SO��� �Ajg have �nite perimeter� then ru � BV ��� and u is a local laminate
in ��

In 
�� the authors obtained their result in two steps� First� they generalized Liouville�s
theorem about the a�nity of in�nitesimal rotations on euclidean domains to the BV �
context� More precisely� they showed the following� Let E � � be BV �indecomposable
which essentially means that E has a boundary of �nite area and can not be decomposed
into two nontrivial parts without creating new boundary of positive area� �So this obviously
implies connectedness of E�� If u � � � Rn is Lipschitz � det�ru� � c � � on � and
ru�x� � SO�n� a�e� in E then �E � ru � BV ��� and u is a�ne on E �see De�nition ���
and Theorem ��� for the details�� In fact� the �rst conclusion holds even if one only knows
about E that is it of �nite perimeter� indecomposability can be omitted�

And indeed� in 
�� only the �rst conclusion was used for the �nal second step� Here
the authors managed to express the gradient of u in the form ru�x� 	 exp�i	�x�� �
��ru�x��Tru�x������ 	 � BV ���R� and to lift the problem essentially to the wave equa�
tion� The possibility to linearize the problem in this way is �among other things� essentially
based on the commutativity of the involved gauge group SO���� Hence� in the moment
there is no hope to attack the problems of three or more wells in a similar way�

In the present paper we investigate the � well problem with the noncommutative gauge
group SO��� by means of a new approach� It exploits geometric properties of the BV �
indecomposable parts of the phases of u in more detail�

Our �nal result is the following�

Theorem ��� Let A� 	 diag����� �� ��� A� 	 diag��� ���� ��� A� 	 diag��� �� ����� let �
be positive� � � R

� be open u � �� R
� be Lipschitz � If the sets

Ej 	 fx � � � ru�x� � SO��� � Ajg� j 	 �� �� �

are of locally �nite perimeter in � then u is a locally laminate�
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The three wells considered in this statement are often called the tetragonal wells� since
they consist precisely of the zero energy gradients in case of a cubic to tetragonal phase
transition� For � 	 � is the statement just a particular case of Liouville�s theorem� so we
will assume � 		 �� Moreover� to keep the computations in Section  as short as possible
we replace the matrices A�� A�� A� by their rescalings

D�	diag�a� �� ��� D�	diag��� a� �� and D�	diag��� �� a�� a � ���
� n f�g� �����

In the proof we consider a �xed lipschitz solution u and proceed as follows� By the
already mentioned Liouville type result we know that the map u behaves particular simple�
i�e� a�ne� on the BV �indecomposable subsets of the individual phases Ej� Motivated by
this observation we study in more detail the geometry of BV �components which are the
maximal sets open in the measure�theoretical sense and connected in the BV �topology�
They de�ne in a canonical way a countable partition of � whose �BV ��boundary consists
in principle only of the original phase boundaries� A basic notion is that of a regular point�
i�e� a point belonging to some of the BV �components� For a better imagination of this
concept� one can think of the regular points as those where u is di�erentiable� But our
main tool is the the notion of regularity of a line g� It essentially means that u behaves
along this line g like a laminate� To be more precise� the following holds on regular lines�

�� There are only �nitely many exceptional points on g and any interval I on g between
two such points is entirely contained in a single BV �component� in particular ru is
constant on I�

�� In the neighbourhood of an exceptional x � g the gradient �ru�jg behaves like the
gradient of a laminate with a single interface transversally intersected by g in x�

Therefore� if x� y are regular points on a regular line g then ru�y� can be reached
from ru�x� via a sequence of rank�one connections across surfaces transversally to g� The
further parts of the proof essentially rely on the fact �proven in Lemma ���� that for any
given direction d almost each line g in this direction is regular� In particular� the path
of rank�one connections between ru�x� and ru�y� exists whenever x and y are regular
points�

Beside this observation about the �ne geometric properties of BV �decompositions� we
have also to use the special structure of rank�one connections between SO�n� wells� for
more details see 
��� First note that there are no such connections inside individual wells�
Next� for two �xed wells given by Ai� Aj all rank�one connections between them are of one
of the following two kinds�

Q � Ai �Q �Qi�j��Aj 	 �Qai�j���� ni�j��� Q � SO�n��

Q � Ai �Q �Qi�j��Aj 	 �Qai�j���� ni�j��� Q � SO�n��

Due to our transversality result� along a regular line orthogonal to some of the ni�j�l the
corresponding rank�one connection can not occur between neighbouring points� i�e� points
separated by one exceptional point only�
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We assume now that the �nite subgroup of SO�n� generated by fQi�j�l � i� j � k� l 	
�� �g is free� This assumption is in the tetragonal and similar cases certainly not too
special since Baire category and other kind of arguments� see 
���� show that it is ful�lled
if we choose the parameter a in ����� generically��� Under this assumption our strategy is
rather straightforward� In any nonlaminatial microstructure we can �nd two nonparallel
interfaces S� and S� su�ciently close to each other and far away from the boundary of
�� Then we can choose a parallelogram x�x�x�x� in � such that x� � x�kx� � x�kS� and
x��x�kx��x�kS�� Moreover� we can arrange that all xi are regular points and that 
x�� x��
intersects S� and interfaces of type S� precisely once� similar for 
x�� x��� Now it can be
very easily seen that the compatibility conditions between neighbouring points lead to a
nontrivial expression of the identity matrix as a product of some Qi�j�l�s� This contradicts
of course to the nonexistence of any proper cancellation rule in free groups�

In the paper� however� we will treat all possible choices of the parameter a and� there�
fore� we can not use this kind of arguments� For this purpose� a more careful analysis
based on special properties of the tetragonal wells has to be developed� Before we go into
all the technical e�orts necessary for this� we try to make the ideas just explained more
transparent� We show how they give a very simple proof of the ��well result from 
���
see Theorem ��� above� This approach avoids also the technicalities in the calculus for
BV �functions which had to be handled in 
��� However� we heavily build on the Liouville
theorem derived there�

We identify the members of SO��� with the unit complex numbers by understanding
complex multiplication as a linear operator on R� � Using suitable a�ne changes of coor�
dinates both in the domain and the target we can ensure that all rank�one connections
between the two well SO��� �A� and SO��� � A� are of the form

Q � exp�i	j� � A� �Q �A� 	 �Qaj�� ej� Q � SO��� and j 	 �� �

where 	��	� 	 �� � � j	�j � 
��� �The computations can be found in the proof of Theorem
�� in 
���� Consequently� only rank�one connections across vertical or horizontal interfaces
appear� From this and the transversality condition we see the following� Suppose x� y are
regular points� the segment 
x� y� � � is parallel to ej and ru�x� 	 Q � A�� Then

ru�y� 	 ru�x� if ru�y� � SO��� � A� elseru�y� 	 Q � exp�i	j� �B� �����

Now� assume B���
p
�� � � but rujB����� is not a function of x� nor x�� Therefore� we �nd

a vertical and a horizontal line �i�e� the dashed lines in the picture below� and on each of
them a pair of points �positions indicated by a �� which belong to di�erent phase sets�
We consider the intersection x of these lines and use what was said before� So we �nd�
interchanging the role of A� and A� if necessary� the points y� z � B��� �� with x� 	 y��
x� 	 z� and such that

ru�x� 	 Q � A��ru�y� 	 Q � exp�i	�� � A� and ru�z� 	 Q � exp�i	�� � A��

��However� there are situations where our assumption does not hold generically� see e�g� ��� This
phenomenon basically depends on the degree of linear dependence of the normals ni�j�l� It remains a
challenge to derive a more explicit description of the microstructures appearing in this situation





Obviously� p 	 y� �z� x� 	 �z�� y�� is in B���
p
�� and since almost every point is regular

we can assume the same for p� But if ru�p� � SO��� � A� then ru�y� 	 ru�p� 	 ru�z�
and hence 	� 	 	�� contradiction� Hence� ru�p� � SO��� � A�� Since y � pke� we have
ru�p� 	 Q � exp�i�	� � 	��� � A� and z � pke� yields ru�p� 	 Q � exp�i�	� � 	��� � A��
Consequently� � 	 exp��i�	� � 	��� 	 exp��i	�� which obviously contradicts to � � j	�j �

��� The two possibilities we just ruled out are illustrated on the right hand side�
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However� it has to be noted that we can not control the total number of interfaces
the closed path xzpy passes through �the gray zones in the picture should indicate this��
In the ��well problem this fact does not cause any trouble since we have perfect control
of ru independent of the number of interfaces passed� Anyhow� precisely this fact is
the main di�erence between the situation for lipschitz solutions piecewise a�ne on a �nite
decomposition of � and the situation in our class of lipschitz mappings with BV �gradients�
This di�erence becomes a principal obstacle if one tries to apply our method to an arbitrary
�nite number of wells� This motivated us to present in Section � a construction of examples
which show the following� The geometric information we have about the admissible normals
of the BV �components and about the absolute measure of their boundaries does indeed not
ensure the existence of a nontrivial closed path ful�lling an apriori bound for the number
of interfaces passed�

The paper is organized as follows� Section � recalls basic facts about sets of �nite
perimeter and quotes results from 
�� which we will use later on extensively� In Section
� we give a rather selfcontained analysis of existence and properties of decompositions of
sets of �nite perimeter in their BV �components� However� who is not interested in the
geometric measure theory techniques used there can skip the proofs� All we will need in
the sequel is stated in the paragraphs ��� till ���� Section � presents the consequences
of this analysis for an arbitrary �nite number of wells and Section  focuses on the case
of three tetragonal wells� First we introduce a kind of instructive notation for chains of
rank�one connections� This allows us to show that there are distinguished directions along
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which we get better control about ru� Even if there is no simple rule like ������ we are
still able to show that along such lines the gradient is essentially contained in some cyclic
subgroup of SO���� Therefore� we are in a position to obtain a set of explicit compatibility
conditions derived from suitably chosen closed paths� The proof is then �nished by ruling
out each of these compatibility conditions individually� Since the underlying equations
consists of rational functions and polynomials up to order �� �in the parameter a from
������� the necessary computations were carried out using the symbolic calculation package
maple� The Appendix � presents only the main arguments of these computations�

� Generalities

In the remainder of this paper we write B�x� r� for the closed ball around x of radius r� For
a set A � R

n we use the notations L n�A� or jAj for its Lebesgue measure and H n���A�
stays for the �n����dimensional Hausdor� measure � all sets appearing will be measurable
in the appropriate sense�

Given a set A in n�space we denote by

AI 	 fx � R
n � lim

r��
r�nL n�B�x� r� n A� 	 �g

AO 	 fx � R
n � lim

r��
r�nL n�B�x� r� � A� 	 �g

��A 	 R
n n �AI � AO�

the measure�theoretic interior� exterior and boundary of A� These are almost topological
notions� except facts like that AI � A holds only if we neglect Lebesgue zero sets�

Let � � Rn be open� A function f � � � R is said to be of bounded variation�
f � BV ��� for short� if there exists a measure �f on � and a function �f � �� Sn�� such
that Z

�

fdivg dx 	

Z
�

hg�x�� �f�x�i d�f�x� for all g � C�
����R

n��

Frequently one writes rf for the vector measure �fd�f and krfk for its variation �f �
For vector valued functions the de�nition applies coordinatewise� A set A � � is said
to be of �nite perimeter �in �� if �A � BV ��� and we denote by Per��A� 	 kr�Ak���
the perimeter of A relatively to �� A very nice introduction into the theory of BV �
functions can be found in Chapter  of 
��� We will also need the concept of the reduced
boundary ��A of a set of �nite perimeter� It consist of those points x where ��A�x� 	
limr��r�A�B�x� r���kr�Ak�B�x� r��� For such A it can be shown that ��A � ��A�
H n�����A n��A� 	 � and moreover that each single point x � ��A is a boundary point of
A in a quite classical sense� In fact� de�ning H� 	 fy � hy� ��A�x�i � �g and the blowups
Ax�r�y� 	 �A � x��r one has �Ax�r � �H� in L�

loc�R
n� as r  �� see Theorem ���� in 
���

This picture is completed by the following statement about the geometric structure of the
whole reduced boundary�

Theorem ��� �Structure Theorem for Sets of �nite Perimeter�
Assume E has locally �nite perimeter in Rn � Then
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�i� ��E 	
S�

k��Kk � N � where k�Ek�N� 	 H n���N� 	 � and each Kk is a compact
subset of a C��hypersurface Sk�

�ii� Furthermore� �E jKk
is normal to Sk for all k � ��

�iii� k�Ek 	H n�� ��E

For a proof we refer again to 
��� Theorem � in ��� As an immediate consequence which
will be used later we obtain the following�

Corollary ��� Let E be a set of �nite perimeter and d � Sn��� Then the set Md 	 fx �
��E � �E�x� � dg has under the orthogonal projection onto d� an �n� ���zero image�

Proof Obviously� the orthogonal projection projd onto d
� does not increase distances� and

hence notH n�� measure� Hence� since limr�� jj�Ek�B�x� r��EnKk��r
n�� 	 �H n���a�e�

in Kk� it su�ces to show� using the notation of Theorem ��� above� that for each k the
set projd�fx � Kk � �Kk

�x� � dg� is of zero �n � ���dimensional measure� But this is an
direct consequence of the area formula� since d � proj��d ��� � TanxSk for all x � Md �Kk�
therefore rank�projdjTanxSk

� � n� � whenever x �Md �Kk�

We introduce the concept of BV �indecomposability like in 
��� De�nition ����� but
compare also with 
���� ������

De�nition ��� Let E � Rn be a set of �nite perimeter� We say that E is �BV��indecom�
posable if for any set A � E of �nite perimeter the identity

Per�E� 	 Per�A� � Per�E n A�
implies that

L n�A� 	 � or L n�E n A� 	 ��

This notion is also in perfect agreement with the following fact� see e�g� Proposition ���� in

��� The set E is BV �indecomposable i� any f � BV �Rn� with krfk�E� 	 � is necessarily
constant on E�

Finally we quote Liouville type Theorem ��� from 
���

Theorem ��� Let � � R
n be open and assume u � � � R

n is a Lipschitz map ful�lling
detru � c � � a�e� Suppose that E � � has �nite perimeter and that

ru�x� � SO�n� for a�e� x � E�

Then the function f 	 �Eru satis�es

f � BV ���Rn�n� and Df �� n ��E� 	 ��

If� moreover� E is �BV��indecomposable� then u is a rigid motion on the measure�theoretic
interior EI� i�e� there exist A � SO�n�� b � Rn such that

u�x� 	 Ax � b for all x � EI �
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� Decompositions into BV�components

Lemma ��� Let � � R
n be open and fEkg�k�� � � measurable sets such that E� �S�

k��Ek and
P�

k�� Per��Ek� �
� Then

H n���
� � ���E� � E��I�� n
��
k��

��Ek � Ek�I� 	 ��

Proof Denote by M the exceptional set ��nE��O��
T�

k��Ek�O� Clearly� it su�ces to show
that for any  � ��� ����

M� 	 fx �M � lim sup
r��

r�njB�x� r� � E�j � g

is of H n���measure zero�
For this purpose� let K� � N be arbitrary but �xed� By de�nition of Ek�O the inclusion

M� � fx �M � lim sup
r��

r�njB�x� r� �
��

k�K�

Ek�Oj � g

holds� Hence� for any x �M� there is a positive Rx � dist�x� ���� ��K� and a kx � N such
that jB�x�Rx��

Skx
k��EK�	kj � Rn

x� Since x �
T�

k��Ek�O� there also exists an rx � ��� Rx�
with

jB�x� rx� �
kx�
k��

EK�	kj 	 rnx �

The isoperimetric inequality �see 
��� ����� now implies that

rnx � ��nk��
K�	kx�
k�K�

Ek�k�B�x� rx���
n

n��

i�e�

rn��x � 
��n
n �nk��

K�	kx�
k�K�

Ek�k�B�x� rx�� � 
��n
n �n

�X
k�K�

k�Ekk�B�x� rx��

By the usual covering arguments

H n���M�� � constn 
��n
n

�X
k�K�

Per��Ek�

follows� Since K� was arbitrary� we are done�

Corollary ��� If E � � is of �nite perimeter in �� �E 	
P�

k�� �Ek
L n�a�e� and

Per��E� 	
P�

k�� Per��Ek�� then
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a� H n�����Ek � ��Ek� � �� 	 � for all k 		 k��

b� H n������E � �� nS�
k�� �

�Ek� 	 ��

c� H n������Ek � �� n ��E� 	 � for all k�

d� H n����EI � �� nS�
k��Ek�I� 	 ��

e� If M � E measurable� then Per��M� 	
P�

k�� Per��M � Ek��

Proof The ��subadditivity of the perimeter together with our assumptions imply that
for all Per��Ek � Ek�� � Per��Ek� � Per��Ek�� for all k 		 k�� moreover ���Ek � Ek�� �
��Ek � ��Ek� � This demonstrates a�� Due to the foregoing Lemma ��� H n��
���E � �� nS�

k�����Ek � Ek�I�� 	 �� but Ek�I � EI for all k� hence b� follows� By a� and b�

�X
k��

H n�����Ek � �� 	
�X
k��

Per��Ek� 	 Per��E� 	H n���� � ��E�

	
�X
k��

H n����Ek � ��E � ���

therefore H n�����Ek � �� 	 H n����Ek � ��E � �� for each k� which gives c�� Next�
we know from c� that H n���EI � � � ��Ek� 	 � for all k � �� and by Lemma ���
H n���EI � � n S�

k�����Ek � Ek�I�� 	 �� showing just d�� Finally� if Per��M� 	 
� e�
follows by ��subadditivity� Else it su�ces to verify that

H n���� � ���Ek �M� n ���M �
�
i��k

Ei�O� 	 ��

which ensures H n������Ek �M� � ��Ek� �M� � �� 	 � for all k� 		 k and hence e�� But
indeed� x � ���Ek � M� implies x �� Ek�O� If x � Ek�I � then obviously x � ��M and
x � Ei�O for all i 		 k� Else x � ��Ek which means due to a� and c� for H n���a�e� x � �
that x � ��E �Ti��k Ei�O� Since M � E and x ��MO� again x � ��M holds�

Proposition ��� Let E be a bounded set of �nite perimeter� Then there is a countable
family fEigi�I such that

��� For all i � I is E � Ei�I 	 Ei 		 � �BV��indecomposable�

��� H n���EI � E nSi�I Ei� 	 ��

��� Per�E� 	
P

i�I Per�Ek� and Ei � Ej 	 � if i 		 j�

Moreover� this family fEigi�I is unique in the following sense	 whenever fE �
igi�I� ful�lls

������� and the weaker assumption

��
� jE nSi�I� E
�
ij 	 �

��



only� then we can already conclude the existence of bijection 
 from I � onto I � such that
E��i�� 	 E �

i� for all i
� � I ��

Therefore� we call the members of fEkgLk�� the indecomposable BV�components of E�

The concept of indecomposability in the BV�sense �and more generally for currents�
and the existence part of this theorem already appears in 
���� ������ Since the proof given
there is in a rather condensed form� we present here all the necessary details�

Proof

First� we show the existence of at least one indecomposable set in E� then the usual
exhausting argument ensures the existence of a countable family satisfying �������� and ����

For this purpose� we de�ne for any set M � E of �nite perimeter

S�M� 	 fN �M � Per�N� � Per�M nN� 	 Per�M�g�
First� note that S�M� is a ��algebra onM � Indeed� N � S�M� obviously impliesM nN �
S�M�� Moreover� for N�� N� � S�M� we infer by Corollary ����e� that

Per�N�� 	 Per�N� �N�� � Per�N� nN���

Per�M nN�� 	 Per�N� nN�� � Per�M n �N� �N����

Consequently�

Per�M� 	 Per�N� �N�� � Per�N�nN�� � Per�N�nN�� � Per�M n�N� �N���

� Per�N� �N�� � Per�M n �N� �N��� � Per�M��

hence N� � N� � S�M�� Last� if N� � N� � � � � are in S�M�� then for N 	
S�

k��Nk

and N � 	 M n N we obviously have �Nk
� �N as well as �MnNk

� �N � in L�� Now�
lowersemicontinuity implies

Per�M� � Per�N �� � Per�N� � lim inf
k

Per�Nk� � lim inf
k

Per�M nNk�

� lim inf
k

�Per�Nk� � Per�M nNk�� 	 Per�M��

so N � S�M� and �L n M�S�M�� is a complete measure space� Obviously� Corollary
����e� gives also the relativization

N � S�M� implies S�N� 	 fX � N � X � S�M�g�
Next� we note that

S�M� either contains an atom �i�e� N � S�M� such that jN j � �
and jN �j � jN nN �j 	 � for any N � � S�M� with N � � N� or for any
 � ��� jM j� there is an N � S�M� with jN j 	 �

��
� �����

This is a very special case �sometimes stated as Alexandro��s theorem� of Ljapuno��s theo�
rem about the convexity of the range of a vector measure� see 
�� � but for the convenience of

��



the reader we sketch a proof� First assume S�M� has no atoms and there is an  � ��� jM j�
such that for all N � S�M� jN j �� ���� �� Then obviously I 	 fN � S�M� � jN j � ��g
is closed under �even countable� unions� and therefore jN�j 	 supfjN j � N � Ig for some
N� � I� Since also S�M n N�� contains no atoms� M n N� can be divided into arbitrary
many sets of positive measure and belonging to S�M�� hence there is an N� � S�M nN��
with � � jN�j � ��� But then N�� N� � N� � I and jN� � N�j � jN�j� contradiction�
Once knowing that for any sigma�algebraS�M� the nonexistence of atoms implies for any
� � ��� jM j� the existence of �N � S�M� with j �N j � ����� ��� it is obvious how to construct
the N required in ������

The next step in our existence proof is to show that any nontrivial S�M� contains at
least one atom� Indeed� otherwise ����� ensures that for any K � N there are mutually
disjoint M�� � � � �MK � S�M� such that M 	

SK
k��Mk and jMkj 	 jM j�K for all k� One

sees also �using induction with respect to K if necessary� that Per�M� 	
PK

k�� Per�Mk��
But then the isoperimetric inequality yields

Per�M� �
KX
k��

Per�Mk� �
KX
k��

constnjMkjn��n � constn

KX
k��

Mk

n
pjM j�K � n

p
K

constn
n
pjM j jM j�

which is a contradiction for K su�ciently large�
Finally� we de�ne fEigi�I to be the set

A 	 fAI � E � A is an atom of S�E�g�

Obviously� if A�� A� are atoms ofS�E� then either jA��A�j 	 � or jA��A�j 	 �� This gives
A��I 	 A��I or A��I �A��I 	 �� and since obviously any member of A is of positive measure�
one sees that A is at most countable� Therefore� E nSA � S�E� and contains no atom�
hence jE nSAj 	 �� Since atoms are obviously indecomposable� we see that ��� and ����
are valid� Moreover� for all F � I �nite one has Per�E� 	

P
i�F Per�Ei��Per�EnSi�F Ei�

which gives ��� as F exhausts the countable set I� To check that even the original condition
��� is true we infer from Corollary ����d� that H n���EI n

SfAI � A atom of S�E�g� 	 ��
Hence H n���EI � E nSi�I Ei� 	 � holds also�

This �nished the existence proof� and all what remains to be done is to show the
uniqueness� But from Corollary ����e� we know that for all M � E

Per�M� 	
X
i�I

Per�M � Ei��

in particular� M � Ei � S�M� if i � I and Per�M� � 
� Consequently� if M is BV�
indecomposable then for each i � I jM n Ekj � jM � Ekj 	 �� Hence� there exists precisely
one i� 	 i��M� fEigi�I� with jM � Ei� j � �� So� if fE �

igi�I� is a second sequence ful�lling
�������� and ���� then one easily veri�es that the required permutation 
 is given by 
�i�� 	
i��E

�
i�� fEigi�I��

��



Notation ��� Whenever E 	 fE�� � � � � Emg is a family of bounded pairwise disjoint sub�
sets of Rn with Ej 	 Ej

I and Per�E� �
 for all j � m� then we denote

coE�x� 	

�
Ej
k�I if x � Ej

k�I for a BV�indecomposable component Ej
k of Ej

� else

Therefore� coE�x� is the BV�indecomposable component determined by the partition E
which contains x if such one exists� We also set

w�x� 	 wE�x� 	

�
j if � 		 coE�x� � Ej�

� else�

Note that one for H n���a�e� point x � �
Sm

j��E
j�I the following alternative holds�

Either coE�x� 		 � or there are two j� 		 j� and x�� x� with xl � coE�xl� � Ejl and
x � ��coE�x�� � ��coE�x��� Next we will see that the situation is the same� if we consider
slices of the partitioning sets fE�� � � � � Emg by almost any line�

De�nition ��� Let E 	 fE�� � � � � Emg be a family of bounded subsets of Rn with Ej 	 Ej
I

and Per�E� � 
 for all j � m� We say that a line g 	 g�x� d� 	 fx � �d � � � Rg
�x� d � R

n � d 		 �� is regular w�r�t� E provided there is a �unique� �nite set Exc�g� � g
such that for any �� � R with x � ��d � �

Sm
j��E

j�I the following statements hold�

�a� If x � ��d �� Exc�g� then x� �d � coE�x� ��d� for all � su�ciently close to ���

�b� If x � ��d � Exc�g� then there is an  � � such that for the points

x	 	 x� ��� � �d and x� 	 x� ��� � �d

�i� x � ��d � ��coE�x	� � ��coE�x���
�ii� x � �d � coE�x	� for � � �� �� � ��

�iii� x � �d � coE�x�� for � � �� � � � ��

�iv� wE�x	� 		 wE�x��� but both positive�

�v� h�coE �x���x � ��d�� di � ��

Lemma ��� Let E be any �admissible �in the sense of De�nition ��� above� family� Then
for each d � Rn n f�g and H n�� a�e� x � d� the line g�x� d� is regular w�r�t� E �
Proof We can of course suppose d � Sn��� and for j � m we denote by fEj

kg�k�� a
sequence containing all indecomposable BV�components of Ej� i�e� the family from Lemma
��� eventually �lled up with empty sets�

Consider the following sets

S� 	 fx � d� � card�g�x� d� �
m�
j��

��
k��

��E
j
k� 	
g

��



From �
���� ������� we infer that

Z
d�

card�g�x� d� �
�
j�m
k��

���E
j
k�� dH

n���x� �
X
j�m
k��

H n�����E
j
k� 	

mX
j��

Per�Ej�

is �nite� hence H n���S�� 	 ��

S� 	
m�
j��

�Ej
I n

��
k��

Ej
k�I� � ���Ej n �

��
k��

��Ej
k � ��Ej���

by Corollary �����a���b���d� we have H n���S�� 	 ��

S� 	
m�
j��

��
k��

fx � d� � there are y� � g�x� d� � Ej
k�I� y� � g�x� d� n Ej

k�I�

but convfy�� y�g � ��E
j
k 	 �g�

Due to �
��� Th�������� we know that H n���S�� 	 �� Finally�

S��j� k� 	 fy � ��Ej
k� there is  � � � y � h�Ej

k
�y�� di � �d �� Ej

k�I if � � � � g�

Then H n���projd�S��j� k�� 	 � for all j � m�k � �� Although this statement is in the
spirit of 
���Th������� claim ��� the proof given there requires some minor modi�cations to
give our result� Again for convenience� we present the details� First of all� using Corollary
��� and considering both d and �d� we can replace S��j� k� by

�S��j� k� 	 fy � ��Ej
k� h�Ej

k
�y�� di � � and y � �d �� Ej

k�I for all � � ��� y�g�

Moreover� it is obviously su�cient to prove that for each i� l � N the set �Si�l � �S��j� k�
of those y � ��Ej

k ful�lling

� L n�fz � B�y� R� � h�Ej
k
�y�� z � yi � � and z �� Ej

kg� �
��n� ��Rn

���i�n
for � � R � ��l

� h�Ej
k
�y�� di � ��i�

� y � �d �� Ej
k�I for all � � ��� ��i��

has an H n���zero orthogonal projection onto d�� Additionally� dividing �Si�l into ��nitely
many� parts if necessary� we can also assume jhy� y�� dij � ���i for all y� y� � �Si�l and that
l � i� Next� we observe that

H
��g�y�� d� � �B�y�� R� � fz � hz � y�� �Ej

k
�y��h� �g n Ej

k�I� � R�� �����

��



provided

y�� y� � �Si�l � �
p
� � i�jprojd�y� � y��j � R �

�

l
and hy� � y�� di � R

�
�

Indeed� �x � 	 �Ej
k
�y��� and the unique point s�y�� � g�y�� d� � fz � z � y� � �g� Then

jy � s�y��j� � jprojd�y� � s�y���j� � jhy� � s�y��� dij�

� jprojd�y� � y��j
�
� �

�

h�� di�
�
�
�
R

�

��

�

Hence� there is also a unique point

t�y�� � g�y�� d� � fz � hz � y�� �i � � and jz � y�j 	 Rg�
moreover�

hs�y��� t�y��� di 	 js�y��� t�y��j � �R�� �����

Consequently� hy� � t�y��� di � R�� and hy� � t�y��i � R���
Summarizing� we obtain

ht�y��� di� R

�
� hy�� di � hs�y��� di� R

�
�

�

�k

� hs�y��� di� �R

�
�

�

�i
� hs�y��� di� �

i
� �����

Obviously� our observation ����� follows from ����� and ������
Now� choose an arbitrary x � projd�y�� y � �Si�l and r � ��� ����l

p
� � i��� Denote

M 	 �Sk�l � f�y � jprojd�y� � xj � rg and R 	 �
p
� � i�r� We pick y� � M such that

hy� � y�� di � R�� for all y� �M � In virtue of the observation �����

H
��g�y�� d� � B�y�� r� � fz� hz � y�� �Ej

k
�y��i � �g n Ej

k�Ig� �
R

�

for all y� �M � therefore

R

�
H n���projdM j � ��n� ��

Rn

���i�n
�

In other words�

H n���projd� �Si�l � B�x� r�� � ���
p
� � i��n����n� ��rn��

���i�n
� ��n� ��

�i
rn���

Hence� Lebesgue�s density theorem applied in d� gives for the set S� 	
S

�j�k� S��j� k� that

H n���projd� �Si�l�� 	 � 	H n���projd�S����

�



We �nish the proof of this lemma by showing that the line g 	 g�x� d� is regular
whenever

x � d� n �S� � S� � projd�S� � S���
and that we have

Exc�g� 	 g �
m�
j��

��
k��

��Ej
k

in this case� Indeed� g �S�j�k� �E
j
k is �nite by de�nition of S�� Moreover� since g �S� 	 ��

we have g n �Sm
j��E

j�O �
S

�j�k�E
j
k�I � Exc�g�� Hence� if x � ��d �� �

Sm
j��E

j�O � Exc�g�

then there are �j�� k�� and � � � such that x � ��d � Ej�
k��I

and x � �d �� Exc�g�

for all � � �l� � �� �� � ��� Because x �� S�� we infer that x � �d � Ej�
k��I

whenever
j�� ��j � �� So condition �a� of De�nition �� is satis�ed� To verify also �b�� we assume
that y� 	 x � ��d � �

Sm
j��E

j�I � Exc�g�� Because g � S� 	 � there are precisely two

j� � j� with y� � ��Ej� � ��Ej� and also unique k�� k� such that y� � ��Ej�
k�
� ��Ej�

k�
�

Moreover� we can �nd  � � with g � B�y�� �� � Exc�g� 	 fy�g and de�ne x	 	 y� � d
and � 	 �

E
j�
k�

�y�� 	 ��
E
j�
k�

�y�� � Sn��� Obviously� y� �� S� implies s 	 hd� �i 		 �� There

are also ����� � ��� ��jsj� such that y������l��d � Ejl
kl�I

for l 	 �� �� Due to our choice
of  and the already shown �a� we know that

y� � ����ls�ld � Ejl
kl�I

for all � � ��� e�jsj�� j 	 �� ��

consequently �b��i���iv� follow� Last� if s � � then x� � Ej�
k��I

	 coE�x��� hence

h�coE�x��� di 	 h��� di 	 �s � � and if s � � then x	 � Ej�
k��I

	 coE�x	�� therefore
h�coE�x���y��� di 	 h�� di 	 s � �� So �b��v� is also shown and the proof �nished�

� Compatibility conditions for BV�gradients of point�

wise minimizers of the m�well problem

Notation ��� In this section we will consider an open bounded and convex set � � Rn �
symmetric and positive matrices Aj � Mn�n� j 	 �� � � � � m with Aj �� SO�n�Aj� for j 		 j �

and a Lipschitz function u � � � Rn such that the mutually disjoint sets

Ej 	 fx � ru�x� � SO�n� � Ajgj 	 �� � � � � m

�the so called phases� ful�ll

�a� j� nSm
j��E

jj 	 ��

�b� Per�Ej� �
 for each j � m�

So� if we denote E 	 E�u� 	 fE�� � � � � Emg� the notations introduced in the last section� in
particular in ���� are well de�ned�

��



De�nition ��� We say that x � � is a regular point if x � coE�x� and that 
x� y� 	
fx� ��y � x� � � � � � �g � � is a segment regular with respect to u provided	

�i� g 	 g�x� y � x� is a line regular with respect to E�u��
�ii� x� y are di�erent regular points�

�iii� if z�� z� � 
x� y� and 
z�� z�� � Exc�g� 	 �� then ru�z�� 	 ru�z�� � SO�n� � Aw�z���

�iv� if z�� z� � 
x� y� n Exc�g� and 
z�� z�� � Exc�g� 	 fzg then there are e� n � Rn n f�g
with ru�z���ru�z�� 	 e� n and hy � x� ni 		 ��

Theorem ��� In the setting of Notation ��� we have

�a� if x� y � � are di�erent regular points and g�x� y� x� is a line regular with respect to
E�u�� then 
x� y� is a segment regular with respect to u�

�b� If x� y � � are di�erent� then there is an  � � such that for almost each z � B�x� �

z� y � �z � x�� is a segment regular with respect to u for almost each z � B�x� ��

Proof Due to the remark in Notation ���� we have H n���� nSfcoE�x� � x � �g � 
�
hence �b� is an immediate consequence of �a� and Lemma ���� So we focus on �a� and have
only to verify �i���iv� of De�nition ���� But �i� and �ii� are obvious by the choice of x� y
and the de�nition of Exc�g�� Condition �iii� is a direct consequence of Theorem ���� and
also �iv� follows easily from this Theorem and the de�nition of regular lines� Indeed� we
can suppose that hd� z� � z�i � � for the direction s 	 �y� x��jy� xj� Then by De�nition
���b� y � ��coE�z�� � coE�z�� and � 	 �coE �z���y� �� d�� hence it su�ces to show that
�rf�z���rf�z����v� 	 � for all v � �� i�e� we could choose n 	 ��

For this purpose� �x any  � � and by de�nition of the reduced boundary �� we see
that

lim
r��

r�njB�y � r � n�  � r� � fz � hz � y� d i � �g n coE�z��gj
	 lim

r��
jB�y � r � n�  � r� � fz � hz � y� d i � �g n coE�z��gj 	 ��

hence for r � � su�ciently small there are x	 � B�y � r � n�  � r� � coE�z�� and
x� � B�y � r � n�  � r� � coE�z��� Since by Theorem ���

f�x	�� f�y� 	 rf�z�� � �x	 � y�

f�x��� f�y� 	 rf�z�� � �x� � y��

we obtain

lip�f� � � � r � jf�x	�� f�x��j � jrf�z���n��rf�z���n�j
� jrf�z��jjx	 � �y � n � r�j � jrf�z��jjx� � �y � n � r�j

therefore� � lip�f� �  � r � rjhrf�z�� �rf�z��� nij for all  � ��� �� and � � r � r�� so we
are done�

��



� Pointwise BV�minimizers for three tetragonal wells

are laminates

Notation ���

As already explained in the introduction we will now assume the set of admissible
gradients to be the union of three tetragonal wells� So we suppose

ru �
��
i��

SO��� �Di� where D� 	 diag�a� �� ��� D� 	 diag��� a� ��� D� 	 diag��� �� a�

and a is a positive parameter of course di�erent from one� For convenience� we also de�ne
Di	� 	 Di for all integer i� i�e� we compute things modulus � if necessary� We choose also
the auxillary matrix Tra � SO��� given by Tra�ei� 	 ei	� which describes the transition
from one well to another� In fact� using that we obviously have �x�� x�� x�� � TraT 	
�x�� x�� x�� we conclude

Di	� 	 Tra �Di � TraT for any integer i� ����

We will also use that TraT 	 Tra�� 	 Tra � Tra�
We de�ne the local coordinates of regular point x � � to be L�x� 	 ru�x� ��Dw�x���� �

SO���� This is in fact a slight misuse of notation� since L�x� rather describes the position
of ru�x� in its well than the position of the point x itself� but this abbreviation should
not cause any further misunderstandings�

��� A calculus for rank�� connections We are going to introduce a su�ciently short
and instructive notation for the compatibility conditions between two  neighbouring! local
coordinates� i�e� we are giving a more compact way to write condition �iv� in De�nition
���� First� we recall well�known results about the rank�� connections between the � wells
SO���Di� The approach in 
���� see also formula ������ in 
��� together with the fact that
for e 	 �e� � e���

p
� the transformation R� 	 �Id � �e � e belongs to the point group

P��� of the cube and ful�lls R� �D� � RT
� 	 D� gives the following� For both c 	 �� and

c 	 � the matrix

R��� c� 	

�
	 �a��� � a�� � c � ��� a����� � a��

� � �
�c � ��� a����� � a�� � �a��� � a��



A ����

and the vectors

v��� c� 	 ��� �� c� and J ��� c� 	
�� a�

� � a�
� �a� ���c�T ����

satisfy
D� � R��� c� �D� 	 J ��� c�� v��� c��

In fact rank�D� � R �D�� 	 � and R � SO��� implies R 	 R��� �� or R 	 R�������

��



Consequently� for i 	 �� �� � and Q � SO��� all solutions of rank�Q �Di�R �Di	�� 	 �
and R � SO��� are given by

Q �Di �Q �R�i � �� c� �Di	� 	 �Q � J �i � �� c��� v�i� �� c�� ����

where c 	 ��� �� and R�J � v satisfy the following transformation rules based on ����

R�i � �� c� 	 Tra �R�i� c�TraT
v�i� �� c� 	 v�i� c� � TraT �J �i� �� c� 	 Tra � J �i� c��

Note that

R�i��c� 	 R�i� c�T 	 R�i� c��� since R�i� c� � SO���� ���

The next simple� but crucial observation is the following� Whenever d � R� ful�lls jd�j 	
jd�j 	 d� 	 � then d is orthogonal to all three vectors v����d��� v����d��� v����d� � d���

Putting this together with De�nition �����iv� and ����� we infer that if

jd�j 	 jd�j 	 d� 	 �� �x� y�kd� 
x� y� regular� card�
x� y� � Exc�g�x� d��� � � ����

and w�y�� w�x� � ���� then

L�y� 	 L�x� �R�w�x� � �� c�w�x� � �� d��� where c�j� d� 	

��


d� j � ����
d� j � ����
d�d� j � ����

So it is well motivated to introduce the notation


j � j � ��d 	 R�j � �� c�j � �� d���

Obviously� ��� motivates to add the de�nition


j � � � j�d 	 R�j � ���c�j � �� d��� i�e� 
j � j � ��d 	 R�j � ���c�j � �� d���

Therefore it is �nally possible to establish the following simple and suggestive rule describ�
ing the relation between the local coordinates in two neighbouring components

L�y� 	 L�x� � 
w�x�� w�y��d provided only ���� holds�

The next Proposition will show� that the relations between local coordinates keep quite
simple� even if we allow more than one exceptional points on the joining segment� However�
it should be noted� that it heavily relies on the fact� that we are dealing with not more
than three wells�

Proposition ��� Let d 	 �d�� d�� ��
T � d�� d� � f��� �g� and let x� y � � be regular points�

such that �x� y�kd� Then there is an integer k satisfying

L�y� 	 L�x�
w�x� � ��d�
�� ��d
�� ��d
�� ��d�
k
�� w�y��d�

��



Proof Since the local coordinates L are constant on indecomposable components� Theorem
��� ensures that we can additionally assume 
x� y� to be a regular segment� Moreover� the
considerations in �� show that for our choice of d all matrices 
j � j ��d are well�de�ned
and that for 
x�� y�� � 
x� y� with 
x�� y�� � Exc�g�x� y � x�� 	 fzg in fact

L�y�� 	 L�x��
w�x��� w�y���d

holds� Hence� we can choose � 	 t� � t� � � � � � tl�� � tl 	 � such that

L�x � ti	��y�x��	L�x � ti�y�x��
w�x� ti�y�x��� w�x� ti	��y�x���d
and w�x� ti�y � x�� 		 w�x� ti	��y � x�� for i 	 �� � � � � l � ��

Now the statement of the Proposition can be shown by induction with respect to l�
the induction step being a straightforward consequence of the following three  cancellation
rules!�


�� ��d
�� ��d 	 
�� ��d
�� ��d 	 
�� ��d


�� ��d
�� ��d 	 �
�� ��d
�� ��d
�� ��d�
��
�� ��d


�� ��d
�� ��d 	 �
�� ��d
�� ��d
�� ��d�
�� ��d�

The following Lemma presents all the algebraic constraints used in our approach� Be�
cause its proof requires completely elementary but rather lengthy computations� we post�
pone it to the Appendix

Lemma ��� Let a be positive but di�erent from one� d� 	 ��� �� ��T and d� 	 ���� �� ��T �
We denote M 	 
�� ��d� 
�� ��d� 
�� ��d� � SO����

Q 	

�
	

�p
�	� a�

ap
�	� a�

ap
�	� a�

� �
�

p
� � �

�

p
�

�� ap
�	� a�

�p
�	� a�

�p
�	� a�



A � SO���

and Di 	 Q �M �QT �
Then Di��� �� 	 �� Di��� �� 	 Di��� �� 	 Di��� �� 	 Di��� �� 	 � and �Di�i� j� 	

Di�i� �� j � ���� � i� j � � belongs to SO����
Moreover�

a� for �w�� w�� � �f�� �g � f�� �� �g� � f��� ��g has the equation

Dik 	 Q
�� w��d� 
w� � ��d�
�� ��d� 
�� w��d� 
w� � ��d�Q
T

no integer solution k�

b� for w� � f�� �� �g has the equation

Dik 	 Q
�� w��d� 
w� � ��d� 
�� ��d� 
�� ��d� 
�� ��d�Q
T

no integer solution k�

��



Lemma ��� Let U � � be an open ball� x�� x� � U � w�xj� 	 j and L�x�� 	 L�x�� �
R������� For both

case �� �d�� d�� d�� 	 ���� �� ��T � ���� �� ��T � ������ ��T � and
case �� �d�� d�� d�� 	 �������� ��T � ������ ��T � ���� �� ��T �

the following holds	
If x� � x�kd� then

�a� x� � coE�x�� provided x� � x�kd� and both points x�� x� � �x� � x�� belong to U �

�b� x� � coE�x�� provided x� � x�kd� and both points x�� x� � �x� � x�� belong to U �

Proof First� we observe that the Lemma is proved once we veri�ed statement �a� for
case ��� Indeed� part �b� follows then directly considering instead of u the new function
�u�x� 	 �u�� u�� u���x�� x�� x��� and case �� is reduces to case �� by the use of the substitution
��u�x� 	 u��x���x�� x�� for u�

So� denote x� 	 x� � �x� � x�� and assume x� �� coE�x�� 	 coE�x��I � Therefore�
� �� �

Sff�U � coE�x�� � x� � coE�x� 		 coE�x��g�O� Since obviously � � ��coE�x�� � x�� �
�coE�x�� � x�� � fz � z � x� is regularg�I � we can� after renaming xj � z to xj again�
additionally suppose that all three segments 
x�� x��� 
x�� x�� and 
x�� x�� are regular and
contained in U � For j 	 �� � we also choose the parallel lines gj 	 g�xj� d��� the �nite
sets T j 	 ft � 
�� �� � xj � t�x� � x�� � Exc�gj�g � f�g and tj 	 minT j � �� By our
assumption� t� � �� Now we have to distinguish three di�erent cases�

First� let t� � t� and choose  � � such that �t� � �� t� � �� � �T � � T �� 	 ft�g�
Consequently� for �x� 	 x� � �t� � ��x� � x�� and �x� 	 x� � �t� � ��x� � x�� we know
that 
�x�� �x�� is a regular segment and w��x�� 		 �� coE��x�� 	 coE�x��� Hence� L��x�� 	
L�x�� � 
� � w��x���d� � L��x

�� 	 L�x�� and due to Proposition �� there exists an integer k
such that L��x�� 	 L��x�� � 
w��x�� � ��d��
� � ��d� 
� � ��d� 
� � ��d��

k � 
� � ��d� � Using
the notation introduced in the foregoing Lemma ��� the just derived relations between the
four local coordinates imply now

L�x�� 	 L�x�� �R��� �� 	 L��x�� �R��� ��
	 L��x�� � 
w��x� � ��d��M�k � 
�� ��d� �R��� ��
	 L�x�� � 
�� w��x���d� � 
w��x��� ��d� �QT � �Di�k �Q � 
�� ��d� � 
�� ��d� �

Therefore�

Q � 
�� w��x���d� � 
w��x��� ��d� � 
�� ��d� � 
�� ��d� �QT 	 �Di�k�

which is of course just the equation in part a� of Lemma �� for w� 	 � and w� 	 w��x���
hence due to w� 		 � we know that this equation is unsolvable for integer exponents k�

So� we turn to the case t� 	 t�� i�e� we consider the situation that for some �x� � g��
�x� � g� with �x� � �x�kx� � x� both w��x�� 		 w�x�� and w��x�� 		 w�x�� but still L��x�� 	

��



L�x��
�� w��x���d� and L��x�� 	 L�x��
�� w��x���d� � From this we infer as before that for
�w�� w�� 	 �w��x��� w��x��� � f�� �g � f�� �g the matrix

Sw��w� 	 Q � 
�� w��d� � 
w� � ��d� � 
�� ��d� � 
�� w��d� � 
w� � ��d� �QT

����

is a certain integer power of the matrix Di� Hence� also this case can be excluded using
Lemma ���a��

Consequently� we can focus on the remaining �and in fact slightly more complicated�
case � � t� � t�� As before� we �nd a t� � �t�� t�� such that for �x� 	 x��t��x

��x�� w��x�� �
f�� �g and L��x�� 	 L�x��
� � w��x���d� � It is easy to see� that now ���� corresponds to
�w�� w�� � f�g � f�� �g in part a� of Lemma ��� However� the Lemma covers the choice
�w�� w�� 	 ��� �� only� Indeed� one easily computes

S��� 	 Q�
�� ��d� 
�� ��d� 
�� ��d��Q
T 	 Q�
�� ��d� 
�� ��d� 
�� ��d��Q

T 	 �Di����

Therefore� we can obviously not derive the usual contradictions� On the other hand� this
is not at all surprising� since there could in fact be a SO���D�"SO���D� interface normal
to ��� �� ��T which �rst 
x�� �x�� crosses and than 
�x�� �x�� returns across it�

To handle this di�culty� we have to examine also situations of more than one jump
along g�� so �rst we choose  � � such that �t�� t� � � � �T � � T �� 	 �� Since for all
t � ��� t� � � L�x� � t�x� � x��� 	 L�x�� � 
� � w�x� � t�x� � x����d� � we infer from the
already made considerations �corresponding to �w�� w�� � f�� �� �g � f�g� that necessarily
L�x� � t�x� � x��� 		 L�x�� � 
� � ��d� for all t � ��� t� � �� But this implies that either
L�x���� �L�x�� t�x��x��� � fId� 
�� ��d�g for all these t� which leads for t � t� to one of
the already occurred contradictions �since Lemma �� covers all situations where w� 		 ���
or there is an t� � ��� t� � � such that for �x� 	 x� � t��x� � x��

w��x�� 	 � and L��x�� 	 L�x�� � 
�� ��d� � 
�� ��d� �

We can of course also assume t� 		 t�� hence L�x� � t��x� � x��� 	 L�x�� � 
� � w�x� �
t��x� � x����d� with w� 	 w�x� � t��x� � x��� � f�� �� �g� Similarly as before� we conclude
that

Sw� 	 Q
�� w��d� 
w� � ��d� 
�� ��d�
�� ��d� 
�� ��d�Q
T

is an integer power of Di� Therefore� applying Lemma ���b� a last time� we are done�

Corollary ��� Suppose U 	 U��� R� � � and x� x�� x�� x�� x� � U ful�ll

a� x� x� � ��� �� ��T �

b� x� � x�k��� �� ��T and x� � x�k������� ��T �
c� max

i������
jxij�

p
�jx� x�j � R and x � �x� � x��� x� �x� � x�� � U �

d� either x� � coE�x�� � E�� w�x�� 	 � and L�x�� 	 L�x�� � R��� �� or x� � coE�x�� �
E�� w�x�� 	 � and L�x�� 	 L�x�� �R��� ���

��



Then x � coE�x���

Proof Again it su�ces to consider in the assumption d� the �rst case only since the second
one then follows if we replace the map u by �u�x� 	 �u�� u�� u���x�� x�� x���

For � 	 x�x�� � 	 h�� ������ ���� ����Ti and � 	 h�� ���������� ����Ti we have due
to a� that � 	 ����� �� ��T � ������� ��T � Since obviously j����� �� ��T j � p

��j�j� the
assumption c� ensures that all three point x� 	 x� � ����� �� ��T � x� 	 x� � ����� �� ��T
and x
 	 x� � ����� �� ��T belong to U � Consequently� x� � coE�x�� by Lemma �� case
��a�� and x
 � coE�x�� by the same Lemma case ��b�� Since x��x
 	 x��x�k������� ��T
and because x 	 x� � ������� ��T as well as x � �x
 � x�� 	 x � �x� � x�� are in U � we
infer from Lemma �� case ��a�� that coE�x� 	 coE�x�� 	 coE�x�� as required�

Proposition ��	 Suppose the origin belongs to the domain � and that j � f�� �� �g� c �
f��� �g� � � ��Ej � ��Ej	� and g 	 g��� v�j � �� c�� is a regular line� Then we can �nd
two points xi � g � coE�xi� � Ei for i 	 j� j � � with xj � xj	� 	 � and that the following
is true� Whenever a point x satis�es hx� v�j ��� c�i 	 � and t � x � � for all t � 
�� �� then
there is an  positive such that

U�x� � �H i�x� � coE�xi� for both i 	 j� j � ��

where
H i�x� 	 fy � R

� � hy � x� v�j � �� c�ihxi� v�j � �� c�i � �g�

Proof Performing a cyclic change of coordinates we can ensure that j 	 � �hence
j � � � �� and applying the substitution diag���� ����� � SO��� if necessary we assume
also that c 	 ��� So g 	 g��� ��� �� ��T ��

Since g is regular �and rotating R� about the angle 
 around e� if needed�� we �nd R
positive such that

i� U��� ��R� � ��

ii� for x� 	 R��� �� ��T and x� 	 �R��� �� ��T both w�xi� 	 i and � � ��coE�xi�� i 	 �� �
hold�

iii� t��� �� ��T � coE�x�� and �t��� �� ��T � coE�x�� for all t � ���
p
�R��

iv�
L n�U��� �R� � fy � hy� ��� �� ��Ti � �g n coE�x��� � ��n�Rn��n	�

and
L n�U��� �R� � fy � hy� ��� �� ��T i � �g n coE�x��� � ��n�Rn��n	��

v� L�x�� 	 L�x��R��� ���

��



since ru�x���ru�x�� 	 e� v��� c� with hv��� c�� ��� �� ��Ti 		 � implies c 	 ���
We notice �rst that we are obviously done if we prove from i�� � � � �v� only that

U�x� �R��H i�x� � coE�xi� for all x � U��� R� orthogonal to ��� �� ��T � For this purpose� we
�x �x� 	 x��� 	 �R��� R��� ��T � �x� 	 ��R����R����R�T and �x� 	 ��R����R��� R�T �
Assumption iii� now ensures that the set of all z � B��� R��� for which �x�� z �� coE�x�� or
�x��z �� coE�x�� or �x��z �� coE�x�� has measure less than ����n�Rn��n	� 	 L n�B��� R�����
In particular� there is an z � B��� R��� such that

#x� 	 �x� � z � coE�x�� �H���� � B��� �
p
� � ��R���

and
�xi � z � coE�x�� �H���� � B��� �

p
� � ��R��� for i 	 �� ��

Of course� #x�� ��x� � z�k��� �� ��T and #x�� ��x� � z�k������� ��T � Consequently� Corollary
�� shows that x � coE�x�� whenever x � U��� �R� and x� #x� � ��� �� ��T � �Note that then
jx� #x�j � �R��

Similarly� we infer the existence of an #x� � U���R����R��� ��� R��� such that x �
U��� �R� and x�#x� � ��� �� �� implies x � coE�x��� But then obviously for any t � ���

p
�R�

and
x��t� 	 t � ��� �� ��T � y��t� 	 �t � ��� �� ��T

we �nd

x��t� 	 �h#x�� ��� �� ��T i��� h#x�� ��� �� ��T i����t� h#x�� ��� �� ��T i���T
x��t� 	 �h#x�� ��� �� ��T i��� h#x�� ��� �� ��T i��� t� h#x�� ��� �� ��T i���T
y��t� 	 �h#x�� ��� �� ��T i��� h#x�� ��� �� ��T i����t� h#x�� ��� �� ��T i���T and

y��t� 	 ��h#x�� ��� �� ��T i����h#x�� ��� �� ��T i��� t� h#x�� ��� �� ��T i���

ful�lling Corollary ���b��
Since jh#x�� ��� �� ��T ij� jh#x�� ��� �� ��T ij � �R� we easily check that x��t�� x��t�� x��t��y��t��

y��t�� y��t� all belong to U��� �R�� Therefore� due to the choices of #x� and #x� Corollary
���d� is also satis�ed� Moreover� whenever x � U��� R�� x � ��� �� ��T and x� � U��� �R��
H��x�� then for t 	 hx�� ��� �� ��T ��� � ���

p
�R� we have x� � x��t� � ��� �� ��T and hence

jx� � x��t�j � �R � jxj � �R� So also ���a� and c� hold� We conclude x� � coE�x�� as
required� The same argument applies for x� � U�x� �R� �H��x� and y��hx�� ��� �� ��T i����
so U�x� �R� �H i�x� � coE�xi� whenever x � ��� �� ��T is in U��� R��

Theorem ��
 If U�z� �R� � �� then u is a laminate on U�z� R�� i�e there is an j �
f�� �� �g� c � f�����g� Q � SO��� and a �nite sequence t� � t� � � � � � tl such that
�t�� tl �

p
�R and for any x � U�z� R� and k � �

ru�x� 	
�

Q �Dj if hx� z� v�j � �� c�i � �t�k� t�k	��
Q �R�j � �� c�Dj	� if hx� z� v�j � �� c�i � �t�k	�� t�k	��

��



Proof First� we note that the proof of Theorem ��� and paragraph �� show that for
H ��a�e� x � ��Ej

i � ��Ej	�
i� � j 	 �� �� � and Ej

i � E
j	�
i� being BV�components of Ej and

Ej	� there is some c � f�����g such that �Ej
i
�x�kv�j ��� c�� Due to Corollary ����b� this

is true even for H ��a�e� x � ��Ej � ��Ej	�� So� if we denote M�j� c� to be the set of all
x � ��Ej�� � ��Ej	� for which �Ej���x�kv�j� c� then due to Theorem ���

kD�ru�k�� n
��

j��

�
c�	�

M�j� c�� 	 ��

From this we obtain easily that u is a laminate on U�z� R� whenever there is at most one
pair �j� c� such with H ��M�j� c� � U�z� R�� � ��

Consequently� we can suppose the existence of �j� c� 		 �j �� c�� for which bothM�j� c� and
M�j �� c�� intersect U�z� R� in a set of positive ��dimensional measure� Since the measure
theoretical normal �Ej is H ��a�e� on ��Ej in fact normal to the approximative tangent
space of this recti�able set� we see that U�z� R� � M�j� c� projects orthogonally onto a
set of positive area in v�j� c��� Consequently� there is an x � U�z� R� �M�j� c� such that
g�x� v�j� c�� is a regular line� Now Proposition �� implies that for any y � U�z� �R� with
y�x � v�j� c� there is a neighbourhood in which ru is constant along all planes orthogonal
to v�j� c�� Since the same is true for �j �� c�� as well and since v�j� c� and v�j �� c�� can not
be colinear� we obtain a contradiction �nishing the proof from the elementary observation
that the two planes y�v�j� c� and y��v�j� c�� intersect necessarily inside U�z� �R� whenever
y� y� � U�z� R��

� A highly nonpolygonal BV�geometry

Proposition ��� Given any N � N� we can �nd open intervals �U������ ��� and fUig�i��
such that for U� 	 int�R� n �U��

a� Ui � Uj 	 � for all � � i � j�

b� H �� �U� n
S�

i�� Ui� 	 � �

c�
�X
i��

H
���Ui� � ��N �

d� There is a map w � N� � f�� �g satisfying Ui � Uj 	 � whenever w�i� 	 w�j��

e� There exists at least one proper cycle� but any proper cycle is of length N at least�
�Here� by a cycle of length l we refer to a sequence �j�� � � � � jl� of indices such that
j� 	 jl and that Ujk � Ujk�� is a nontrivial line segment for any k 	 �� � � � � l � �� A
cycle is said to be proper if jk 		 jk� whenever k � k� � f�� l � �g��

�



Proof� During the proof we will denote by 
H and 
V the horizontal and vertical
projections� i�e� 
V ��x� y�� 	 x and 
H��x� y�� 	 y�

So let us be given an N � �� for purely technical reasons we suppose N to be odd� and
�x �U� 	 ������ ������ U� 	 R� n 
����� ������ i� 	 � and w��� 	 �� Our construction will
continue by induction� so assume for some n � � open intervals �U�� � � � � Uin and integers
w���� � � � � w�in� � f�� �g are already chosen in a way respecting a��d� and the minimal
length condition in e��

We denote by In the system of all connected components of the remaining open set
�U� n

Sin
i�� Ui and assume that

In is a �nite system of open intervals of positive distance and equal size� �����

For I 	 �a� b� � �c� d� � In let SH�I� be the set consisting of �� � and all t � ��� �� such
that �a � t�b � a�� c� or �a � t�b � a�� d� belongs to the closure of more than one of the
already chosen Ui� � � i � in� Similar� SV �I� contains �� � and all t � ��� �� such that
�a� c� t�d� c�� or �b� c� t�d� c�� is in the closure of more than one Ui�

We make also the assumption that

SV �I� � SH�I� � f k

N � �
� k 	 �� � � � � N � �g for any I � In� �����

First� let n be even and I 	 �a� b� � �c� d� � In� For each t � SV �I� we de�ne the
interval Jt � �c� d� by

Jt 	
��


�c� c� �d� c���N�� for t 	 �
�c� �t� �

�N� ��d� c�� c� �t� �
�N� ��d� c�� for t � ��� �� � SV �I�

�d� �d� c���N�� d� for t 	 ��

Clearly� the Jt are mutually disjoint� Hence� �c� d� n fJt � t � SV �I�g consists of precisely
card�SV �I���� open intervals and we will refer to such an interval �J as �Jt where t � SV �I�n
f�g is given by inf �Jt 	 supJt� Due to the de�nition of SV �I�� for each t � SV �I� n f�g
there are unique indices i	 	 i	�I� t�� i� 	 i��I� t� � in such that

Ui� � �
a� b�� �Jt� 	 fag � �Jt� Ui� � �
a� b�� �Jt� 	 fbg � �Jt�
and

Ui � �
a� b�� �Jt� 	 � for i � f�� � � � � ing n fi	� i�g�
We choose L 	 L�I� t� � fN � �� Ng such that L� w�i	�� w�i�� is even� de�ne

U�I� t� k� 	 �a�
k � �

N � �
�b� a�� a�

k

N � �
�b� a��� �Jt�

�w�U�I� t� k��� � w�i��I� t�� � k����

for k 	 �� � � � � L and

U�I� t� L � �� 	 �a�
L

N � �
�b� a�� b�� �Jt� �w�U�I� t� L � ���� � w�i	�I� t�� � ������

��



Since card�SV �I�nf�g� � N�� and L�I� t��� � N�� for all t� we obtain the estimate

X
t�SV �I�nf�g

L�I�t�	�X
k��

H
���U�I� t� k�� � �N � ��H ���I�� �����

Repeating this procedure in all the I � In� we can then simply de�ne fUigin��i�in	� to be an
enumeration of the family of all U�I� t� k� for I � In� t � SV �I� n f�g� k 	 �� � � � � L�I� t�� �
and set w�i� 	 �w�Ui� for i 	 in � �� � � � � in	�� Now it is straightforward to check that a�
and d� hold again� Since In	� 	 f
��H �J � � I � I � In and t � SV �I�g� we see that �����
is still valid and that moreover

j
H�I ��j 	 j
H�I�j
�N�

� j
V �I ��j 	 j
V �I�j whenever I � In and I � � In	�� �����

Using ����� we infer also

card�In	�� � �N � ��card�In� and
in��X

i�in	�

H
���Ui� � �N � ��

X
I�In

H
���I��

����

To verify ����� let I � be an arbitrary interval in In	�� hence I 	 
H�Jt� � I for some
I � In� t � SV �I�� If t 	 �� we obviously have SH�I

�� � SH�I� � fk��N � �� � k 	
�� � � � � L�I� ��g and SV �I� � ��� �� 	 �� For t 	 � the statement ����� follows similarly� If
t � ��� �� � SV �I� and t� 	 max�SV �I� � 
�� t��� then SH�I

�� 	 f�� �g � fk��N � �� � k 	
�� � � � �max�L�I� t��� L�I� t��g� Moreover� SV �I

�� 	 f�� ���� �g� so ����� is satis�ed� because
N � � was supposed to be even�

Last� we show that there is no proper cycle in f�� � � � � in	�g of length less than N �
Indeed� due to our induction assumption� any such cycle must contain an index bigger
than in� This means� the corresponding chain of intervals must enter one of the  bridges!
fU�I� t� k�gL�I�t�	�k�� and since the cycle is supposed to be proper� it can not leave the bridge
on the side it entered� Hence� the cycle contains at least L�I� t� � � � N indices� con�
tradiction� So� the minimal length condition in e� is still satis�ed� Moreover� already for
n 	 � also the existence part of e� is ful�lled since one easily checks that ��� �� � � � � i�� �� is
a proper cycle�

Therefore� we are now in a position to repeat this construction for odd n � � instead
of even n but interchanging the roles the vertical and horizontal directions play and still
ensuring a��b� and e��

In this way we build up the whole sequence fUg�� and w � N� � f�� �g ful�lling a��b�
and e�� We �nish the proof by establishing b� and c�� From ����������� and the analogous
estimate ������ for odd n�i�e� 
H and 
V being exchanged� we derive that for all n � �

card�In	�� � �N � ���card�In�

and

I �� �	 �

�N�
� I provided I �� � In	� and I � In�

��



Consequently�

X
I�In��

H
���I� �

�
N � �

�N

��X
I�In

H
���I� �

�


�

�� X
I�In

H
���I�

which together with ����� implies
P

iH
���Ui� �
� Since �U� n

S�
i�� Ui �

S In for each n�
also b� follows� Finally� to ensure also c� one can simply rescale the whole just constructed
picture using a su�ciently shrinking homothety�

There is one more property of this construction which can easily be checked by the
interested reader but which deserves at least to be mentioned� Namely� the construction
is done in a way su�ciently selfsimilar in order to ensure the following� All possible
blow�ups of this decomposition �which are due to compactness of the space BV again a
union of intervals with �nite total length of the boundary� ful�ll the same lower estimate
for the shortest nontrivial proper cycle� It is of course important to have this property
since otherwise the consideration of blow�ups�� would lead to more simple compatibility
conditions� Hopefully� the picture below illuminates the construction� The two di�erent
hatchings used correspond to the two di�erent values of w�

GHIJKLMNOsTUVWXYZa
� Appendix

Here we will present the rather technical proof of Lemma ��� It has to be noted that
the following calculations were carried out using Maple V� The correctness of our proof by
contradiction is very sensitive to any kind of  random errors! �like typos etc��� In fact� the
polynomial equations which represent the necessary conditions we derived before are generi�
cally unsolvable� Therefore� random errors lead almost surely to the desired contradiction in
a seemingly perfect proof� On the other hand� writing down all computations and transfor�
mations involved would be possible but makes the paper much longer without being really

��note that ru does not change in the process of blowing up

��



illuminating nor ensuring that this kind of  random errors! will be detected� For these rea�
sons the source code of the Maple session which contains the results of this appendix will be
available on the internet �http�$$www�mis�mpg�de$preprints$��$preprint�����addendum��

We return to the setting of Lemma ��� Using the results of paragraph ��� in particular
����� we obtain that

M 	 
�� ��d� 
�� ��d�
�� ��d� 	 R��� ��R��� ��R��� ��

equals �
BB	
� �� a��a�	a���

� a�	� ��
� � a��� � a�

� a�	� ��
�� � a��� � a

� a�	� ��

�� � a��� � a
� a�	� ��

� a�

� a�	� ��
a���
a�	�

� � a��� � a�
� a�	� ��

� a��� � � a����� a� �
� a�	� ��

� a�

� a�	� ��



CCA �

Since �M � Id�x 	 � has the normalized solution x 	 ��� a� a�
�
p
� � �a�� we de�ne

Q � SO��� using x as the �rst row� It is clear now that Di 	 Q � M � Q
 will ful�ll
Di��� �� 	 hx� xi 	 �� D��� �� 	 D��� �� 	 D��� �� 	 D��� �� 	 � and �Di represents the
action of the rotation M on the plane normal to the axis x of M � It remains to prove a�
and b�� For this purpose� let

Sw��w� 	 Q
�� w��d� 
w� � ��d� 
�� ��d�
�� w��d� 
w� � ��d�Q



and
Sw 	 Q
�� w��d� 
w� � ��d� 
�� ��d� 
�� ��d� 
�� ��d�Q




whenever w�� w�� w � f�� �� �g� Since Di consists of two blocks� we infer that for S 	 Sw

or S 	 Sw��w� being a integer power of Di � SO��� necessarily

S��� �� 	 S��� �� 	 S��� �� 	 S��� �� 	 �� �����

After these introductionary observations the remainder of the proof consists in checking
all di�erent possible choice for �w�� w�� or w�

We start with part a�� i�e� consider the pairs �w�� w��� For ��� �� the matrix S 	 S���

equals �
BB	

� a���
� �	� a� � � a�	� �

�
p
� � a��� � ap

�	� a� � a�	� �
�� � a��� � ap

�	� a� � a�	� �
p
�	� a�

�
p
� a ��� a�	�	a� �
� a�	� ��

p
�	� a�

� a�

� a�	� ��
�

p
� � 
 a��a�	� �p
�	� a� � a�	� ��

� a � 
 a����� a� �p
�	� a� � a�	� ��

p
�	� a�

p
� � � a��� a��� �p
�	� a� � a�	� ��

�� a� � a���� a� �
� �	� a� � � a�	� ��



CCA �

and obviously S������ �� 		 ��
For S 	 S��� we obtain�
BB	

�� a���� a���
 a�	�	� a�
� �	� a� � � a�	� ��

��
p
� a � � a��� a�	� �p
�	� a� � a�	� ��

� a ���� a�	�� a�	� a��� �p
�	� a� � a�	� ��

p
�	� a�

��
p
� a � 
 a���
 a�	�� a��� �

� a�	� ��
p
�	� a�

��� a�	a�	�� a���� a�	�
� a�	� ��

�
p
� a� ��� a�	a�	�� a��� �p

�	� a� � a�	� ��

�� a ���� a�	�
 a���	� a�	a� �p
�	� a� � a�	� ��

p
�	� a�

��
p
� a� � a��
 a�	� a�	� �p

�	� a� � a�	� ��
�

 a�	��� a���� a�	� a����� a�	�

� �	� a� � � a�	� ��



CCA �

��



In particular� we derive from S������ �� 	 S������ �� 	 � that �a� � �a� � � 	 � and
��� a� � �� a� � � a � � 	 �� but the �rst equation gives then a� 	 ��� for which the
second polynomial does not vanish�

Next�

S��� 	

�
BBBB	

� a���
�a�	�� ��	� a��

� �a���� ap�p
�	� a� �a�	��

�� a �a����p�
��	� a�� �a�	��

�a
p
� ��� a�	�	a��p
�	� a� �a�	���

� a�

�a�	���
� 
 a�� a�	�p

�	� a� �a�	���

a �
 a����� a��p�
��	� a�� �a�	���

� a��� a���p
�	� a� �a�	���

�� �a�� a���� a�
��	� a�� �a�	���



CCCCA �

So S������ �� 	 S������ �� 	 � implies a���a��� 	 a���a��� 	 �� hence �a��� 	 �
which gives a contraction to a 		 ��

If �w�� w�� 	 ��� ��� then S is equal to�
BB	

� a���
� �	� a� � � a�	� �

a
p
� ��� a�	�� a���	a� �
� a�	� ��

p
�	� a�

� a ���� a�	a�	�� a�	� a�	� �
� a�	� ��

p
�	� a�

p
�	� a�

�
p
� a ��� a�	�	a� �
� a�	� ��

p
�	� a�

� �� a��
� a��� a�	� a���
� a�	� ��

p
� a� ��� a�	� a�	
 a�	�	�� a� �p

�	� a� � a�	� ��

� a � 
 a����� a� �p
�	� a� � a�	� ��

p
�	� a�

�
p
� a� � � a��� a�	�� a�	�� a�	
 �p

�	� a� � a�	� ��
��� a��	�� a�	� a�	� a��� a���

� �	� a� � � a�	� ��



CCA

and we can �nish with the same argument as for S���

So we turn to the three cases with w� 	 �� First� ��� �� gives for the matrix S�
BB	

� ��
 a�	�
 a�	
 a���	� a�
� a�	� �� � �	� a� �

�� a
p
� � a��� a�	� �

� a�	� ��
p
�	� a�

�� a � �� a���� a�	a�	� �
� a�	� ��

p
�	� a�

p
�	� a�

� a
p
� � � a��� a�	
 a��� �
� a�	� ��

p
�	� a�

� ��� a�	 a���� a�	a�	�
� a�	� ��

��
p
� a� � a��� a�	
 a��� �p

�	� a� � a�	� ��

�� a ���� a�	� a�	�� a�	�	a� �
� a�	� ��

p
�	� a�

p
�	� a�

��
p
� a� � a��� a�	� �p
�	� a� � a�	� ��

��
 a�	� a�	�� a��� a�	� a����
� a�	� �� � �	� a� �



CCA �

But here the one condition S������ �� 	 � only already gives the impossible conclusion
�a� � ��� 	 ��

Further� S��� turns out to be�
BB	

� a���
� �	� a� � � a�	� �

a
p
� � a��� �p

�	� a� � a�	� �
�� � a��� � ap

�	� a� � a�	� �
p
�	� a�

a
p
� ��� a�	�	a� �

� a�	� ��
p
�	� a�

� a�

� a�	� ��

p
� � 
 a�� a�	� �p
�	� a� � a�	� ��

� a � 
 a����� a� �p
�	� a� � a�	� ��

p
�	� a�

�
p
� � � a��� a��� �p
�	� a� � a�	� ��

�� a� � a���� a� �
� �	� a� � � a�	� ��



CCA �

Obviously S������ �� 		 ��
Finally� S��� equals�
BB	

� a���
��	� a� � � a�	� �

�
p
� a ���� a�	 a�	�	a�	� a� �p

�	� a� � a�	� ��
�� a � �� a���� a�� a�	� a�	� �p

�	� a� � a�	� ��
p
�	� a�

a
p
� ��� a�	�	a� �

� a�	� ��
p
�	� a�

�� a��� a�	�� a�	� a���
� a�	� ��

�
p
� a� � 
 a���� a�	�� a��� a��� �p

�	� a� � a�	� ��p
�a � 
 a����� a� �
� a�	� �� ��	� a��

�
p
� a� ���� a�	�� a�	� a�	� a��� �p

�	� a� � a�	� ��
� a��	�� a�	�� a�	�� a�	 a�	� a��	�

� �	� a� � � a�	� ��



CCA �

��



Since the conditions S��� �� 	 S��� �� 	 � lead to the same equations as for S���� we �nd
again a contradiction� Therefore� part a� of Lemma �� is proved� and we have to consider
S�� S�� S��

We obtain

S� 	

�
BB	

� a���
� �	� a� � � a�	� �

p
� � a��� � ap

�	� a� � a�	� �
�� � a��� � ap

�	� a� � a�	� �
p
�	� a�p

� a � � a��
 a�	�	a� �
� a�	� ��

p
�	� a�


 a�	� a�	�
� a�	� ��

p
� a� � a�� a�	
 �p
�	� a� � a�	� ��

� a ��
 a���	a�	� a� �p
�	� a� � a�	� ��

p
�	� a�

p
� a� � � a��� a��� �p
�	� a� � a�	� ��

�� a�	� a�	� a�	� a���
� �	� a� � � a�	� ��



CCA �

and S���� �� 		 ��
Next� we compute S� to be�

BB	
� a���� a�	a�	��� a�	� a��

� �	� a� � � a�	� ��
�� a

p
� � � a��� a�	
 a��� �
� a�	� ��

p
�	� a�

�� a � �� a���
 a�	� a�	�	a� �
� a�	� ��

p
�	� a�

p
�	� a�

�� a
p
� � � a���� a�	
 a�	�� a��� �

� a�	� ��
p
�	� a�

a� � � a���� a�	�� a����	a� �
� � a�	� ��

� a�	� a�	� a����� a�	�� a���
�p�	� a� � a�	� ��

�� a		�� a
��
� a���� a�	� a�� a��p
�	� a� � a�	� ��

p
�	� a�

� a��	�
 a���� a��� a��� a���p
�	� a� � a�	� ��

a��	�� a���
� a�	�� a�	�� a�	� a��
�� �	� a� � � a�	� ��



CCA�

Now S���� �� 	 S���� �� 	 S���� �� 	 � yield p��b� 	 p��b� 	 p��b� 	 �� where b 	 a��
p��b� 	 �� �  b� � b� � � b�� p��b� 	 �� � b� �� b� � b� � � b�� and p��b� 	 �� � �� b�
�� b� � � b� �  b�� Since ��� � p� � ��� � p� �  � p����b� 	 � � ��� b � ��� b�� we infer
b 	 ������ but p��b��������� 	 �������������� 		 ��

Last of all� S� equals�
BB	

�� a�	� a���� a��� a�	��� a��
� a�	� �� � �	� a� �

�
p
� a� � � a���	a� �p
�	� a� � a�	� ��

�� a � � a�	� a���� a�	a�	� �p
�	� a� � a�	� ��

p
�	� a�p

� a ��� a���� a�	a�	�� a��� �
� a�	� ��

p
�	� a�

a� � � a�	� a�	�� a���	a� �
� a�	� ��

p
� � �� a�	� a�	� a���
� a�	�� a��� �p

�	� a� � a�	� ��

� a� � �� a�	�� a���� a���	a� �p
�	� a� � a�	� ��

p
�	� a�


 a���� a�	� a��	�� a�	a�	�p
�	� a� � a�	� ��

a� � � a��� a�	�� a���� a��� a���� �
� �	� a� � � a�	� ��



CCA

and S���� �� 	 � forces a� � f�� ����g� This is the last contradiction needed to �nish our
proof�
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