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A-QUASICONVEXITY,
LOWER SEMICONTINUITY AND YOUNG MEASURES

IRENE FONSECAT & STEFAN MULLER }

Abstract The notion of .A-quasiconvexity is introduced as a necessary and sufficient condition for (sequential)
lower semicontinuity of

(u,v) /Qf(a:,u(a:),'u(a:)) dzx

whenever f: Q x R™ xR — [0, +00) is a normal integrand,  C RY is open, bounded, u, — w in measure, v, — v
in LP(Q;RY) (2 if p = 4o0), and Avp, — 0 in WL2(Q) (Avn, = 0 if p = +00). Here Av = 3N | A(i)% is a

constant-rank partial differential operator, A9 € Lin(R%;R!), and f(z,u,-) is A-quasiconvex if
< [ fw+w) da
Q

for all v € R? and all w € C°(Q;R%) such that Aw = 0, fQ w(z)dr = 0, and w is Q-periodic, Q := (0,1)N. The
characterization of Young measures generated by such sequences {v,} is obtained for 1 < p < 400, thus recovering
the well known results for the framework A = curl, i.e. when v, = Vi, for some ¢, € WHP(Q;R™), d = N x m.
In this case A-quasiconvexity reduces to Morrey’s notion of quasiconvexity.

1991 Mathematics subject classification (Amer. Math. Soc.): 35D99, 35E99, 49J45
Key Words : A-quasiconvexity, equi-integrability, Young measure, lower semicontinuity

¢1. Introduction

Recently there has been extensive research on minimization and relaxation of nonconvex en-
ergies relevant to the study of equilibria for materials exhibiting interesting, and technologically
powerful, elastic and magnetic behaviors. Often a starting point for this study addresses directly
minimization of the energy, leading to the search for necessary and sufficient conditions ensuring
sequential weak lower semicontinuity of integrals of the form

(u,0) = I(u,v) = / f(z,u(z), v(z)) de

where Q C R is an open, bounded set, (u,v) : 2 — R™ xR?, and f : @ x R™ x R? — R is a normal
integrand. On the other hand, there may be situations where we need to identify lim,,_ o0 I (s, v5)
for an oscillatory sequence {(uy,v,)} which does not minimize the energy. Consequently, this will
entail a full characterization of the Young measures generated by the sequences under consideration,
i.e. weak* measurable maps v : Q — P, where P is the space of probability measures on R™*¢,
such that if g : Q x R™ x R¢ — R is a Carathéodory function, and if {g(-, u,,v,)} is equi-integrable,
then

/szg(x,un(x),vn(:c))dx—)/Q/meg(x,y,z)duw(y,z)dx.

Although Young measures have been used for quite some time in the contexts of Control Theory
and Optimization, they were first introduced in a Partial Differential Equations framework by Tar-
tar (see [T1, T2, T3]) in order to relate the information obtained from the linear balance equations
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via the method of Compensated Compactness with the information resulting from pointwise non-
linear constitutive relations. One application of this method was the study of quasilinear hyperbolic
equations (see [T2]), and later DiPerna [DiP1, DiP2] and DiPerna and Majda [DiP3] extended it
to systems. During the last few years several questions related to the study of (nonlinear) elastic
materials and certain materials instabilities have been successfully carried out via minimization
techniques and through the understanding of the underlying Young measures (see [BJ1, BJ2, CK,
DS, JK]). Often, in this context v is the gradient Vu of a Sobolev function u € WP({; R™),
d =m x N, and coercivity of f provides boundedness of the admissible sequences in W1P(2; R™).
If p> 1 then u, — u in WHP(2; R™) (up to extraction of a subsequence). The work of Morrey
[Mo], Ball [B1], and Acerbi and Fusco [AF] shows that W!? (sequential) weak lower semicontinuity
of

uH/@f(m,u(x),Vu(:c))d:c

is equivalent to quasiconvexity of f(z,u,-) provided 0 < f(z,u,&) < a(z,u)(1 + |¢[P) for some
locally bounded function a :  x R? — [0,+00) and for all £ € R?, a.e.z € Q. We recall that a
Borel function f: M™*Y — R is said to be quasiconvex if

(11) f© =  mf /Q F(€+ V() dr,

PEW, = (QiR™)

where @ := (0,1)V. If f is quasiconvex then one can show that

(12) f© = nf / F(E+ Vo(a)) da
)/ Q

PEWES (QR™

where W1.2°(Q; R™) is the class of periodic functions in W °(Q;R™). Within this context, the
characterization of all Young measures generated by sequences of gradients bounded in LP was
obtained by Kinderlehrer and Pedregal [KP1, KP2]. They show that (see Theorem 2.6) in a simply
connected domain 2 a weakly measurable mapping v : 2 — P is a Young measure generated by a
sequence of gradients Vu,,, with {u,} bounded in W1?(£; R™), if and only if three conditions are
satisfied:

v is p-integrable, i.e.,

[ tlid e < oo,
Q
the first moment x + (v,,id) satisfies the underlying PDE, i.e.,
curl ((v,id)) =0,
and, as suggested by (1.1), Jensen’s inequality is satisfied for quasiconvex functions, i.e.,

(Va, f) 2 [({ve,1d))

for all quasiconvex functions f such that |f(£)] < C(1+ |¢[P).

As emphasized by Tartar, in the setting of continuum mechanics and electromagnetism more
general linear PDEs than curlv = 0 arise, and the theory of compensated compactness was devel-
oped in that framework (see [Mu, T1, T2, T3, T4, T5]). To fix ideas, consider a collection of linear
operators A € Lin(RY,R'), i = 1,..., N, and define
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N
Aw) := Y ADw; € Lin(R,R'), weRY,
i=1
where Lin(X,Y") is the vector space of linear mappings from the vector space X into the vector
space Y. Following Murat [Mu], we will assume that A satisfies the constant rank property, which
states that there exists 7 € N such that

rank A(w) =7 for allw € SN 1

It is easy to see that the curl-free case is a particular case of this general framework (see Remark
3.3 (iii)). Other examples are discussed in Remarks 3.3 and 3.5 and in Examples 3.10 and 4.4.

We prove that a necessary and sufficient condition for weak lower semicontinuity of I, along
sequences that satisfy u, — u in measure, v, — v in L?, and Av, — 0 in W~1P(Q), is A-
quasiconvexity of f(x,u,-) (see Theorems 3.6, 3.7). The notion of A-quasiconvexity and its impli-
cations for the lower semicontinuity of functionals v — [, f(v) dz were first investigated by Da-
corogna who studied in particular situations where the kernel of A contains the range of a suitable
first order differential operator B [Dal, pp. 100-112] (in the general definition of A-quasiconvexity
as presented in [Dal, p. 13] one needs to add periodicity of the test functions to obtain necessity
of A-quasiconvexity; this leads to some difficulties in establishing sufficiency, which, under the
assumption of constant rank, can be overcome using the methods presented below). Precisely, and
by analogy with (1.2), a function f : R¢ — R is said to be A-quasiconvex if

fw) < /Q £(o + w(z)) da

for all v € R and all Q-periodic w € C*(Q,R?) such that A(w) = 0 and [, w(z)dz = 0. In
addition, we obtain the generalization to the A-free setting of the theorem by Kinderlehrer and
Pedregal concerning the characterization of gradient Young measures (see Theorem 4.1). This
issue has been independently raised by Pedregal in [P], where he studied the case of divergence
free fields (see also Remarks 3.3 (iv), 3.5 (iv)).

We remark that continuity of .4-quasiconvex functions is only garanteed along directions in
the characteristic cone A := U,cgn-1 ker A(w), and A-quasiconvex functions need not be (lower
semi)continuous (see Proposition 3.4 and Remark 3.5 (ii)). In particular, it will not be true in
general that the relaxed energy admits the integral representation

(U’?U) - /QQ.Af(mauav) dx

where Q4 f is the A-quasiconvexification of f. In the curl-free case this representation was first
established by Dacorogna [D2], and nowadays there is a vaste literature on the subject.

We note that the method used in this A-free framework departs from the case curl-free mostly
due to the lack of ‘potential functions’ associated to the v,. Indeed, in the case of gradients we
reduce to the notion of quasiconvexity by localization via covering lemmas, so that on each sub-
domain the target function is essentially affine, followed by matching of the boundary conditions.
The latter can be easily done by simple convex combinations between the potentials and the target
function, avoiding layers of high concentrations of the gradients of the v,. Clearly, the gradient
of the resulting convex combinations still satisfy curl = 0. In the general A-free setting, we must
work directly on the v,,, and we need to find a way to project back the modified fields onto ker A.
We perform these projections via discrete Fourier multipliers (see Lemmas 2.15, 2.16, 2.17). It is at
this point that the constant rank condition enters in a crucial way. Situations where the constant
rank condition fails are little understood. Tartar [T1] has studied the example where v : R> — R?

1 2 . . . .
and Av = (2%2, g%). He showed that in this case A-quasiconvexity reduces to separate convex-

ity, the Young measures generated by sequences along which {A4v,} is bounded in L are tensor
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products, and this class is strictly smaller than the class defined by duality with separately convex
functions (see condition (iii) in Theorem 4.1). The class of Young measures generated by sequences
that satisfy Av,, — 0 in W=1? is not known (see [BM2, T6]).

§2. Preliminaries

In this section we recall the notion of Young measures generated by sequences bounded in LP
and by curl-free sequences. We discuss some properties of a constant rank linear partial differential
operator A, and we conclude with the Decomposition Lemmas 2.15, 2.16, 2.17, where we show that
if {u,,} is weakly convergent in LP and if Au,, — 0 in the appropriate sense then u,, = v, + w,
where {v,,} € LP Nker A is p-equi-integrable and {w,} converges to zero in measure.

In the sequel  C RV is an open, bounded domain, B(z,¢) denotes the open ball centered
at € RY with radius e > 0, Q = (0,1)V, Q(wo,7) := o + rQ*, Q* :== Q — (1/2,---,1/2),
and SN~ := {z € RY : |z| = 1} is the unit sphere in RY. The Lebesgue measure in RY is
designated by £V, and HN~! will stand for the N — 1-dimensional Hausdorff measure in R .
If 1 < p < 400 then W~1?(Q) is the dual of Wol’pl(ﬂ), with 1/p+ 1/p’ = 1, and it is well
known that F € W—1?(Q) if and only if F = f + Ziil ggi in the sense of distributions, for some
f,91,--.,98 € LP(R2). We denote by Cy(€;R?) the set of R?-valued continuous functions with
compact support in 2, endowed with the supremum norm. It is well known that the dual of the
closure of Cy(€2; R?) may be identified with the set of R?-valued Radon measures with finite mass,
M(;R?), through the duality

(1, 0) :Z/Qso-du, € Co(Q), 1 € M(Q).

In order to simplify the notation, and when there is no ambiguity, we will abbreviate Co(Q;R?)
and M(Q;R?) as Co(Q2) and M(R), respectively. If u € M(Q2) and E C (2 is a Borel set, then pu| E
stands for the restriction of the measure u to E, i.e.

ulBE(X) =p(ENX) for all Borel set X C €.

We recall that given A\, up € M(Q) with p > 0, by the Radon-Nikodym Theorem we may
decompose A relative to p, precisely A = A, + A\s; where Ay and p are mutually singular (As L ),
ie.

A(X) = \(X N B), p(X) = u(X \ B)
for all Borel sets X C () and for some Borel set B C 2, and where A, is absolutely continuous
with respect to p, \g << p, i.e. Ag(X) = 0 whenever X C  is a Borel set and u(X) = 0. By

Besicovitch’s Differentiation Theorem we have
oA oA . A(B(z,¢))
A(X) = —(x)d — =1
o) = [ G, o) = lim S

and for all Borel sets X C (.
If {2} is a sequence bounded in L!(Q) then it admits a subsequence converging weakly* in the
sense of measures to a measure p € M(2),

/znkgodm%/godu
Q Q

for all p € Cy(€2). The equi-integrability condition
for all € > 0 there exists § > 0 such that LN (F) < 6 = sup/ |zn(z)|dx < e
n JE

for p a.e. x € Q

is a necessary and sufficient condition for weak compactness in L' of the sequence {z,} (recall that
Q) is bounded). If equi-integrability holds then u << £~. We will say that {z,} is p-equi-integrable
if {|z,,|P} is equi-integrable. The following Dunford-Pettits criteria for equi-integrability are well
known.
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Proposition 2.1. Let {z,} be a sequence bounded in L*(f2).
(i) The sequence {z,} is equi-integrable if and only if for all € > O there exists M > 0 such that

sup [2n(y)l dy < e.

n /{xGQ:zn(w)|>M}

(ii) The sequence {z,} is equi-integrable if there exists a continuous function g : [0, +00) — [0, +00)

such that 0
.ogt)
t~1>1£noo = +00, s%p/Qg(|zn(:c)|) dr < +o0.

(i) If {zn} is bounded in LP(QY) for some 1 < p < 4+oo then {f(zy)} is equi-integrable whenever
f:R? — [0,+00) is a continuous function such that

o _y

lyl—>+oo |y|P

A map p: E — M(Q) is said to be weak* measurable if x — (u(x), ) are measurable for all
v € Cp(2). In order to simplify the notation we denote p(x) by pg.
Often the study of the behavior of solutions of nonconvex problems leads to the need to determine
the limiting energy
lim [ f(z,)dz
n—roo E
where E is a measurable subset of ©, f : R — R is a nonlinear function, and {z,} is an oscillatory
sequence of measurable functions z, : £ — R%. In general, the presence of oscillations entails the
inequality
lim f(zn) dz # / f(z)dz.
As it turns out, the Young measure generated by (a subsequence of) {z,} will provide the limiting
energy.
We recall that a function f : @ xR? — R is said to be a normal integrand if f is Borel measurable
and v — f(z,v) is lower semicontinuous for all z € Q. Also, f is Carathéodory if f and —f are
normal integrands.

Theorem 2.2. [Fundamental Theorem on Young Measures] [B2, BL, T1] Let E C RY be a
measurable set of finite measure and let {z,} be a sequence of measurable functions, z, : E — R®,
Then there exists a subsequence {z,, } and a weak* measurable map v : E — M(R?) such that the
following hold:

(i) ve >0, ||ve|lmray = Jgadve <1 for a.e. x € E;

(i) one has (V) ||vz|lm =1 for a.e.x € E

if and only if

(2.1) lim sup £ ({|zn,| > M}) = 0;
M—oo

(iii) if K C R? is a compact subset and dist (2, , K) — 0 in measure then
supp v, C K fora.e. z € E;

() if (7) holds then in (iii) one may replace ‘if’ by “if and only if’;
(v) if f: QxR = R is a normal integrand, bounded from below, then

Jim inf /Q £, on, (@) dz > /Q F(2) da

n—oo
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where

@) = e S ) = [ ) oo

(vi) if () holds and if f : Q x R? — R is Carathéodory and bounded from below, then

lim | f(z,zn,(z))de = /Qf(:c) dz < +00

n—oo Q

if and only if {f(-,2n,(:))} is equi-integrable. In this case
FCrz0, () = Fin LY(Q).

The map v : E — M(R?) is called the Young measure generated by the sequence {z,, }. It
can be shown that every weak* measurable map v : E — M(R?) that satisfies (i) is generated by
some sequence {zp}. The Young measure v is said to be homogeneous if there is a Radon measure
vy € M(R?) such that v, = vy for a.e. x € E.

Remark 2.3. (i) Condition (2.1) holds if for some p > 0

sup/ |2 |P dx < +00.
neNJ g

(i) As a consequence of (vi), if {z,} is bounded in L? and if f is a continuous function in R? such
that |f(y)] < C(1 + |y|9) for some C > 0,0 < q < p, then f(z,,) = f in LP/. Also, if {z,} is
equi-integrable, then taking f = id we obtain

Zn, = Z in LYQ), Z(z) := (v,,id).

Proposition 2.4. If{v,} generates a Young measure v and if w, — w in measure then {v,, +w,}
generates the ‘translated’ Young measure

Uy 1= Fw(w)’/a:

where
(Laps ) = (p, (- + a))

fora € RY, ¢ € Co(R?). In particular, if w, — 0 in measure then {v, +w,} generates the Young
measure V.

Proposition 2.5. If {v,} generates a Young measure v and u, — u a.e. in Q then the pair
{(un,vn)} generates the Young measure p defined by

Mz 3= Oy(z) @ Ve, a.e. ¢ € (.

A Young measure v is called a gradient Young measure if it is generated by a sequence of
gradients; more precisely, v is a WP gradient Young measure if it is generated by {Vu,} and
Uy — u in WHP(Q; R™). A complete characterization of such Young measures has been obtained
by Kinderlehrer and Pedregal [KP1, KP2] (see also [AB, FMP, K]). A key ingredient is the notion
of quasiconvexity: a Borel function f : M"™*Y — R is said to be quasiconvex if

o=t [ fe+ Vpla)) do
)J/Q

PEW, ®(QR™
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If f is quasiconvex then one can show that

o= it fer Vo)
PEWL (QR™) JQ

where W}:2°(Q; R™) is the class of periodic functions in W'°°(Q; R™). It has been established by

Morrey [Mo] (see also [AF, ADM, B1, D1, D2, FM1, FM2]) that sequential weak lower semicontinu-

ity in W1 and quasiconvexity are essentially equivalent. More precisely, if 0 < f(£) < C(1 + |¢]P)

for some C > 0 and all ¢ € M™*"N (no growth condition is necessary if p = +o00) then the

implication

Up — uin WHP(S ifp:+oo):>/f(Vu)delirr_l)inf/f(Vun)d:c
Q n—ee Ja

holds if and only if f is quasiconvex.

Theorem 2.6. Let 1 < p < +o0o. A weak* measurable map v : Q@ — M(M™*N) js a WP
gradient Young measure if and only if v, > 0 a.e. x € 0 and

(i) there exists u € WHP(Q; R™) such that (v,,id) = Du a.e. z € Q;

(i1) [q Jypmxn [P dva(§)dz < +oo (suppv, C K a.e.x € Q, for some compact K C M™*N if
p=+00);

(iii) (ve, f) > f({va,id)) fora.e. x € Q and for all quasiconvex f : M™N — R (with |f(&)| <
C(1+ |€[P) for some C' > 0 and all £ € M™*N if 1 < p < +00).

Consider a collection of linear operators A € Lin(R?,R'), i =1,... ,N, and define

N
5 Ov
= A® RV - R?
Av Z 9z, v ,
i=1
N
Aw) := Y AYw; € Lin(R,R'), weRY,

i=1
where Lin(X,Y") is the vector space of linear mappings from the vector space X into the vector
space Y.

In the sequel we will assume that A satisfies the constant rank property, namely there
exists r € N such that

(CR) rank A(w) =7 for allw € SN 1
Fix w € RY. We define
P(w) : R? = R to be the orthogonal projection of R onto ker A(w),
Quw) R =R Qw)A(w)z := 2z — P(w)z, z€ R, Q(w) = 0 on (range A(w))*.
Proposition 2.7. If (CR) holds then the map P : RN \ {0} — Lin(R?; R?) is smooth and homo-

geneous of degree zero, and the map Q : RN \ {0} — Lin(R';RY) is smooth and homogeneous of
degree —1.

Let A := Z" be the unit lattice, i.e. the additive group of points in R with integer coordinates.
We say that f : RY — R? is A-periodic if

flx+X) = f(z) forallze RV e A.
A A-periodic function f may be identified with a function f; on the N torus
Ty = {(e?™=, ... &™) e CN i (21,...,2n) € RV}
through the relation
fr(e®™® . e?TONY = f(xy,... TN).

The space LP(T'y) is identified with LP(Q), and C(T'y) is the set of A-periodic continuous functions
on (.
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Proposition 2.8. [BM1] Let w € LP(Tn;R%), 1 < p < 400, and set w,(x) := w(nz),n € N. If
E CRY is a measurable set then

wy, — w(y) dy mLp(E;]Rd) (—*\ if p = +00).
TN

In particular, {w,} generates the homogeneous Young measure v := 6, where
@) = [ olw)dy for allip € Col?).
N

We recall some results on Fourier transforms of periodic functions (see [St, SWe]). If f € L*(Tw)
then its Fourier coefficients are defined as

fn) = (z)e™ 2N dx, A€ A,
Tn
and the following hold:
Theorem 2.9. (i) The trigonometric polynomials
R(z) = Z axe 2@ Alfinite subset of A, ay € C,
AEA!

are dense in C(Ty) and in LP(Tx) for all 1 < p < +o0.
(i) If u € M(Ty) and (i, e 2™ Y =0 for all X € A then p = 0.
(iii) If f € L*(Tn) then

Fl@)y=>"Fe™™ > ST FNP =[£I

A€EA AEA

Corollary 2.10. If f € L'(Tn) and )", cp |F(A)] < +00 then there exists a representative f of f
such that f € C(Tx) and for all x € T

) = 3 fogemien,

AEA
Corollary 2.11. If f € C*(Tw) for some k > N/2 then
>IN < +oo.
AEA

Let (LP(Tn), L%(Tx)) denote the class of (p,q) Fourier multiplier operators, i.e. the class of all
bounded linear operators T' : LP(Ty) — L%(T) which commute with translations,

I,T =TT, forallheRY,
where 'y, f(z) := f(z — h).
Theorem 2.12. If 1 < p,q < +o0 and if T € (LP(Tn),LY(TnN)) then there exists a bounded
function © : A — C such that
Tf(x):=>_ ONFNE™ iff € LP(Tw)is given by f(z) = > _ f(A)e™*.
AEA A€A
The collection of coefficients {O(X)}aea is called the Fourier multiplier associated to T.

It can be shown that a certain class of continuous functions on the unit sphere SV~ are Fourier
multipliers. Precisely (see [St, Example iii), pp. 94], [SWe, Corollary 3.16, pp. 263, and remark
just below]),



A-Quasiconvexity 9

Proposition 2.13. If © is homogeneous of degree zero and if it is infinitely differentiable on
SN=1 then the operator Te : LP(TN) — LP(T) defined by

Tof(x Z oA @A iff € LP(Ty) is given by f(x Z f i

A€A\{0} AEA
is a Fourier multiplier operator for 1 < p < +00.

If (CR) holds, then in light of Propositions 2.7 and 2.13 the functions
@Z‘j:UJE]RNi—)P(U))l‘j, i,jE{l,...,d}

generate the Fourier multipliers {©;;(A)} ca\{o} associated to the Fourier multiplier operators
Te,;, and we define the operators

(Tu)i(x) == (To,;u;)(x) forue LP(Tn;RY), i=1,...,N,
where the summation convention for repeated indices is used.

Lemma 2.14. Suppose that (CR) holds and let 1 < p < +00. Then

(i) T: LP(Tn; RY) — LP(Ty; RY) is a linear, bounded operator that vanishes on constant mappings;
(ii) if u € LP(Tn; R?) then T o Tu = Tu, and A(Tu) = 0;

(iii) |lu — Tul|lr» < Cpl|Aullw-1» for all u € LP(Tn;RY) such that Jr, wdz = 0 and for some
Cp > 0;

(iv) suppose that {uy,} is a sequence bounded in LP(Tn;R%) and {|u,|P} is equi-integrable. Then
{|Tun|P} is still equi-integrable.

Proof. (i) follows from the definition of T and from Propositions 2.7 and 2.13. Property (ii) is an

immediate consequence of the fact that P is a projection.
To prove (iii), we note that by Corollaries 2.10 and 2.11 for u € C*°(Ty; R?) with fTN udr =0

we have N
u —Tu = Eyea(op QAAMN)a(N)e ™
A A ~ Tz
=sheavo 0 ) () sove

where we have used the linearity of A and the fact that @ is homogeneous of degree —1. By
Proposition 2.7 the inequality in (iii) is obtained, and the result for L? periodic functions with zero
average follows via a density argument.

To prove (iv) consider the truncation 7, : R? — R? given by

z if 2| <a
Ta(2) = aﬁ it |z| > a.
z

Since {7,u,} is bounded in L*> we have that{T(r,u,)} is bounded in L4 for all p < g < +o0, and
50 {|T(Tqun)P} is equi-integrable. On the other hand, by the equi-integrability of {u,} we have
that

lim sup [Jun — Totially = 0

a—r0o0 n

and by (i) we conclude that
lim sup ||T(u, — Tatn)||p =0,

a—r0o0 n
and the assertion is proved.
-
We note that, with the exception of Lemma 2.14 (iv), the above follows closely Murat’s work
(see [Mu]).
Decomposition results similar to the ones obtained below may be found in [FMP] and [K] in the
particular case of curl-free fields.
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Lemma 2.15. [1 < p < +o0] Let 1 < p < 400, let {u,} be a bounded sequence in LP(Ty;R?)
such that Au, — 0 in W= LP(Ty), up, — u in LP(Tn;R?), and assume that {u,} generates the
Young measure v. Then there exists a p-equi-integrable sequence {v,} C LP(€;R?) Nker A such
that

/vndmz/udm, [[vn — unl||lpa) = 0 foralll <q<p
Q Q

and, in particular, {v,} still generates v.

Proof. After an affine rescaling, we may suppose that Q2 C ). The assumptions imply that Au = 0,
and by linearity (and Proposition 2.4) we may take v = 0. By Theorem 2.2 (v) we have

// |2|P dvy(2) do < +o0
Q Jrd

and so, using Theorem 2.2 (vi) we obtain

lim lim / |7k (un)|P dz = lim // |7 (2)|P dv,(2) dx
k— 00 n—00 k— o0 R4

_ /Q/Rd|z|pd1/$(z) do

Therefore we may find an increasing sequence «,, — +0o such that the truncated sequence {7, ©
uy, } satisfies

(2.2) lim / |Tanoun|pdm:// || dv,(2) dz
n—o0 Q Q JRr4

On the other hand, as {u,,} is equi-integrable,

Ta, © Up — Up — 0 in measure and weakly in LP(2).

n

Thus, by Proposition 2.4, the sequence {i,} := {74, © u,} still generates the Young measure v.
By Theorem 2.2 (vi) and (2.2) we conclude that {&,,} is p-equi-integrable. Moreover, if 1 < ¢ < p
then

||’11n - un||%q(9) S / 2q|un|q dzr
{|un|Zan}
<ail? 2q/ |unlP dz — 0 asn — +oo,
Tn

and thus A@, — 0 in W=14(Q). Also, by virtue of the compact imbedding L4(Q) — W=14(Q),
we have for all p € C§°(Q;[0, 1])

Alpiin) = @A(in) ZA@ La(Q).

Thus we may select a sequence {¢,} C C§°(9;]0,1]) with ¢, 1, and such that, setting , :=
©n Un, {Gy} is p-equi-integrable,

=0 in LP(Q), A, — 0in WH1(Q).

Extend @, by zero to @ \ 2 and then periodically. We define

Un :z'ﬂ’(ﬂn—/ ﬂndy>.
Tn



A-Quasiconvexity 11
By Lemma 2.14 (iv) the sequence {o,} C L?(Q;R?) Nker A is p-equi-integrable, and we have

||7~)n - un”Lq(Q) < ||7~)n - ﬂn”Lq(Q) + ||an - un”L‘Z(Q)
(2.3)

IN

[0, — tn||La(e) + |lin — @nllLe(@) + [|@n — wn||La(a)
=1+ I3+ I3,

We have already seen that I3 — 0 as n — o0, and the p-equi-integrability of {@,,} entails

nhHH;O I =0.

Using Lemma 2.14 (iii) and the fact that [, 4, dy — 0, we obtain

an—/ ﬁndy—']l‘<1ln—/ ﬁndy>
TN TN

< nlggo Cy [|Atn||lw-1.a(1y)

=0.

lim I < lim

n—o0 n—oo

La(Tn)

In particular, by Proposition 2.4 {0, } still generates v. Finally, it suffices to set

Uy 1= Uy — / Uy, dy.
Q

Note that if the initial sequence {u,} is p-equi-integrable, then there is no need to construct the
truncated sequence {i,}, and from (2.3) it follows that ||v, — un|[Le(1y) = O-

-

Lemma 2.16. [p = 1] Let {u,} be a sequence converging weakly in L'(Q;R%) to a function u,
Au,, — 0 in WL (Ty) for some r € (1, N/(N — 1)), and assume that {u,} generates a Young
measure v. Then there exists an equi-integrable sequence {v,} € L*(Q;R?) Nker A such that

/vnd:c:/udx, [[vn — unl|L1 (@) — 0
Q Q

and, in particular, {v,} still generates v.

Proof. The proof is similar to the one given above, and once again we may assume that 2 C @ and
u = 0. Due to the equi-integrability of {u,} we do not need to truncate the sequence, so we set
T = Uy. Also, by mollification we may assume that ,, € C§°(Q; R?), where in the diagonalization
argument leading to the construction of @, we use the compact imbedding L'(Q) — W=17(Q).
We have

||7~)n - un”Ll(Q) < ||7~)n - ﬁn”Ll(Q) + ||ﬁn - un”Ll(Q)

and the last term on the right hand side converges to zero due to the equi-integrability of {u,,}.

Finally,
ﬁn—/ ﬂndy—'ﬂ‘<ﬁn—/ ﬂndy>
TN TN

S CT nILH;o ||Aan||W—1ﬂ‘(TN)

=0,

n—00 n—00 L™(Tw)

where we have used the fact that [, a,dy — 0.
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Lemma 2.17. [p = +o00] Let {u,} be a sequence that satisfies u,, — u in L= (Tx;R?), Au, — 0
in LP(Tx) for some p > N, and assume that {u,} generates a Young measure v. Then there exists
a sequence {v,} € L®(Tn;R?) Nker A such that

/vnde/ udz, |[vp — Un|lLe(Ty) = 0
Tn Tn

and, in particular, {v,} still generates v.

Proof. As before assume that v = 0 and set

Up ::']T(un—/ undy>.
Tn

sup ||vn — tn||lwie(ry) < Cpsup || Aug||Le(ry) < +00
neN neN

Since [, u,dy — 0, we have

and
T}LH;O l|vn — un”LP(TN) <y T}LH;O ||~’4un||W*1>P(TN) =0,
and we conclude that the functions v,, — u,, converge to zero uniformly.
L

The last result of this section will enable us in Section 4 to focus our attention on the charac-
terization of A-1-Young measures, where a Young measure v is said to be a A-p-Young measure if
it is generated by a sequence in ker A which is weakly convergent in LP({2).

Corollary 2.18. Let 1 <p < +oo. If v is a A — 1—Young measure with

// |2|P dvy(2) do < +o0
Q Jrd

then v is a A-p-Young measure generated by a p-equi-integrable sequence.

Proof. Assume that v is generated by an equi-integrable sequence {u,} C L'(f2) Nker A, and

// |2|P dvy (2) doz < +o0.
Q Jrd

Following the beginning of the proof of Lemma 2.15, we may find a sequence of truncations {a,,} C
ker A, bounded in LP(Q;R?), that still generates v since, by equi-integrability,

||1~Ln — Un”Ll(Q) — 0.
The result now follows by direct application of Lemma 2.15 to the sequence {ay}.
-

83. A - Quasiconvexity : a Necessary and Sufficient Condition for Lower Semiconti-
nuity

Using the notation introduced in Section 2, consider an operator A satisfying the constant
rank property (CR). In this section we will prove lower semicontinuity of functionals with normal
integrands with respect to weakly convergent sequences with weak limit in the kernel of 4. In
what follows € is a bounded, open subset of RV .

Given a normal integrand f : Q@ x R™ x R? — R, we define

Iw,0)i= [ flo,u(e),0@) do

for measurable (u,v) : Q — R™ x R?.
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Definition 3.1. A function f : R* = R is said to be A-quasiconvex if
f0) < [ fo+w) ds
Q

for all v € R and all w € C*®(Tx; R?) such that A(w) =0 and fTN w(z)dx = 0.

Definition 3.2. Given a Borel function f : R® — R we define the A-quasiconvex envelope of f
at v € R? as

(3.1) Qaf(v) = inf{ fw+w(x))de: we C®(Tn) Nker A, wd:czO}.

TN TN

Clearly f = Q4 f when f is A-quasiconvex.

Remark 3.3. (i) It follows immediately from Jensen’s inequality that convex functions are A-
quasiconvex.

(ii) If f is upper semicontinuous and locally bounded from above, then C*°(Ty) may be replaced
by L (Tw) in Definition 3.1. Indeed, it suffices to approximate a given function w € L*(Ty) N
ker A, with fTN wdz = 0, by the mollified sequence

We :Zps*w—/ pe x w dy,
TN

where w. € C®(Tn) Nker A, are @-periodic, and have zero average. The result now follows by
Fatou’s Lemma. If, in addition, |f(v)| < C(1 4+ |v|?) for some C > 0 and all v € R%, then C>(Ty)
may be replaced by LP(Ty) in (3.1).

(iii) Given a matrix-valued function V : Q C RV — M™*"* =R?, d:=mn,n =N +p, p > 0,
we write

V=(F|¢§, FeM™VN, ¢eMm™*’,

where F' is the matrix of the first NV columns of V', and ¢ is the matrix of the remaining p columns.
In the context of membrane or film theories, N =2, m = 3, p = 1, and F is the gradient of the
membrane deformation. In the context of general nonlinear elasticity, N =m = 3,p =0, and F is
the gradient of the deformation of the elastic solid. The underlying PDE is then

OF;,  OFj;

1FF =0 . —
cur , i.e a2, 2

=0, 1<j<m1<i,k<N.

We may rewrite these PDEs as AV = 0, where [ := N%m and

Ag;,)k,i),(q,p) = 5ri6qj6pk - 6rk6qj6pia 1 S j7 q S m, 1 S iv kapvr S N7

()

(Gksd),(ap) = 0 ifp=N+1,---,n.

The constant rank condition (CR) is satisfied, since dim(ker A(w)) = m +m x p for all w € SV~ 1.
Indeed,

ker A(w) = {V € M™*™ : A(w)V = 0}
={V=(F|&eM™™" :w;Fj, —wpFj; =0, 1 < j<m,1 <4,k <N}
={V=(F|§eM”™ :F=a®w for somea € R"}.
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When p =0 and f is locally bounded then (3.1) reduces to the usual quasiconvex envelope of f,

QAf(U)::inf{ f(v-{—ch(:c))d:c:UECOO(TN;]R’“)}

TN

= inf {/ flo+Ve(x))ds:ve Cgo(Q;]Rm)} )
Q
(iv) Now we consider the div-free case (see also [P]). Here d = N,l =1,

A;Z) = (Sl‘j,

so that
Au =0 if and only if divu = 0.

Once again, the constant rank condition (CR) holds, as for all w € SV—!

N
ker A(w) = {v eRN : ZA(")wi(v) = 0}

i=1
={veRY :v-w=0}

Therefore dim(ker A(w)) = N — 1.

Proposition 3.4. If f : R? = R is upper semicontinuous then Q4 f is A-quasiconvexr and upper
semicontinuous. Moreover, the restriction of Q4 f to each cone a + A, a € R?, is convez, i.e.

Qaf(ly+(1—-0)2) <OQaf(y)+(1-6)Quaf(z)
for all 6 € (0,1), y,z € R? such that y — z € A, where

A == U,egn-1 ker A(w).

Remark 3.5. (i) The characteristic cone A as defined in Proposition 3.4 was introduced in the
work of Murat and Tartar (see [Mu], [T1]).

(ii) There are A-quasiconvex functions that are not continuous. Indeed, in the degenerate case
ker A = {0} all functions are 4-quasiconvex. Furthermore, in general Q 4 f need not be continuous
in directions that are not in span A even when f is smooth. As an example, let N = 1, d = 2, and
Au := uy. Fix ¢ € C°(R) such that 0 < ¢ <1, ¢(0) = 1, lim}y|—,o ¢(t) = 0, and let

f(v1,09) := p(v103).
Then Q4 f is obtained by convexification in the first component, and Q4 f(vi,v2) = 0 if vy # 0,
while Q4 f(v1,0) = 1. In particular, this example shows that the relaxed energy

F(u) := inf {lim inf [ f(v,)dz:v, =v in LP(Q;RY), A(v,) = 0}

Un} n— o0 Q
may not agree with

/Q Qu f(v) da.

(iii) In the curl-free case and when p = 0, by Remark 3.3 (iii) we have that A = {a@w : a €
R™,w € SV~1}. Thus Proposition 3.4 entails that a quasiconvex Borel measurable function is
convex along any rank-one directions. It is then said to be rank-one convex. In particular, it is
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separately convex, and so continuous. We remark that although Proposition 3.4 is stated for upper
semicontinuous functions f, in the case of gradients the statement still holds if f is only assumed
to be Borel measurable (see [F]).

(iv) In the div-free case and by Remark 3.3 (iv), we have A = R, and by Proposition 3.4 we
conclude that Q4 f is convex (see also [P]). Thus, since we have always Q4 f < f, Q4 f reduces
to the convexification of f.

(v) It follows from the convexity of t = Q. f(a+1tz),z € A (see Proposition 3.4), that Q4 f(a) >
—oco if and only if Q4 f > —o0 on a + A.

Proof of Proposition 3.4.
Case 1: Suppose that f is continuous.
For R > 0, v € R?, define

Q% f(v) == inf{ flo+w(z))dr :w e C*(Tn) Nker A, | w(z)dr =0, and ||w||gee(1y) < R} .
TN TN

We claim that

(3.3) QY% f is continuous.

Let p > 0, and let w be the modulus of uniform continuity of f on B(0,p + R), i.e
w(r) :=sup{|f(v) — f(¥")] : v,v" € B(0,p+ R),|v—2'| <r}.

For all v,v" € B(0, p) and every w € C*°(Tx) N A, with fTN w(z)dr =0 and ||w]|g=1y) < R, we
have

fo+tw(@)de > | f' +w(@))de —w(jv—2')
Tn TN

> QY f(v') = w(|v = ']).
By definition of Q4 f(v) this implies that

Q% f(v) = Q% F(v') > w(lv —v'])

and the uniform continuity of Q¥ f in B(0, p) follows by reversing the roles of v and v’
Fix € > 0, let n € N, and decompose @ into n™ cubes along the coordinate axes, Q) = UQn,i,
Qn,i = an,i+ (1/n) Q. Now we choose smooth cut-off functions ¢, ; with the following properties:

. N
0<¢ni<1l,@ni=1lonan;+(1/n—1/n*)Q,and 37" | XQ, . ¢ni /1. Forw € C®(Tn)Nker A
with average zero on @), consider the piecewise constant approximations

TLN

wp(x) = ZXQW' Wy, where wy; = nN/ w(z) dzx.

i=1 n,i
Then |Jw, — wl|=(g) —= 0, and by the continuity of Q% f (see (3.3)) we have for n > ny(e)
Qifw+w(@)ds > [ Qi f(v+wn(r))ds—e
TN TN
(3.4)
= Z QY f(v +wn) —e.

On the other hand, due to the uniform continuity of f on compact sets there exists § > 0 such
that

(3.5) n, (€ L*(B(0,5R)),|In = (lli=(q) <5=>‘/ fv+n(x))de - ., fo+ () de| <e.
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Choose z,,; € C*(Tn) Nker A, with average zero, such that ||z, ||z~ (@) < R,
(3.6) QUf(W+wns) > | fo+wn;+20(y)dy —e,
Tn

and set

’I’LN

Yn.k(x) == w(z) + Z oni(@)zni(kn™ (x — an;)), k€N

i=1

Clearly
Y kllLoe(ry) £ B+ [Jw]|e(q); -

By Proposition 2.8 z, ;(kn™V (- — an;)) = 0in L=®(Qp,,) as k — oo, for all n € Nyi = 1,...,n",

and so

(3.7 klim Aynr =0 weak-*in L*(Ty), lim lim Yn i dz = 0.
— 00

n—o0 k—oo Tn

Choose n = na(g) > ny(e) such that

(3.8) na(e) » ooase 0, lwn —ullpei) <4, lim / Yo da| < 6.
— 00 Tn
Now (3.4), (3.5), (3.6) and (3.8) yield
(3.9)
Qf f(v + w(x) dr > lim Z/ F0 + Wi+ 2s(kn™ (@ = an.))) de — 26
Tn —0 i=1 Qn,i

> lim sup f+ yni(z)) dz — 3 — Cn¥

k—o0 Tn

N
niN_G i) ]max{lf(Z)lizeﬁ(MR)}-

n  n?
In view of Lemma 2.17 and (3.7) we may find uj, € L*>(Ty;R?) Nker A such that

/ updr =0, up— (yn,k — / Yn,k(Y) dy) — 0 uniformly as &k — oc.
TN TN

Thus, by (3.5), (3.8), (3.9), and Remark 3.3 (ii) we have

QY f(v +w(x))dzr > limsup flo+ynr(x))de —3 -0 (%)

TN k—oo JTn

1
> lim sup/ f <v +ynk(x) — / Yn,k(y) dy> dr —4e — O <—>
k— o0 Tn TN n

> lim sup flo+ug(z))dz —5e — O <%>

k—o0 Tn

(3.10)

> Quf()-5:-0 (1),

For ¢ — 0 we have, by (3.8), n = na(e) — +o0o. Hence taking first the limit ¢ — 0 and then
R — oo in (3.10), and observing that Q% f \, Qa f as R — oo, we deduce from Lebesgue’s
monotone convergence theorem that

Qa flv+w(z))de > Qa f(v).

Tn
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Case 2: f is upper semicontinuous.
Let {f.} be a sequence of continuous functions converging decreasingly to f. By Case 1, given
v e R, we C®(Tx) Nker A, with fTN wdzr = 0, we have

. Qu fn(v +w('r))d'73 > Qa fn(v)a n € N.

In view of Lebesgue’s monotone convergence theorem, A—quasiconvexity of Q4 f will follow pro-
vided we show that

(3.11) Qafrn\Qalf

Cleary {Q fn}nen is decreasing and larger than Q4 f. On the other hand, for fixed v € R? with
Qa4 f(v) > —o0, given § > 0 there exists n € C*°(Ty) Nker A, with fTN ndz = 0, such that

Qa f(v) > g fw+n(z))de - 4.

By Lebesgue’s monotone convergence theorem it follows that

Qa flv) > HILHéO/T fnv+n(z))ds -6

> lim sup Qa fu(v) — 6.

n—o0

It suffices to let § — 0. The case where Q4 f(v) = —oo is treated in a similar way. As proven
in Case 1, the functions Q4 f, are upper semicontinuous, so Q4 f = inf,en Q4 fr is also upper
semicontinuous.

Finally, we show that Q4 f is convex on the cones a + A, a € R?, i.e

Qaf(ly+(1—-0)z) <O0Qaf(y)+(1-0)Qaf(z)

for all # € (0,1), y, 2z € R? such that y — z € A. By (3.11) it suffices to prove this inequality in the
case where f is a continuous function.
Let
—(1-29) it 0<t<d
x(t) == ,
0 if 6<t<1

and extend  periodically to R with period one. Let w € S™~! be such that y — 2z € ker A(w) and
define

up () == (2 — y) x(nz - w).
Clearly u, = 0 in L®(Q), and if p € C°(Q;[0,1]) is such that LN ({p =1}) =1—-4, > 0, then
Alpuy,) Z AWy, 90 in L*(Tn).

Due to Lemma 2.17 we may find @, € L>=(Ty;R?) Nker A such that

/ﬂnZO, [@n — ¢ un|lL=(q@) — 0.
TN



18 I. Fonseca and S. Miiller

By Remark 3.3 (ii), since Q.4 f is a A-quasiconvex function, upper semicontinuous and bounded
above by the locally bounded function f, by (3.3) and if R > 0 is large enough, we have

Quf(By +(1—0)2) < liminf/ Qa f(By + (1= 0)z + ) do
TN

n—oo

<liminf [ QY f(8y+ (1 —0)z +7,)dz
TN

n—oo

=0Q5 f(Oy+(1—-0)z—(1-6)(z—y))
+(1-0)QY f(Oy+ (1 —0)z+ (2 —y)d) + M0
=0Q% f(y) + (1 - 0) Q% f(2) + M6

< liminf/ QY f(oy + (1 —0)z +uy) de + M§
Tn

where M := max{|f(z)|: z € B(0, R)}. It suffices to let § \, 0 and then R — oo.
L

Next we prove that 4-quasiconvexity is a necessary condition for lower semicontinuity under
the PDE constraint Au = 0.

Theorem 3.6. [Necessity] Let f : Q@ x R — R be a Carathéodory function such that

/Qf(m,v(m)) dr <liminf [ f(z,v,(z))dz

n—eo Jo
for all sequences {v,} C C=(Q;R?) that satisfy
vp = v in L®(Q)  and Av, = 0.
Assume further that
{f(-,un)} is equi-integrable

whenever {u,} is a sequence bounded in L™(Q;R?). Then f(xo,') is A-quasiconvex for a.e.
zo € .

Proof. Without loss of generality, and using a rescaling argument, we may assume that Q C Q.
By the Scorza-Dragoni Theorem, for all ¢ € N there exists a compact set K; C  such that
the restriction of f to K; x R? is continuous and £V (2 \ K;) < 1/i. Let S be a countable, dense

subset (with respect to uniform convergence) of W := {w € C®(Tn) : Aw =0, fTN wdr = 0} .
Let z¢ € 2 be a Lebesgue point for

rer f,v), oo /Q f(@,v+ w(y)) dy

for all v € Q¢, w € S, and suppose that z — f(z¢, z) is continuous. Fix v € QV, w € S. We claim
that

f(xo,v) S/Qf(xo,vﬁ-w(:c))d:c.

If so, by continuity of z — f(zo, 2) this inequality still holds true for all v € R? and all w € W. To
establish the inequality extend w to R? periodically with period @, fix € > 0, h € N, and choose

i =i(h,e) € N such that
1 €
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Let n = n(h,e) be such that
1 —
o —a'| < — w0’ € Kiy 2 € B(0, o] +[[wll=(g)) = [f(z,2) = f(a',2)] <e.

Decompose the cube @ (zo, §) as U " Q (zj, =), and if K; N Q (z;,7) # @ select a; in this
intersection. Choose a cut-off functlon ¢ € C5°(Q(zo, 1/h)) such that LN (Q(xo,1/h)N{p #1}) <

€

AN
Define
1
o) (i — 7)) 6 € Q (7,5 ) g = Lo
Wy (x) =

1
0 z€RV\Q <$0,E>
where w*(y) :=w(y + (1/2,---,1/2)) for y € Q*. By Proposition 2.8 it is clear that
Wy, = 0in L®(Ty), Awy, = 0in L= (Ty).

Using Lemma 2.17 we may find 9, € L=(Q(0,L); R*) Nker A such that ||, — wm||re@) —= 0,
and so

/f(:c,v)d:cgliminf/f(:c,v+17m(:c))d:c
Q Q

m—ro0

= lim inf/ flz, v+ wp(z)) de
Q

m—ro0

where we used Propositions 2.4, 2.8, and Theorem 2.2 (vi). Taking into account the estimates for
{¢ # 1} and Q(=zo, 1/h) \ K;, we deduce that

/ f(z,v)dz < liminf flz,v+wn(x))de
(z0,1/h) MmO JQ(zo,1/h)
Slgglgof{z/ " flaj,v+w* (hmn(z — x;))) dz
+ Z/ |f z,v +w* (hmn(x — z;))) — f(aj, v+ w* (hmn(z — z;)))| dz
+Z/ N (z v+w*(hmn(m—mj)))dm}+MhiN
z]’hn i

M € e
< E - . M — + —

where M := esssup {|f(z,z)|: # € B(zo, Ro) CC U, |z| < |v] + [|w]| oo (1) | -
Hence

N

/Quo,l/h) Joede = i/Q(w )k, / fajv+w@) (2( ?
(3.12) S%/Q(w /f:cv+w( ) (2()
I ; Ofe)

-/ - JRCRERTO) =
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Multiplying through (3.12) by h¥, letting h — +o00, and then &€ — 0, we conclude that

F(@o,0) < /Q F(@o,v+w(y)) dy.

Now we prove sufficiency of the A-quasiconvexity property.

Theorem 3.7. [Sufficiency] Let 1 < p < +oo and suppose that f : Q@ x R™ x R — [0, +00) is
a normal integrand such that z — f(x,u,z) is A-quasiconvex and continuous for a.e.x € Q and
for allu € R, If 1 < p < 400, then assume further that there exists a locally bounded function
a: QxR — [0, +00) such that

0 < fla,u,0) < alw,u) 1+ [o]?).

If
Up — U N Measure
and
vp = v inLP(QRY) (D ifp = +o00), Av, = 0in W LP(Q) (Av, =0 ifp = +00),
then

I(u,v) < liminf I(uy,,v,).

n—o0

This theorem is a consequence of Propositions 3.8 and 3.9.

Proposition 3.8. Let 1 < p < +oo, let {v,} be a p-equi-integrable sequence in LP(Q;RY) such
that Avy, — 0 in W=HP(Q) if 1 < p < 400, Av, — 0 in W=17(Q) for some r € (1, N/(N — 1)) if
p =1, and {v,} generates the Young measure v = {v, },cq. Letv, — v in LP?(Tx;R?). Then for
a.e.a € () there ewists a sequence {v,} C LP(Tn;R?) Nker A that is p-equi-integrable, generates
the homogeneous Young measure v,, and satisfies

/TN Uy dz = (v,,1id) = v(a).

In particular, one has
(va, f) 2 f({va,id)) = f(v(a))
for a.e.a € Q, and for every continuous A-quasiconvex f that satisfies
|f(z)| < CA+[2")
for some C >0 and all z € R?.

Proposition 3.9. Let {v,} be a bounded sequence in L>(Q;R?) that generates a Young measure

v = {Vs}secq, and satisfies Av, = 0. Let v, = v in L®°(Tx;R?). Then for a.e.a € Q and every
subcube Q' CC Q there exists a sequence {v,} C L™ (Tn;R?) such that

Tp = v(a) in L®(Ty), AT, =0, / U dx = (vg,1d) = v(a),
TN

and {v,} generates a Young measure u such that

‘ /Q (@) (i 9) di — (v g) /Q $(2) d

< 119/l (50530 / () | de
Q\Q’
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for all p € L*(Q), g € Co(R?), and where M := sup,,cy ||vn||L(q). In addition, if f: R — R is
a continuous function then

(va, f) = f({va,id)) = f(v(a))
for a.e.a € Q.

We leave the proofs of Propositions 3.8 and 3.9 to the end of this section, and we proceed with
the proof of Theorem 3.7. We follow the argument of Kristensen (based on Balder’s [Ba] reasoning
for the case without constraints) in the context of the usual curl-free A-quasiconvexity.

Proof of Theorem 3.7. Upon extracting a subsequence, we may assume that

hnnil(gf I(up,v,) = nhHH;O I(up,vy),

and {vy, } generates a Young measure v. By Proposition 2.5 the pair {(uy, v,)} generates the Young

measure {,ux = Ou(a) ® I/z}zeg, and by Theorem 2.2 (v) we have

lim I(tn,vn,) // fx,m,8) dpg (n,§) de
n— 00 RmXRd

// £ (e, ulz), €) dvy (€) d.

If p =1 or p = 400 the result follows from direct application of Proposition 3.8 and Proposition
3.9, respectively, to the map £ — f(z,u(z),&) and integration over Q. If 1 < p < 400 then by
Lemma 2.15 and by Proposition 2.4, there exists a p-equi-integrable sequence {y,,} which generates
v and satisfies Ay, = 0. Once again, it suffices to apply Proposition 3.8 to {y,} and to the map
& fz,u(x),§) for a.e. x € Q fixed.

-

Proof of Proposition 3.8. Let £ and C be countable dense subsets of L'(Q)) and C(R?), respectively.
By Theorem 2.2 (vi) we have

g o, = (v,g) in L>(Q)
for all g € C. Let Qg be the set of points a € 2 which are Lebesgue points for v, for the functions

ro / € dva(€), s (vasid),
Rd

and for all functions z — (v, g), g € C, in the sense that

lim / (Vs 9) — (Vs 9) dz = 0.
R—0 Q

Consider an increasing sequence of smooth cut-off functions ¢; € C§°(Q), ¢; 1. For fixed
a € Qg, R > 0, we define

Uj7R7n(Z) = goj(z)(vn(a + RZ) - <Vaaid>)7 z€Q.
Recall that (v,,id) = v(a). We have v; g, € LP(Tn;R?), and for all ¢ € £ and g € C we have

lim lim lim /1/1 9(vj,rn(2) +v(a))dz = lim lim / ¥(2) g(vn(a + Rz)) dz

j—o0 R—0 n—oo R—0n—oo

(3.13) — fim /Q () Var e, g) d

R—0

= (va,0) /Q b(z) dz
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Moreover, as {|v,|P} is equi-integrable,
(3.14)
lim sup lim sup lim sup/ [vj,Rn(2) +v(a)|Pdz < lim lim / |vn(a+ Rz)|P dz = / |€|P dva (€).
Q Q R4

j—oo R—0 n— oo ~ R—0n—o0

Also, vjrypn = 0in LP asm — oo and R — 0. If 1 < p < 400 we have, in view of the compact
imbedding L?(Ty) < W 1?(Ty) and the assumption Av,, — 0 in W~1:7(Q),

(3.15) lim lim lim Avjr, =0 in W b2(Ty).

j—o00 R—0 n—oo

If p =1 then

N
vj R — 0in WH(Ty) forr e <1, m) )

and so, due to (3.13), (3.14), (3.15), and by means of a diagonalization procedure, we may find a
sequence of functions {w;} with the properties

w; =0 in L*(Tx), Aw; —0 in W b4(Ty)

where g =pifl<p<+4ocoandg=rif p=1, and

(3.16)
lim w;j(z) +v(a)P de = Pdve(§), lim z)g(w;i(x) +v(a))de = (v, x) dx
Jim [ i) oo = [ e an @), tim | ot + o) de = a,9) [ v

for all ¢ € £ and g € C. By Lemmas 2.15, 2.16, and by (3.16) we conclude that v, is generated by
a p-equi-integrable sequence w; € LP(Tn;R?) Nker A such that fTN w; dx = v(a). Finally, if f is
a continuous function such that |f(z)| < C(1+ |z|?) for some C' > 0 and all z € R?, then {f(w,)}
is equi-integrable and by Theorem 2.2 (vi) we have

(va, [) = lim [ f(w;)dx = f(v(a))

Jj—o0 Tn
where in the last inequality we used the A-quasiconvexity of f together with Remark 3.3 (ii).

-

Proof of Proposition 3.9. As in the previous proof, let £ and C be countable dense subsets of L (Q)
and Cy(R?), , respectively, and let Qg be the set of points a €  which are Lebesgue points for
x — {V,,id) and for all functions © — (v;,g), g € C. Fix Q' CC @ and consider a smooth cut-off
function ¢ € C§°(Q),0< p <1, p=1in Q".

For a € Qg, R > 0, we define

VR (2) = ¢(2) (vn(a + R2) = (o, 1d)) + (v4,1d), 2 € Q.

Then vg,, is bounded in L (Ty;R?), and for all ¢ € £ and g € C we have

R—0 n—o0 R—0n—o0

lim lim /Qi/J(z)g(va(z))dz: lim lim /Qw(z)g(vn(a—kRz))dz+E(¢,g)

R—0

= lim/w(z)(ya+szg>dZ+g(¢ag)
Q

— (vay9) /Q B(2) dz + £, ),
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where
£@0) < llgllommoany [ 10ldy.
Q\Q'
Clearly, v,(a + R-) — (v4,id) = 0 in L>® as n — oo and R — 0, and

11%1310 nh_)rrgo Avgn, =0 weakly-* in L (Tn), S]?E [|AVR || Loe (1) < +00.

Diagonalizing {vg,}, and extracting a further subsequence if necessary, we may find a sequence
of functions {w;} with the properties

w; > wv(a)in L®(Ty), Aw; =0 in L®(Ty),

and {w;} generates a Young measure p such that ess suppp, C B(0,3M) and

‘/wa) <uw,g>dx_<ya,g>/Qw(x)dx <€)

for all g € C,» € £. By density this inequality extends to all ¢ € L'(Q), g € Co(R?). Due to
Lemma 2.17 we may find w; € L>(Tn; R*) Nker A such that |[w; — ;|| (7y) = 0, ‘fTN wjdy =
v(a). In particular, {w;} generates the Young measure u satisfying the statement, and if f is
continuous then

(3.18) Lo /TN f(w;) dz = /TN<ux,f) dz
< Voo /) + LY QN Q) fll=(B(0,3R))-

On the other hand, since f is A-quasiconvex and in view of Remark 3.3 (ii) we have directly from
Definition 3.1

f@;)dx > f(v(a)) foralljeN,
Tn

which, together with (3.18), and letting £ (Q \ Q') — 0, concludes the proof.
L

We end this section with some examples of problems involving PDE constraints which fall within
the scope of the present study (for further examples see [SW, T1]).

Examples 3.10. (a) [Gradients and Partial Gradients]
The case where
Av =0 ifand only if v =Vu

for some function w : 8 — R™, was already treated in Remarks 3.3 (iii) and 3.5 (iii). It can be
seen easily that this framework still applies when v is not a full gradient but a list of only some of
the partial derivatives of .
(b) [Divergence Free Fields]
For the example where

Av =0 if and only if dive =0,

we refer the reader to Remarks 3.3 (iv) and 3.5 (iv).

(c) [Maxwell’s Equations]

In magnetostatics the magnetization m : R> — R® and the induced magnetic field h : R? — R3
satisfy (in suitable units) the PDE constraints

AG) = (M) =0
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For w € S? we have

ker A(w) = ER xR :w-(a+b)=0,wab—bxw=0}

{(a,b) - (
{(a,b) ERXR :a-w=-\b=w forsome)\GR},

and so dim ker A(w) = 3 and (CR) is satisfied. Note also that
A={(a,b) e R® xR’ : (a+b)-b=0},

and the fact that A imposes no restrictions on a has important consequences in micromagnetics
(see [DS, JK, T5]). For the full system of Maxwell’s equations we refer to [T1].

(d) [Higher Gradients]

Obviously all results remain valid if we replace the target space R? by an abstract d-dimensional
vector space over R. In order to treat the case of second order derivatives, consider the smooth
maps v : Iy — E3*, where E}"* stands for the space of symmetric k-linear maps from RY into R™.

Define
0 0
Aov = <—U‘ ——v--) .
’ z; "t Owy ! 1<i,j,k<N

We claim that

{v € C®(Tn; EF") : Av =0, /

vds = 0} ={D*u:u€ C™(Tn;R™)}.

TN

Indeed, if Av = 0 then vj; = ZTUZ, where w; € C°°(Q; M™*) has average zero, and is periodic
due to the periodicity of v and the fact that fTN vdx = 0. By the symmetry of v;, we have that

curl w = 0, and we conclude that v;; = %gmj, where u € C®°(Tn; R™).
More generally, in order to study the k-th order derivatives of functions u € C*°(Tn;R™), we

set for v € C°(I'w; E})

0] 0
Ak’U = <_ Uil...ihjih+2...ik - 7 1)

ox; 0 Vi dinga.d ) '
i J 0<h<k—1,1<i ji1,... ix<N

Here h = 0 and h = k — 1 correspond to the multiindices jis...4; and ¢; ...%5_1], respectively.
The constant rank condition is satisfied since for w € SN ~!

ker A(w) = {X € E}" : wi Xiy.ip jinyonin — Wj Xiy.ovin iinsain = 0,
1Sh§k7 1§17.]77/17 72kSN}
—(X€Er:X=bow...0w, beR"},

and so dim ker A(w) = m. Moreover,

{v € C®(Tn; EY) : Av =0, / vdr = 0} = {D*u:ue C®(Tn;R™)}.
Tn
In fact, if Av = 0 then
o)

Viy..dpjinge i = O Wiy .ipinga.. ik
J

for some smooth function w;, i, i,,,..i, With average zero. The periodicity of v and the fact that
fTN vdz = 0 entail the periodicity of w, and the symmetries of v, together with the zero average
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condition we imposed on w, imply the symmetry of w, so that w € C*°(Tn; E}* ;). Furthermore,
and once again using the symmetries of v,

0 0]
Ak—lw = a,fl’,' wil...ihjthrg...ik,l - 81’ wi1...ih Tih42-Th—1
z J

=0.

0<h<k—2, 1<i,j,i1,... i <N

The argument may now be completed via induction.

(e) [Linear Elasticity]

In the framework of linear elasticity one has to deal with the symmetrized gradient, v = e(u) :=
%(Vu + V7Tu), of the displacement u : @ — R?®, where Q C R* is an open, bounded set. For
1 < p < 400 one can use a local version of Korn’s inequality to reduce the study of functionals

u— I(e(u))

to that of functionals

u J(Vu), where J(§) :=1 <%(£ + ET)> ,

and proceed as in (a). For p = 1 or p = 400 where one must avoid direct manipulation of the
gradient, it is possible to adopt the present framework to treat the second order operator

A’U — N 82U,'j + (92U,'k 821),'1‘ _ (92Ujk
' 1 ox; aiL'k ox; aiL'J 8mj8ack amlaw, )
= 1<j,k<N

It turns out that Av = 0 if and only if v;; = (gg’ + 3“’) /2 for some function w. In this setting

we have
N

_ ij) A — (23) 4y p) -
Av = ZA am amj A(w) : ZA WiW; .

i=1
(f) [Pseudo Differential Operators]

The examples a)—e) may be treated in a unified way using pseudo differential operators (see also
[T4, T5]). For a)-d), one considers (on T or RY)

Bv = (—A)"Y2 Av = R;AWDy
where R; denotes the Riesz transform. For e) we take
. . N
(3.19) Bv := (—A)_l.Au = (Z RiRrvij + RiRjvir — RjRyvi; — Ujk> .
i=1 1<j,k<N

The symbol of B is

o) = g

and the constant rank condition becomes rank b(§) = r for all £ # 0. Similarly, for (3.19) the
symbol takes values in Lin(Es, F») and is given by

B(E)M = ME®E+ €@ ME — (E® €) trM — M.
One can easily check that that if |{] = 1 then

kerg(f):{a®§+§®a:a€RN}
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which has dimension N. Hence B satisfies the analogue of (CR).
§4. Characterization of Young Measures

The result below is the generalization to the A-free setting of the theorem by Kinderlehrer
and Pedregal for the case of gradients [KP1, KP2]. We roughly follow their strategy that relies
on the Hahn-Banach separation theorem and the representation of the (.4-)quasiconvex envelope
(see (3.1) and Proposition 3.4). Tartar [T1] has earlier used the Hahn-Banach separation theorem
to characterize Young measures in the case without differential constraints (in a similar vein,
Berliocchi and Lasry [BL] used the Krein-Milman theorem). Our presentation closely follows
Kristensen’s strategy for the case of gradients. We first establish the result for p = 1 and then
deduce the assertion for 1 < p < +00 by a truncation process. Some of our arguments are similar to
those of Sychev [Sy] who, independently of our work, proposed an alternative approach to gradient
Young measures.

Theorem 4.1. Let 1 < p < +00, and let {vy}zeq be a weakly measurable family of probability
measures on RY. There erxists a p-equi-integrable sequence {v,} in LP(2;R?) that generates the
Young measure v and satisfies Av,, = 0 in Q if and only if the following three conditions hold :
(i) there exists v € LP(;R?) such that Av =0 and

v(z) = (Vg,id) a.e. z €
(i)
/ / |2|P dvy (2) dz < +o0;
Q Jrd

(#i) for a.e. x € Q and all continuous functions g that satisfy |g(v)| < C(1+|v|P) for some C >0
and all v € R? one has

<Vw;g> Z Q.Ag«yz:id))'

Remark 4.2. (i) From Lemma 2.15 it follows that if 1 < p < +oo properties (i)-(iii) are still
necessary if the condition Av,, = 0 is replaced by the weaker requirement Av, — 0 in W=12(Q).
(ii) In view of Theorem 2.2 (i) it suffices to assume that v, > 0 a.e.z € . Condition (iii) then
implies v, (R?) = 1.

(iii) A similar statement is valid for operators with variable coefficients, as long as rank A(z,w)
is constant for all w € SV~ and a.e.z € Q. Such results are, however, more naturally discussed
in the context of pseudo differential constraints and will appear elsewhere. For the quadratic case
see [T5].

Proof of Theorem 4.1 - Necessity. Necessity of (i) follows immediatly from Theorem 2.2 (vi), where
v is the weak limit in LP of the sequence {v, }. Property (ii) is deduced from Theorem 2.2 (v) with
f(z) = |z|P, and (iii) is a consequence of Proposition 3.8 (and Lemma 2.15 if 1 < p < +00).

-

The proof of sufficiency for 1 < p < +00 follows from the case p = 1 and Corollary 2.18.
We proceed with the proof in the case of homogeneous A — 1—Young measures.
Let P be the set of probability measures on R? and define

H:= {v € P(R?) :(v,id) = 0, there exists an equi-integrable sequence
{w;} € L*(Tn) Nker A generating the Young measure v}.

Set

. g(2) o
E = C(RY): 1 t R
{g € C(R7) ‘Z‘linoo 1+ 2| exists in }
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equipped with the norm

l9(2)]
ll9||E := sup :
z€R4 1 + |Z|

This space is isometrically isomorphic to the space C'(R? U {cc}) ~ C(S?) of continuous functions
on the one-point compactification of R?, via the map

g(*)
L+ ]|

g—

In particular, F is a separable Banach space, and its dual E’ may be identified with the space of
Radon measures on RY U {co}. Thus if v € P is such that

/ |z| dv(z) < 400
R4

then v € E’ since for all g € E

‘/ gdv
R4

Proposition 4.2. Let v € P(R?) with (v,id) = 0. Then v € H if
(1)

<llalle [ (1412 du(e)

[ Jeldvz) < +oo
Rd
(i)

(v,9) > Qay(0)
for all g € C(R?) such that |g(z)| < C(1 + |2]).

Proof. We follow [KP1, KP2] and use the Hahn-Banach theorem to show that measures satisfying
(i) and (ii) cannot be separated from H.

We will prove that H is convex and relatively closed in P.

Claim 1: H is convex.

Fixv,pu € H, 6 € (0,1). Let {v;}, {w;} C L'(Tny)Nker A be equi-integrable sequences generating
the A4 — 1-Young measures v and u, respectively. By means of a mollification, we may take

vj,w; € C°(Ty). Also, as
/ v; dz, / wjder — 0,
Tn Tn

without loss of generality we may assume that

/vjdac:/ w; dr = 0.
Tn Tn

Since vj,w; = 0 in W=1P(Ty) for p < &+, and as for all ¢ € C§°((0,6) x Ty _1)

9o .
Aptas = )l = [ 5249 w5 - v

‘ — 0,
w-1.p

we may find a sequence {¢;} C C§°((0,60) x Ty 1) such that v; 7 X(0,9)xTy_, and

[A(p; (wj —v;)llw-10 = 0.
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Define
UWZW+TCMWrWﬂ—AW%@U—WWO-

Then u; € L' (Ty) Nker A, fTN @j(w; —v;)dy = 0, and by Lemma 2.14 (iii)

Uj:Uj+<10j(wj—1}j)+hj, hj%Oian(TN),p<N_1.

In particular, {u;} is equi-integrable and generates the Young measure {\; },er, given by

v itz €(0,6)
Tl poifzy € (6,1).

Finally, let
Uj,m () = uj(mz), m e N

Then @;,m € C*(Tn) Nker A, by periodicity sup; ,, [|@jml||o1(1y) < +00, and due to the equi-
integrability of {u;}, for all 1 € Co(RY), g € E, we have

il [ o) de = tim [ o ([ Ng(uj<y>>dy) dr

j—oom—o0 JpN j—o0

(4.1)
= [ ¥la)dz @0n) + (1= 0)(1.0)).

Extracting a diagonal subsequence and taking g = |- | in (4.1), by Theorem 2.2 (vi) we conclude

that fv + (1 — @) is generated by an equi-integrable sequence in ker .4 and thus belongs to H.

Claim 2: H is relatively closed in P with respect to the weak-* topology in E', i.e.
H Nnp=H

Let v € T N P, let {fi}ien C C®(Ty) be dense in L' (Ty), and let {g;}jen C C°(R?) be
dense in Co(R?). We take fo = 1 and go(z) = |2|. By definition of weak-* topology in E’ there

exist v € H such that
1
U o il i=0.--- .k
|<V V/ng>|<2k7 J ) ) vy

thus, by virtue of Theorem 2.2 (vi) we may find wy, € L*(Tx) Nker A such that

1
<, OSZ,JSk

(4.2) -

(v,95) fidz — figj(wy) dz
Tn Tn

In particular, setting i = 0 = j we deduce that {wy} is bounded in L' (Ty) and so (a subsequence)
generates a Young measure p. From (4.2) and the density properties of {fi}ien and {g;}jen it
follows that g = v, and the choice i = 0 = j yields

/ PAPTES AN
TN

By Theorem 2.2 (vi) we conclude that {wy} is equi-integable and so v € H. This proves Claim 2.

Consider v € P such that (v,id) = 0 and v satisfies (i), (ii). We want to prove that v € H.
Suppose that v ¢ H. By Claims 1 and 2, v ¢ co(H) with respect to the weak-* topology of E'.
Therefore, by the Hahn-Banach theorem and (ii) there exist g € E, a € R, such that

(4.3) (:9) >a forallpe®,  Qag(0) <(r,g) <
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Given w € C*°(Tn) Nker A, with fTN wdx = 0, by Proposition 2.8 we have d,, € H and thus

/ g(w)dr = (6y,9) > a,
Tn

which, by Definition 3.1 implies that Q.4 ¢(0) > «a, contradicting (4.3). We conclude that v € H.
L

Next we treat the case of inhomogeneous A-1-Young measures.
We define

X:= {1/ 1 Q= P(RY) : vis weak* measurable,/ |z|dvg (2)dz < +00, (vg,id) =0 a.e.x € Q} ,
Q Jra

Y := {v € X : v is generated by some equi-integrable sequence {w,} € L' (Tn) Nker A},
W:={vreX:(v;,9) >Qag(0) a.e.x € Qand for all g € E},

and

£:=C(E) ~C(Q x (R U {o0})).

Suppose that v satisfies (i), (ii) and (iii) of Theorem 4.1, and set 7, := I'_,,)v, (the translation
of a measure was defined in Proposition 2.4). Clearly 7 € W, and so if W C Y then v is generated
by an equi-integrable sequence {v + w;} where Aw; = 0. It thus suffices to verify the following
assertion.

Proposition 4.3.

(4.4) WC Y.

Proof. The strategy to prove (4.4) is as follows:
Step 1: YY NX =Y in the weak-* topology;

Step 2 : It is possible to find a ‘good’ subset D C W such that D¢ NW =W,
Step 3: D CY.
The proof of Step 1 is entirely identical to that of Claim 2 in the proof of Proposition 4.2. For Step
2, we define Gy, to be the family of cubes of the form {3 (y + Q) : y € Z, £ (y + Q) C Q}, and we
set
Gy, = Uyeg, U.

Consider the sets of piecewise homogeneous Young measures
Wy := {v € W : v, is homogeneous if U € Gi, vj\c,) = 00}
and let
D = Ugen Wy.

In order to show that o
D" NW=W,
let v € W and define )
_— d if u, u
b L:N(U)/uyy Y tr eu, € G,

do otherwise.
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It is clear that v* € Wy, so it suffices to show that

(4.5) (W* fy = (v, f)  forall feé.

Fix f € &, and for each € G denote by zy € (%Z)N the lower left corner of &/ so that

U=uxy+ %Q Let w be a modulus of uniform continuity of f, i.e.

0) :=sup {||f(e,) = (g, )l : 2.y €9, |z —y| < 8}

We have

flx, z) dvg(z d:c—/ f(z,2)dv(z) dx
Rd

R4

Rdfmu, )dv, (2 dm—//fmu, dl/()da:

o () ([ [asphinears [ [ a+pakea)
<2 (3) stk [ [+ e dnois

Therefore,

W, ) — <Vf>|<2w< ) Iflls/Gk/ (1+ [2]) dua (2 dw+2||f||s/ / (1+ J2]) v (2)da

and (4.5) follows by letting k¥ — oo and using assertion (ii) in Theorem 4.1.
Next, we carry out Step 3 by showing that

W, CcY forallkeN.

Using a rescaling argument, we may assume that  C Q. Fix k € N and let G, = {Q;}, for
some m € N. Fix v € Wy, with ), = v*. By Corollary 2.18 for each i € {1,---,m} there exists
an equi-integrable sequence {w%} C L'(Tx) Nker A generating v'. In particular, without loss of
generality we may assume that wj are smooth, and that we have

wi =0 inL'(Q;), w!—0 inW, L (RN

loc

for p < N/(N — 1). Hence, we may find smooth cut-off functions ¢! € C5°(Q;;[0,1]) such that
©j /" Xq; and

A (i cp;lw;i> = Z Z ARy Jam' — 0 in W™LP(RN).
i=1

k=1 i—1
Setting .
uj =T <wj —/ wj dy> ,  wherew; := Z(pz w
In i=1
then u; - Y phwll|,, (@ — 0- In particular {u;} is equi-integrable and it gener-

ates v, sov €Y.

L
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Examples 4.4. (a) [Gradients]

Using Remark 3.3 (iii) and Theorem 4.1, we recover the characterization of W1* gradient Young
measures as obtained by Kinderlehrer and Pedregal [KP1, KP2] (see Theorem 2.6).

(b) [Divergence Free Fields]

It follows from Remarks 3.3 (iv), 3.5 (iv), and by Theorem 4.1, that any weakly measurable family
of probability measures {v, },cq satisfying

div({v,,id)) = 0, // 1217 v ()da < +o0,
QJRN

is generated by a p-equi-integrable sequence of divergence-free fields v,, € LP(Q; RY) (see also [P]).
(c¢) [Micromagnetics]

In view of Example 3.10 ¢), we may apply Theorem 4.1 to the system of Maxwell equations.
Moreover, if 1 < p < 400, if v is a A-p-Young measure and if we define the projection A by

e (U) := v, (U x R?), for any open subset U C R?,

then supp A, C S? for a.e.x €  if and only if v is generated by a p-equi-integrable sequence
{Mn, hn)} C ker A such that |, (z)] = 1 for a.e.z € Q. Indeed, assuming that ), is supported
on the unit sphere, let {(m,, h,)} C ker A be a p-equi-integrable generating sequence, with h,, =
—Vuy, u, € Wol’p(ﬂ) (hp, = =Vu, + H,, with div H,, = curl H,, = 0 if Q is not simply connected).
Consider the projection
L iz #0
|z
w(x) =
T ifz =0,

where zo € S? is fixed, and define m,, := mm,,. Since dist(m,,S?) — 0 as n — oo, we have that
my, —m, — 0 in measure, and, due to the p-equi-integrability, we conclude that m, —m, — 0 in
LP. Let hy, := —Vii, (ﬁn := =V, + Hy, if Q is not simply connected) where @, € Wol’p(ﬂ) and
div(m, — Vi,) = 0. We have

div((1hy, — my) — (Vi — Vug)) =0,

therefore A (@, —u,) — 0in W=7 and thus @, —u, — 0 in W?. We conclude that {(7,,h,)}
still generates v.
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