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A�QUASICONVEXITY�

LOWER SEMICONTINUITY AND YOUNG MEASURES

Irene Fonseca y � Stefan M�uller z

Abstract The notion of A�quasiconvexity is introduced as a necessary and su�cient condition for �sequential�
lower semicontinuity of

�u� v� ��

Z
�
f�x� u�x�� v�x�� dx

whenever f � ��Rm�Rd � ������ is a normal integrand	 � � R
N is open	 bounded	 un � u in measure	 vn � v

in Lp��
Rd� �
�

� if p � ���	 and Avn � � in W���p��� �Avn � � if p � ���� Here Av �
PN

i�� A
�i� �v

�xi
is a

constant�rank partial di
erential operator	 A�i� � Lin�Rd
Rl�	 and f�x� u� �� is A�quasiconvex if

f�v� �

Z
Q

f�v �w�x�� dx

for all v � Rd and all w � C��Q
Rd� such that Aw � �	
R
Q
w�x� dx � �	 and w is Q�periodic	 Q �� ��� ��N � The

characterization of Young measures generated by such sequences fvng is obtained for � � p � ��	 thus recovering
the well known results for the framework A � curl	 i�e� when vn � r�n for some �n � W ��p��
Rm�	 d � N �m�
In this case A�quasiconvexity reduces to Morrey�s notion of quasiconvexity�

���� Mathematics subject classi�cation �Amer� Math� Soc��� ��D��� ��E��� ��J��
Key Words � A�quasiconvexity� equi�integrability� Young measure� lower semicontinuity

x�� Introduction
Recently there has been extensive research on minimization and relaxation of nonconvex en�

ergies relevant to the study of equilibria for materials exhibiting interesting� and technologically
powerful� elastic and magnetic behaviors� Often a starting point for this study addresses directly
minimization of the energy� leading to the search for necessary and su�cient conditions ensuring
sequential weak lower semicontinuity of integrals of the form

�u� v	 �� I�u� v	 
�

Z
�

f�x� u�x	� v�x		 dx

where � � RN is an open� bounded set� �u� v	 
 �� Rm�Rd � and f 
 ��Rm�Rd � R is a normal
integrand� On the other hand� there may be situations where we need to identify limn�� I�un� vn	
for an oscillatory sequence f�un� vn	g which does not minimize the energy� Consequently� this will
entail a full characterization of the Young measures generated by the sequences under consideration�
i�e� weak
 measurable maps � 
 � � P � where P is the space of probability measures on Rm�d �
such that if g 
 ��Rm�Rd � R is a Carath�eodory function� and if fg��� un� vn	g is equi�integrable�
then Z

�

g�x� un�x	� vn�x		 dx �

Z
�

Z
Rm�d

g�x� y� z	 d�x�y� z	 dx�

Although Young measures have been used for quite some time in the contexts of Control Theory
and Optimization� they were �rst introduced in a Partial Di�erential Equations framework by Tar�
tar �see �T�� T�� T��	 in order to relate the information obtained from the linear balance equations
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via the method of Compensated Compactness with the information resulting from pointwise non�
linear constitutive relations� One application of this method was the study of quasilinear hyperbolic
equations �see �T��	� and later DiPerna �DiP�� DiP�� and DiPerna and Majda �DiP�� extended it
to systems� During the last few years several questions related to the study of �nonlinear	 elastic
materials and certain materials instabilities have been successfully carried out via minimization
techniques and through the understanding of the underlying Young measures �see �BJ�� BJ�� CK�
DS� JK�	� Often� in this context v is the gradient ru of a Sobolev function u � W ��p���Rm 	�
d � m�N � and coercivity of f provides boundedness of the admissible sequences in W ��p���Rm 	�
If p � � then un � u in W ��p���Rm 	 �up to extraction of a subsequence	� The work of Morrey
�Mo�� Ball �B��� and Acerbi and Fusco �AF� shows thatW ��p �sequential	 weak lower semicontinuity
of

u ��

Z
�

f�x� u�x	�ru�x		 dx

is equivalent to quasiconvexity of f�x� u� �	 provided � � f�x� u� �	 � a�x� u	�� � j�jp	 for some
locally bounded function a 
 � � Rd � �����	 and for all � � Rd � a� e� x � �� We recall that a
Borel function f 
 M m�N � R is said to be quasiconvex if

����	 f��	 � inf
��W ���

� �Q�Rm�

Z
Q

f�� �r��x		 dx�

where Q 
� ��� �	N � If f is quasiconvex then one can show that

����	 f��	 � inf
��W���

per �Q�Rm�

Z
Q

f�� �r��x		 dx

where W���
per �Q�R

m	 is the class of periodic functions in W ����Q�Rm	� Within this context� the
characterization of all Young measures generated by sequences of gradients bounded in Lp was
obtained by Kinderlehrer and Pedregal �KP�� KP��� They show that �see Theorem ���	 in a simply
connected domain � a weakly measurable mapping � 
 �� P is a Young measure generated by a
sequence of gradients run� with fung bounded in W

��p���Rm 	� if and only if three conditions are
satis�ed


� is p�integrable� i�e�� Z
�

h�x� j id j
pi dx � ���

the �rst moment x �� h�x� idi satis�es the underlying PDE� i�e��

curl �h�x� idi	 � ��

and� as suggested by ����	� Jensen�s inequality is satis�ed for quasiconvex functions� i�e��

h�x� fi � f�h�x� idi	

for all quasiconvex functions f such that jf��	j � C�� � j�jp	�
As emphasized by Tartar� in the setting of continuum mechanics and electromagnetism more

general linear PDEs than curl v � � arise� and the theory of compensated compactness was devel�
oped in that framework �see �Mu� T�� T�� T�� T�� T��	� To �x ideas� consider a collection of linear
operators A�i� � Lin�Rd �Rl 	� i � �� � � � � N � and de�ne

Av 
�

NX
i��

A�i� �v

�xi
� v 
 RN � Rd �



A�Quasiconvexity �

A �w	 
�

NX
i��

A�i�wi � Lin�R
d �Rl 	� w � RN �

where Lin�X�Y 	 is the vector space of linear mappings from the vector space X into the vector
space Y � Following Murat �Mu�� we will assume that A satis�es the constant rank property� which
states that there exists r � N such that

rank A �w	 � r for all w � SN���

It is easy to see that the curl�free case is a particular case of this general framework �see Remark
��� �iii		� Other examples are discussed in Remarks ��� and ��� and in Examples ���� and ����
We prove that a necessary and su�cient condition for weak lower semicontinuity of I � along

sequences that satisfy un � u in measure� vn � v in Lp� and Avn � � in W���p��	� is A�
quasiconvexity of f�x� u� �	 �see Theorems ���� ���	� The notion of A�quasiconvexity and its impli�
cations for the lower semicontinuity of functionals v ��

R
�
f�v	 dx were �rst investigated by Da�

corogna who studied in particular situations where the kernel of A contains the range of a suitable
�rst order di�erential operator B �Da�� pp� �������� �in the general de�nition of A�quasiconvexity
as presented in �Da�� p� ��� one needs to add periodicity of the test functions to obtain necessity
of A�quasiconvexity� this leads to some di�culties in establishing su�ciency� which� under the
assumption of constant rank� can be overcome using the methods presented below	� Precisely� and
by analogy with ����	� a function f 
 Rd � R is said to be A�quasiconvex if

f�v	 �

Z
Q

f�v � w�x		 dx

for all v � Rd and all Q�periodic w � C��Q�Rd 	 such that A�w	 � � and
R
Q
w�x	 dx � �� In

addition� we obtain the generalization to the A�free setting of the theorem by Kinderlehrer and
Pedregal concerning the characterization of gradient Young measures �see Theorem ���	� This
issue has been independently raised by Pedregal in �P�� where he studied the case of divergence
free �elds �see also Remarks ��� �iv	� ��� �iv		�
We remark that continuity of A�quasiconvex functions is only garanteed along directions in

the characteristic cone � 
� 	w�SN�� ker A �w	� and A�quasiconvex functions need not be �lower
semi	continuous �see Proposition ��� and Remark ��� �ii		� In particular� it will not be true in
general that the relaxed energy admits the integral representation

�u� v	�

Z
�

QA f�x� u� v	 dx

where QA f is the A�quasiconvexi�cation of f � In the curl�free case this representation was �rst
established by Dacorogna �D��� and nowadays there is a vaste literature on the subject�
We note that the method used in this A�free framework departs from the case curl�free mostly

due to the lack of �potential functions� associated to the vn� Indeed� in the case of gradients we
reduce to the notion of quasiconvexity by localization via covering lemmas� so that on each sub�
domain the target function is essentially a�ne� followed by matching of the boundary conditions�
The latter can be easily done by simple convex combinations between the potentials and the target
function� avoiding layers of high concentrations of the gradients of the vn� Clearly� the gradient
of the resulting convex combinations still satisfy curl � �� In the general A�free setting� we must
work directly on the vn� and we need to �nd a way to project back the modi�ed �elds onto kerA�
We perform these projections via discrete Fourier multipliers �see Lemmas ����� ����� ����	� It is at
this point that the constant rank condition enters in a crucial way� Situations where the constant
rank condition fails are little understood� Tartar �T�� has studied the example where v 
 R� � R�

and Av �
�
�v�

�x�
� �v

�

�x�

�
� He showed that in this case A�quasiconvexity reduces to separate convex�

ity� the Young measures generated by sequences along which fAvng is bounded in L
� are tensor
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products� and this class is strictly smaller than the class de�ned by duality with separately convex
functions �see condition �iii	 in Theorem ���	� The class of Young measures generated by sequences
that satisfy Avn � � in W���p is not known �see �BM�� T��	�

x�� Preliminaries

In this section we recall the notion of Young measures generated by sequences bounded in Lp

and by curl�free sequences� We discuss some properties of a constant rank linear partial di�erential
operator A� and we conclude with the Decomposition Lemmas ����� ����� ����� where we show that
if fung is weakly convergent in L

p and if Aun � � in the appropriate sense then un � vn � wn
where fvng � Lp 
 kerA is p�equi�integrable and fwng converges to zero in measure�
In the sequel � � RN is an open� bounded domain� B�x� 		 denotes the open ball centered

at x � RN with radius 	 � �� Q 
� ��� �	N � Q�x�� r	 
� x� � rQ�� Q� 
� Q � ��
�� � � � � �
�	�
and SN�� 
� fx � RN 
 jxj � �g is the unit sphere in RN � The Lebesgue measure in RN is
designated by LN � and HN�� will stand for the N � ��dimensional Hausdor� measure in RN �

If � � p � �� then W���p��	 is the dual of W ��p�

� ��	� with �
p � �
p� � �� and it is well

known that F �W���p��	 if and only if F � f �
PN

i��
�gi
�xi

in the sense of distributions� for some

f� g�� � � � � gN � Lp��	� We denote by C����R
d 	 the set of Rd �valued continuous functions with

compact support in �� endowed with the supremum norm� It is well known that the dual of the
closure of C����R

d 	 may be identi�ed with the set of Rd �valued Radon measures with �nite mass�
M���Rd 	� through the duality

h�� �i 
�

Z
�

� � d�� � � C���	� � �M��	�

In order to simplify the notation� and when there is no ambiguity� we will abbreviate C����R
d 	

andM���Rd 	 as C���	 andM��	� respectively� If � �M��	 and E � � is a Borel set� then �bE
stands for the restriction of the measure � to E� i�e�

�bE�X	 
� ��E 
X	 for all Borel set X � ��

We recall that given �� � � M��	 with � � �� by the Radon�Nikodym Theorem we may
decompose � relative to �� precisely � � �a � �s where �s and � are mutually singular ��s � �	�
i�e�

�s�X	 � �s�X 
 B	� ��X	 � ��X nB	

for all Borel sets X � � and for some Borel set B � �� and where �a is absolutely continuous
with respect to �� �a �� �� i�e� �a�X	 � � whenever X � � is a Borel set and ��X	 � �� By
Besicovitch�s Di�erentiation Theorem we have

�a�X	 �

Z
X

��

��
�x	 d��

��

��
�x	 
� lim

���

��B�x� 			

��B�x� 			
for � a� e� x � �

and for all Borel sets X � ��
If fzng is a sequence bounded in L

���	 then it admits a subsequence converging weakly
 in the
sense of measures to a measure � � M��	�Z

�

znk�dx�

Z
�

�d�

for all � � C���	� The equi�integrability condition

for all 	 � � there exists 
 � � such that LN �E	 � 
 
 sup
n

Z
E

jzn�x	j dx � 	

is a necessary and su�cient condition for weak compactness in L� of the sequence fzng �recall that
� is bounded	� If equi�integrability holds then � �� LN � We will say that fzng is p�equi�integrable
if fjznj

pg is equi�integrable� The following Dunford�Pettits criteria for equi�integrability are well
known�
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Proposition ���� Let fzng be a sequence bounded in L���	�
�i� The sequence fzng is equi�integrable if and only if for all 	 � � there exists M � � such that

sup
n

Z
fx���jzn�x�j�Mg

jzn�y	j dy � 	�

�ii� The sequence fzng is equi�integrable if there exists a continuous function g 
 �����	� �����	
such that

lim
t�	�

g�t	

t
� ��� sup

n

Z
�

g�jzn�x	j	 dx � ���

�iii� If fzng is bounded in Lp��	 for some � � p � �� then ff�zn	g is equi�integrable whenever
f 
 Rd � �����	 is a continuous function such that

lim
jyj�	�

f�y	

jyjp
� ��

A map � 
 E � M��	 is said to be weak� measurable if x �� h��x	� �i are measurable for all
� � C���	� In order to simplify the notation we denote ��x	 by �x�
Often the study of the behavior of solutions of nonconvex problems leads to the need to determine

the limiting energy

lim
n��

Z
E

f�zn	 dx

where E is a measurable subset of �� f 
 Rd � R is a nonlinear function� and fzng is an oscillatory
sequence of measurable functions zn 
 E � Rd � In general� the presence of oscillations entails the
inequality

lim
n��

Z
E

f�zn	 dx ��

Z
E

f�z	 dx�

As it turns out� the Young measure generated by �a subsequence of	 fzng will provide the limiting
energy�
We recall that a function f 
 ��Rd � R is said to be a normal integrand if f is Borel measurable

and v �� f�x� v	 is lower semicontinuous for all x � �� Also� f is Carath�eodory if f and �f are
normal integrands�

Theorem ���� �Fundamental Theorem on Young Measures� �B�� BL� T�� Let E � RN be a
measurable set of �nite measure and let fzng be a sequence of measurable functions� zn 
 E � Rd �
Then there exists a subsequence fznkg and a weak	 measurable map � 
 E �M�Rd	 such that the
following hold�
�i� �x � �� jj�xjjM�Rd� �

R
Rd
d�x � � for a� e� x � E


�ii� one has �i�� jj�xjjM � � for a� e� x � E
if and only if

����	 lim
M��

sup
k
LN �fjznk j �Mg	 � ��

�iii� if K � Rd is a compact subset and dist �znk �K	� � in measure then

supp �x � K for a� e� x � E�

�iv� if �i�� holds then in �iii� one may replace �if � by �if and only if �

�v� if f 
 �� Rd � R is a normal integrand� bounded from below� then

lim inf
n��

Z
�

f�x� znk�x		 dx �

Z
�

f�x	 dx
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where

f�x	 
� h�x� f�x� �	i �

Z
Rd

f�x� y	 d�x�y	�

�vi� if �i�� holds and if f 
 �� Rd � R is Carath
eodory and bounded from below� then

lim
n��

Z
�

f�x� znk�x		 dx �

Z
�

f�x	 dx � ��

if and only if ff��� znk��		g is equi�integrable� In this case

f��� znk��		� f in L���	�

The map � 
 E � M�Rd 	 is called the Young measure generated by the sequence fznkg� It
can be shown that every weak
 measurable map � 
 E �M�Rd 	 that satis�es �i	 is generated by
some sequence fzng� The Young measure � is said to be homogeneous if there is a Radon measure
�� � M�Rd	 such that �x � �� for a� e� x � E�

Remark ���� �i	 Condition ����	 holds if for some p � �

sup
n�N

Z
E

jznj
p dx � ���

�ii	 As a consequence of �vi	� if fzng is bounded in L
p and if f is a continuous function in Rd such

that jf�y	j � C�� � jyjq	 for some C � �� � � q � p� then f�znk	 � f in Lp�q� Also� if fzng is
equi�integrable� then taking f � id we obtain

znk � z in L���	� z�x	 
� h�x� idi�

Proposition ���� If fvng generates a Young measure � and if wn � w in measure then fvn�wng
generates the �translated� Young measure

�x 
� �w�x��x

where
h�a�� �i 
� h�� ���� a	i

for a � Rd � � � C��R
d 	� In particular� if wn � � in measure then fvn � wng generates the Young

measure ��

Proposition ���� If fvng generates a Young measure � and un � u a� e� in � then the pair
f�un� vn	g generates the Young measure � de�ned by

�x 
� 
u�x� � �x� a� e� x � ��

A Young measure � is called a gradient Young measure if it is generated by a sequence of
gradients� more precisely� � is a W ��p gradient Young measure if it is generated by frung and
un � u in W ��p���Rm 	� A complete characterization of such Young measures has been obtained
by Kinderlehrer and Pedregal �KP�� KP�� �see also �AB� FMP� K�	� A key ingredient is the notion
of quasiconvexity
 a Borel function f 
 M m�N � R is said to be quasiconvex if

f��	 � inf
��W ���

�
�Q�Rm�

Z
Q

f�� �r��x		 dx�
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If f is quasiconvex then one can show that

f��	 � inf
��W���

per �Q�Rm�

Z
Q

f�� �r��x		 dx

where W���
per �Q�R

m 	 is the class of periodic functions in W ����Q�Rm 	� It has been established by
Morrey �Mo� �see also �AF� ADM� B�� D�� D�� FM�� FM��	 that sequential weak lower semicontinu�
ity in W ��p and quasiconvexity are essentially equivalent� More precisely� if � � f��	 � C��� j�jp	
for some C � � and all � � M m�N �no growth condition is necessary if p � ��	 then the
implication

un � u inW ��p�
�
� if p � ��	


Z
�

f�ru	 dx � lim inf
n��

Z
�

f�run	 dx

holds if and only if f is quasiconvex�

Theorem ���� Let � � p � ��� A weak	 measurable map � 
 � � M�M m�N 	 is a W ��p

gradient Young measure if and only if �x � � a� e� x � � and
�i� there exists u �W ��p���Rm 	 such that h�x� idi � Du a� e� x � �

�ii�

R
�

R
Mm�N

j�jp d�x��	dx � �� � supp �x � K a� e� x � �� for some compact K � M m�N if
p � ���

�iii� h�x� fi � f�h�x� idi	 for a� e� x � � and for all quasiconvex f 
 M m�N � R �with jf��	j �
C�� � j�jp	 for some C � � and all � � M m�N if � � p � ����

Consider a collection of linear operators A�i� � Lin�Rd �Rl 	� i � �� � � � � N � and de�ne

Av 
�

NX
i��

A�i� �v

�xi
� v 
 RN � Rd �

A �w	 
�

NX
i��

A�i�wi � Lin�R
d �Rl 	� w � RN �

where Lin�X�Y 	 is the vector space of linear mappings from the vector space X into the vector
space Y �
In the sequel we will assume that A satis�es the constant rank property� namely there
exists r � N such that

�CR	 rank A �w	 � r for all w � SN���

Fix w � RN � We de�ne

P�w	 
 Rd � Rd to be the orthogonal projection of Rd onto ker A �w	�

Q�w	 
 Rl � Rd � Q�w	A �w	z 
� z � P�w	z� z � Rd � Q�w	 � � on �range A �w		� �

Proposition ��	� If �CR� holds then the map P 
 RN n f�g � Lin�Rd �Rd	 is smooth and homo�
geneous of degree zero� and the map Q 
 RN n f�g � Lin�Rl �Rd	 is smooth and homogeneous of
degree ���

Let � 
� ZN be the unit lattice� i�e� the additive group of points in RN with integer coordinates�
We say that f 
 RN � Rd is ��periodic if

f�x� �	 � f�x	 for all x � RN � � � ��

A ��periodic function f may be identi�ed with a function fT on the N torus

TN 
� f�e��ix� � � � � � e��ixN 	 � CN 
 �x�� � � � � xN 	 � R
N g

through the relation
fT �e

��ix� � � � � � e��ixN 	 
� f�x�� � � � � xN 	�

The space Lp�TN 	 is identi�ed with L
p�Q	� and C�TN 	 is the set of ��periodic continuous functions

on Q�
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Proposition ��
� �BM�� Let w � Lp�TN �R
d 	� � � p � ��� and set wn�x	 
� w�nx	� n � N� If

E � RN is a measurable set then

wn �

Z
TN

w�y	 dy in Lp�E�Rd 	 �
�
� if p � ��	�

In particular� fwng generates the homogeneous Young measure � 
� 
w� where

h
w� �i 
�

Z
TN

��w�y		 dy for all � � C��R
d 	�

We recall some results on Fourier transforms of periodic functions �see �St� SWe�	� If f � L��TN 	
then its Fourier coe�cients are de�ned as

�f��	 
�

Z
TN

f�x	e���ix�� dx� � � ��

and the following hold


Theorem ���� �i� The trigonometric polynomials

R�x	 
�
X
��
�

a�e
���ix��� ���nite subset of �� a� � C �

are dense in C�TN 	 and in Lp�TN 	 for all � � p � ���
�ii� If � �M�TN 	 and h�� e

���ix��i � � for all � � � then � � ��
�iii� If f � L��TN 	 then

f�x	 �
X
��


�f��	e��ix���
X
��


j �f��	j� � jjf jjL� �

Corollary ����� If f � L��TN	 and
P

��
 j
�f��	j � �� then there exists a representative f of f

such that f � C�TN 	 and for all x � TN

f�x	 �
X
��


�f��	e��ix���

Corollary ����� If f � Ck�TN 	 for some k � N
� thenX
��


j �f��	j � ���

Let �Lp�TN 	� L
q�TN 		 denote the class of �p� q	 Fourier multiplier operators� i�e� the class of all

bounded linear operators T 
 Lp�TN	� Lq�TN 	 which commute with translations�

�h T � T �h for all h � RN �

where �hf�x	 
� f�x� h	�

Theorem ����� If � � p� q � �� and if T � �Lp�TN 	� L
q�TN		 then there exists a bounded

function  
 �� C such that

Tf�x	 
�
X
��


 ��	 �f ��	e��ix�� if f � Lp�TN	is given by f�x	 �
X
��


�f��	e��ix���

The collection of coe�cients f ��	g��
 is called the Fourier multiplier associated to T �

It can be shown that a certain class of continuous functions on the unit sphere SN�� are Fourier
multipliers� Precisely �see �St� Example iii	� pp� ���� �SWe� Corollary ����� pp� ���� and remark
just below�	�
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Proposition ����� If  is homogeneous of degree zero and if it is in�nitely di�erentiable on
SN��� then the operator T� 
 L

p�TN 	� Lp�TN 	 de�ned by

T�f�x	 
�
X

��
nf�g

 ��	 �f��	e��ix�� if f � Lp�TN	 is given by f�x	 �
X
��


�f��	e��ix���

is a Fourier multiplier operator for � � p � ���

If �CR	 holds� then in light of Propositions ��� and ���� the functions

 ij 
 w � RN �� P�w	ij � i� j � f�� � � � � dg

generate the Fourier multipliers f ij��	g��
nf�g associated to the Fourier multiplier operators
T�ij

� and we de�ne the operators

�Tu	i�x	 
� �T�ij
uj	�x	 for u � Lp�TN �R

d 	� i � �� � � � � N�

where the summation convention for repeated indices is used�

Lemma ����� Suppose that �CR� holds and let � � p � ��� Then
�i� T 
 Lp�TN �R

d 	� Lp�TN �R
d	 is a linear� bounded operator that vanishes on constant mappings


�ii� if u � Lp�TN �R
d	 then T � Tu � Tu� and A�Tu	 � �


�iii� jju � TujjLp � CpjjAujjW���p for all u � Lp�TN �R
d 	 such that

R
TN

u dx � � and for some

Cp � �

�iv� suppose that fung is a sequence bounded in Lp�TN �R

d	 and fjunj
pg is equi�integrable� Then

fjTunj
pg is still equi�integrable�

Proof� �i	 follows from the de�nition of T and from Propositions ��� and ����� Property �ii	 is an
immediate consequence of the fact that P is a projection�
To prove �iii	� we note that by Corollaries ���� and ���� for u � C��TN �R

d 	 with
R
TN

u dx � �
we have

u� Tu � !��
nf�g Q��	A ��	�u��	e
��ix��

� !��
nf�g Q

�
�

j�j

�
A

�
�

j�j

�
�u��	e��ix��

where we have used the linearity of A and the fact that Q is homogeneous of degree ��� By
Proposition ��� the inequality in �iii	 is obtained� and the result for Lp periodic functions with zero
average follows via a density argument�
To prove �iv	 consider the truncation �� 
 R

d � Rd given by

���z	 
�

��
�

z if jzj � �

�
z

jzj
if jzj � ��

Since f��ung is bounded in L
� we have thatfT���un	g is bounded in L

q for all p � q � ��� and
so fjT ���un	j

pg is equi�integrable� On the other hand� by the equi�integrability of fung we have
that

lim
���

sup
n
jjun � ��unjjp � �

and by �i	 we conclude that
lim
���

sup
n
jjT�un � ��un	jjp � ��

and the assertion is proved�

We note that� with the exception of Lemma ���� �iv	� the above follows closely Murat�s work
�see �Mu�	�
Decomposition results similar to the ones obtained below may be found in �FMP� and �K� in the

particular case of curl�free �elds�
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Lemma ����� �� � p � ��� Let � � p � ��� let fung be a bounded sequence in Lp�TN �R
d 	

such that Aun � � in W���p�TN	� un � u in Lp�TN �R
d	� and assume that fung generates the

Young measure �� Then there exists a p�equi�integrable sequence fvng � Lp���Rd	 
 kerA such
that Z

�

vn dx �

Z
�

u dx� jjvn � unjjLq��� � � for all � � q � p

and� in particular� fvng still generates ��

Proof� After an a�ne rescaling� we may suppose that � � Q� The assumptions imply that Au � ��
and by linearity �and Proposition ���	 we may take u � �� By Theorem ��� �v	 we haveZ

�

Z
Rd

jzjp d�x�z	 dx � ��

and so� using Theorem ��� �vi	 we obtain

lim
k��

lim
n��

Z
�

j�k�un	j
p dx � lim

k��

Z
�

Z
Rd

j�k�z	j
p d�x�z	 dx

�

Z
�

Z
Rd

jzjp d�x�z	 dx�

Therefore we may �nd an increasing sequence �n � �� such that the truncated sequence f��n �
ung satis�es

����	 lim
n��

Z
�

j��n � unj
p dx �

Z
�

Z
Rd

jzjp d�x�z	 dx�

On the other hand� as fung is equi�integrable�

��n � un � un � � in measure and weakly in Lp��	�

Thus� by Proposition ���� the sequence f"ung 
� f��n � ung still generates the Young measure ��
By Theorem ��� �vi	 and ����	 we conclude that f"ung is p�equi�integrable� Moreover� if � � q � p
then

jj"un � unjj
q
Lq��� �

Z
fjunj	�ng

�qjunj
q dx

� �q�pn �q
Z
TN

junj
p dx� � as n� ���

and thus A"un � � in W���q��	� Also� by virtue of the compact imbedding Lq��	 �� W���q��	�
we have for all � � C�� ��� ��� ��	

A��"un	 � �A�"un	 �
NX
i��

A�i��"un	
��

�xi
� � inW���q��	�

Thus we may select a sequence f�ng � C�� ��� ��� ��	 with �n � �� and such that� setting �un 
�
�n "un� f�ung is p�equi�integrable�

�un � � in Lp��	� A�un � � in W���q��	�

Extend �un by zero to Q n� and then periodically� We de�ne

"vn 
� T

�
�un �

Z
TN

�un dy

�
�
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By Lemma ���� �iv	 the sequence f"vng � Lp���Rd 	 
 kerA is p�equi�integrable� and we have

����	

jj"vn � unjjLq��� � jj"vn � "unjjLq��� � jj"un � unjjLq���

� jj"vn � �unjjLq��� � jj�un � "unjjLq��� � jj"un � unjjLq���

�
 In� � In� � In� �

We have already seen that In� � � as n��� and the p�equi�integrability of f"ung entails

lim
n��

In� � ��

Using Lemma ���� �iii	 and the fact that
R
TN
�un dy � �� we obtain

lim
n��

In� � lim
n��

����
�����un �

Z
TN

�un dy � T

�
�un �

Z
TN

�un dy

�����
����
Lq�TN �

� lim
n��

Cq jjA�unjjW���q�TN �

� ��

In particular� by Proposition ��� f"vng still generates �� Finally� it su�ces to set

vn 
� "vn �

Z
�

"vn dy�

Note that if the initial sequence fung is p�equi�integrable� then there is no need to construct the
truncated sequence f"ung� and from ����	 it follows that jjvn � unjjLp�TN � � ��

Lemma ����� �p � �� Let fung be a sequence converging weakly in L����Rd	 to a function u�
Aun � � in W���r�TN 	 for some r � ��� N
�N � �		� and assume that fung generates a Young
measure �� Then there exists an equi�integrable sequence fvng � L����Rd 	 
 kerA such thatZ

�

vn dx �

Z
�

u dx� jjvn � unjjL���� � �

and� in particular� fvng still generates ��

Proof� The proof is similar to the one given above� and once again we may assume that � � Q and
u � �� Due to the equi�integrability of fung we do not need to truncate the sequence� so we set
"un 
� un� Also� by molli�cation we may assume that �un � C�� ���R

d 	� where in the diagonalization
argument leading to the construction of �un we use the compact imbedding L

���	 �� W���r��	�
We have

jj"vn � unjjL���� � jj"vn � �unjjL���� � jj�un � unjjL����

and the last term on the right hand side converges to zero due to the equi�integrability of fung�
Finally�

lim
n��

jj"vn � �unjjL���� � lim
n��

Cr

����
�����un �

Z
TN

�un dy � T

�
�un �

Z
TN

�un dy

�����
����
Lr�TN �

� Cr lim
n��

jjA�unjjW���r�TN �

� ��

where we have used the fact that
R
TN
�un dy � ��
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Lemma ���	� �p � ��� Let fung be a sequence that satis�es un
�
� u in L��TN �R

d	� Aun � �
in Lp�TN 	 for some p � N � and assume that fung generates a Young measure �� Then there exists
a sequence fvng � L��TN �R

d 	 
 kerA such thatZ
TN

vn dx �

Z
TN

u dx� jjvn � unjjL��TN � � �

and� in particular� fvng still generates ��

Proof� As before assume that u � � and set

vn 
� T

�
un �

Z
TN

un dy

�
�

Since
R
TN

un dy � �� we have

sup
n�N

jjvn � unjjW ��p�TN � � Cp sup
n�N

jjAunjjLp�TN � � ��

and
lim
n��

jjvn � unjjLp�TN � � Cp lim
n��

jjAunjjW���p�TN � � ��

and we conclude that the functions vn � un converge to zero uniformly�

The last result of this section will enable us in Section � to focus our attention on the charac�
terization of A���Young measures� where a Young measure � is said to be a A�p�Young measure if
it is generated by a sequence in kerA which is weakly convergent in Lp��	�

Corollary ���
� Let � � p � ��� If � is a A� ��Young measure withZ
�

Z
Rd

jzjp d�x�z	 dx � ��

then � is a A�p�Young measure generated by a p�equi�integrable sequence�

Proof� Assume that � is generated by an equi�integrable sequence fung � L���	 
 kerA� andZ
�

Z
Rd

jzjp d�x�z	 dx � ���

Following the beginning of the proof of Lemma ����� we may �nd a sequence of truncations f"ung �
kerA� bounded in Lp���Rd	� that still generates � since� by equi�integrability�

jj"un � unjjL���� � ��

The result now follows by direct application of Lemma ���� to the sequence f"ung�

x�� A � Quasiconvexity 
 a Necessary and Su�cient Condition for Lower Semiconti�

nuity

Using the notation introduced in Section �� consider an operator A satisfying the constant
rank property �CR	� In this section we will prove lower semicontinuity of functionals with normal
integrands with respect to weakly convergent sequences with weak limit in the kernel of A� In
what follows � is a bounded� open subset of RN �
Given a normal integrand f 
 �� Rm � Rd � R� we de�ne

I�u� v	 
�

Z
�

f�x� u�x	� v�x		 dx

for measurable �u� v	 
 �� Rm � Rd �
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De�nition ���� A function f 
 Rd � R is said to be A�quasiconvex if

f�v	 �

Z
Q

f�v � w�x		 dx

for all v � Rd and all w � C��TN �R
d 	 such that A�w	 � � and

R
TN

w�x	 dx � ��

De�nition ���� Given a Borel function f 
 Rd � R we de�ne the A�quasiconvex envelope of f
at v � Rd as

����	 QA f�v	 
� inf

�Z
TN

f�v � w�x		 dx 
 w � C��TN 	 
 kerA�

Z
TN

w dx � �

	
�

Clearly f � QA f when f is A�quasiconvex�

Remark ���� �i	 It follows immediately from Jensen�s inequality that convex functions are A�
quasiconvex�
�ii	 If f is upper semicontinuous and locally bounded from above� then C��TN 	 may be replaced

by L��TN 	 in De�nition ���� Indeed� it su�ces to approximate a given function w � L��TN 	 

kerA� with

R
TN

w dx � �� by the molli�ed sequence

w� 
� �� � w �

Z
TN

�� � w dy�

where w� � C��TN 	 
 kerA� are Q�periodic� and have zero average� The result now follows by
Fatou�s Lemma� If� in addition� jf�v	j � C��� jvjp	 for some C � � and all v � Rd � then C��TN 	
may be replaced by Lp�TN 	 in ����	�
�iii	 Given a matrix�valued function V 
 � � RN � M m�n � Rd � d 
� mn� n � N � �� � � ��

we write

V � �F j �	� F � M m�N � � � M m�	 �

where F is the matrix of the �rst N columns of V � and � is the matrix of the remaining � columns�
In the context of membrane or �lm theories� N � �� m � �� � � �� and F is the gradient of the
membrane deformation� In the context of general nonlinear elasticity� N � m � �� � � �� and F is
the gradient of the deformation of the elastic solid� The underlying PDE is then

curlF � �� i�e�
�Fjk
�xi

�
�Fji
�xk

� �� � � j � m� � � i� k � N�

We may rewrite these PDEs as AV � �� where l 
� N�m and

A
�r�
�j�k�i���q�p� 
� 
ri
qj
pk � 
rk
qj
pi� � � j� q � m� � � i� k� p� r � N�

A
�r�
�j�k�i���q�p� � � if p � N � �� � � � � n�

The constant rank condition �CR	 is satis�ed� since dim�ker A �w		 � m�m� � for all w � SN���
Indeed�

ker A �w	 � fV � M m�n 
 A �w	V � �g

� fV � �F j �	 � M m�n 
 wiFjk � wkFji � �� � � j � m� � � i� k � Ng

� fV � �F j �	 � M m�n 
 F � a� w for some a � Rmg�
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When � � � and f is locally bounded then ����	 reduces to the usual quasiconvex envelope of f �

QA f�v	 
 � inf

�Z
TN

f�v �r��x		 dx 
 v � C��TN �R
m 	

	

� inf

�Z
Q

f�v �r��x		 dx 
 v � C�� �Q�R
m 	

	
�

�iv	 Now we consider the div�free case �see also �P�	� Here d � N� l � ��

A
�i�
j 
� 
ij �

so that
Au � � if and only if div u � ��

Once again� the constant rank condition �CR	 holds� as for all w � SN��

ker A �w	 �



v � RN 


NX
i��

A�i�wi�v	 � �

�

� fv � RN 
 v � w � �g�

Therefore dim�ker A �w		 � N � ��

Proposition ���� If f 
 Rd � R is upper semicontinuous then QA f is A�quasiconvex and upper
semicontinuous� Moreover� the restriction of QA f to each cone a��� a � Rd � is convex� i�e�

QA f��y � ��� �	z	 � �QA f�y	 � ��� �	QA f�z	

for all � � ��� �	� y� z � Rd such that y � z � �� where

� 
� 	w�SN�� ker A �w	�

Remark ���� �i	 The characteristic cone � as de�ned in Proposition ��� was introduced in the
work of Murat and Tartar �see �Mu�� �T��	�
�ii	 There are A�quasiconvex functions that are not continuous� Indeed� in the degenerate case

kerA � f�g all functions are A�quasiconvex� Furthermore� in general QA f need not be continuous
in directions that are not in span� even when f is smooth� As an example� let N � �� d � �� and
Au 
� u��� Fix � � C��R	 such that � � � � �� ���	 � �� limjtj�� ��t	 � �� and let

f�v�� v�	 
� ��v�v
�
�	�

Then QA f is obtained by convexi�cation in the �rst component� and QA f�v�� v�	 � � if v� �� ��
while QA f�v�� �	 � �� In particular� this example shows that the relaxed energy

F�u	 
� inf
fvng

�
lim inf
n��

Z
�

f�vn	 dx 
 vn � v in Lp���Rd	� A�vn	 � �

	

may not agree with Z
�

QA f�v	 dx�

�iii	 In the curl�free case and when � � �� by Remark ��� �iii	 we have that � � fa � w 
 a �
Rm � w � SN��g� Thus Proposition ��� entails that a quasiconvex Borel measurable function is
convex along any rank�one directions� It is then said to be rank�one convex� In particular� it is
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separately convex� and so continuous� We remark that although Proposition ��� is stated for upper
semicontinuous functions f � in the case of gradients the statement still holds if f is only assumed
to be Borel measurable �see �F�	�
�iv	 In the div�free case and by Remark ��� �iv	� we have � � RN � and by Proposition ��� we

conclude that QA f is convex �see also �P�	� Thus� since we have always QA f � f � QA f reduces
to the convexi�cation of f �
�v	 It follows from the convexity of t �� QA f�a�tz	� z � � �see Proposition ���	� that QA f�a	 �

�� if and only if QA f � �� on a���

Proof of Proposition ����
Case � 
 Suppose that f is continuous�
For R � �� v � Rd � de�ne

QR
A f�v	 
� inf

�Z
TN

f�v � w�x		dx 
 w � C��TN	 
 kerA�

Z
TN

w�x	dx � �� and jjwjjL��TN � � R

	
�

We claim that

����	 QR
A f is continuous�

Let � � �� and let � be the modulus of uniform continuity of f on B��� ��R	� i�e�

��r	 
� supfjf�v	� f�v�	j 
 v� v� � B��� ��R	� jv � v�j � rg�

For all v� v� � B��� �	 and every w � C��TN 	 
 A� with
R
TN

w�x	 dx � � and jjwjjL��TN � � R� we
have Z

TN

f�v � w�x		 dx �

Z
TN

f�v� � w�x		 dx � ��jv � v�j	

� QR
A f�v

�	� ��jv � v�j	�

By de�nition of QA f�v	 this implies that

QR
A f�v	�Q

R
A f�v

�	 � ��jv � v�j	

and the uniform continuity of QR
A f in B��� �	 follows by reversing the roles of v and v

�

Fix 	 � �� let n � N� and decompose Q into nN cubes along the coordinate axes� Q � 	Qn�i�
Qn�i � an�i � ��
n	Q� Now we choose smooth cut�o� functions �n�i with the following properties


� � �n�i � �� �n�i � � on an�i���
n��
n
�	Q� and

PnN

i�� �Qn�i
�n�i � �� For w � C��TN	
kerA

with average zero on Q� consider the piecewise constant approximations

wn�x	 
�
nNX
i��

�Qn�i
wn�i� where wn�i 
� nN

Z
Qn�i

w�x	 dx�

Then jjwn � wjjL��Q� � �� and by the continuity of QR
A f �see ����		 we have for n � n��		

����	

Z
TN

QR
A f�v � w�x		 dx �

Z
TN

QR
A f�v � wn�x		 dx � 	

�

nNX
i��

�

nN
QR
A f�v � wn�i	� 	�

On the other hand� due to the uniform continuity of f on compact sets there exists 
 � � such
that

����	 �� � � L��B��� �R		� jj� � �jjL��Q� � 
 


����
Z
Q

f�v � ��x		 dx �

Z
TN

f�v � ��x		 dx

���� � 	�
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Choose zn�i � C��TN 	 
 kerA� with average zero� such that jjzn�ijjL��Q� � R�

����	 QR
A f�v � wn�i	 �

Z
TN

f�v � wn�i � zn�i�y		 dy � 	�

and set

yn�k�x	 
� w�x	 �
nNX
i��

�n�i�x	zn�i�kn
N �x� an�i		� k � N�

Clearly
jjyn�kjjL��TN � � R� jjwjjL��Q�� �

By Proposition ��# zn�i�kn
N �� � an�i		

�
� � in L��Qn�i	 as k � �� for all n � N� i � �� � � � � nN �

and so

����	 lim
k��

Ayn�k � � weak�
 in L��TN	� lim
n��

lim
k��

Z
TN

yn�k dx � ��

Choose n � n��		 � n��		 such that

���#	 n��		�� as 	� �� jjwn � wjjL��Q� � 
� lim
k��

����
Z
TN

yn�k dx

���� � 
�

Now ����	� ����	� ����	 and ���#	 yield
����	Z

TN

QR
A f�v � w�x		 dx � lim

k��

nNX
i��

Z
Qn�i

f�v � wn�i � zn�i�kn
N �x� an�i			 dx � �	

� lim sup
k��

Z
TN

f�v � yn�k�x		 dx � �	� CnN

�
�

nN
�

�
�

n
�
�

n�

�N

maxfjf�z	j 
 z � B�v� �R	g�

In view of Lemma ���� and ����	 we may �nd uk � L��TN �R
d	 
 kerA such thatZ

TN

uk dx � �� uk �

�
yn�k �

Z
TN

yn�k�y	 dy

�
� � uniformly as k ���

Thus� by ����	� ���#	� ����	� and Remark ��� �ii	 we have

�����	

Z
TN

QR
A f�v � w�x		 dx � lim sup

k��

Z
TN

f�v � yn�k�x		 dx � �	�O

�
�

n

�

� lim sup
k��

Z
TN

f

�
v � yn�k�x	 �

Z
TN

yn�k�y	 dy

�
dx� �	�O

�
�

n

�

� lim sup
k��

Z
TN

f�v � uk�x		 dx � �	�O

�
�

n

�

� QA f�v	� �	�O

�
�

n

�
�

For 	 � � we have� by ���#	� n � n��		 � ��� Hence taking �rst the limit 	 � � and then
R � � in �����	� and observing that QR

A f � QA f as R � �� we deduce from Lebesgue�s
monotone convergence theorem thatZ

TN

QA f�v � w�x		 dx � QA f�v	�
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Case � 
 f is upper semicontinuous�
Let ffng be a sequence of continuous functions converging decreasingly to f � By Case �� given

v � Rd � w � C��TN 	 
 kerA� with
R
TN

w dx � �� we have

Z
TN

QA fn�v � w�x		 dx � QA fn�v	� n � N�

In view of Lebesgue�s monotone convergence theorem� A�quasiconvexity of QA f will follow pro�
vided we show that

�����	 QA fn � QA f�

Cleary fQA fngn�N is decreasing and larger than QA f � On the other hand� for �xed v � R
d with

QA f�v	 � ��� given 
 � � there exists � � C��TN 	 
 kerA� with
R
TN

� dx � �� such that

QA f�v	 �

Z
TN

f�v � ��x		 dx � 
�

By Lebesgue�s monotone convergence theorem it follows that

QA f�v	 � lim
n��

Z
TN

fn�v � ��x		 dx � 


� lim sup
n��

QA fn�v	� 
�

It su�ces to let 
 � �� The case where QA f�v	 � �� is treated in a similar way� As proven
in Case �� the functions QA fn are upper semicontinuous� so QA f � infn�NQA fn is also upper
semicontinuous�
Finally� we show that QA f is convex on the cones a��� a � R

d � i�e�

QA f��y � ��� �	z	 � �QA f�y	 � ��� �	QA f�z	

for all � � ��� �	� y� z � Rd such that y � z � �� By �����	 it su�ces to prove this inequality in the
case where f is a continuous function�
Let

��t	 
�

�
���� �	 if � � t � �

� if � � t � �

and extend � periodically to R with period one� Let w � SN�� be such that y� z � ker A �w	 and
de�ne

un�x	 
� �z � y	��nx � w	�

Clearly un
�
� � in L��Q	� and if � � C�� �Q� ��� ��	 is such that L

N �f� � �g	 � �� 
� 
 � �� then

A��un	 �

NX
i��

A�i�un
��

�xi

�
� � in L��TN 	�

Due to Lemma ���� we may �nd un � L��TN �R
d 	 
 kerA such that

Z
TN

un � �� jjun � �unjjL��Q� � ��
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By Remark ��� �ii	� since QA f is a A�quasiconvex function� upper semicontinuous and bounded
above by the locally bounded function f � by ����	 and if R � � is large enough� we have

QA f��y � ��� �	z	 � lim inf
n��

Z
TN

QA f��y � ��� �	z � un	 dx

� lim inf
n��

Z
TN

QR
A f��y � ��� �	z � un	 dx

� lim inf
n��

Z
TN

QR
A f��y � ��� �	z � un	 dx�M


� �QR
A f��y � ��� �	z � ��� �	�z � y		

� ��� �	QR
A f��y � ��� �	z � �z � y	�	 �M


� �QR
A f�y	 � ��� �	QR

A f�z	 �M


where M 
� maxfjf�z	j 
 z � B��� R	g� It su�ces to let 
 � � and then R���

Next we prove that A�quasiconvexity is a necessary condition for lower semicontinuity under
the PDE constraint Au � ��

Theorem ���� �Necessity� Let f 
 �� Rd � R be a Carath
eodory function such thatZ
�

f�x� v�x		 dx � lim inf
n��

Z
�

f�x� vn�x		 dx

for all sequences fvng � C����Rd	 that satisfy

vn
�
� v in L���	 and Avn � ��

Assume further that
ff��� un	g is equi�integrable

whenever fung is a sequence bounded in L����Rd	� Then f�x�� �	 is A�quasiconvex for a� e�
x� � ��

Proof� Without loss of generality� and using a rescaling argument� we may assume that � � Q�
By the Scorza�Dragoni Theorem� for all i � N there exists a compact set Ki � � such that

the restriction of f to Ki � Rd is continuous and LN �� nKi	 � �
i� Let S be a countable� dense

subset �with respect to uniform convergence	 of W 
�
n
w � C��TN	 
 Aw � ��

R
TN

w dx � �
o
�

Let x� � � be a Lebesgue point for

x �� f�x� v	� x ��

Z
Q

f�x� v � w�y		 dy

for all v � Qd � w � S� and suppose that z �� f�x�� z	 is continuous� Fix v � Q
N � w � S� We claim

that

f�x�� v	 �

Z
Q

f�x�� v � w�x		 dx�

If so� by continuity of z �� f�x�� z	 this inequality still holds true for all v � R
d and all w � W � To

establish the inequality extend w to Rd periodically with period Q� �x 	 � �� h � N� and choose
i � i�h� 		 � N such that

LN
�
Q

�
x��

�

h

�
nKi

�
�

	

hN
�
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Let n � n�h� 		 be such that

jx� x�j �
�

n
� x� x� � Ki� z � B

�
�� jvj� jjwjjL��Q�

�

 jf�x� z	� f�x�� z	j � 	�

Decompose the cube Q
�
x��

�
h

�
as 	n

N

j��Q
�
xj �

�
hn

�
� and if Ki 
 Q

�
xj �

�
hn

�
�� � select aj in this

intersection� Choose a cut�o� function � � C�� �Q�x�� �
h		 such that L
N �Q�x�� �
h	
f� �� �g	 �

�
hN �
De�ne

wm�x	 
�

����
���
��x	w��hmn�x� xj		 if x � Q

�
xj �

�

hn

�
� j � �� � � � � nN �

� x � RN nQ

�
x��

�

h

�

where w��y	 
� w�y � ��
�� � � � � �
�		 for y � Q�� By Proposition ��# it is clear that

wm
�
� � in L��TN 	� Awm

�
� � in L��TN	�

Using Lemma ���� we may �nd �m � L��Q��� L	�Rd	 
 kerA such that jj�m � wmjjL���� � ��
and so Z

�

f�x� v	 dx � lim inf
m��

Z
�

f�x� v � �m�x		 dx

� lim inf
m��

Z
�

f�x� v � wm�x		 dx

where we used Propositions ���� ��#� and Theorem ��� �vi	� Taking into account the estimates for
f� �� �g and Q�x�� �
h	 nKi� we deduce thatZ
Q�x����h�

f�x� v	 dx � lim inf
m��

Z
Q�x����h�

f�x� v � wm�x		 dx

� lim inf
m��

��
�

nNX
j��

Z
Q�xj � �

hn 	
Ki

f�aj � v � w��hmn�x� xj			 dx

�

nNX
j��

Z
Q�xj� �

hn 	
Ki

jf�x� v � w��hmn�x� xj			� f�aj � v � w��hmn�x� xj			j dx

�

nNX
j��

Z
Q�xj � �

hn 	nKi

f�x� v � w��hmn�x� xj			 dx

��
� �M

	

hN

�
nNX
j��

�

�hn	N

Z
Q

f�aj � v � w�y		 dy � �M
	

hN
�

	

hN

where M 
� esssup
�
jf�x� z	j 
 x � B�x�� R�	 �� �� jzj � jvj� jjwjjL��TN �

�
�

Hence

�����	

Z
Q�x����h�

f�x� v	 dx �

nNX
j��

Z
Q�xj � �

hn 	
Ki

Z
Q

f�aj � v � w�y		 dy dx�
O�		

hN

�

nNX
j��

Z
Q�xj � �

hn 	

Z
Q

f�x� v � w�y		 dy dx �
O�		

hN

�

Z
Q�x�� �h 	

Z
Q

f�x� v � w�y		 dy dx�
O�		

hN
�
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Multiplying through �����	 by hN � letting h� ��� and then 	� �� we conclude that

f�x�� v	 �

Z
Q

f�x�� v � w�y		 dy�

Now we prove su�ciency of the A�quasiconvexity property�

Theorem ��	� �Su�ciency� Let � � p � �� and suppose that f 
 � � Rm � Rd � �����	 is
a normal integrand such that z �� f�x� u� z	 is A�quasiconvex and continuous for a� e� x � � and
for all u � Rd � If � � p � ��� then assume further that there exists a locally bounded function
a 
 �� Rd � �����	 such that

� � f�x� u� v	 � a�x� u	�� � jvjp	�

If
un � u in measure

and

vn � v inLp���Rd 	�
�
� if p � ��	� Avn � � inW���p��	 �Avn � � if p � ��	�

then
I�u� v	 � lim inf

n��
I�un� vn	�

This theorem is a consequence of Propositions ��# and ����

Proposition ��
� Let � � p � ��� let fvng be a p�equi�integrable sequence in Lp���Rd	 such
that Avn � � in W���p��	 if � � p � ��� Avn � � in W���r��	 for some r � ��� N
�N � �		 if
p � �� and fvng generates the Young measure � � f�xgx��� Let vn � v in Lp�TN �R

d	� Then for
a� e� a � � there exists a sequence fvng � Lp�TN �R

d 	 
 kerA that is p�equi�integrable� generates
the homogeneous Young measure �a� and satis�esZ

TN

vn dx � h�a� idi � v�a	�

In particular� one has
h�a� fi � f�h�a� idi	 � f�v�a		

for a� e� a � �� and for every continuous A�quasiconvex f that satis�es

jf�z	j � C�� � jzjp	

for some C � � and all z � Rd �

Proposition ���� Let fvng be a bounded sequence in L����Rd 	 that generates a Young measure

� � f�xgx��� and satis�es Avn � �� Let vn
�
� v in L��TN �R

d	� Then for a� e� a � � and every
subcube Q� �� Q there exists a sequence fvng � L��TN �R

d 	 such that

vn
�
� v�a	 in L��TN 	� Avn � ��

Z
TN

vn dx � h�a� idi � v�a	�

and fvng generates a Young measure � such that����
Z
Q

��x	 h�x� gi dx� h�a� gi

Z
Q

��x	 dx

���� � jjgjjL��B����M��

Z
QnQ�

j��x	j dx
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for all � � L��Q	� g � C��R
d	� and where M 
� supn�N jjvnjjL����� In addition� if f 
 Rd � R is

a continuous function then
h�a� fi � f�h�a� idi	 � f�v�a		

for a� e� a � ��

We leave the proofs of Propositions ��# and ��� to the end of this section� and we proceed with
the proof of Theorem ���� We follow the argument of Kristensen �based on Balder�s �Ba� reasoning
for the case without constraints	 in the context of the usual curl�free A�quasiconvexity�

Proof of Theorem ���� Upon extracting a subsequence� we may assume that

lim inf
n��

I�un� vn	 � lim
n��

I�un� vn	�

and fvng generates a Young measure �� By Proposition ��� the pair f�un� vn	g generates the Young
measure

�
�x � 
u�x� � �x

�
x��

� and by Theorem ��� �v	 we have

lim
n��

I�un� vn	 �

Z
�

Z
Rm�Rd

f�x� �� �	 d�x��� �	 dx

�

Z
�

Z
Rd

f�x� u�x	� �	 d�x��	 dx�

If p � � or p � �� the result follows from direct application of Proposition ��# and Proposition
���� respectively� to the map � �� f�x� u�x	� �	 and integration over �� If � � p � �� then by
Lemma ���� and by Proposition ���� there exists a p�equi�integrable sequence fyng which generates
� and satis�es Ayn � �� Once again� it su�ces to apply Proposition ��# to fyng and to the map
� �� f�x� u�x	� �	 for a� e� x � � �xed�

Proof of Proposition ���� Let E and C be countable dense subsets of L��Q	 and C��R
d 	� respectively�

By Theorem ��� �vi	 we have

g � vn
�
� h�� gi in L���	

for all g � C� Let �� be the set of points a � � which are Lebesgue points for v� for the functions

x ��

Z
Rd

j�jp d�x��	� x �� h�a� idi�

and for all functions x �� h�x� gi� g � C� in the sense that

lim
R��

Z
Q

jh�a	Rx� gi � h�a� gij dx � ��

Consider an increasing sequence of smooth cut�o� functions �j � C�� �Q	� �j � �� For �xed
a � ��� R � �� we de�ne

vj�R�n�z	 
� �j�z	�vn�a�Rz	� h�a� idi	� z � Q�

Recall that h�a� idi � v�a	� We have vj�R�n � Lp�TN �R
d 	� and for all � � E and g � C we have

�����	

lim
j��

lim
R��

lim
n��

Z
Q

��z	g�vj�R�n�z	 � v�a		 dz � lim
R��

lim
n��

Z
Q

��z	 g�vn�a�Rz		 dz

� lim
R��

Z
Q

��z	h�a	Rz � gi dz

� h�a� gi

Z
Q

��z	 dz�



�� I� Fonseca and S� M�uller

Moreover� as fjvnj
pg is equi�integrable�

�����	

lim sup
j��

lim sup
R��

lim sup
n��

Z
Q

jvj�R�n�z	 � v�a	jp dz � lim
R��

lim
n��

Z
Q

jvn�a�Rz	jp dz �

Z
Rd

j�jp d�a��	�

Also� vj�R�n � � in Lp as n � � and R � �� If � � p � �� we have� in view of the compact
imbedding Lp�TN 	 ��W���p�TN 	 and the assumption Avn � � in W���p��	�

�����	 lim
j��

lim
R��

lim
n��

Avj�R�n � � in W���p�TN	�

If p � � then

vj�R�n � � in W���r�TN 	 for r �

�
��

N

N � �

�
�

and so� due to �����	� �����	� �����	� and by means of a diagonalization procedure� we may �nd a
sequence of functions fwjg with the properties

wj � � in Lp�TN 	� Awj � � in W���q�TN 	

where q � p if � � p � �� and q � r if p � �� and
�����	

lim
j��

Z
Q

jwj�x	 � v�a	jp dx �

Z
Rd

j�jp d�a��	� lim
j��

Z
Q

��x	g�wj �x	 � v�a		 dx � h�a� gi

Z
Q

��x	 dx

for all � � E and g � C� By Lemmas ����� ����� and by �����	 we conclude that �a is generated by
a p�equi�integrable sequence wj � Lp�TN �R

d 	 
 kerA such that
R
TN

wj dx � v�a	� Finally� if f is

a continuous function such that jf�z	j � C�� � jzjp	 for some C � � and all z � Rd � then ff�wj	g
is equi�integrable and by Theorem ��� �vi	 we have

h�a� fi � lim
j��

Z
TN

f�wj	 dx � f�v�a		

where in the last inequality we used the A�quasiconvexity of f together with Remark ��� �ii	�

Proof of Proposition ���� As in the previous proof� let E and C be countable dense subsets of L��Q	
and C��R

d 	� � respectively� and let �� be the set of points a � � which are Lebesgue points for
x �� h�x� idi and for all functions x �� h�x� gi� g � C� Fix Q

� �� Q and consider a smooth cut�o�
function � � C�� �Q	� � � � � �� � � � in Q��
For a � ��� R � �� we de�ne

vR�n�z	 
� ��z	 �vn�a�Rz	� h�a� idi	 � h�a� idi� z � Q�

Then vR�n is bounded in L
��TN �R

d	� and for all � � E and g � C we have

lim
R��

lim
n��

Z
Q

��z	g�vR�n�z		 dz � lim
R��

lim
n��

Z
Q

��z	 g�vn�a�Rz		 dz � E��� g	

� lim
R��

Z
Q

��z	h�a	Rz � gi dz � E��� g	

� h�a� gi

Z
Q

��z	 dz � E��� g	�
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where

jE��� g	j � jjgjjL��B����M��

Z
QnQ�

j�j dy�

Clearly� vn�a�R�	� h�a� idi
�
� � in L� as n�� and R� �� and

lim
R��

lim
n��

AvR�n � � weakly�
 in L��TN 	� sup
R�n

jjAvR�njjL��TN � � ���

Diagonalizing fvR�ng� and extracting a further subsequence if necessary� we may �nd a sequence
of functions fwjg with the properties

wj
�
� v�a	 in L��TN 	� Awj

�
� � in L��TN	�

and fwjg generates a Young measure � such that ess supp�x � B��� �M	 and����
Z
Q

��x	 h�x� gi dx� h�a� gi

Z
Q

��x	 dx

���� � jE��� g	j

for all g � C� � � E � By density this inequality extends to all � � L��Q	� g � C��R
d	� Due to

Lemma ���� we may �nd wj � L��TN �R
d 	 
 kerA such that jjwj �wj jjL��TN � � ��

R
TN

wj dy �

v�a	� In particular� fwjg generates the Young measure � satisfying the statement� and if f is
continuous then

����#	
lim

j�	�

Z
TN

f�wj	 dx �

Z
TN

h�x� fi dx

� h�a� fi� L
N �Q nQ�	jjf jjL��B����R���

On the other hand� since f is A�quasiconvex and in view of Remark ��� �ii	 we have directly from
De�nition ��� Z

TN

f�wj	 dx � f�v�a		 for all j � N�

which� together with ����#	� and letting LN �Q nQ�	� �� concludes the proof�

We end this section with some examples of problems involving PDE constraints which fall within
the scope of the present study �for further examples see �SW� T��	�

Examples ����� �a	 �Gradients and Partial Gradients�
The case where

Av � � if and only if v � ru

for some function u 
 � � Rm � was already treated in Remarks ��� �iii	 and ��� �iii	� It can be
seen easily that this framework still applies when v is not a full gradient but a list of only some of
the partial derivatives of u�
�b	 �Divergence Free Fields�
For the example where

Av � � if and only if div v � ��

we refer the reader to Remarks ��� �iv	 and ��� �iv	�
�c	 �Maxwell�s Equations�
In magnetostatics the magnetization m 
 R� � R� and the induced magnetic �eld h 
 R� � R�

satisfy �in suitable units	 the PDE constraints

A

�
m

h

�

�

�
div�m� h	

curlh

�
� ��
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For w � S� we have

ker A �w	 �
�
�a� b	 � R� � R� 
 w � �a� b	 � �� w � b� b� w � �

�
�
�
�a� b	 � R� � R� 
 a � w � ��� b � �w for some � � R

�
�

and so dim ker A �w	 � � and �CR	 is satis�ed� Note also that

� �
�
�a� b	 � R� � R� 
 �a� b	 � b � �

�
�

and the fact that � imposes no restrictions on a has important consequences in micromagnetics
�see �DS� JK� T��	� For the full system of Maxwell�s equations we refer to �T���
�d	 �Higher Gradients�
Obviously all results remain valid if we replace the target space Rd by an abstract d�dimensional
vector space over R� In order to treat the case of second order derivatives� consider the smooth
maps v 
 TN � Em

� � where E
m
k stands for the space of symmetric k�linear maps from RN into Rm �

De�ne

A�v 
�

�
�

�xi
vjk �

�

�xk
vji

�
��i�j�k�N

�

We claim that�
v � C��TN �E

m
� 	 
 Av � ��

Z
TN

v dx � �

	
� fD�u 
 u � C��TN �R

m 	g�

Indeed� if Av � � then vjk �
�wj
�xk
� where wj � C����M m�N 	 has average zero� and is periodic

due to the periodicity of v and the fact that
R
TN

v dx � �� By the symmetry of vjk we have that

curl w � �� and we conclude that vjk �
��u

�xk�xj
� where u � C��TN �R

m 	�

More generally� in order to study the k�th order derivatives of functions u � C��TN �R
m	� we

set for v � C��TN �E
m
k 	

Akv 
�

�
�

�xi
vi�


ih j ih��


ik �

�

�xj
vi�


ih i ih��


ik

�
��h�k��� ��i�j�i��


 �ik�N

�

Here h � � and h � k � � correspond to the multiindices ji� � � � ik and i� � � � ik��j� respectively�
The constant rank condition is satis�ed since for w � SN��

ker A �w	 �
�
X � Em

k 
 wiXi�


ih j ih��


ik � wj Xi�


ih i ih��


ik � ��

� � h � k� � � i� j� i�� � � � � ik � Ng

� fX � Em
k 
 X � b� w � � �� w� b � Rmg �

and so dim ker A �w	 � m� Moreover�

�
v � C��TN �E

m
k 	 
 Av � ��

Z
TN

v dx � �

	
� fDku 
 u � C��TN �R

m 	g�

In fact� if Av � � then

vi�


ihjih��


ik �
�

�xj
wi�


ihih��


ik

for some smooth function wi�


ihih��


ik with average zero� The periodicity of v and the fact thatR
TN

v dx � � entail the periodicity of w� and the symmetries of v� together with the zero average
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condition we imposed on w� imply the symmetry of w� so that w � C��TN �E
m
k��	� Furthermore�

and once again using the symmetries of v�

Ak��w 
�

�
�

�xi
wi�


ih j ih��


ik�� �

�

�xj
wi�


ih i ih��


ik��

�
��h�k��� ��i�j�i��


 �ik�N

� ��

The argument may now be completed via induction�
�e	 �Linear Elasticity�
In the framework of linear elasticity one has to deal with the symmetrized gradient� v � e�u	 
�
�
� �ru � rTu	� of the displacement u 
 � � R� � where � � R� is an open� bounded set� For
� � p � �� one can use a local version of Korn�s inequality to reduce the study of functionals

u �� I�e�u		

to that of functionals

u �� J�ru	� where J��	 
� I

�
�

�
�� � �T 	

�
�

and proceed as in �a	� For p � � or p � �� where one must avoid direct manipulation of the
gradient� it is possible to adopt the present framework to treat the second order operator

"Av 
�

�
NX
i��

��vij
�xi�xk

�
��vik
�xi�xj

�
��vii
�xj�xk

�
��vjk
�xi�xi

�
��j�k�N

�

It turns out that "Av � � if and only if vij �
�
�uj
�xi

� �ui
�xj

�

� for some function u� In this setting

we have

"Av �

NX
i��

A�ij� ��v

�xi�xj
� "A �w	 
�

NX
i��

A�ij�wiwj �

�f	 �Pseudo Di�erential Operators�
The examples a	$e	 may be treated in a uni�ed way using pseudo di�erential operators �see also
�T�� T��	� For a	$d	� one considers �on TN or R

N 	

Bv 
� ���	����Av � RiA
�i�v

where Ri denotes the Riesz transform� For e	 we take

�����	 "Bv 
� ���	�� "Au �

�
NX
i��

RiRkvij �RiRjvik �RjRkvii � vjk

�
��j�k�N

�

The symbol of B is

b��	 
�
�i
j�j
A�i�

and the constant rank condition becomes rank b��	 � r for all � �� �� Similarly� for �����	 the
symbol takes values in Lin�E�� E�	 and is given by

"b��	M 
�M� � � � � �M� � �� � �	 trM �M�

One can easily check that that if j�j � � then

ker"b��	 �
�
a� � � � � a 
 a � RN

�
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which has dimension N � Hence "B satis�es the analogue of �CR	�

x�� Characterization of Young Measures

The result below is the generalization to the A�free setting of the theorem by Kinderlehrer
and Pedregal for the case of gradients �KP�� KP��� We roughly follow their strategy that relies
on the Hahn�Banach separation theorem and the representation of the �A�	quasiconvex envelope
�see ����	 and Proposition ���	� Tartar �T�� has earlier used the Hahn�Banach separation theorem
to characterize Young measures in the case without di�erential constraints �in a similar vein�
Berliocchi and Lasry �BL� used the Krein�Milman theorem	� Our presentation closely follows
Kristensen�s strategy for the case of gradients� We �rst establish the result for p � � and then
deduce the assertion for � � p � �� by a truncation process� Some of our arguments are similar to
those of Sychev �Sy� who� independently of our work� proposed an alternative approach to gradient
Young measures�

Theorem ���� Let � � p � ��� and let f�xgx�� be a weakly measurable family of probability
measures on Rd � There exists a p�equi�integrable sequence fvng in Lp���Rd 	 that generates the
Young measure � and satis�es Avn � � in � if and only if the following three conditions hold �
�i� there exists v � Lp���Rd 	 such that Av � � and

v�x	 � h�x� idi a� e� x � ��

�ii� Z
�

Z
Rd

jzjp d�x�z	 dx � ���

�iii� for a� e� x � � and all continuous functions g that satisfy jg�v	j � C��� jvjp	 for some C � �
and all v � Rd one has

h�x� gi � QA g�h�x� idi	�

Remark ���� �i	 From Lemma ���� it follows that if � � p � �� properties �i	��iii	 are still
necessary if the condition Avn � � is replaced by the weaker requirement Avn � � in W���p��	�
�ii	 In view of Theorem ��� �i	 it su�ces to assume that �x � � a� e� x � �� Condition �iii	 then
implies �x�R

d 	 � ��
�iii	 A similar statement is valid for operators with variable coe�cients� as long as rank A �x� w	
is constant for all w � SN�� and a� e� x � �� Such results are� however� more naturally discussed
in the context of pseudo di�erential constraints and will appear elsewhere� For the quadratic case
see �T���

Proof of Theorem ��� � Necessity� Necessity of �i	 follows immediatly from Theorem ��� �vi	� where
v is the weak limit in Lp of the sequence fvng� Property �ii	 is deduced from Theorem ��� �v	 with
f�z	 � jzjp� and �iii	 is a consequence of Proposition ��# �and Lemma ���� if � � p � ��	�

The proof of su�ciency for � � p � �� follows from the case p � � and Corollary ���#�
We proceed with the proof in the case of homogeneous A� ��Young measures�
Let P be the set of probability measures on Rd and de�ne

H 
� f� � P�Rd	 
h�� idi � �� there exists an equi�integrable sequence

fwjg � L��TN	 
 kerA generating the Young measure �g�

Set

E 
�

�
g � C�Rd	 
 lim

jzj��

g�z	

� � jzj
exists in R
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equipped with the norm

jjgjjE 
� sup
z�Rd

jg�z	j

� � jzj
�

This space is isometrically isomorphic to the space C�Rd 	 f�g	 � C�Sd	 of continuous functions
on the one�point compacti�cation of Rd � via the map

g ��
g��	

� � j � j
�

In particular� E is a separable Banach space� and its dual E� may be identi�ed with the space of
Radon measures on Rd 	 f�g� Thus if � � P is such that

Z
Rd

jzj d��z	 � ��

then � � E� since for all g � E����
Z
Rd

g d�

���� � jjgjjE

Z
Rd

�� � jzj	 d��z	�

Proposition ���� Let � � P�Rd	 with h�� idi � �� Then � � H if
�i� Z

Rd

jzj d��z	 � ���

�ii�
h�� gi � QA g��	

for all g � C�Rd 	 such that jg�z	j � C�� � jzj	�

Proof� We follow �KP�� KP�� and use the Hahn�Banach theorem to show that measures satisfying
�i	 and �ii	 cannot be separated from H �
We will prove that H is convex and relatively closed in P �
Claim �
 H is convex�
Fix �� � � H � � � ��� �	� Let fvjg� fwjg � L��TN 	
kerA be equi�integrable sequences generating

the A � ��Young measures � and �� respectively� By means of a molli�cation� we may take
vj � wj � C��TN	� Also� as Z

TN

vj dx�

Z
TN

wj dx� ��

without loss of generality we may assume thatZ
TN

vj dx �

Z
TN

wj dx � ��

Since vj � wj � � in W���p�TN	 for p �
N

N�� � and as for all � � C�� ���� �	� TN��	

jjA���wj � vj		jjW���p �

����
���� ���xiA�i��wj � vj	

����
����
W���p

� ��

we may �nd a sequence f�jg � C�� ���� �	� TN��	 such that �j � �������TN�� and

jjA��j�wj � vj		jjW���p � ��
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De�ne

uj 
� vj � T

�
�j�wj � vj	�

Z
TN

�j�wj � vj	 dy

�
�

Then uj � L��TN	 
 kerA�
R
TN

�j�wj � vj	 dy � �� and by Lemma ���� �iii	

uj � vj � �j�wj � vj	 � hj � hj � � in Lp�TN	� p �
N

N � �
�

In particular� fujg is equi�integrable and generates the Young measure f�xgx�TN given by

�x �



� if x� � ��� �	

� if x� � ��� �	�

Finally� let
uj�m�x	 
� uj�mx	� m � N�

Then uj�m � C��TN 	 
 kerA� by periodicity supj�m jjuj�mjjL��TN � � ��� and due to the equi�

integrability of fujg� for all � � C��R
N 	� g � E� we have

����	

lim
j��

lim
m��

Z
RN

��x	g�uj�m�x		 dx � lim
j��

Z
RN

��x	

�Z
TN

g�uj�y		 dy

�
dx

�

Z
RN

��x	 dx ��h�� gi� ��� �	h�� gi	�

Extracting a diagonal subsequence and taking g � j � j in ����	� by Theorem ��� �vi	 we conclude
that �� � ��� �	� is generated by an equi�integrable sequence in kerA and thus belongs to H �

Claim �
 H is relatively closed in P with respect to the weak�
 topology in E�� i�e�

H
E�


 P � H �

Let � � H
E�


 P � let ffigi�N � C��TN 	 be dense in L��TN 	� and let fgjgj�N � C�� �R
d 	 be

dense in C��R
d 	� We take f� � � and g��z	 � jzj� By de�nition of weak�
 topology in E� there

exist �k � H such that

jh� � �k� gjij �
�

�k
� j � �� � � � � k�

thus� by virtue of Theorem ��� �vi	 we may �nd wk � L��TN 	 
 kerA such that

����	

����h�� gji
Z
TN

fi dx�

Z
TN

figj�wk	 dx

���� � �

k
� � � i� j � k�

In particular� setting i � � � j we deduce that fwkg is bounded in L
��TN	 and so �a subsequence	

generates a Young measure �� From ����	 and the density properties of ffigi�N and fgjgj�N it
follows that � � �� and the choice i � � � j yieldsZ

TN

jwkj dx� h�� j � ji�

By Theorem ��� �vi	 we conclude that fwkg is equi�integable and so � � H � This proves Claim ��
Consider � � P such that h�� idi � � and � satis�es �i	� �ii	� We want to prove that � � H �

Suppose that � 
� H � By Claims � and �� � 
� co�H 	 with respect to the weak�
 topology of E��
Therefore� by the Hahn�Banach theorem and �ii	 there exist g � E� � � R� such that

����	 h�� gi � � for all � � H � QA g��	 � h�� gi � ��
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Given w � C��TN 	 
 kerA� with
R
TN

w dx � �� by Proposition ��# we have 
w � H and thus

Z
TN

g�w	 dx � h
w� gi � ��

which� by De�nition ��� implies that QA g��	 � �� contradicting ����	� We conclude that � � H �

Next we treat the case of inhomogeneous A���Young measures�
We de�ne

X 
�

�
� 
 �� P�Rd	 
 � is weak
 measurable�

Z
�

Z
Rd

jzjd�x�z	dx � ��� h�x� idi � � a� e� x � �

	
�

Y 
�
�
� � X 
 � is generated by some equi�integrable sequence fwng � L��TN 	 
 kerA

�
�

W 
� f� � X 
 h�x� gi � QA g��	 a� e� x � � and for all g � Eg �

and
E 
� C���E	 � C��� �Rd 	 f�g		�

Suppose that � satis�es �i	� �ii	 and �iii	 of Theorem ���� and set �x 
� ��v�x��x �the translation
of a measure was de�ned in Proposition ���	� Clearly � � W � and so if W � Y then � is generated
by an equi�integrable sequence fv � wjg where Awj � �� It thus su�ces to verify the following
assertion�

Proposition ����

����	 W � Y�

Proof� The strategy to prove ����	 is as follows


Step � 
 Y
E�


X � Y in the weak�
 topology�

Step � 
 It is possible to �nd a �good� subset D � W such that D
E�


 W � W �
Step � 
 D � Y�

The proof of Step � is entirely identical to that of Claim � in the proof of Proposition ���� For Step
�� we de�ne Gk to be the family of cubes of the form

�
�
k �y �Q	 
 y � ZN� �k �y �Q	 � �

�
� and we

set
Gk 
� 	U�Gk U �

Consider the sets of piecewise homogeneous Young measures

W k 
�
�
� � W 
 �jU is homogeneous if U � Gk� �j��nGk� � 
�

�
and let

D 
� 	k�N W k �

In order to show that

D
E�


 W � W �

let � � W and de�ne

�kx 
�

��
�

�

LN �U	

Z
U

�y dy if x � U � U � Gk �


� otherwise�
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It is clear that �k � W k � so it su�ces to show that

����	 h�k� fi � h�� fi for all f � E �

Fix f � E � and for each U � Gk denote by xU �
�
�
kZ
�N

the lower left corner of U so that

U � xU �
�
kQ� Let � be a modulus of uniform continuity of f � i�e�

��
	 
� sup
�
jjf�x� �	� f�y� �	jjE 
 x� y � �� jx� yj � 


�
�

We have����
Z
U

Z
Rd

f�x� z	 d�x�z	 dx�

Z
U

Z
Rd

f�x� z	 d�kx�z	 dx

����
�

����
Z
U

Z
Rd

f�xU � z	 d�x�z	 dx�

Z
U

Z
Rd

f�xU � z	 d�
k
x�z	 dx

����
� �

�
�

k

�
jjf jjE

�Z
U

Z
Rd

�� � jzj	 d�x�z	 dx�

Z
U

Z
Rd

�� � jzj	 d�kx�z	 dx

�

� ��

�
�

k

�
jjf jjE

Z
U

Z
Rd

�� � jzj	 d�x�z	dx�

Therefore�

jh�k � fi � h�� fij � ��

�
�

k

�
jjf jjE

Z
Gk

Z
Rd

�� � jzj	 d�x�z	dx� �jjf jjE

Z
�nGk

Z
Rd

�� � jzj	 d�x�z	dx�

and ����	 follows by letting k �� and using assertion �ii	 in Theorem ����
Next� we carry out Step � by showing that

W k � Y for all k � N�

Using a rescaling argument� we may assume that � � Q� Fix k � N and let Gk � fQig
m
i�� for

some m � N� Fix � � W k � with �jQi
� �i� By Corollary ���# for each i � f�� � � � �mg there exists

an equi�integrable sequence fwijg � L��TN 	 
 kerA generating �i� In particular� without loss of

generality we may assume that wij are smooth� and that we have

wij � � in L��Qi	� wij � � in W
��p
loc �R

N 	

for p � N
�N � �	� Hence� we may �nd smooth cut�o� functions �ij � C�� �Qi� ��� ��	 such that

�ij � �Qi
and

A

�
mX
i��

�ijw
i
j

�
�

NX
k��

mX
i��

A�k�wij
��ij
�xk

� � inW���p�RN 	�

Setting

uj 
� T

�
wj �

Z
TN

wj dy

�
� where wj 
�

mX
i��

�ij w
i
j �

then uj � kerA�
����uj �Pm

i�� �
i
j w

i
j

����
Lp���

� �� In particular fujg is equi�integrable and it gener�

ates �� so � � Y�
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Examples ���� �a	 �Gradients�
Using Remark ��� �iii	 and Theorem ���� we recover the characterization of W ��p gradient Young
measures as obtained by Kinderlehrer and Pedregal �KP�� KP�� �see Theorem ���	�
�b	 �Divergence Free Fields�
It follows from Remarks ��� �iv	� ��� �iv	� and by Theorem ���� that any weakly measurable family
of probability measures f�xgx�� satisfying

div�h�x� idi	 � ��

Z
�

Z
RN

jzjp d�x�z	dx � ���

is generated by a p�equi�integrable sequence of divergence�free �elds vn � Lp���RN 	 �see also �P�	�
�c	 �Micromagnetics�
In view of Example ���� c	� we may apply Theorem ��� to the system of Maxwell equations�
Moreover� if � � p � ��� if � is a A�p�Young measure and if we de�ne the projection � by

�x�U	 
� �x�U � R� 	� for any open subset U � R� �

then supp �x � S� for a� e� x � � if and only if � is generated by a p�equi�integrable sequence
f "mn� "hn	g � kerA such that j "mn�x	j � � for a� e� x � �� Indeed� assuming that �x is supported
on the unit sphere� let f�mn� hn	g � kerA be a p�equi�integrable generating sequence� with hn �

�run� un �W ��p
� ��	 �hn � �run�Hn with div Hn � curl Hn � � if � is not simply connected	�

Consider the projection

��x	 
�

����
���

x

jxj
if x �� �

x� if x � ��

where x� � S� is �xed� and de�ne "mn 
� �mn� Since dist�mn� S
�	 � � as n � �� we have that

"mn �mn � � in measure� and� due to the p�equi�integrability� we conclude that "mn �mn � � in
Lp� Let "hn 
� �r"un �"hn 
� �r"un �Hn if � is not simply connected	 where "un � W ��p

� ��	 and
div� "mn �r"un	 � �� We have

div�� "mn �mn	� �r"un �run		 � ��

therefore ��"un� un	� � in W���p� and thus "un�un � � in W ��p� We conclude that f� "mn� "hn	g
still generates ��
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