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Abstract

An example is given of a quasiconvex f : M?*3 — R such that the
transposed function f : M3*2 — R given by f (F) = f(F1) is not quasicon-
vex. For f one can take Sverdk’s quartic polynomial that is rank-one convex
but not quasiconvex. The proof is closely related to the observation that
the map v — v'v?v? is weakly continuous from L3(R?;R3) into distribu-
tions provided that A(Pv) = (0!, 930!, 0102, d30%, 01v3, Bav3) is compact
in W~ 13(R3; RY).



1 Introduction

Quasiconvexity is the natural notion of convexity for variational problems
for multiple integrals

I(u):/f(Du)d:Jc, u: QCR" - R"™.
Q

In his pioneering work Morrey ([Mo 52], [Mo 66])showed that weak lower
semicontinuity of I in Sobolev spaces is essentially equivalent to quasicon-
vexity of the integrand f (see [AF 84], [Ma 85] for technically nearly optimal
statements). An integral f : M™*™ — R is called quasiconvex if

/f(F+Ds0) > £(P),
Q

for all F € M™*™ and all Lipschitz functions ¢ : R™ — R" that are periodic
with cell @ = (0,1)". (For the equivalence with other definitions see e.g.
[Sv 92]).

Quasiconvexity is still poorly understood, partly because it is a non-
local condition. Therefore algebraic sufficient and necessary conditons were
introduced. A function f is rank-1 convex if it is convex on rank-1 lines in
M™*" and it is called polyconvex if it can be written as a convex function
of the minors. For n =1 or m = 1 all these notions coincide with ordinary
convexity. For n > 2, m > 2 one has the implications ([Mo 52], [Mo 66],
[Da 89])

f convex Eid f polyconvex % quasiconvex = f rank-1 convex.

Sversk [Sv 92] solved a long standing conjecture by showing that rank-1
convexity does not imply quasiconvexity if m > 3, n > 2. The case m = 2,
n > 2 is open. Sverdk’s example is reminiscent of a counterexample by
Tartar [Ta 79], pp. 185-186, in trilinear compensated compactness.

Rank-1 convexity and polyconvexity are invariant under transposition,
ie. if f: M™*™ —5 R does have one of these properties so does f : M™*™ —
R given by .

f(F) = f(F").
Alberti thus raised the question whether quasiconvexity is also invariant
under transposition. Using Sverak’s counterexample Kruzik [Kr 97] recently
showed that this is not the case if one allows f to take the value co. Here we
refine this analysis and show that Sverak’s (finite-valued) functions provide
already a counterexample.

Theorem 1 There exists a quasiconvez function f : M?*3 — R such that
f is not quasiconvez.



2 Proofs

Proof. We will choose f as in Sverdk’s counterexample. Let
L:{<r 0 t):r,s,tER}CM2X3
0 s t

g(F) = —rstfor F € L.

and let

Denote by 7 the orthogonal projection onto L and consider the functions
Fep(F) = g(nF) +e(|F]* +|F|") + k|F —nF|*, e >0, k > 0.

Sverdk showed that for small enough € > 0 (and all k) the function fg,k is
not quasiconvex. Indeed it suffices to note that the periodic map

sin 27!
P(x) = — sin 2722
sin2m(z! + 2?)

satisfies (Dv)” € L and
1
g(DYT) dz = —7 <9(0)=0.
(0,1)2

Sverak also showed that for any given ¢ > 0 the function fe k is rank-one
convex for large enough k > kq(e).

We claim that for each € > 0 there exists a k(e) such that for k > k(e)
the function f. ; is quasiconvex. First note that it suffices to show that

/ﬂMF+D@—ﬂMﬂ—DEMHD¢MZQ (1)
Q

for all ¢ € WH(T% R?) and all F € M**, since [, Dy = 0. One easily
checks that there exists ¢ > 0 such that

|F+ G| = [FI' = 4|FPPF : G > «(|F]’|G]” + |GY)).

Here F : G = ) F;;G;;. Indeed, by homogeneity we may assume [F| =1
(the case F' = 0 is trivial), and since the function F — |F|* is strictly
convex it suffices to consider the cases |G| — 0 or |G| — oco. The latter is
obvious and for the former it suffices to compute the Hessian. Since g is a
polynominal of degree three, expansion of g(7F + D) yields

fer(F + Dy) — fer(F) — Dfe 1 (F) Do
1
> 5D (nF)(rDyp, wDy) + g(rDep)
+e|Dop|* + ce(|F|*| Dyl + |De|*) + k| Do — mDy)|*. (2)



Let

ol 0 o3 0 w! w?
7TD<P:<0 v? ,U3>7 DSD—WD<P:< 2 3);
g(mDyp) = —h(v).

Ifw = 0 (i.e. Dy € L) then one easily deduces that v! = v!(z!), v = v?(z?),

v3 = v3(23) and thus fQ h(v) = 0 since fQ v = 0. To obtain an estimate for

fQ h(v) if w # 0 let
A(Dv) = (9av', B30, 0102, 302, 0103, a0?).

A short calculation shows that A(Dv) can be expressed as a linear combi-
nation of first derivatives of w. Hence

[A(D)|lw-12(q) < Cl|Dp — mDpl| 12 (-

Application of Lemma 2 below with p = ¢ = 2 yields

- ‘/Qh(v)dx

< C|D¢|74||Dp — nD|| 12

‘ /Q 9(rDyp) dz

ec C
< ZIDvllfs + 21D — w2

Similarly we obtain with a = (Fi1, Faa, (F351 + F32)/2)

‘ /Q D2g(xF)(r Dy, x D) dz| = ‘ /Q D2h(a) (v, v)

CIF|[|Dgl 2| De — wDep|| 2

IN

A

ec C
ZIFIZIIDsOII%a + gIIDsO — 7Del|7.

In combination with (2) this yields (1), provided that k > k(e) = % O



Lemma 2. Consider the function 4 : R® — R, h(y) = y1y2y3 and assume
that v € WH(IR3;R3) is periodic with cell @ = (0,1)% and Jov=0.
Let
A(Dv) = (821)1,831)1,811)2,831)2,811)3,(921)3)

and assume that p, g € (1, 00), % + % =1,a € R,

Then
‘/ h(v) dz
Q

‘ /Q D2h(a) (v, v) dz

< CW)llvlzan(g) 1ADV) lw-1a(g) (3)

< Clal [[vllLe@) ADV)lw-14¢q)-  (4)

Proof. We split v into a part Qu that is controlled by A(Dwv) and a part
Pv whose Fouriertransform is supported near the axes and then show that
[ h(Pv) =0. Let a1 € C*°(S?) with

Q

suppa; C {565’2:5%21—62},
ap=1 on {£€8%:¢ >1-0%/2}.

Let by = 1 — a1, extend a; and b; by homogeneity to R3\{0} and define
operators P; and ()1 that act on periodic functions with mean zero by

Py = F HarFv), Qivi =F (01 Fv),

where F denotes the discrete Fourier transform, i.e.

(Fuy)(k) = / vie TR T gy ke 73,

Q
Note that Fv;(0) = 0 since v; has mean zero. Now b; can be written as
£2 &3
b — 52 s3
where &1¢ &l¢
() = g ghi(€) and male) = 72 bi(6).

Standard results on Fourier multipliers (see [SW 71] Cor. 3.16, p. 263) yield

[Qroilly < Cg)ll(G201,0301) || 1,4,
[Prorllp +[[Quorll, < Cp)llvallp-

(Here we used the abbreviations |||, = || ||r (@) and [[-[[=1, = |- [w-1.4(@)
Analogously we define P, (Q2, P3 and (3 and we let
Pyvy Q1v1
Po=| Puvy |, Qu=| Qa2
Psvs Q3v3



Then P + Q = id and

1Qully C(@IIADV)][ 14, (5)
1Pvllp + 1Qullp C)lvllp- (6)

To prove (3) we expand h(v) = h(Pv+ Q). In view of (5) and (6) it suffices
to verify that

<
<

/ h(Pv) = 0. (7)
Q

By construction FP;v; is supported on the cone A; = {¢ € R® : &2 >
(1 —62)|€|%} and thus

/ h(Pv)de = Y F(Prvr) (kW) F(Pywg) () F (Pvs) (k).
Q k(Den;nz
B 4£(2) 41£3) =0
Now the assumptions k) € A; and k) + k3 4+ k() = 0 imply that
ROP <2 (1K1 + P)

267 (K2 + [KO]) .

(1= 8%k

IN

IN

Adding to this the two other inequalities obtained by cyclic permulation of
the indices we see that

(1= ) ST ROP > 462 37 (RO,
J J

Taking § < & we conclude that k() = k®) = k() = 0. This implies (7)

NG
since the v; have mean zero, so that F(FP;v;)(0) = 0. Thus (3) is proved and
the proof of (4) is similar. O

3 Trilinear compensated compactness

The following consequence of Lemma 2 is not used in the proof of Theorem
1, but provides a nice example in trilinear compensated compactness (see
[Ta 79], [Ta 98] for general expositions of compensated compactness). A
systematic study of trilinear quantities in the context of mxm hyperbolic
systems is undertaken in [JMR 95]. In this case the number m of dependent
variables and of constraints is the same, and one can easily check that for
m > 3 one can only expect good results for differential constraints with
variable coefficients that in addition satisfy suitable genericity conditions.
In the situation of Lemma 2 there are more differential constraints than
dependent variables and less sophisticated methods suffice.



Corollary 3. Suppose that

v = v in L (R3R3),

loc

A(Duvy) — A(Dv) in W, (R R?).

loc

Then
h(vy) = h(v) in D'(R3),
(R%), for i#j.

o o 3
vpvy, =00’ in L2,

Proof. Assume first that v = 0. In this case it suffices to show that

/h(vk)cp?’ dz — 0 VYo € D(R?). (8)
R3
Indeed if (8) holds for all ¢ € D(R?) it holds by density for all ¢ € C§(R?)
since {h(v)} is bounded in L,.. Now every function 1) € D(R?) can be

written as 1 = ¢® with ¢ € CJ(R?). To prove (8) we may assume after
scaling and translation, that supp ¢ C Q = (0,1)? and we let

U = / PV, Vg = QU — V.
Q
Then
o, —0 in L*(Q), o — 0,
A(Doy) — 0 in W L3(Q).

Lemma 2 implies that

|, o) do = /Q Bk da

1
= [ bl + Dh(or)o+ 5 D*he) () + i) do
Q
— 0, as k—oo.

This shows that
h(vg) =0 in D 9)

if v = 0. Using (4) one shows similarly that

vivl =0 in LY? i i #j (10)

loc

3

One first obtains convergence in D but the L;

convergence in L?o/ 3 .
Finally if v # 0 let wy, = v, — v. Expanding h(vy) = h(v + wy) and using
(9) and (10) for vy we obtain the desired assertion. 0

bound on vy implies weak
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