Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Quasiconvexity is not invariant under transposition

by

Stefan Müller

Preprint-Nr.: 19 1998

Quasiconvexity is not invariant under transposition

Stefan Müller Max Planck Institute for Mathematics in the Sciences Inselstr. 22-26, 04103 Leipzig, Germany

Abstract

An example is given of a quasiconvex $f:M^{2\times 3}\to\mathbb{R}$ such that the transposed function $\tilde{f}:M^{3\times 2}\to\mathbb{R}$ given by $\tilde{f}(F)=f(F^T)$ is not quasiconvex. For \tilde{f} one can take Šverák's quartic polynomial that is rank-one convex but not quasiconvex. The proof is closely related to the observation that the map $v\mapsto v^1v^2v^3$ is weakly continuous from $L^3(\mathbb{R}^3;\mathbb{R}^3)$ into distributions provided that $A(Pv)=(\partial_2v^1,\partial_3v^1,\partial_1v^2,\partial_3v^2,\partial_1v^3,\partial_2v^3)$ is compact in $W^{-1,3}(\mathbb{R}^3;\mathbb{R}^6)$.

1 Introduction

Quasiconvexity is the natural notion of convexity for variational problems for multiple integrals

$$I(u) = \int_{\Omega} f(Du) dx, \quad u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m.$$

In his pioneering work Morrey ([Mo 52], [Mo 66])showed that weak lower semicontinuity of I in Sobolev spaces is essentially equivalent to quasiconvexity of the integrand f (see [AF 84], [Ma 85] for technically nearly optimal statements). An integral $f: M^{m \times n} \to \mathbb{R}$ is called quasiconvex if

$$\int\limits_{O} f(F + D\varphi) \ge f(F),$$

for all $F \in M^{m \times n}$ and all Lipschitz functions $\varphi : \mathbb{R}^m \to \mathbb{R}^n$ that are periodic with cell $Q = (0, 1)^n$. (For the equivalence with other definitions see e.g. [Sv 92]).

Quasiconvexity is still poorly understood, partly because it is a non-local condition. Therefore algebraic sufficient and necessary conditions were introduced. A function f is rank-1 convex if it is convex on rank-1 lines in $M^{m\times n}$, and it is called polyconvex if it can be written as a convex function of the minors. For n=1 or m=1 all these notions coincide with ordinary convexity. For $n\geq 2$, $m\geq 2$ one has the implications ([Mo 52], [Mo 66], [Da 89])

 $f \text{ convex} \stackrel{\not\Leftarrow}{\Rightarrow} f \text{ polyconvex} \stackrel{\not\Leftarrow}{\Rightarrow} \text{ quasiconvex} \Rightarrow f \text{ rank-1 convex}.$

Šverák [Sv 92] solved a long standing conjecture by showing that rank-1 convexity does not imply quasiconvexity if $m \geq 3$, $n \geq 2$. The case m = 2, $n \geq 2$ is open. Šverák's example is reminiscent of a counterexample by Tartar [Ta 79], pp. 185–186, in trilinear compensated compactness.

Rank-1 convexity and polyconvexity are invariant under transposition, i.e. if $f: M^{m \times n} \to \mathbb{R}$ does have one of these properties so does $\tilde{f}: M^{n \times m} \to \mathbb{R}$ given by

$$\tilde{f}(F) = f(F^T).$$

Alberti thus raised the question whether quasiconvexity is also invariant under transposition. Using Šverak's counterexample Kružik [Kr 97] recently showed that this is not the case if one allows f to take the value ∞ . Here we refine this analysis and show that Šverak's (finite-valued) functions provide already a counterexample.

Theorem 1 There exists a quasiconvex function $f: M^{2\times 3} \to \mathbb{R}$ such that \tilde{f} is not quasiconvex.

2 Proofs

Proof. We will choose \tilde{f} as in Šverák's counterexample. Let

$$L = \left\{ \left(\begin{array}{cc} r & 0 & t \\ 0 & s & t \end{array} \right) : r, s, t \in \mathbb{R} \right\} \subset M^{2 \times 3}$$

and let

$$g(F) = -rst \text{ for } F \in L.$$

Denote by π the orthogonal projection onto L and consider the functions

$$f_{\varepsilon,k}(F) = g(\pi F) + \varepsilon(|F|^2 + |F|^4) + k|F - \pi F|^2, \ \varepsilon > 0, \ k > 0.$$

Šverák showed that for small enough $\varepsilon > 0$ (and all k) the function $\tilde{f}_{\varepsilon,k}$ is not quasiconvex. Indeed it suffices to note that the periodic map

$$\psi(x) = \frac{1}{2\pi} \begin{pmatrix} \sin 2\pi x^1 \\ \sin 2\pi x^2 \\ \sin 2\pi (x^1 + x^2) \end{pmatrix}$$

satisfies $(D\psi)^T \in L$ and

$$\int_{(0,1)^2} g(D\psi^T) \, dx = -\frac{1}{4} < g(0) = 0.$$

Šverák also showed that for any given $\varepsilon > 0$ the function $f_{\varepsilon,k}$ is rank-one convex for large enough $k > k_0(\varepsilon)$.

We claim that for each $\varepsilon > 0$ there exists a $k(\varepsilon)$ such that for $k \geq k(\varepsilon)$ the function $f_{\varepsilon,k}$ is quasiconvex. First note that it suffices to show that

$$\int_{O} f_{\varepsilon,k}(F + D\varphi) - f_{\varepsilon,k}(F) - Df_{\varepsilon,k}(F)D\varphi \, dx \ge 0, \tag{1}$$

for all $\varphi \in W^{1,\infty}(T^3;\mathbb{R}^2)$ and all $F \in M^{2\times 3}$, since $\int_Q D\varphi = 0$. One easily checks that there exists c > 0 such that

$$|F+G|^4 - |F|^4 - 4|F|^2F : G \ge c(|F|^2|G|^2 + |G^4|).$$

Here $F: G = \sum F_{ij}G_{ij}$. Indeed, by homogeneity we may assume |F| = 1 (the case F = 0 is trivial), and since the function $F \mapsto |F|^4$ is strictly convex it suffices to consider the cases $|G| \to 0$ or $|G| \to \infty$. The latter is obvious and for the former it suffices to compute the Hessian. Since g is a polynominal of degree three, expansion of $g(\pi F + \pi D\varphi)$ yields

$$f_{\varepsilon,k}(F + D_{\varphi}) - f_{\varepsilon,k}(F) - Df_{\varepsilon,k}(F)D\varphi$$

$$\geq \frac{1}{2}D^{2}g(\pi F)(\pi D\varphi, \pi D\varphi) + g(\pi D\varphi)$$

$$+ \varepsilon |D\varphi|^{2} + c\varepsilon(|F|^{2}|D\varphi|^{2} + |D\varphi|^{4}) + k|D\varphi - \pi D\varphi|^{2}. \tag{2}$$

Let

$$v^1 = \partial_1 \varphi^1, \quad v^2 = \partial_2 \varphi^2, \quad v^3 = \frac{1}{2} \partial_3 (\varphi^1 + \varphi^2),$$

 $w^1 = \partial_2 \varphi^1, \quad w^2 = \partial_1 \varphi^2, \quad w^3 = \frac{1}{2} \partial_3 (\varphi^1 - \varphi^2)$

and $h(v) = v^1 v^2 v^3$. Then

$$\begin{split} \pi D\varphi &= \left(\begin{array}{cc} v^1 & 0 & v^3 \\ 0 & v^2 & v^3 \end{array} \right), \quad D\varphi - \pi D\varphi = \left(\begin{array}{cc} 0 & w^1 & w^3 \\ w^2 & 0 & -w^3 \end{array} \right), \\ g(\pi D\varphi) &= -h(v). \end{split}$$

If w=0 (i.e. $D\varphi\in L$) then one easily deduces that $v^1=v^1(x^1), \ v^2=v^2(x^2), \ v^3=v^3(x^3)$ and thus $\int_Q h(v)=0$ since $\int_Q v=0$. To obtain an estimate for $\int_Q h(v)$ if $w\neq 0$ let

$$A(Dv) = (\partial_2 v^1, \partial_3 v^1, \partial_1 v^2, \partial_3 v^2, \partial_1 v^3, \partial_2 v^3).$$

A short calculation shows that A(Dv) can be expressed as a linear combination of first derivatives of w. Hence

$$||A(Dv)||_{W^{-1,2}(Q)} \le C||D\varphi - \pi D\varphi||_{L^2(Q)}.$$

Application of Lemma 2 below with p = q = 2 yields

$$\left| \int_{Q} g(\pi D\varphi) \, dx \right| = \left| \int_{Q} h(v) \, dx \right|$$

$$\leq C \|D\varphi\|_{L^{4}}^{2} \|D\varphi - \pi D\varphi\|_{L^{2}}$$

$$\leq \frac{\varepsilon c}{4} \|D\varphi\|_{L^{4}}^{4} + \frac{C}{\varepsilon} \|D\varphi - \pi D\varphi\|_{L^{2}}^{2}.$$

Similarly we obtain with $a = (F_{11}, F_{22}, (F_{31} + F_{32})/2)$

$$\begin{split} \left| \int_{Q} D^{2}g(\pi F)(\pi D\varphi, \pi D\varphi) \, dx \right| &= \left| \int_{Q} D^{2}h(a)(v, v) \right| \\ &\leq C|F| \|D\varphi\|_{L^{2}} \|D\varphi - \pi D\varphi\|_{L^{2}} \\ &\leq \frac{\varepsilon c}{4} |F|^{2} \|D\varphi\|_{L^{2}}^{2} + \frac{C}{\varepsilon} \|D\varphi - \pi D\varphi\|_{L^{2}}^{2}. \end{split}$$

In combination with (2) this yields (1), provided that $k \geq k(\varepsilon) = \frac{2C}{\varepsilon}$.

Lemma 2. Consider the function $h: \mathbb{R}^3 \to \mathbb{R}$, $h(y) = y_1 y_2 y_3$ and assume that $v \in W^{1,\infty}(\mathbb{R}^3; \mathbb{R}^3)$ is periodic with cell $Q = (0,1)^3$ and $\int_Q v = 0$. Let

$$A(Dv) = (\partial_2 v^1, \partial_3 v^1, \partial_1 v^2, \partial_3 v^2, \partial_1 v^3, \partial_2 v^3)$$

and assume that $p, q \in (1, \infty), \frac{1}{p} + \frac{1}{q} = 1, a \in \mathbb{R}^3$. Then

$$\left| \int_{Q} h(v) \, dx \right| \leq C(p) \|v\|_{L^{2p}(Q)}^{2} \|A(Dv)\|_{W^{-1,q}(Q)} \tag{3}$$

$$\left| \int_{Q} D^{2}h(a)(v,v) \, dx \right| \leq C(p)|a| \, \|v\|_{L^{p}(Q)} \, \|A(Dv)\|_{W^{-1,q}(Q)}. \tag{4}$$

Proof. We split v into a part Qv that is controlled by A(Dv) and a part Pv whose Fouriertransform is supported near the axes and then show that $\int_Q h(Pv) = 0$. Let $a_1 \in C^{\infty}(S^2)$ with

$$\begin{aligned} & \text{supp } a_1 & \subset & \left\{ \xi \in S^2 : \xi_1^2 \ge 1 - \delta^2 \right\}, \\ & a_1 = 1 & \text{on} & \left\{ \xi \in S^2 : \xi_1^2 \ge 1 - \delta^2 / 2 \right\}. \end{aligned}$$

Let $b_1 = 1 - a_1$, extend a_1 and b_1 by homogeneity to $\mathbb{R}^3 \setminus \{0\}$ and define operators P_1 and Q_1 that act on periodic functions with mean zero by

$$P_1v_1 = \mathcal{F}^{-1}(a_1\mathcal{F}v_1), \quad Q_1v_1 = \mathcal{F}^{-1}(b_1\mathcal{F}v_1),$$

where \mathcal{F} denotes the discrete Fourier transform, i.e.

$$(\mathcal{F}v_1)(k) = \int_{\mathcal{O}} v_1 e^{-2\pi i k \cdot x} \, dx, \ k \in \mathbb{Z}^3.$$

Note that $\mathcal{F}v_1(0) = 0$ since v_1 has mean zero. Now b_1 can be written as

$$b_1(\xi) = \frac{\xi_2}{|\xi|} m_2(\xi) + \frac{\xi_3}{|\xi|} m_3(\xi),$$

where

$$m_2(\xi) = \frac{\xi_2|\xi|}{\xi_2^2 + \xi_3^2} b_1(\xi)$$
 and $m_3(\xi) = \frac{\xi_3|\xi|}{\xi_2^2 + \xi_3^2} b_1(\xi)$.

Standard results on Fourier multipliers (see [SW 71] Cor. 3.16, p. 263) yield

$$||Q_1v_1||_q \leq C(q)||(\partial_2v_1,\partial_3v_1)||_{-1,q},$$

$$||P_1v_1||_p + ||Q_1v_1||_p \leq C(p)||v_1||_p.$$

(Here we used the abbreviations $\|\cdot\|_p = \|\cdot\|_{L^p(Q)}$ and $\|\cdot\|_{-1,q} = \|\cdot\|_{W^{-1,q}(Q)}$ Analogously we define P_2, Q_2, P_3 and Q_3 and we let

$$Pv = \begin{pmatrix} P_1v_1 \\ P_2v_2 \\ P_3v_3 \end{pmatrix}, \quad Qv = \begin{pmatrix} Q_1v_1 \\ Q_2v_2 \\ Q_3v_3 \end{pmatrix}.$$

Then P + Q = id and

$$||Qv||_q \le C(q)||A(Dv)||_{-1,q},$$
 (5)

$$||Pv||_p + ||Qv||_p \le C(p)||v||_p. \tag{6}$$

To prove (3) we expand h(v) = h(Pv + Qv). In view of (5) and (6) it suffices to verify that

$$\int_{Q} h(Pv) = 0. \tag{7}$$

By construction $\mathcal{F}P_iv_i$ is supported on the cone $\Lambda_i = \{\xi \in \mathbb{R}^3 : \xi_i^2 \ge (1 - \delta^2)|\xi|^2\}$ and thus

$$\int\limits_{Q} h(Pv) dx = \sum_{\substack{k^{(i)} \in \Lambda_{i} \cap \mathbf{Z}^{3} \\ k^{(1)} + k^{(2)} + k^{(3)} = 0}} \mathcal{F}(P_{1}v_{1})(k^{(1)}) \mathcal{F}(P_{2}v_{2})(k^{(2)}) \mathcal{F}(P_{3}v_{3})(k^{(3)}).$$

Now the assumptions $k^{(i)} \in \Lambda_i$ and $k^{(1)} + k^{(2)} + k^{(3)} = 0$ imply that

$$(1 - \delta^2)|k^{(1)}|^2 \le |k_1^{(1)}|^2 \le 2\left(|k_1^{(2)}|^2 + |k_1^{(3)}|^2\right)$$

$$\le 2\delta^2\left(|k^{(2)}|^2 + |k^{(3)}|^2\right).$$

Adding to this the two other inequalities obtained by cyclic permulation of the indices we see that

$$(1 - \delta^2) \sum_{j} |k^{(j)}|^2 \ge 4\delta^2 \sum_{j} |k^{(j)}|^2.$$

Taking $\delta < \frac{1}{\sqrt{5}}$ we conclude that $k^{(1)} = k^{(2)} = k^{(3)} = 0$. This implies (7) since the v_i have mean zero, so that $\mathcal{F}(P_i v_i)(0) = 0$. Thus (3) is proved and the proof of (4) is similar.

3 Trilinear compensated compactness

The following consequence of Lemma 2 is not used in the proof of Theorem 1, but provides a nice example in trilinear compensated compactness (see [Ta 79], [Ta 98] for general expositions of compensated compactness). A systematic study of trilinear quantities in the context of $m \times m$ hyperbolic systems is undertaken in [JMR 95]. In this case the number m of dependent variables and of constraints is the same, and one can easily check that for $m \geq 3$ one can only expect good results for differential constraints with variable coefficients that in addition satisfy suitable genericity conditions. In the situation of Lemma 2 there are more differential constraints than dependent variables and less sophisticated methods suffice.

Corollary 3. Suppose that

$$v_k \rightharpoonup v$$
 in $L^3_{loc}(\mathbb{R}^3; \mathbb{R}^3)$, $A(Dv_k) \to A(Dv)$ in $W^{-1,3}_{loc}(\mathbb{R}^3; \mathbb{R}^3)$.

Then

$$h(v_k) \rightharpoonup h(v)$$
 in $\mathcal{D}'(\mathbb{R}^3)$,
 $v_k^i v_k^j \rightharpoonup v^i v^j$ in $L_{loc}^{\frac{3}{2}}(\mathbb{R}^3)$, for $i \neq j$.

Proof. Assume first that v = 0. In this case it suffices to show that

$$\int_{\mathbb{R}^3} h(v_k) \varphi^3 \, dx \to 0 \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^3). \tag{8}$$

Indeed if (8) holds for all $\varphi \in \mathcal{D}(\mathbb{R}^3)$ it holds by density for all $\varphi \in C_0^0(\mathbb{R}^3)$ since $\{h(v_k)\}$ is bounded in L^1_{loc} . Now every function $\psi \in \mathcal{D}(\mathbb{R}^3)$ can be written as $\psi = \varphi^3$ with $\varphi \in C_0^0(\mathbb{R}^3)$. To prove (8) we may assume after scaling and translation, that supp $\varphi \subset Q = (0,1)^3$ and we let

$$ar{v}_k = \int_Q arphi v_k, \ \ ilde{v}_k = arphi v_k - ar{v}_k.$$

Then

$$\tilde{v}_k \to 0$$
 in $L^3(Q)$, $\bar{v}_k \to 0$, $A(D\tilde{v}_k) \to 0$ in $W^{-1,3}(Q)$.

Lemma 2 implies that

$$\int_{\mathbb{R}^3} h(v_k) \varphi^3 dx = \int_Q h(\varphi v_k) dx$$

$$= \int_Q h(\bar{v}_k) + Dh(\bar{v}_k) \tilde{v}_k + \frac{1}{2} D^2 h(\bar{v}_k) (\tilde{v}_h, \tilde{v}_h) + h(\tilde{v}_k) dx$$

$$\to 0, \text{ as } k \to \infty.$$

This shows that

$$h(v_k) \rightharpoonup 0 \quad \text{in} \quad \mathcal{D}'$$
 (9)

if v = 0. Using (4) one shows similarly that

$$v_k^i v_k^j \rightharpoonup 0 \quad \text{in} \quad L_{loc}^{3/2} \quad \text{if} \quad i \neq j.$$
 (10)

One first obtains convergence in \mathcal{D} but the L_{loc}^3 bound on v_k implies weak convergence in $L_{loc}^{3/2}$.

Finally if $v \neq 0$ let $w_k = v_k - v$. Expanding $h(v_k) = h(v + w_k)$ and using (9) and (10) for v_k we obtain the desired assertion.

References

- [AF 84] E. Acerbi and E. Fusco, Semicontinuity problems in the calculus of variations, *Arch. Rat. Mech. Anal.* **86** (1984), 125-145.
- [JMR 95] J. L. Joly, G. Métivier, J. Rauch, Trilinear compensated compactness and non linear geometric optics, *Ann. Math.* **142** (1995), 121-169.
- [Da 89] B. Dacorogna, Direct methods in the calculus of variations, Springer, 1989.
- [Kr 97] M. Kružík, On the composition of quasiconvex functions and the transposition, preprint 1997.
- [Mo 52] C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals, *Pacific J. Math.* **2** (1952), 25-53.
- [Mo 66] C.B. Morrey, Multiple integrals in the calculus of variations, Springer, 1966.
- [Ma 85] P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals, manuscripta math. 51 (1985), 1-28.
- [Sv 92] V. Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh 120 A (1992), 185-189.
- [Ta 79] L. Tartar, Compensated compactness and partial differential equations, in: *Nonlinear Analysis and Mechanics: Heriot-Watt Symposium* Vol. IV, (R. Knops, ed.), Pitman, 1979, 136-212.
- [Ta 98] L. Tartar, Homogenization, compensated compactness and H-measures, CBMS-NSF conference, Santa Cruz, June 1993, lecture notes in preparation.
- [SW 71] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton UP, 1971.