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1 Introduction

We prove maximal regularity for vector valued solutions u : @ — IR™ of the nonlinear elliptic
system

(1.1) —divo(z,u,Du) = u in D'(Q),
u=0 on 0,

and we establish uniqueness of solutions under a few additional assumptions. Here {2 is an open set
in IR"™ and p is a Radon measure on € with finite mass. The prototypical problem is the n-Laplace
system
—div(|Du|"2Du) = u

which together with variants with measurable coefficients plays an important role in quasiconformal
geometry. Our results on maximal regularity (Du € L™ (2)) and on existence of solutions in IR"
seem to be new even for that system (even for the case of a single equation). We state the
general assumptions on o in a form that is suitable for both bounded and unbounded sets Q0 and
which allows one to treat nonhomogeneous boundary value problems by considering &(z,u, F) =
o(z,u + (z), F + Diu(x)) (see Section 6 for details). We assume that o satisfies the following
hypotheses:

(HO) (continuity) o: Q x R™ x IM™*" — IM™*" is a Carathéodory function, i.e., x — o(z,u,p)
is measurable for every (u,p) and (u,p) — o(z,u,p) is continuous for almost every z € Q.

(H1) (monotonicity) For all z € Q, u € R™ and all F, G € IM™*" there holds

(o(z,u, F) —o(z,u,q)) : (F-G)>0.

(H2) (coercivity and growth) There exist constants v3 > 0, 72 > 0 and functions 3 € L'(Q),
74 € L™ ("=1(Q) such that for all z € Q, u € R™ and F € IM™*"

o(x,u, F) : F
|o(z,u, F)

N|E" = y3(x),

>
< plF"T (@),

(H3) (structure condition) There exist constants 1 < s < n, 75 > 0 and a function 5 € L'(f)
such that for all x € Q, u € R™ and F € IM™*" the inequality
o(z,u,F) : MF > —v5|F|° — ()

holds for all matrices M € IM™*™ of the form M = Id —a ® a with |a| < 1.
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While (HO), (H1) and (H2) are natural, (H3), which has been in common use since the work of
Landes [La], is little understood. It guarantees a lower bound when the system is tested with
radially symmetric truncations of u in the target. It is in particular satisfied for diagonal systems
and certain perturbations thereof.

The proofs of some of our results require that Q¢ = IR™ \ Q is a domain of type A. Here we
say that a set E has property A if there exists a constant K > 0 such that for all x € E and
0 < r < diam(F) the inequality |Q(z,r) N E| > Kr" holds.

Our main results on existence, regularity and uniqueness are the following;:

Theorem 1.1 (Existence and regularity) LetQ be a bounded, open set such that Q¢ has prop-
erty A. Suppose that the hypotheses (HO)-(H3) and one of the following conditions are satisfied:

(i) F — o(z,u,F) is a C* function.

(ii) There exists a function W: Q x R™ x IM™*" — R such that o(z,u, F) = %—V;(m,u,F) and
F = W(z,u,F) is convex and C'.

(#i) o is strictly monotone, i.e., o is monotone and (o(z,u, F)—o(z,u,G)) : (F'—G) = 0 implies
F=aG.

Let 11 be an R™ -valued Radon measure on 0 with finite mass. Then the system (1.1), (1.2) has
a solution v € BMO(Q2;IR™) N Wol’q(ﬂ;]Rm) for all ¢ < n, and the solution satisfies the a priori
estimate

1

1 1
(1.3) lullemo(@immy < Ca(llulli™ + 75

Q% + [l + bl =T+ Pl )

Moreover, Du belongs to the weak Lebesgue space L™ (Q; IM™*™) and

1

1
14)  [IDullpn e @mamxny < Cr(llpllie” +75

QA + bl + 1l 7 + 6l )

Here the constant Cy depends only on vy, v2, K, and n. The constant Cy depends in addition on
1€2].

We prove Theorem 1.1 at the end of Section 3.

Remarks. 1) A local version of the BMO estimate was proven in [DHM], and (1.3) follows by
adapting the methods used in the interior situation to the boundary situation. We give the proof
in Section 2 for the convenience of the reader and in order to derive the Caccioppoli estimates in
Lemma 2.2 that are important ingredients in the proof of (1.4).

2) It is often convenient to extend u by zero to IR". In particular ||u|lsmo(o;mr=) refers to the
norm of that extension. If we use the seminorm [u]gmo(or=) in (1.3) instead of the the norm
l|lullBmO(Q;m™), then the constant C does not depend on |€].

3) Clearly (1.4) implies (1.3). However, we use the BMO estimate for « in the proof of (1.4) which
we give in Section 3.

4) The example of the nonlinear Green’s function G, (z) = ¢(n)In(|z|) for the n-Laplace equation
div(|DG,|"2DG,,) = &y shows that our results are optimal.

5) Independently and with different techniques involving a nonlinear Hodge decomposition it was
shown in [GIS] that the nonhomogeneous n-harmonic equation div(|Du|*~?Du) = u has a unique

solution u € WO1 ™) for all Radon measures . A function u belongs to the grand Sobolev space



W™ if u € Wh(Q) for all 1 < s < n and if

sup ((—:/Q|Du|”5dac)1/(n_s) < 00.

0<e<n—1

These results can be extended to the case of systems and more general operators of the form
A(z,Du). Note that u € Wol’n) () does not imply Du € L™>(Q;IR"), while, for Lipschitz
domains Q, u € Wo''(Q) and Du € L™ (Q;R") imply u € Wo™ ().

6) A BMO estimate for uniformly elliptic n-Laplace type equations has independently been proved
in [FF]. Moreover, it is shown in [FF] that these equations admit a solution in VMO, provided the
measure p has no atoms (see also our Corollary 3.6 for the corresponding statement for systems).

Theorem 1.2 (Uniqueness) Let ) be a bounded, open set in R™ such that Q° is of type A.
Suppose that the hypotheses (HO0), (H2) and (H3) are satisfied and that o is independent of u and
uniformly monotone, i.e., there exists a constant vo > 0 such that

(o(z,F)—o(z,@)) : (F —G) > ywl|F—G|"

for all F, G € M™ " and all z € Q. Assume that u,v € WHH(Q;R™) satisfy u — v €
W()Ll(Q;IRm), Du, Dv € L™ (Q; IM™*"™) and

(1.5) divo(z, Du) = divo(xz, Dv)  in D'(Q).

Then u=v in €.

Remark. The regularity assumption on one of the solutions can be relaxed: it suffices that Dv €
L"¢(Q) for an £ > 0 which depends only on Q and 70,71, 73 (see Theorem 4.3).

The problem € = IR™ is of particular interest in connection with the theory of quasiconformal
maps. We prove the following theorem:

Theorem 1.3 (Solutions in IR™) Let 1 be an IR -valued Radon measure on @ = R"™ of finite
mass. Suppose that the hypotheses (HO)-(H3) and one of the conditions (i)—(iii) of Theorem 1.1
are satisfied and that o does not depend on w. If in addition vs = 0, then the system

(1.6) —divo(x,Du) =p in D'(R")

has a distributional solution u which satisfies the a priori estimate
1 n
[ulsnome) + [Dullzncmranamxny < Ca(llll X" + sl + a7 4 16 1 o)) -

For existence results on general unbounded domains see Theorem 5.1.

The rest of this paper is organized as follows: In Section 2 we derive the BMO-estimate through
Caccioppoli inequalities and a blow up argument (inspired by L. Simon’s proof of C%% estimates
for the Poisson equation in [Sil] and [Si2]).

In Section 3 we derive the weak-L" estimate for the gradient of solutions. We first use a Caccioppoli
inequality and the BMO-estimate to derive a reverse Holder inequality for ¢ < n. A careful analysis
of the distribution function of Du then yields the desired estimate. Roughly speaking, we exploit
the fact that the solution of the free system (u = 0) has slight additional regularity properties
while the influence of u on the solution is locally controlled by the maximal function of y up to a
solution of the free system.



In Section 4 we prove uniqueness under a few additional assumptions. The difficulty is that
although the operator is uniformly monotone, the solution is not an admissible test function. The
key idea is to use Lipschitz test functions that agree with u on a large set.

We conclude by existence results on unbounded domains (in Section 5) and a discussion of the
nonhomogeneous Dirichlet problem and local regularity in Section 6.

2 A BMO estimate for the solution u

A function wu is said to belong to BMO(IR"™), the space of functions of bounded mean oscillation,
if w e L™(IR") and

1/n
[u]BMomr) = ( sup Supr*”/ lu — (u)a,r|"d:c) < 00,
aclR™ r>0 Q((lﬂ“)

where Q(a,r) is the cube {z € R" : |z; —a;| < § fori = 1,...,n} and (u),,, denotes the mean

value of u on Q(a,r). In the following we will always assume that all functions under consideration
are extended by zero to IR". Equipped with the norm

llullmorn) = ||ullL~(rm) + [©]BMOIRR)

BMO(IR") is a Banach space. If u = 0 on Q¢ and a € Q¢ then the mean value of u on Q(a,r) is
estimated by the mean oscillation:

(2.1) |(W)a.r[1Q(a, ) N Q] S/Q( )Iu—(U)a,rldéES Q(a, 7)[[u]smo(mn)-

In particular, if Q¢ has property A and 0 < r < diam(Q¢), then

(2.2) |(w)a,r| < C(K)[u]momrn),

where K is the constant that appears in the definition of property A, and

(2.3) (r /Q(“) |u|"dm)1/n < C(n, ) (r /Q(“) u — (u)a7r|"d$)1/n.

It is also convenient to define the following local version of the BMO norm:

1 1/n
[u]lsmo(@) = sup —n/ lu — (w)q,r|"dz )
Q(a,r)CQ (7" Qa,r) )

The following important property of functions of bounded mean oscillation was proved in the
fundamental paper of John and Nirenberg [JN].

Lemma 2.1 Assume that w € BMO(IR™). Then there exist constants b, B > 0 such that
(2.4) {z € Qa,7) : [u(@) = (W] > o}| < Be "/ llmo(@E@)|(q, r)]

for all cubes Q(a,r).



As a consequence (or directly from the definition of the BMO-norm) we obtain the following
inequality: if Q(a1,71) C Q(az,r2) then

.
(2.5) (W) ay,ry — (W] < (b, B)(1 +1n gnulBMqQ(am»-

In the next lemma we establish Caccioppoli estimates for solutions u € D" (Q;IR"™) of system
(1.1) with smooth right hand side f. Here, D*"(Q;IR") denotes the closure of C§°(£;IR"™) in the
seminorm ||Dul|p»(q). For the moment we allow Q to be unbounded. These estimates are crucial
in the proof of the BMO—-estimate for .

Lemma 2.2 Letu € DV (Q;R™) be a solution of system (1.1) with f € L*(Q;IR™) NC>=(Q; R™)
in place of p. Let g = || + |ya|™ =Y + 45| Dul® + | 76|, and 0 < p < r. There exists a constant
Cs, which depends only on 1, v2 and n, such that the following inequalities hold:

i) (Interior estimate) We have for all cubes Q(a,r) CQ, all B € R™ and all a >0

C
(2.6) / |Du|"dx < T _3p)n / lu — B|"dz + Cs / (alf| + g)dz.
{lu=f|<a} Q(a,m\Q(a.p) Q(a,r)
NQ(a,p)

ii) (Boundary estimate) We have for all cubes Q(a,r) and all a > 0

(2.7) / |Du|"dx < T ?2)” / lu|"dz + Cs / (alf| + g)dz.
{Jul<a} Q(a,m\Q(a.p) Q(ar)
NQ(a,p)

i1) (Estimate on annuli) We have for all cubes Q(a,r) such that Q(a,7)\Q(a, g) CQ, all 3 € R™
and all o > 0

(2.8) / |Du|"dz < % / |lu — B|"dx + Cs / (a|f| + g)dz.

{lu—B|<a} Q(a,m)\Q(a,§) Q(a,r)
NQ(a,5)\Q(a, %)

w) (Global estimates) Assume in addition that Du € L*(Q;IM™ ™) or v5 = 0. Then we have for
all >0

(2.9) / |Du|"dx < Cj /(a|f| + g)dz.

{lul<e} Q

If, moreover, ¢ C Q(a, p), then we have for all 3 € R™

(2.10) / |Du|"dz < " pr)" / lu — B|"dx + Cs / (a|f] + g)dz.
{lu—p|<a} Q(a,r)\Q(a,p) R™\Q(a,p)
N(IR™\Q(a,r))

Proof. We first prove ii). Let n € C§°(Q(a,r)) be a cut-off function such that n = 1 on Q(a, p),
0 <n <1and |Dn| < C/(r—p). Choose a smooth function g, : R — R with the following
properties: g, = Id on [0,a], 0 < g4 < na, g/, <1 and

n/(n=1)
(2.11) 0<ec <M> <gl(s) < ga(5) <1 on (0,c0).

s @ s



Define the cut-off function ¢, in the target by

Then

D(gaou) = 22l (14 o ) iy gt (jup) (L2 0 L) Du,
u] al © Tu m

and by (2.11), (H2) and (H3) with M =1d —Tu] © a7 We deduce

su(fu)o (D) Du+ (% — g2 ul) (D) < M

ga(luD)(nDul™ = 73) = (5| Dul® + 7).

Notice that we frequently drop the first two variables of ¢ in the notation if no confusion arises. If
we multiply equation (1.1) by 7@, ou € Wy ™ (R™; IR™) N L>(IR"; R™) we obtain

o(Du) : D(pq o u)

v

/ ) n"o(Du) : D(py 0 u)dz

= —/ ny" "o (Du) : pq 0 u @ Dnydx + / N" fq o udz.

n

It follows by (H2), Holder’s inequality and (2.11) on the right hand side that

" /Q 0| Dul" gl (|u]) de

n—1

C n n— —n_ " n "
< </ 1" 9o (|ul) (v2| Dul" ™t + [ya]) 7= dw) </ |ul d$>
=P \JQ(a,r) Q(a,r)\Q(a,p)

+ / s lda + / (sIDul* + Jel)dz + Ca / \fld.
Q(a,r) Q(a,r) Q(a,r)

Application of Young’s inequality yields

/Q 0" gt (|ul) | Dul"de

< ¢ n/ |u|”d:c+C(/ gd:c+a/ |f|d:c),
(r=p)" JQ(a.ma(an Qla,) Qla,)

and inequality (2.7) follows from the definition of g,.

The proof of i) and #i3) is analogous, see also Lemma 15 in [DHM]. Finally, the proofs of the two
estimates in 4v) follow as the proofs for i) and i), since in view of Lemma A.2 and A.3 in the
appendix go o u and n"gy o (u — B) are admissible test functions. Here n € C§°(IR"™) is a cut-off
function such that 0 <n <1,n=0o0n Q(a,p), n =1 on R"\ Q(a,r), and |Dn| < C/(r —p). O

The next two lemmas summarize well-known facts which will be used in the proof of the BMO-
estimate in Lemma 2.5.

Lemma 2.3 Assume that v € BMO(IR";IR™), R > 0 and ag > 0 are such that

|Dv|"dz < C(1 + a) for all & > ag,

{lv|<a}
NQ(0,R)



and that either (v)o,1 = 0 or there exists r > 0, K > 0 such that [{v =0} NQ(0,r)| > Kr™. Then
lvllwrs(oeo,r)mm) < C'(s, R, |In £],C, ag, [v]Bmo) for all 1 < s <mn.

Proof. Since the assumptions are invariant under the rescaling z — Rz, and the scaling of the
WS _norm is known we may assume that R = 1. The assertion then follows from the estimate

[vllwre (@) < C'(C,ap) —}—][ |v]|dz
Q

in connection with (2.1), (2.5) and the obvious inequality (|v])o,1 < [v]Bmo + |(v)o,1]. The proof
of the Wh*-estimate is standard (see [Ta] or [DHM], proof of Lemma 10). Indeed the inequality
|D|v|| < |Dv| and an application of the Sobolev-Poincaré inequality to the truncated function
Vo = min(q, |v|) yields

[[vallp < C,,(C(l + a))l/n +][ vodr < (:’,,(1 + a)l/" +][ |v|d,
Q

n—1_ 3§

for all p < oo. Splitting the set {|Dv| > t} into regions where {|v| > a} (and hence v, = @) and
{]v] < @} one easily concludes by taking a = "%, p = L2 with § € (s,n). O

Lemma 2.4 Assume that v, — v in WH*(Q(0, R); IR") for all 1 < s <n and that

| Dug|"dx < hy, + ady,

{lvx—Bl<a}
NQ(0,R)

where a € R, B € R™, hy, 6, € RT with limsup,,_, . hx = h and limy_,o. 6 = 0. Then

|Dv|"dz < / |Dv|"dz < h.

{lv=p|<a} Q(0,R)
NQ(0,R)

Proof. This follows easily from the weak lower semicontinuity of the L™-norm and the monotone
convergence theorem (c.f. also the proof of Lemma 15 in [DHM]). O

We are now in a position to prove that a function satisfying (2.6) — (2.10) is a function of bounded
mean oscillation.

Lemma 2.5 Let Q C IR™ be an open domain and assume that Q = IR™ or that QC has property A.
Let u € DY"(Q) and suppose that there exist f, g € L'(Q) such that the estimates (2.6) — (2.10)
hold. Then uw € BMO(IR"™) and

[ulsmoqm) < Ca- (I Y + lgllhie):

where Cy depends only on Cs, n, and the constant K in the definition of property A.
Proof. The proof is inspired by Simon’s beautiful proof of C%% estimates for the Poisson equation

in [Sil] (see also [Si2]). We argue by contradiction and use a scaling and blow up argument to
construct a sequence vy, such that [vg Jsmo = 1. This sequence converges to a limit v € DV (IR™)



which corresponds to a solution of the homogeneous problem, i.e., satisfies (2.6) and (2.7) with
f =0and g = 0. We will deduce v = const and this leads to a contradiction. We will later
distinguish different cases which correspond to a limit problem on IR", on a domain with unbounded
complement or a domain with bounded complement. In the first two situations (Cases 1 and 2
below) we use the local inequalities (2.6) and (2.7) as well as condition A to bound the sequence
v, while we employ the global estimates (2.9) and (2.10) if the complement is bounded (Cases 3
and 4 below).

Suppose the assertion of the lemma were false. Then there exists a sequence of functions u; €
DY), fr, gr € L*(Q) such that (2.6) — (2.10) hold (with u replaced by wuy), but

[uk |BMO(R)

lim
k=0 | fell e+ Nl

(2.12)

(In view of (2.9) we may assume that || fx|/z1(Q) + [|gkllL1() # 0.) By definition of the BMO norm
there exist z; € IR"™ and 7, > 0 such that

1
T? Q(zr,mr)

Let dj, = dist(zy, Q) (df, = 00 if @ = R"™).
Case 1: Suppose that @ = IR" or that there exists a subsequence (not relabeled) such that f—: — 00.
The rescaled functions

n 1 n
luk = (ur)orre|" d 2 S[ur Jivomrn)-

g (T +782) = (Uk)ay

[Uk ]BMO

vk(z) =
satisfy

, [vk]BMoO = 1.

N | =

(2.13) (k) = O, / (e[ da >
Q.1

Changing coordinates in (2.6) yields

| Dy |"dz < _ G
(r—p)"

{lox—Bl<a} Q(0,r)\Q(0,p)
nQ(0,p)

ol fellr @) ||gk||L1(Q))

R T

whenever Q(0,r) C Q = %(—mk + Q). By assumption Q; = IR" or Q; = R" as k — oo (i.e., for
all R > 0 there exists a ko such that Q(0, R) C Qy, for all k > ko). It follows from (2.13) and (2.5)
that |(vg)o,r| < v(r) = C(|In(r)| + 1). Since {Jug] < a —v(r)} C {|vr — (vk)o,r| < a} we obtain
with p =7/2, 8 = (vr)o,r and [vg |BMo =1

ol fellr @) ||gk||L1(Q))

[ pardsrasa(f s

{lve|<a=~y(r)}
nQ(0,r/2)

and hence we may apply Lemma 2.3 for v, with ag(r) = 2v(r) and k > ko(r). We deduce that
{vg} is bounded in I/Vﬁ)f (IR™) and thus (for a subsequence) vy — v in I/Vﬁ): (IR") for all s < n. In

view of (2.12) and Lemma 2.4 we conclude v € DV"(IR"). Another application of Lemma 2.4 in
connection with Poincaré’s inequality then shows that

/r’I'L
Q(0,r/2) Q(0,7)\Q(0,r/2) Q0,7)\Q(0,r/2)

2n
/ |Dv|"dz < ﬂlg}% Cs / lv—p|"dz < C / |Dv|"dz.



For r — oo we infer Dv = 0. On the other hand, the strong convergence of v, together with (2.13)
implies (v)p.1 = 0 and therefore, again by Poincaré,

1
=< / |v|"dz < C’/ |Dv|"dz = 0.
27 Jowuy Q(0,1)

This contradiction finishes the proof in case 1.
Case 2: Suppose now that 2 # IRR"™ and that for a subsequence (not relabeled) ‘f,—: < C and

diam Q¢
Tk

r,;1|57k — x| < C. Passing to a further subsequence if necessary, we may assume

— oo (diam © = oo if © is unbounded). In this case there exist points #; € Q¢ such that

(2.14) zkzmk_mk —z2eR" for k— oo.
Tk
Let
T 1
or(z) = w, O = —(—F + Q).
[ur JBMO Tk
Then
" 1
(2.15) [vk]BMO = 1, log — (V)2 1| de > ok
Q(zk,1)
and (2.7) implies
(2.16)
Cs allfellcr)y el
Duvp|"de < ——2— "d C .
[ pwras o [ wre o (R R )
|’U)e‘<04 Q(077‘)\Q(07p)

NQ(0,p)
Since 0 € ch and Qg has property A we obtain
Q(0,r) N QY > Kr" for all r < Ry = diam(Qf ) = r; ! diam(Q%) — oo.

It follows from (2.16), (2.2) and [vk, Jsmo = 1 that

/ |Dvg|"dz < C + dpa for r < Ry /2,
{lvx|<a}
nQ(0,r)

and that dp — 0 as k — oo. By Lemma 2.3 there exists a subsequence (not relabeled) such that
vp = v in WLH(IR™). In view of Lemma 2.4 we deduce Dv € L™(IR"™) and from (2.16) we infer in
addition

(2.17) / \Dofrdz < —3 / | de.
(r—p
Q(0.0) Q(0.1\Q(0.0)

Let 6 be such that 0" = K/2 < 1. We obtain from (2.17) with p = 6r and Poincaré’s inequality
(see, e.g., [Mo], Theorem 3.6.5; we justify the application below)

/ |Dv|"dz < gn / lv|"dx < C / |Dv|"dx
T

Q(0,0r) Q(0,7)\Q(0,07) Q(0,7)\Q(0,07)



and consequently Dv = 0. This leads to a contradiction with (2.15) since by (2.14) we have
zr — z for k — oo. It remains to justify the use of Poincaré’s inequality. Choose kg such that
r < diam(Q) for all k£ > ko. Then we have by property A that

(Q(0,7) \ Q(0,6r)) N Q| > K™ — gy = gr".

Consider the characteristic function y; = Xag - It follows from the estimate above that

K
Xk — 1 weakly* in L=°(IR"), / ndex > —r".
(0.1\Q(0,67) 2

The strong convergence of vy, implies

0 :/ Xk |vk|dz —)/ n|v|dz.
Q(0,m)\Q(0,07) (0,m)\Q(0,07)

Since 0 < 1 < 1 we conclude

=0} 1 (Q0,7)\ Q0,67)] > {n > 0} N (Q(0,7) \ Q(0,6)] > ™.

This concludes the proof of the second case

Case 3: Suppose that for a subsequence < Cand0<e< dlamQC < C. Clearly diam Q¢ < oo
and r; < C. Define the rescaled functlons v and the rescaled domalns ), as in Case 2. Since
0 € Qf we may choose a further subsequence such that Qf — Qf with |Q| > 0. From (2.9)
and property A we deduce as before that vy — v in I/Vﬁ)(,s(IR" R™) for s < n and Dv = 0. This
contradicts (2.15).

Case 4: Assume that for a subsequence f—: < C and % — 0. Define the rescaled functions vy,

as in Case 1. In this case, diam(2¢) < oo and 7y — co. Therefore we may choose a subsequence
such that r '@, — @ and Q¢ — 0. Using the global estimate (2.10) we conclude as in Case 1. O

Corollary 2.6 Let Q C IR™ be an open domain and assume that Q = IR™ or that QC has property
A. Let u € DY"(Q) and suppose that there exist f, g € L'(Q) such that the estimates (2.6) —
(2.10) hold. Then we have the local BMO-estimate

1 n
[u]BMOQ(a,r)) < Ca (||f||1/(n iZT)) + HgHLl(Q(a 2+ e /Q(a - | = (w)a,2r| dm)?

where Cy depends only on Cs, n, and the constant K in the definition of property A.

Proof. This follows with an indirect argument similar to the one used in the global BMO estimate.
O

3 Weak L™-estimate for the gradient Du

Let © C R™ be measurable and 1 < p < co. We define the weak Lebesgue space LP*°(Q) by

LP*>*(Q) = {u:Q — R measurable : 3M > 0 such that
{|u| > A} < MPA™P VA > 0}.

10



This is a Banach space with the norm

1 t
|l pooion = sup t/? —/ u*(s)ds),
lellrmey = supt (3 [ u(s)ds)

where u* denotes the nonincreasing rearrangement of u. Let Ey = {Ju] > A}. We will use in the
sequel the quasinorm

[l oo (@) = inf{M : N E5|"/P < M YA > 0}

which is equivalent to the norm ||u||*Lp,m(Q) (see [Hu] for more information on weak Lebesgue

spaces). A useful property of weak Lebesgue spaces is the following Hélder inequality: if u €
LP>(Q), E C Q, and ¢ < p then

P \1/ -
(3.1) lullpe(zy < (=) 1B D"V |ju]| oo ()
p—q
We define for a measurable function f : R" — IR the Hardy-Littlewood maximal function M f by

Mf(a) = supr*”/ |f|dzx.
Q(a,r)

r>0

The following lemma is a well-known result in real analysis and can be found for example in [St].

Lemma 3.1 i) If f € L*(IR") then there exists a constant A > 0 which depends only on n such
that the following estimate holds:

(3.2) o s Mf(@) > a) < 2 /]R 1/l

@) If f € LP(IR™) then M f € LP(IR"™) and there ezists a constant A > 0 which depends only on n
and p such that the following estimate holds:

1M fllLerey < AllfllLrrn)-

Since the weak LP-spaces can be characterized as interpolation spaces (see, e.g., [BuB]) we obtain
by a slight generalization of Marcinkiewicz’s interpolation theorem that the maximal function
operator M maps LP*° to LP**° and there exists a constant A which depends only on n and p such
that

||Mf||LP>°°(Q) S AHf”LP,OO(Q).

Finally we use the following version of the Sobolev—Poincaré inequality:

(3.3) ( /Q e Warpaldr) " < c(m)( /Q (

where the constant ¢(n) depends only on n.

5 \2/
|Du|”/2dac) n,

a,r)

We split the proof of Theorem 1.1 into a series of lemmas. The first lemma yields a quantitative
estimate of the L?-norm of Du for g < n.

Lemma 3.2 Assume that Q¢ has property A and that v € BMO(IR™) N DV (Q) satisfies the
Caccioppoli inequalities (2.6) — (2.8) with f,g € L'(Q). Then there exists a constant Cs, which

11



depends only on K, q, n, and Cs, such that for all ¢ € [ 3,n) and all Q(a,r) the following estimate
holds:

1 n__
(/ |Du|?dx) < g {[U]BMO(Q(a72T))+

Q(a,r)

1 1/n—1 1/n

w1010 ([ o)),
Q(a,2r) Q(a,2r)

Remark. If Q(a,2r) C Q or diam(Q2¢) ~ r, then the constant Cj is in fact independent of q.

Proof. Case 1: Assume that Q(a, 3r) C . Let
SBik,M)y={zeQ: kM <|lu—0] < (k+1)M}.

By Holder’s inequality and the John-Nirenberg estimate (2.4) we have

9
n

/ Dultdr < 1Q(a,r) 1 S((u)ayi kM) ( / [Dulde )

Q(a,r) Q(a,r)
NS((w)a,r;k,M) NS((w)a,r;k,M)

< Cexp(M)r”*q( / |Du|”d$)
n[u]BMO(Q(a,2r)) o
AS((w)a.rik, M)

Sha

On the other hand, we have by (2.6) and (2.5)

/ |Du|"dx < C([U]EMO(Q((I,QT)) + (k + 1)M / |f|d$ + / gd:c) .

Q(a,r) Q(a,2r) Q(a,2r)
NS((w)a,r;k,M)

Thus we obtain
—(n — q)bkM

_ ).
n[U]BMo(Q(a,:zr))

|Du|%dz < Cexp (

Q(a,r)
NS((w)a,r;k,M)

([ Borguam + + 021 [ Isidos [ gds)”.

Q(a,2r) Q(a,2r)
If we choose M = W and take the sum for £ =0,1,... we get
=N a/n
/ Duftde < €m0 32 e M [ulhoqan *+ ( / giz) "}
Q(ar) k=0 Q(a,2r)
= o/n (MUlBMO(Q(a,2r)) a/n
Ze (k+1) ( (n— )b / |f|dm) .
Q(a,2r)

12



The sums in this estimate are easily computed:

> e
> et = :

e—1
k=0

0 1 q
Y (k+1)meF = B(=,-2,1) <
k:0(+) 2 (e, n;)_
1 e n
< ®(=,-1,1) = 2 for —
< @, -L)=(c=9) forg<g<nm,

where ® is the Lerch function (see, e.g., [GR]). The assertion of the lemma follows now with
Young’s inequality.

Case 2: Assume that Q(a, 3r) N QY # 0 and diam(Q%) > =r. In this case, let b € Q(a, 3r) N Q.
Then, by (2.1) we have

(3.4) [(W)o,r 2| < Clulsmo(@e,r/2)) < ClulBMo(Q(a,2r))-
On the other hand, from (2.5) we infer

(3.5) [(w)p,r/2 = (Wa,2r| < ClulBMo(Q(a,2r))

and

(3.6) |(Wa,r — (Wa,2r| < ClulBMO(Q(a,2r))-

Combination of (3.4)—(3.6) yields
(3.7) [(Wa,r| < mlu]BMOQ(a,2r)s

where 7; depends only on K and n. Therefore we have for M > n1[u]gmo(Q(a,2r)) the implication
lul > kM = |u— (4)q,r| > k(M —m[u]pmo@(azr))s

and we may apply the John—Nirenberg estimate with k(M — n1[u |Bmo(Q(a,2r))) instead of kM.
Similarly we may replace (2.6) by (2.7) and use (2.5) to conclude as before. Finally we choose
n

M = (m + m)[%]BMO(Q(a,2r)) and obtain the assertion of the lemma.

Case 8: Assume that Q(a, 3r) N QY # ) and diam(Q°) < {57. Before we consider this case in full
generality, we consider two special cases:

Case 3a: We first consider the case Q¢ = {a}. The idea is to use a dyadic decomposition of the
cube into annuli and to prove first an inequality on a singe annulus. To this end, let r; = 7277+
A; =Q(a,r;) \ Qa,rj41) and Bj = Aj_1 UA; U Ajq. We assert that

/|Du|qdm < Cryiq{[u]]ngO(Q(aJT))

Aj
B; B

J

Since A; C Q(a,r;) we obtain from Holder’s inequality

/ \Dultdz < |Q(a,rj)ﬁS((u)aﬂ.;k,M)P’%( / |Du|”dw)%

Ajﬁ Ajﬁ
S((u)aﬂ‘j?kvM) S((u)aﬂ‘j?kvM)

—(n—q)bkM | ,_, / x
< —_ 7, Dul|™d .
= o (n[U]BMO(Q(a,Qr)) )i ( [Dul :c)

13



Using the Caccioppoli estimate on an annulus and (2.5) we obtain the assertion above as before.
Finally, by definition

—4q

Z”qftﬁﬁ

and the assertion of the lemma in the case Q¢ = {a} follows easily.

Case 3b: We assume that Q¢ C Q(a, p) with p = 27'r. Then we combine the estimate in case 2
for Q(a, p) with a finite dyadic decomposition using only the annuli 4;, j =1,---,1—1.

Case 3c: After having prepared the two special cases 3a and 3b, we now consider the full case 3

and assume Q(a, 37) N QY # 0 and diam(Q) < &r. In this case, Q° C Q(ao, 157) C Q(a,2r),

and we can easﬂy find cubes Q(a;,p) C Q,i=1,2,...,1, (where [ depends only on n, but not on
r) with p > 357 such that

l l

| Q(a:,2p) = Q(a,2r) and Q(a,7) C | Q(ai, p).

i=0 =0

Then, applying the estimate from case 3a or 3b to Q(ag,p) and the estimate from case 1 to the
cubes Q(a;, p), i =1,2,...,1, we obtain the desired estimate by summation. [l

The next lemma is an estimate in the spirit of reversed Holder inequalities with increasing support.
It gives at the same time an estimate for the rate with which the L?-norm of the gradient Du
diverges to infinity as ¢ tends to n if Du ¢ L™(;IM™*"™).

Lemma 3.3 Assume that QO has property A and that v € BMO(IR™) N DY™(N)) satisfies the
Caccioppoli inequalities (2.6) — (2.8) with f,g € L*(Q). Then there exists a constant Cg, which

depends only on K, q, n, and Cs, such that for all ¢ € [3,n) and all Q(a,r) the following estimate
holds:

(3.8) ( ][ |Du|qdm)1/q§06{( ][ |Du|n/2dw)2/n

Q(a,r) Q(a,2r)

(Lo i [y s (gl ).

n—q
Q(a,2r) Q(a,2r)

Proof. The proof is analogous to the proof of Lemma 3.2. We include the necessary modifications
in case 1. We use the Sobolev-Poincaré inequality (3.3)

/ lu — (w)a,r|"dx < ¢( / |Du|"/2dac)2
Q(a,2r)\Q(a,r) Q(a,2r)
and (2.6) to estimate

|Du|"dz < Cr*”(/ |Du|”/2d$)2
Q(a,r) Q(a,2r)
NS((w)a,r;k,M)
+ Cr"(k+1)M / |fldz + / gdz.
Q(a,2r) Q(a,2r)
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Choosing M as in the proof of the previous Lemma, we see that

r " / |Dul|?dz < C’eik{( ][ |Du|”/2d:c)2q/n +

Q(a,r) Q(a,2r)
NS((w)a,r;k,M}
n (P[ulBMO /n /n
(k+1)%/ (m ][ |f1da) ™™ + ( ][ |gdz)* },
Q(a,2r) Q(a,2r)
and we conclude as before. O

Lemma 3.4 Assume that Q¢ has property A and that w € BMO(IR™;IR™) N DY (Q; IR™) satisfies
the Caccioppoli inequalities (2.6) — (2.8) with f,g € L*(2). For X > 0, let E\ denote the set
{|Du| > A}. Then there exists a constant C7 such that for all A > 0 and all 6 > 0 there exists a
measurable set F) s such that

(3.9) |F)\75| <A "+ (S|E)\|

and

(3.10) / \Dul"dz < Cr(\"|Ex| + 1).
Eax\F,s

Here Cr depends only on K, n, Cs, [u]gmowr~), [fllziare), and ||gl|L1qrn), while cs depends in
addition on 0 and A.

Proof. Recall that u is extended by zero to IR". Let G be the set of Lebesgue points of Du. Fix
A > 0 and define for a € oy NG
Raa) = {p>0: ][ \Dul"2dz < (20)"/2)
Q(a,p)

and r(a) = 3 inf{p € R\(a)}. We will often suppress the argument a in the notation if there is no
confusion. By assumption Ry (a) # () and r(a) > 0 since a € Fay N G. Moreover the continuity of
the map p— f |Du|"?dz implies
Q(a,p)
(3.11) ][ |Du|"?dx = (20)"/2.
Q(a,2r(a))

The constants ¢; in the estimates below depend only on K, n, C3, [u]gmo(r»), ||fllz1@wrn), and
gl (r)-

Step 1: There exists a constant cg such that

(3.12) Ar(a

IN

Co.

Indeed, it follows from Lemma 3.2 with ¢ = & and (3.11) that

1 n 2/n
IN2r)? = (27«)2((2T)n / | Du|"/2da)
Q(a,2r)
2 n— n
< 2r05{[u]BMO(Q(a,4r))+(E / |f|d37)1/( 1)+(/ |g|d$)1/}
Q(a,4r) Q(a,4r)
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which proves (3.12).
Step 2: There exists a constant ¢1 such that for all a which satisfy (3.16) below

(3.13) alBxNQ(a,r)| > |Q(a,r)].

We prove the claim by deriving a lower bound for the density

|Q(a,r) mE)\|
0=—>="
|Q(a,r)|

We fix ¢ € (§,n). By the definition of 7(a) we have
(20)"21Q(a,r)| <
| Du|™/?dz
Q(a,r)

/\"/2|Q(a,r) \ Ex| + / |Du|"/2dx
Q(a,r)N

IN

IN

E

IN

N2|Q(ayr) \ Bl + Q(ayr) 0 By /24 / |Dultdz)"?".
Q(a,r)NEy
By Lemma 3.3 there exist a constant Cg such that
( ][ |Du|qu)1/q < C(;{( ][ |Du|"/2d:c)2/n
Q(a,r) Q(a,2r)
(3.14) + : [U]BMo(m")Mf(a))l/n + (Mg(a))l/n}'

n—q

Since by (3.2)

A
(3.15) [{a € @: max{Mf(a), M(g)(a)} > (nA)"}| < (n)\)n(llfllu(n) + llgllLre)
we may assume
(3.16) max{M f(a), Mg(a)} < (n\)"
(0 < <1 will be chosen later, see below). By (3.14) and (3.16) we obtain with =1 — 3

272 < (1-0)+ e\ ][ | Dul?dz)"/*
Q(a,r)
< (1-0)+06° /2.
1 n/2

Q(a,2r)

< (1-0)+67 (205 + Co  (

[u ]BMo(mn))l/n + 1)77)\)

[u ]BMO(]R"))l/n + 1)17)11/2,

n—q

where we used (3.11) in the last step. As © — 0, the right hand side of (3.17) converges to 1. Hence,
© must be bounded from below and we conclude (3.13) with a constant which is independent of 7
as long as p < 1.

16



Step 8: Let a > 2" K ulgmommr) (see Step 4 below). Assume that either Q(a,3r) C Q or
Q(a, 3r)NQ° # 0 and diam(Q°) > r. Let

«
(3.17) F={lu— (u)ar| > 5}
Then there exists a constant ca such that
(3.18) / |Du|"dz < c2(1 4+ an™)A\"|Ex N Q(a,r)|,

Q(a,m)\F
and
b

(3.19) |F N Q(a,r)| < Ber|Ex N Q(a,r)] exp(— a

2[ulpmo(mrr)

The second estimate is an immediate consequence of the John—Nirenberg lemma and Step 2. To
prove (3.18) assume first that Q(a, 2r) C Q. We get by (2.6) and the Sobolev-Poincaré inequality
(3.3)

1

—_— u|"dz c(n)Cs u|™2dz)? 3g a a
G [ 1 < s f D)+ 0y 2 (@) + Mg(w)

Q(a,r)\F Q(a,2r)
c(n)C3(2N)" + Cs(a+ 1)(n\)"

IN

and by (3.13)

(3.20) / |Du|"dz < co(1+ an™)\"|Ex N Q(a,r)|.
Qa,m)\F

Assume now that Q(a, gr) NN # ) and diam(Q¢) > r. In this situation we may apply property
A to some cube Q(ao, 5) C Q(a,2r) and deduce

(3.21) Q(a,2r) N {u=0} > K(g)".

Since |(w)a,r| < 2™|(t)a,2,| < 2" K ulpmo we conclude as before F' = {|u — (u)a,,] > §} 2
{|u| > a} and the proof of the claim follows now with (2.7) instead of (2.6). We may apply the
Sobolev—Poincaré inequality in view of (3.21).

Step 4: Proof of the lemma with a covering argument.

If d = diam(Q“) < 3 we choose a cube Q(ao, ) such that Q¢ C Q(ao, 1) and define

200

A= (B \ (1MF > 0N)"}UQa0, 52))) NG.

Otherwise we define

A= (Ex \{Mf>mN"})NG.
For each a € A there exists a cube Q(a,r(a)) as above and in view of Step 1 it is easy to see that
the estimate in Step 3 holds for all these cubes. By Besicovitch’s covering theorem there exists a
fixed number L of families F() = {Q;i)}jem of disjoint cubes such that the union of these families

covers A. Let Fj(i) be the exceptional set for the cube Qgi) as defined in (3.17) and let

200

L
Bra=J U F?0{Mf > 00"} UQao, 52 U GE

i=1jEIN
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if diam(Q2¢) < + and

1
A
Fry=U U F7 s> mnued

i=1j€IN

else. Clearly, FAW is measurable and by (3.18)

L oo
/ |Du|"dz < ZZ / | Du|"™dz
=1

Eax\Fx,» m\F(z)

L [e%e)
< S al+aat Y 1ENQY
i=1

=1

and hence

/ |Du|"dz < Lea(1 + an™)A"|Ey.

Eox\Fx n
Similarly by (3.16) and by (3.19)
ba

260 )
[U]BMO(Q) '

|F>\m| < A(nA)™" 4+ BLcy exp(— 3

IEN + (5

Now, given § > 0, choose

3[U]BMO(IR") clBL 2n+1 1
a(a):max{ ; In(5 ),Kl/n}, 7(0) = min{—, 1},

Then F) 5 = F)\m(é) satisfies
|F)\7(5| S C(s)\_n + (5|E)\|

with ¢5 = Amax{1l,a} + (2¢9)" and

/ |Du|"dy < 2¢oLA"|E}|.
Eox\Fx s

This completes the proof. [l
Lemma 3.5 Assume that QC is a domain of type A and that uw € DV™(;IR™) satisfies the
Caccioppoli inequalities (2.6) — (2.8). Then Du € L™>®(Q;IM™*") and
(3:22) 1Dl e oumamxny < Co(F1AG " + gl

where Cg depends on n, K and Cs.

Proof. Since the inequalities (2.4) and (2.5) are invariant under the rescaling u +— Au, f — A7 f

and g — A\"g, we may assume that ||f||2/1((761) + ||g||2/17(19) =min{C; "', 1} and thus [u]gmo < 1.

We begin by proving the following assertion from which the proof of the theorem follows by
iteration: For M > 1 fixed there exists a A € (2\,2M \) such that

(3.23) A"|Ex \ Fasl < - Cr

Tog 11 (A"|Ex| +1).

18



Indeed, let h := |Du|(1 — xF, ;). Then, a(v) := |E, \ Fy;| is the distribution function of h. If
a(v)v™ > B for all v € (2)\,2M )), then

/ | Du|"dx

oo

- [ sndats

Eox\Fis 2
= (2/\)"a(2)\)+/ns”*1a(s)ds
21
2MA
> B+ / %ﬂds = B(1 + nlog M).
21
Together with (3.10) this implies
g<— L Dulde < — 27— (A"| By + 1)
~ 1l4+nlogM ~ nlog M A

Eox\Fis
and this establishes (3.23).
Combination of (3.9) and (3.23) yields

n C
)"+ 0)| Bl + (—— 4 c5) A"

Bl < ( nlog M

Now, we choose M := exp % (we may assume M > 1) and a fixed § < 1(537)" = 22 "e 107,

Hence we have
1.\

|Ex| < §(j)

(with ¢3 = (nlocﬁ + ¢5)). Iterated application of this inequality with A1 := X;, @ € IN, and
a; == A\['|Ey, | gives

"|Ex| + csA™"

1
aiy1 < 3 a; + (2M)"cs
and hence

1. Ao\ ?
a; < (i)lao +2(2M)"c3 < (/\—0) ap + 2(2M)"cs,

i
where 6 <In2/1n(2M) < 1. Thus, we have for all i € IN
1Ex.| < aoAdA; T 4 2(2M) es A

i
Since A\;i11 < 2M )\, we deduce for all A > Ag

2n —-n n+o )\0 s —n

|Ex| < 202M)2Pes A" + (2M) ao(T) A

Since Du € L™ we have

%S/I&MMSWW%
E’\O

Hence the assertion follows in the limit Ag — 0. O
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Proof of Theorem 1.1: The hypotheses (H2) and (H3) of the present paper are slightly weaker than
in [DHM]. However, in the same way as in [DHM], it is still possible to construct approximating
solutions uy, € Wy " (Q) of the regularised system

—divo(z,ug, Dug) = fi

for smooth and bounded L' (Q) functions f; with f; — g in M. In order to pass to the limit & — oo,
we have to check that the crucial Lemma 11 of [DHM] still holds if we replace condition (5.2)
of [DHM] by the weaker condition (H3) of the present paper. For the reader’s convenience, we
specify the relevant changes: estimate (5.12) does not hold any more and has to be replaced by

o(x,ug, Dug) : Dipy o (up —v) Dug > —7s|Dug|® — v ().

Thus the conclusion that (h)~ is equiintegrable is still valid. In (5.21) of [DHM], we get an
additional term:

(3.24) LHS(r) 2/ngr(ac)g%j(w)(Di/Jr)il(u—v)(ac)dac

_/Q%(x) /Wnu_n(%'))(%w+76(x))dum(A)dx.

We are free to assume that zo is (in addition) a Lebesgue point of the functions [j mx. (1 —
n(%))(fy5|/\|s +76(z))dv, () € LY (Q), M € IN. Thus, as r — 0, the second term on the right hand
side of (3.24) converges (for fixed M € IN) t0 — [[ymxn (1 — n(%))(75|/\|5 + 76 (20))dvg, (A). Since
v, is (for almost every = € Q1) a probability measure with finite s-th moment, the additional term
vanishes as M — oo and we conclude as in [DHM].

Now, the approximating solutions uy satisfy the weak L™ estimate in Lemma 3.5. In view of
the weak* lower semicontinuity of the L™°-norm we obtain the same estimate for the solution u.
Since in this situation g = |y3| + |74/~ + 45| Du|® + |76/ it remains to estimate || Dul|zs. By
Holder’s inequality in the weak Lebesgue spaces we deduce for € > 0

IN

1 s \" 1ng T \1/n|qy(n—s)/n®
([ 1) /| Dy

n—s n
05751/( )(

IN

)= QI 4 e[ Dul o
n-—s

This estimate implies first the weak L™ estimate for the gradient and Theorem 1.1 is an imme-
diate consequence. [l

It is possible to improve the BMO estimate if the measure p has no atoms, i.e., if

lim u(Q(a,r)) =0 for all a € Q.
r—0

Here we say that a function belongs to the space VMO(IR"), the space of functions of vanishing
mean oscillation, if

lim =" /( = () =0
Q(a,r

r—0

for all @ € R™.

Corollary 3.6 Suppose that the assumptions in Theorem 1.1 are satisfied and that in addition p
has no atoms. Then the system (1.1), (1.2) has a solution v € VMO(; IR™).

Proof. This follows with an indirect argument similar to the one used in the BMO estimate. [
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4 Uniqueness results

The uniqueness result would be an immediate consequence of the uniform monotonicity if the
difference w = u — v were an admissible test function. The idea here is to use techniques developed
in [AF] to approximate a given WP function w by a function @ € W which agrees with w on
a large set (see also [L], [EG], [MZ]). We obtain a sharp estimate for the measure of the set on
which the two functions do not agree if Dw € LP-*°(Q;IR"). For uniqueness of entropy solutions
of nonlinear elliptic equations with measures which vanish on sets of p-capacity zero, see [BGO],
and compare also the results in [BB], [BG] and [KX].

Lemma 4.1 Assume that Q C IR" is a bounded open set with complement Q¢ of type A. Then
there exist constants Cs and Co which depend on Q and n such that the following is true: If
w € Wy (% R™) with Dw € LP-°(;IM™ ™) then there exists for all A > 0 a function wy €
Wy (4 1R™) such that lwa|lw1.(@mrm) < CsA and

(4.1) {z € Q: w(z) #wr(z)} < Cg)\*p||Dw||1£pm(Q;]men).

If w € WHP(Q;IR™) then

(4.2) {z € Q: w(x) #wy(x)}| =0o(A7P) as A — .

Proof. We extend w by zero to IR" and define
R»={z € R": M(Dw)(z) > A} U{z € R": z not Lebesgue point of Dw}.
Since M : LP*° — LP*° we obtain

B < CAPIDulls, - gy

It follows from Lemma 1 in [AF] that there exists a constant ¢(n) such that
w(z) —w(y)| < c(m)A|z —y| on R™ \ R
and
lw(z) — (W) < e(n)rA on R™\ R*.
If we choose x € O\ R* and r = 2dist(z, 2”), then condition A implies that |Q(z,7) N Q°| >

C(K)r™ and hence Poincaré’s inequality yields

|(W)ar| < e ][ \Duw|de < C dist(z, 2°)A.
Q("’U’")

Thus
lw(z)| < C dist(z,2°)\ on R™\ R

It follows that

. [ w(x) onQ\R
A= 0 on R"\ Q

is Lipschitz continuous on its domain of definition and thus there exists an extension wy to IR"
with the same Lipschitz constant and {w # wy} C R*. In particular wy € Wol’oo(Q;IRm). This
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proves the assertion of the lemma if Dw € LP>*°(Q; IM™*™). If Dw € LP(Q;IM™*™) the assertion
follows with the same arguments as above since in this case it is possible to use Hélder’s inequality
in the standard LP spaces. [l

Proof of Theorem 1.2: Let w = u —v and A > 0, and define wy as in Lemma 4.1. Then wy €
Wy (Q;R™) is an admissible test function in (1.5), Dwy = Du — Dv a.e. on Q\ E*, where
EN={r € Q: w(z) # wx(r)}, and we obtain
/ (o(x,Du) — o(x,Dv)) : (Du — Dv)dx = —/ (o0(x,Du) — o(x,Dv)) : Dwydz.
Q\E> EX

We deduce by Hoélder’s inequality in weak L™ and estimate (4.1)

'yg/ |Du — Dv|"dx < C/\/ (|Du|™* + |Dov|™ ! + 1)dz
Q\EX EX
-1

< OXBMNY™[IDul + D[ o gupgmxny + CALE

< C.
We may pass to the limit A = oo and obtain

Dw = Du — Dv € L™(Q;IM™*").

Thus by (4.2) |E*| = o(A™™) and the result follows from the inequality above as A — oo. O

Now, we prove the following stronger uniqueness result:

Theorem 4.2 Under the same assumptions on Q) and o as in Theorem 1.2, there exists a number
p € (n—1,n) which depends only on Q and 7o, V1, 3, such that the following is true: Assume that
u, v € WHLHQ;R™) satisfy u —v € Wy (;R™), Du € L™®(Q;IM™*™), Dy € LP(;IM™*")
and

(4.3) divo(z, Du) = divo(xz, Dv)  in D'(Q).
Then u = v in (.

Proof. Let w := u — v and consider wy and E* as above in the proof of Theorem 1.2. By
testing (4.3) by wy we get

Yo / |Du — Dv|"dz <
Q\E>

< Cg/\/|a(Dv) — o(Du)|dx

EX
< C)\/(|Du|"_1 + |Dw|" + 1)dz
EX
< CNEM 4 CAEMNY™|Du||37 L +C/\/|Dw|”_1d:c.

EX

Thus, we have

/ |Dw|"dx 50(1+A”|EA|)+CA/|Dw|n*1dx.
EX

Q\E>
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This is almost a reverse Holder inequality, and to conclude we adapt some arguments of the theory
of reverse Holder inequalities (see, e.g., [G]). Let f = |Dw|, then the above inequality gives

(4.4) / flde < / frdz + \"| B
[FI<A Q\E>
< C(1+A"|E*|+A/f"—1dm).
EX

Now we claim that

(4.5) MEYN < C)\/f”*dm,
>3

(4.6) /\/f"‘ld;r < CA / .
B> >3

We postpone the proof of (4.5) and (4.6) for the moment. Combining (4.4) with (4.5) and (4.6)
we get

(4.7) /f"dxg/f"deC(l-i—/\ / fmlda).
F<A/2 F<A F2X/2

Let a(s) = |{f > s}| denote the distribution function of f and let

G(t) = / frde = —/ts"da.

F<t 0

Formally one has

(o)

(4.8) / flde = —/s"—lda: 70GI(S)ds

s
2 A

A
o, o, o fa,
A A

S S

This formal calculation is correct for simple functions f > 0 and hence by monotone convergence
for nonnegative functions f € L?() provided p > n — 1. Thus replacing 3 by A we get from (4.7)

G\ < C(1 -G + /\/ G;j) ds)
A
and hence
G(\) <61+ Ah(N)
with 6 = &5 < 1and h(\) := [° ©¢)ds. Thus we have
—5°h'(s) < @ + Osh(s)
and hence 6h(s) h(s) ps1 0
0 . s)+sh'(s —vs -1
(s"n(s)) = PELESD 5 T (s
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Suppose now that p > n — 14 6. Since f € LP* we have a(s) < Cs™P, G(s) < Cs" P and
h(s) < Cs" P71 Thus, sh(s) — 0 as s — co. Hence, integration from X to oo yields

Mh(\) < —

Thus we have h()) < 125271 and hence

0
G\ < —
W = 1-46
which implies Dw € L™(Q?) and hence Dv € L™ () and the uniqueness follows from Theorem 1.2
up to the proof of (4.5) and (4.6) which we give now.

By the Vitali covering theorem we may choose almost disjoint cubes @; which cover R* (and hence
E*) such that

JECERCR!
Qi
Since
A
/ fdr < §|Qz‘|
Qin{f<3}
we have

2
@<y [ fa
Qin{f>%}

and summation gives (4.5) for R*:

!
IR*lsg far<C /f"*ldx.

An—l
23 >3
Similarly
1 _ 1 -1 —
o [ ez g [ 1 2
Qi Qi
and . \
n—1 < (Z n—1
Qi / frdw s (2)
Qin{f<3}
imply
/f"ildm <c / frtde
Qi Qin{f>3}
and summations yields
/f"_ld:c <C / frtdx
R >3
which is (4.6) for R*. O

As a corollary we immediately obtain the following regularity result:

Corollary 4.3 Under the same assumptions on ) and o as in Theorem 1.2, there exists a number
p € (n — 1,n) which depends only on Q and o, v1, 73 such that the following is true: Assume
that u € Wy P(4;IR™) satisfies (1.1). Then u € BMO(;IR™) and Du € L™>(Q) with a priori
estimates for the norms of u and Du in these spaces.
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5 TUnbounded domains

In this section, we first want to show, that Theorem 1.1 still holds for an unbounded domain 2 if
~v5 = 0 or if Q has finite measure.

Theorem 5.1 Let Q # IR"™ be an open set in IR™ such that QC has property A, and let p be an
R™-valued Radon measure on Q with finite mass. Suppose that the hypotheses (H0)-(H3) and one
of the conditions (i)—(iii) of Theorem 1.1 are satisfied. Then, if in addition v5 = 0 or || < oo, the
system (1.1), (1.2) has a solution u € BMO(Q;IR™) in the sense of distributions and the solution
satisfies the a priori estimate

1

(5.1) [ulbmo(aimm) < Co(llulli™ + 75 °

QU + [l + Pl =T + 1] 1)

(with the convention 0-00 = 0). Moreover, Du belongs to the weak Lebesgue space L™ (; IM™*")
and

+ ﬁ 1 —n_
(52)  NDullpne@mamxny < CollpllR" + 7577120 + ([l + al = + 16l 11 ) -
Here the constants Co, C1 depend only on v, v, K, and n. In case |Q] < co we have u €
Wy (Q,R™) for all ¢ < n and we can replace [ulmo(@ir™) by |[ullBMOo(@smm) 0 (5.1) if we allow
C5 to depend on |Q].

Proof. First, we solve (1.1), (1.2) on Qg = QN B(0,R). From Theorem 1.1 we infer the
estimates (5.1) and (5.2) on Qg in place of Q for the solution ug. Notice that Qg is of type A with
the same constant K as () and hence the constants Cy and C; are independent of R (compare the
remark after Theorem 1.1). Hence the sequence ug (extended to zero outside 2z) is bounded in
BMOjo.(R™) N Wlﬁcq (R™) and we may extract a sequence which converges weakly on every 2, in
the corresponding spaces to a limit function u satisfying the estimates (5.1) and (5.2). In order to
prove that u is a distributional solution of (1.1), we proceed as in the proof of Theorem 1.1 noticing
that condition (5.6) in Lemma 11 of [DHM] can be replaced by the condition that —divoy is a

fixed Radon measure. O

The problem in the case 2 = IR" is that no boundary data prevent a sequence of approximating
solutions from diverging to infinity. We use our BMO-estimate to overcome this difficulty and to
obtain Theorem 1.3 which we prove now.

Proof of Theorem 1.3. As in the proof of Theorem 5.1 we start constructing a solution @ on B(0, k)
with zero boundary values. Then, we add a suitable constant such that w := @+ (which is still a
solution of (1.6) on B(0, k)) satisfies fB(071) udx = 0. Now, u has boundary value v and we extend
u by 0 outside B(0,k) and denote this function by uj. Thus, the sequence {uy}y is bounded in
L™(B(0,R)) for all R and in fact in W?(B(0, R)) as long as p < n because of fB( udz = 0.

Hence we have (at least for a subsequence)

0,1)

up = u in WEP(IRY)

loc

and, as in the proof of Theorem 1.1,
—dive(z,Du) = p in D'(R").

Also, by locality of the BMO seminorm, we have

1 .
[ulemore) < Co([lullie™ + ||lysl + [yal == + |76|HL1(Q))
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and

by just passing to the limit in the expressions

lug — (k) g,r|"dz  and ][ upde =0
Q(,z‘,’r) B(O,l)

for fixed r and z. The weak-L™ bound for the gradient follows by weak lower semicontinuity of
the norm. O

6 The nonhomogeneous Dirichlet problem and local regu-
larity

In this section, we allow boundary values @ € W1m¢(IR") on 09 with e > 0. Consider 6(z,u, F) :=
o(x,u+a,F + Da). It is easy to verify that & satisfies hypotheses (H0)—(H3), with possibly dif-
ferent 4; and § in place of ; and s (for ¢ = 0 hypothesis (H3) may no longer be satisfied). Thus,
we may apply Theorem 1.1 and obtain a solution v of —divé(z,u, Du) = p in Q with v = 0 on
0. Hence v := u + @ solves

(6.1) —dive(z,v,Dv) = p in D'(Q),
v=14u on O

We summarise this result in the following proposition:

Proposition 6.1 Under the same assumptions as in Theorem 1.1 there exists a distributional
solution v of (6.1), (6.2) for boundary values @ € W1nT¢(IR™). The estimates (1.3) and (1.4) hold
for v with an additional term ||i||[pmorn) and ||Da||pn.~r») on the right hand side of (1.3) and
(1.4), respectively.

As an immediate consequence of the previous result combined with the uniqueness results of
Section 4 we obtain:

Proposition 6.2 Under the same assumptions on  and on o as in Theorem 1.2 there exists
a number p € (n — 1,n) which depends only on Q and ~o,v1,73 such that the following is true:
If u € WH4(Q), for some q > p, with boundary data u = @ on 0, & € WHnTs(IR"), and if
div o(z, Du) is a bounded Radon measure on Q, then u € BMO(Q) and Du € L™>(Q).

A Some properties of D((Q)

For the convenience of the reader we briefly recall some facts about D''"(Q). Let Q C IR" be an
open domain and define the semi-norm | - |1,n;0 by

1 = (/Q |Du|”dw)1/n.
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We define D''™(12) as the closure of C§°(Q) with respect to | - |1 n.0. The elements of D*"(Q) can
be identified with equivalence classes of Wﬁ)f (Q)-functions where two functions are identified if
their difference is a.e. constant.

Lemma A.1 Assume that O has property A. Then for each ¢ € DY"(Q) there exists a sequence
{pr} € C§°(Q) such that Dy, — Dy in L™(Q) and ¢, — ¢ in L (). If, in addition, ¢ € L*>(Q),
then we may choose the sequence @y, uniformly bounded in L>(1).

Proof. Let w : S™ \ {N} — IR" be the stereographic projection from the north pole N onto IR"
and define U = 7—1(2). Since 7 is conformal and the n-Dirichlet integral is conformally invariant,
we may identify D17(Q) and DV (U) by ¢ € DV (Q) — ¢ = p o € DV(U). Let ¢ € DL7(Q).
Then there exists a sequence of functions ¢ € D™ (U) such that Dy, — D@ in L™(U). We
extend @ by zero to S™. Since Q¢ has property A we conclude that either H*(U®) > 0 or U¢
consists of at most two points. In the first case we conclude by Poincaré’s inequality that ¢ — ¢
in L"(S™) and hence o = @pom* = ¢ in L' (). In the second case there exists a sequence of
functions @, € C§°(U) such that & — 1in L™(S™) and || Do ||pn(sn) < (k|(¢ —@r)sn]) 7! Define
Uk = o + (p — )sn@p. It is easy to check that ¢y — ¢ in WLn(U). If ¢ € L>®(€) we define
Y1 = Tar(¢r,) where Ty is a smooth cut—off function in the range with Ths(z) = z for all |z| < M
and M > @]l Lo (o) U

Remark. It is easy to see that the lemma holds true for arbitrary open domains 2. The proof uses
a suitable definition of n—capacity on S™; the first case in the proof of the lemma corresponds to
cap,(U®) > 0 while the second case corresponds to cap,,(UY) =0

Lemma A.2 Let Q C IR" be an open domain such that Q¢ has property A. Assume that u €
DL ().
1) If g € C§°(R), then g ou € D™(Q).
2) Ifn € C°(R"), then nu € D"(Q).
8) Assume that Q¢ C Q(0,r) and n € C®°(R") satisfies n = 0 on Q(0,r) and n = 1 on
R"\ Q(0,2r). Thenn € D' (Q).

Proof. In view of Lemma A.1 we may choose a sequence uy € C§°(€) such that uy, — win L (2),

ur, — u almost everywhere, and Dug — Du in L™(2). It follows from the triangle inequality that
/ |D(g ou) — D(goug)|"dz
Q
< c/ |(Dg) o up — (Dg) o u|™|Du|"dz + c/ |(Dg) o ug|"|Duy, — Du|"dz.
Q Q

The first integral converges to zero by the dominated convergence theorem since |Du|™ € L'(Q).
The second integral converges to zero since |Dg| < C and Duy, — Du in L™(Q2) by assumption.
This proves the first assertion. Moreover

/ |D(nug) — D(nu)|"dz < c/ |Dn(ug — u)|"dz + c/ [n(Dug, — Du)|"dz.
Q Q Q

Therefore the second assertion follows from the convergence of uy, to w in L} (£2) since 1 has com-
pact support. The last assertion is an immediate consequence of the fact that constant functions

are in DV"(IR") for n > 2. O
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Lemma A.3 Letu € DV"(Q;1R™) be a solution of system (1.1) with f € L*(Q;IR™) NC>=(Q; IR™)
in place of p. Then the equality

/a(:c,u,Du)Dgod:c:/fgodx
Q Q

holds for all p € D™ (Q) N L>®(RQ).

Proof. This follows easily from Lemma A.1. O
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