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1 Introduction

There has been an increasing involvement of the mathematics community in the
study of thin structures due, in part, to the remarkable technological, industrial
and medical applications of thin films. Taking the viewpoint that their mechani-
cal, elastic, and electromagnetic properties are inherited from the corresponding
bulk properties as the material domain is scaled thinner and thinner, in order
to study thin film behavior we undertake a 3D-2D asymptotic analysis for a flat
domain as its thickness tends to 0.

Although the linear and semilinear frameworks were relatively well under-
stood several years ago (see [20], [21], [43], [44]), it was only recently that some
progress has been made in a truly nonlinear setting (see [14], [15], [18], [27],
[30], [38]; see also [1], [2], [35]).

When we consider the optimization of the mechanical properties of a thin
film through the distribution of stiffness subject to a fixed volume fraction, we
are naturally led to a problem in optimal design involving dimension reduction,
i.e., a 3D-2D asymptotic analysis. Optimal design of two-phase mixtures is a



contemporary topic which goes back to the pioneering works of F. Murat and
L. Tartar (see [42], [45]; see also [6], [7], [16], [33], [36], [39]).

We consider a thin 3D domain Q. := wx (—¢,¢), wheree > 0andw C R? is a
bounded, open, Lipschitz domain. We assume that the body is composed by two
elastic materials with energy densities Wy and W, W; (i = 1,2) are continuous
nonnegative functions on R3*?, so that at each material point & € €2, the bulk
energy density corresponding to a given strain & € R3*3 is given by

W(z,8) == x(@)W1() + (1 = x(2))W2()

where x(-) denotes the characteristic function of the first phase.
In search for the best design, the one which minimizes the compliance, we
need to characterize

lim supinf1 {/ (xW1 + (1 — x)W2)(Du) dx — / frude:
Q. Qe

e—0+ X u £

u=0o0n 0w x (—¢,¢), x € L>(Q;{0,1}), %/@ x(z) dzx = 9} ,

€

where f(z) is a given load on . and 6 € [0,1] is a fixed volume fraction. Here,
and in what follows, £V stands for the N-dimensional Lebesgue measure in RV .
This problem, involving a sup-inf, is still out of our reach mathematically, and so
we turn to the characterization of the above limit when sup, inf, is replaced by
inf, . We may think of it not only as finding the “worst possible design”, but
also in terms of damage. Elastic materials are prone to defects that impair their
elastic stiffness, and we may want to predict the evolution of the damaged areas
and how they will be affected by the scaling in the thickness. In this setting,
{x =1} and {x = 0} represent the damaged and healthy regions, respectively.
We take the viewpoint that damage evolution is governed by the principle of
global energy minimization (see [5], [31]), precisely, for fixed € > 0 we look for

inf d. (x, u)
X, U

where

so={[

u=0o0n 0w x (—¢,¢), x € L=(Q(e);{0,1}), %/@ x(z) dx = 6} ,

(xWy + (1 — \)W2)(Du)dz — /Q f-udx + Ii/Q xdz :

€

and k is the critical energy release rate. The characterization of the resulting
energy density has been obtained in a fairly general context in [18], but here we
restrict ourselves to the case treated in [28] where the inclusions are of cylindrical
type, i.e., x = x(z.), with z, denoting the pair of variables 1, z5. Precisely, if
6o € [0,1] and if v € W1P(w; R?) for some p > 1, with W; growing at infinity not



faster than a polynomial of degree p, we show that there is an energy density
W on the middle plate w, intrinsically related to that found by H. Le Dret and
A. Raoult (see [38]), such that

. — 1
G(bp,v) = 1nf{2/wW(6,Dav) dz, : £2—(w)/w9d:ca = (90},

where
G(Oo,v) =
inf lim 1/( (o)W1 + (1 — xe(z0))Wa) Dlev dxodx
fxe b {ve}|e—0t € o Xe\Ta 1 Xe(To 2 ale c 3le a 3
v: € WHP(Q;R?), x. € L (w; {0,1}),
v. = v in LP(Q;R?), £21(w) /ng(ma) dz, = 9}. (1.1)

Here 2 := w x (—1,1), and we used the change of variables (yq,ys3) € Q. —
(T, x3) € Q, with yo = x4, y3 = exs. We write z!, when z, varies over the
unit square Q' of R?, the derivative D, stands for the pair of partial deriva-
tives (D := 0/0x1, Dy := 8/0xy), |xo| := \/2? + 23, and dz, (resp. dz!)) will
denote dzidzy (resp. dz'dzl).

Next, we address the regularity of equilibrium configurations for the thin
structure, i.e. minimizers of the mapping v € WP (w; R?) — I(6y,v) for fixed
constant volume fraction 6y, where

1(0,v) ::/W(H,Dav) dz,, .

It is well known that regularity properties of (local) minimizers for vectorial
variational problems are extremely hard to get, and there is not a systematic
theory that will provide insight into this issue. Recently some progress on
this direction has been made under certain constitutive hypotheses on W, and
initially this analysis was undertaken mostly within the framework of image
segmentation in computer vision (see [17], [19], [23], [25], [41]). As it turns
out, although the physical or technological motivations are not related, some
mathematical models for image segmentation and for the interplay between
fracture and damage for (non linear) elastic materials are, essentially, the same,
involving similar mathematical challenges and difficulties. As an example, in
the image segmentation models proposed by D. Mumford and J. Shah (see [41])
and in the fracture and damage set up used by I. Fonseca and G. Francfort (see
[27]), we consider the free discontinuity problem

G(u; K) == / W (8o, Dov) dz + 3 |u—g|qd$a+nH1(Kﬁw)
w\K w\K



where HN—! stands for the N — 1-Hausdorff measure, K is a closed set, 8,7 > 0,
p,q>1,and v € C'(w\ K). This model was studied at length by E. De Giorgi
and his collaborators (see [23], [25]; see also [10], [11], [12]) in the case of scalar-
valued v, and the quest for existence of minimizers for G led to the relaxation of
this functional in a functional space where compactness is guaranteed. Precisely,
L. Ambrosio and E. De Giorgi introduced in [24] the space of functions of special
bounded variation SBV (see also [8], [9], [10]), and they re-wrote G as

Gratax (V) 1= / W (6o, Vav) dza +ﬂ/ v = g|* dzo +nH'(S(v) Nw)  (1.2)

where v € SBV (w;R?). The distributional derivative Dov of v in w can be
written as
Dov=Vav|w+ (vt —v )@ vHS(v),

the jump set of v, S(v), is 1- rectifiable, v is the normal to S(v), and v™*, v,
are the traces of v on S(v). As it is usual, we use the symbol | to indicate
the restriction of a measure, i.e., if u is a measure on a set A and if B C A is
p-measurable, then p|B(X) := u(BNX) for all X C A. The model (1.2) was
used in [27] in the vectorial setting to treat the interplay between fracture and
damage in an elastic material.

Once existence of a minimizer v for G..,., is established, the next task is
the search for regularity properties of local minimizers of I(fg,-) which will
guarantee that (v;S(v)) is now a minimizer for the initial energy G. We recall
that v is a local minimizer for G if

/ W(Go,Dav)dxag/ W8y, Dou) dzq
B, B,

for all ball B, C w and for all u such that u—wv € Wol’Q(BT; R?). In other words,
we would like to be able to assert that S(v) is “essentially closed” and that
outside S(v) the function v is smooth. Precisely, we want to prove that

H'((S(v) \ S()) Nw) =0

and
veW(w\ S();R?).

In the scalar case, where v : w — R?,d = 1, this result was obtained by De
Giorgi, Carriero and Leaci in [25] for the Dirichlet integral, and later extended
to the vectorial case, where d > 1, by Carriero and Leaci (see [19]) when W (£) :=
|€]P, p > 1. More recently, in collaboration with Acerbi and with Fusco (see [3],
[4], [29]) we were able to prove that local minimizers v € W12(w; R®) of I(9,-)

are in C%7(Q;R3) for all v € (0,1), whenever the density energy W is of the
form

(0,6 = 5l€l + h(M@), (13)



the function h grows linearly at infinity, it is not necessarily convex, and M (&)
denotes the vector of all 2 x 2 minors of . In turn, this regularity entails that
minimizers v € SBV (w; R?*) of

uH/w <%|Vu|2+h(|M(Vu)|)> d:ca+ﬂ/w|u—g|qua +pH(S(u) N w)

are “classical” minimizers in that v € W12 (w\ S(v); R*) and H!((S(v)\S(v))N
w) = 0. We use an argument similar to the one introduced by P. Bauman, N.
Owen and D. Phillips in [13] (see also [26]) to exploit the higher integrability
of two auxiliary functions of the derivatives of u, A := (|Dyul|* — |Dsul|?)/2,
B := Diju A Dyu. As it turns out, when h(|M(&)]) = |£| then A and B are
harmonic functions. For related regularity results, see also ([22], [37]).

In Section 2 we will give a brief overview of the optimal design problem for
thin films with cylindrical inclusions, and in Section 3 we will outline the proof
of Holder regularity for local minimizers of I(6,-) when (1.3) holds.

2 The 3D-2D Optimal Design Problem

We consider two energy density functions W; : R¥*® — [0, +c0), i = 1,2, such
that
aléP < Wi(€) < B(L+|¢P), € e R¥3,

a,B>0and 1 <p< +oo. As in [38], for i = 1,2, we define
Wi(€) = inf Wi(€lz), €eR>?,
z€ER3

where (£|z) denotes the 3 x 3 matrix which first two columns are the ones of &
and third column is the vector z. B
For a fixed volume fraction 6y € [0, 1] and for £ € R3*? we set

W60 = wi{ [ (T + 0= X)) €+ Dap)ds,

P e W@, [ sl = eo} |

!

Also, if § € L*>(w;[0,1]) we define the energy

inf
{XE } {'UE

“

lim = Xs () Wi+ (1 — xe(20))Wa) <Da1}5

1
—D3v5> dxodxs :
-0+ z—: €

v € WHP(O;R?), xe € L®(w;{0,1}),

v. = v in LP(Q;R?), x. = 6 in L™®(w; [0, 1))

Recalling the effective energy G as introduced in (1.1), it can be shown that



Theorem 2.1
J(6,v) :2/W(0(xa),Dav(xa))dxa (2.1)

and

G(6p,v) = inf {J(G;v) : ﬁ%(w)/wﬂ(ma)dma = 90}. (2.2)

Although we will not present here a complete, detailed proof of this theorem,
we indicate the main ideas of each one of the following five steps of the proof.
Step 1: We claim that

J(0,v) > 2/ W(0(zo, Dov(zy)) dzy . (2.3)

w

Consider any admissible sequence pair {(xy,v,)} with corresponding &, — 0F.
We localize the energy by constructing the sequence of finite, Radon measures
with traces on the open sets A of w given by

wn(4) = [anl (Davn $D3U")
+(1 = Xn(2a))W1 (Davn

Lngn)} L3[A x (~1,1).

To establish (2.3) we must show that
A
dc?

Let zy be a Lebesgue point for  and a point of approximate differentiability for
v. Choosing a suitable sequence of radii §; — 0% such that p(0Q’(z0,d;)) =0,
and changing variables, we have

(z0) > 2W (0(20), Dav(w0)) L* ace. 2y € w.

du L 1 , '
d—ﬁ(ﬂco) = jl}?oo g w(@ (%;5]))

=lim i2 lim (Xn(@a)W1 + (1 = xn(za))W2) (Davn

1
= —ngn> dz,dzs
Grko0 0F not09) iy 67) x (~1.1) en

= dim [ (@)W + (L= Yy (52)) W) (pav,-,n

J,n—+oco Q

5.

—]ngj,n> dzr,dzs
€n

Z ]nhan}roo (Xj,n(ma)Wl + (1 - ij(ma))W?) (Davjm) dwade;

where
Xin (7o) = Xn((20)a + 0;7),),

vn ((Z0)a+0;2,23)—v(20)
- .

’Ujﬂl(mlou .273) =



Since lim;j 4 oo limp, 4 o0 |[Vj,n—Dv(20) 2, |[Lr (@) = 0, astandard slicing method
to connect v, to x — Duv(xg)z!, near the lateral boundary 0Q’ x (—1,1),
together with Fubini’s Theorem, entails

d ) — —

#(mo) > lim sup / (X (@) W1+ (1 =xjn(Ta))W2)(Dawj ) dzgdzs, (2.4)
Jjn—+o00 JQ

where Dyw;,, = Dov(zo) near Q' x (—1,1). By definition of W, the proof of

(2.3) would be concluded if

|| ol daiy = (a0)
Ql

If this is not the case, then we must modify slightly the support of the charac-
teristic function x;,, so as to satisfy this volume constraint without increasing
too much the resulting total energy. We illustrate how to resolve this problem

when

/ Xjn(zh) dzl, < 6(z) < 1.
Q/

The limiting cases 6(x¢) € {0,1} must be treated with a different argument.
Since

1
: . ! / — 7 T
j,nlir{il-oo Q' Xj’n(xa) dxa jlgi-noo 5? nErJIrloo Q' (20,0;) Xn (xa) e
lim / O(za)d
= m — X X
j—)+00 5‘? Q’(.Z‘o,(sj) @ @
= 9(330),

we have that
lim £2(Aj,n) = 6(zp),

j,n—+o0

where
Ajpi={za € Q" : xn((w0)a + 6;2,) = 1}.

As, by assumption, £(4;,,) < 8(zo), we set

)

1
K]’m = =
H\/G(wo) — L2(Ajn)

where [[z]] stands for the integer part of . Then, for j,n, large enough and
since 6(zg) < 1, we have that

K n(8(z0) — £3(A;n)) < /6(x0) = L2(A;0) < 1~ 8(x0),



so that it is possible to decompose @'\ A4, ,, (a set of measure at least 1 —6(zo))
as .
QI \ Aj,n = UfijinAl U B,

where A; are mutually disjoint and
L2(A) = 0(x0) — L2 (Ain), i=1,....K;j,.

Due to the coercivity of W; and by (2.4), {Dqwj} is uniformly bounded in
L?(Q), and so there exists an index i(j,n) € {1,..., Kj,} such that

C
(14 |Dowjnl?) dzg < .
/A ! Kjn

i(j,m)

With 1141'(1-,") denoting the characteristic function of fli(jm), define

Xjmn = Xjn + 14,

i(Gm)’
so that
/ ij d]?a = 9(330)
Q/

Clearly

d - . T . g
7z (0) 2 liminf /Q ()W (1= () W2) (D ) o
H Iy (=

> W (8(o), Dav(wo))-
To conclude (2.3) we must assert now that

J(6,v) < 2 / (0, Do) daa. (2.5)

w
We proceed by approximation in Steps 2—4, where we localize J with respect to
the domain of integration. Precisely, if A is an open subset of w, we define

J(@,v;A) =

1
inf lim—/ (@)W1 + (1 = Xe (@) W: (Davs
o ], K@t (1= xelwa)) W)

v: € WHP(A x (=1,1); %), x. € L®(w;{0,1}),

1
—D3U5> dx :
€

v. v in LP(A x (=1,1); R?), x. = @ in L>(w; [0,1])}.

Step 2: (2.5) holds for A = Q'(a,r) C w, 8, constant and v affine. With no
loss of generality, and upon a suitable translation and rescaling, we may assume
that A=Q’,ie.,a=0,7r=1.




By definition of W, and using a measurability selection criterium, we may
find x, € L*>(Q';[0,1]), with fQ’ Xo(2) dz!, = 0, o, € Wy ™(Q'; R?), and
&, € LP(Q'; R?), such that

(6, Dav) = lim [yl W1+ (1= () T72) (Dav+ Dagpy | (k) .
n Q'

In addition, the continuity and growth properties of W;, and the density of
W™ (Q';’?) in LP(Q'; R?), allow us to assume that &, € W™ (Q'; R?).
Extend ., ¢y, &, Q'-periodically to R? and set

1 1
Unn(Ta,x3) == v(z) + ﬁtpn(nxa) + ﬁxgén(n:ca),

Xnn(Ta) == Xn(NTa)-
Note that

nllglJr nll,rfoo lvn,n = vllze(@mre =0,

lim lim ‘/Ixmniﬁdx'a—/q Oy dzl | =0

17*}0+ n—-+oo

for all 4 on a countable, dense subset of L!(Q), and also

lim lim (an(ma)wl + (1 - Xn,n(xa))W2)

n—0t+ n—+oo
(Davn + Da‘pn,n('ra)

= Jm lm o)W+ (1= x(na)) W)

1
(Dav + Doc‘Pn (nma) + E$3Da£n (nma)
= 2W (6, Dyv).

n2D3vn7n) dzodxs

& (nma)) dz, dzs

Therefore, we may find a decreasing sequence 7n(n) N\, 07 such that, setting

Un = Up(n),n> Xn ‘= Xn(n),n>

we have
v, =von Q' x (—1,1), (2.6)
and
vp = vin LP(Q; R?), x, = 6 in L*°(A),
with

J(v,0; A) < liminf /(Xn(:ca)Wl + (1 = xn(za))Ws) (Davn

n——+00 Q

n?Ds vn) dxodxs

=2W (0, Dyv).



Step 3: Given the matching boundary conditions of the sequence {v,} ob-
tained in the previous step (see (2.6)), and since any triangle T on the plane
may be covered with squares of the type Q'(a,7),r > 0,a € R%, up to a set
of arbitrarily small measure, it is now clear that a simple covering argument
will ensure that (2.5) still holds for a piecewise constant function 6, a piecewise
affine function v € W1?(w; R?), and a triangular domain 7', where the sequence
{en} for the upper bound approximating pair {(xn,v,)} is taken always to be
{1/n}.

Step 4: In order to conclude the proof of (2.5) for v an arbitrary element
of WhP(w;R?) and # an arbitrary element of L>(w;[0,1]), we let {vg, 8k} be a
sequence of piecewise affine and continuous v’s and piecewise constant 6’s on a
triangulation of w such that, as k — +o0o,

v — v in WHP(w; R?)

and
0 — 0 in LP(w;[0,1]),1 < g < +o0.

The proof now follows from Step 3, via a standard diagonalization argument, and
using the fact that (6,€) € [0,1] x R3*2 s W (4, &) is an upper-semicontinuous
function.

Step 5: Finally, in order to establish (2.2), we start by remarking that,
trivially,

G(bo,v) > inf{J(G;v) : ﬁ%(w)/wﬂ(ma)dma = 90}.

Indeed, if {x.} is such that

1
Eg(w)/XE(ma)dmazem

then a subsequence of {x.}, still indexed by e, is such that

Xe =0 in L™ (w;[0,1]),

with

(o

1
5w /wﬁ(ma) dz, = 6.

Conversely, let § € L>°(w;[0,1]) be such that

~—

1
() /wa(xa)d:ca =6,

and consider a sequence {x,,Vn, €} such that

Xn = 60in L®(w;[0,1]), v, = v in LP(Q;R?), &, — 07,

10



with

n——+oo

1
J(v,0) = lim Q(Xn(ma)Wl + (1 = xn(z0))Ws) (Davn 5—D3vn> dxodxs.

As in the proof of Step 1, we may construct another sequence of characteristic
functions x, such that

/ Xn(Zo)dz, =6y for alln
and

J(0,6) > limsup / (o (2a) W1+ (1= on(ra))T12) (D

n—-—+00

1
6—D3 w; drodrs

n

Z G(ao,’l}).

3 Regularity of Minimizers for a Class of Mem-
brane Energies

In this section we summarize the argument used in [4] (see also [3]) to obtain
Holder regularity for local minimizers of a certain class of energies which appear
naturally in the 3D-2D asymptotic analysis for thin films (see Section 2).

As before, w is an open, bounded subset of R?, and let & : [0, +00) — [0, 00)
be a C! function such that

(H1) h(t) < C(1 +t) for some C > 0;

(H2) there exist A € [0, 4+00) such that

lim AB'(t) = A;

t—+oo
(H3) there exist a, C' > 0 such that for all £ > 1

h'(t)—@‘ <o

Without loss of generality, we may assume that 0 < a < 1.
Given u € W%(w;R?) we define

Oou  Ou
M(VU) = a—ml 8—1'27

i.e., the 2-covector whose components are the 2 x 2 subdeterminants of Vu. Let
(see (1.3))

F(u) ::/ E|Vu|2+h(|M(Vu)|) dz.

11



where, for simplicity of notation, we write x in place of z,.
We claim that

Theorem 3.1 Ifu € W2(w;R?) is a W'2-local minimizer of F then u € C’g’j
for all v € (0,1).

As mentioned in the Introduction, under the constitutive relation (1.3) and
following the argument of [25], this regularity result will entail the existence of
minimizers v € SBV (w; R?) for G,..., satisfying

H'((S(0) \ S(v)) Nw) =0.

The method we will pursue here is well known in regularity theory and it
relies heavily on the properties of Morrey spaces LP* (see [32], [34]).

Definition 3.2 Given A > 0 we say that f € LP*w;R) if there exists a con-
stant C > 0 such that

|fIP de < Cp*
B, (z)Nw

for all x € w and 0 < p < diamw. The function f is said to be in LPMw) if
f € LPANW") for all W' CC Q.

It can be shown that
LPO(w) = LP(w), LP?(w) = L®(w), LPMw) = {0} if A > 2,

and that LP*(w) is a Banach space endowed with the norm

11l 2r2 (w) 32{ sup PfA/ |f|pd$} .
TEw, 0<p<diamw B, (z)Nw

Morrey proved that (see Theorem 3.5.2, [40])

-

Lemma 3.3 If u € W!?(w) and Vu € L>*w) for some 0 < X\ < 2 then
u € COM2(w).
In light of this result, to prove Theorem 3.1 it suffices to show that if u is a

Wt2-]Jocal minimizer of F then for all 0 < X < 2, with B,, Bg, denoting balls
in w of radii p, R, respectively,

A
/ |Vu|>dz < C (ﬁ) / |Vu|? dz + Cp (3.1)
B, R Br

for all 0 < p < R with Bg CC w. In turn, this inequality will follow from the
proposition below.

12



Proposition 3.4 If Vu € L>*(w; R?) for some 0 < X < 2 then
Vu € L20X (w;RY),
where go(A) = a+ A(1 — a/2).
In fact, using an iterative scheme where
Ao =0, Apg1:=qo(Ar),

then

k )

6] K2
m A\ = lm a (1——) — 9,
k—4o00 k—4o00 Pt 2

and we conclude that (3.1) holds for all 0 < XA < 2. We remark, however, that
the proof of Proposition 3.4 hinges heavily on the higher integrability properties
of the functions

o |D1U|2 — |D2U|2

A: 5 ,

B .= (Dlu) . (Dzu),

where Dyu and Dsu stand for the column vectors in R? of the derivatives of u
with respect to x; and to x,, respectively. Precisely,

Lemma 3.5 The functions A and B solve the system
AA =D}g-Diyyg
AB  =2Diyg,
where
g :=h(|M(Vu)|) = [M(Vu)| h'(|M (Vu)]).

In addition, if Vu € L*(w;R?Y) for some 0 < X\ < 2 then \/|A|+|B| €
[22a+A(1—) ((.U' Rd)
loc ’ :
We were unable to extend this two-dimensional argument to, say, N = 3,
i.e., we could not find A, B,C, solving an appropriate system of PDEs, and
entailing regularity for local minimizers.

PROOF OF PROPOSITION 3.4. Fix ¢ € W0172(w; R?), k € N, and assume that
Vu € L2 w; R??) for some 0 < X < 2. For € € R set u.(z) := u(x) + eg(z).
Local minimality of u entails

F
lim sup ——~——"= <0,

e—=0— €

13



which, in turn, yields

(M+1)/WVU-V¢d:c +/WG~V¢d:c

50/ \/|A|+|B||V¢|dw+9k/ Vul[Ve| d,

Ok := supy>y [A — W (t)], G = (G1,G2) and

G1 = Xjo<|M(Vu) <k} (A =R (| M(Vu)]))

G2 = X{o<|M(vu)|<k} (B'(|M(Vu)]) — A)
It can be shown that

|G| < C(k)(1++/]|A|+|B]) a.e. inw.
Next, for a fixed ball Bg CC w we solve the Dirichlet problem

(M +1)Av=divG in Bg
v —u € Wy *(Br; RY).

We have

VI T 1BI|V ldz + 6, /

NBgr B

(M—}—l)/B (Vu—Vv)-Vodz < C/ [Vu||Vélde,

so setting ® := u — v and using the fact that
Gl<cva. [ veP<c [ |vup,
BR BR

we deduce that

/ |Vu — Vo] dz < C (|A|+|B|)d:c+C’0k/ |Vu|? d.
Br

BR BR

Finally, Vv € L2 (Bg; R??) and for all 0 < p < R (see [32], Theorem 3, page
87)

)
/ |w|2dxgc(ﬁ)q / Vo2 dz + C(k)pt ™,
B, R B

R

from which we conclude that

) A
/ |Vu|? dz < C [(ﬁ)q +9k]/ \Vul? do + O (k)R
B R Bpgr

P

14



By (H2) if k is large then 6 is small, and a simple variant of Lemma 2.1 in
Chapter 3 in [32] will now yield

)\I
2dw<c (2 / 2de + Cp~
/13,,|VU| x < (R) BR|Vu| x+Cp™,

for all 0 < X' < ¢(A), and thus for X' = go()). L

The rest of this section is dedicated to the proof of Lemma 3.5, where we
will use the following auxiliary result (see [4]).

Lemma 3.6 Letp > 1 and 0 < A < 2. If f;; € Lﬁf‘(w) fori,j € {1,2} and
u e L () is a distributional solution of

Au=>"Di;fi
then u € LPA (w).

Proor oF LEMMA 3.5. We consider a variation of the domain. Precisely,
let ® := (p,70) € CL(Q;R?), and let ¢ > 0 be small enough so that, with
D (x) :=x +eP(x), then D, : O — Q is a smooth diffeomorphism satisfying

det D®.(x) =1+ ediv ®(z) + wi(x,¢),

det DB (y) = 1 — e div ®(2. " (y)) +w2(y, ),

where w;(-,€)/e = 0, as € — 0, uniformly in w. From the local minimality
assumption we have

d
-5 F e) =Y,
de le=0 (ue) =0

i.e.

1
/ {§|Vu|2 div® — VuVe - Vu] dx

- / (1M (Vo) B (|M (V)] = h(1M (Vu)]) ] div & da.
This equation may be rewritten as
/[A(Dﬂ/l — Dip) — B(D1¢ + Day)] dz = / —9(D1¢ + Davp) dx,

that is,
DlA + DQB = Dlg

DgA—DlB = —Dgg

15



and the first assertion follows. By (H3)

gl < CA+[M(Vu)|'™)

and so, assuming that Vu € L>*(w; R??), we have that |M(Vu)| € LI (Q; R)

and

1

ge LT " (w).

loc

We may now use Lemma 3.6 to obtain that

=
A,BeLn W),

loc

and by Hoélder inequality we conclude that

[A] +[B| € L22TA1=9) (),

L
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