Max-Planck-Institut
fur Mathematik
in den Naturwissenschaften

Leipzig

Some Remarks on the Article ”SU(N)
Quantum Yang-Mills Theory in Two
Dimensions: A Complete Solution” by
Ashtekar, Lewandowski, Marolf, Mourao
and Thiemann
by
Christian Fleischhack
Preprint-Nr.: 26 1998

.







Some Remarks on the Article
7SU(N) Quantum Yang-Mills Theory in Two
Dimensions: A Complete Solution”
by

Ashtekar, Lewandowski, Marolf, Mourao and Thiemann

Christian Fleischhack*

Institut fir Theoretische Physik
Fakultat fur Physik und Geowissenschaften
Universitat Leipzig
Augustusplatz 10/11
04109 Leipzig, Germany

Maz-Planck-Institut fir Mathematik in den Naturwissenschaften
Inselstrafie 22-26
04103 Leipzig, Germany

June 23, 1998

Abstract

The expectation values of Wilson loop products for the pure Euclidean Yang-Mills
theory on R x R given by Ashtekar et al. [ALM™96] are determined directly for all
piecewise analytic loops. For this a new kind of hoop independence is introduced and
their regularization scheme is slightly modified.

1 Introduction

For quite a long time the quantization of Yang-Mills theories has been investigated. One
of the main emphases is the approach via functional integration. The crucial point is the
definition of an appropriate measure dy on the space A/G of all connections modulo gauge
transformations. Heuristically one sets simply du := e 5D A, where S(A) is the Yang-Mills
action and DA is a kinematical measure on 4/G, but the resulting mathematical problems
are enormous. Some years ago, Ashtekar and Isham [AI92] developed an interesting idea
to overcome these difficulties. They considered a certain completion of A/G, the compact
Hausdorff space A/G. Now, Ashtekar and Lewandowski [AL93] were able to construct a
natural kinematical measure dug corresponding to DA, but the extension of S onto the whole
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A—/Q’ remained to be difficult. This problem was circumvented using the duality between
measures on A/G and positive linear functionals on the space of all Wilson loop products.
Using the lattice regularization, Thiemann [Thi95] and Ashtekar et al. [ALM™96] defined
these expectation values and received the measure dp.

Nevertheless, some technical problems remained open. The authors of [ALM*96] did not
specify the type of hoop independence used for the projection A/G — G™. Both the strong
independence and the weak independence [AL93| are not applicable — the first one because
obviously the lattice loops 3,, = pa;,meiyp;; cannot be strongly independent for lattices
with more than two rows and columns, and the second one because then the integral would
become ill-defined [AL93]. Furthermore, the authors of [ALM'96] used the completeness
of the plaquette loops (3,,, i.e. that the subgroup of the hoop group generated by the
By coincides with the subgroup generated by all loops in the lattice. But, in general, the
completeness is not guaranteed if one chooses arbitrary paths p,, from the base point to the
plaquette (x,y). So we will prove that there ezists a choice for the p,, such that the plaquette
loops f3;, are complete. For the same reasons, the proof of the decomposition lemma, which
ensures that any loop a without self-intersections can be expressed by a product of the loops
corresponding to the plaquettes in the interior of «, has to be modified.

The present article is intended to provide these missing mathematical details. Moreover,
we drop the restriction on quadratic lattices. We admit now any finite connected graph —
a "floating” lattice — for the regularization. For this we slightly modify the regularization
of the Yang-Mills action simply replacing a® (a...lattice spacing) by the area |G| of the
plaquette (see also [AK98|) and adapting the regularization to the given loops and not, as
usual, vice versa. Thus, the use of floating lattices allows us to calculate the Wilson loop
expectation values for all sets of hoops directly, i.e. without approximating them in a certain
sense by loops in a quadratic lattice and without a subsequent (naive) limit. On the other
hand we need a little bit more sophisticated — and, unfortunately, more technical — analysis,
even if we would consider only quadratic lattices. At the beginning we define a new type of
independence — the so-called moderate independence, which stands between the strong and
the weak independence and is well-suited to make the calculations mathematically rigorous.
We prove that it is strong enough to make the integration calculus still applicable. Then
we generalize the propositions in [ALMT96] to the case of floating lattices. The loops 3,
correspond now to the so-called flags fq, i.e. loops that run from the base point m to the
interior domain G' — the generalized plaquette —, traverse GG once and return to m. Choosing
a flag to each interior domain we get a flag world. The crucial point is now the proof that
there is a (moderately) independent and complete flag world for any graph. Moreover, the
generalized decomposition lemma yields that, if one refines the underlying graph, any flag
world can be naturally refined to a new (again moderately independent and complete) flag
world and each flag f of the old flag world is a product of exactly the flags of the new one
that correspond to domains in the interior of f.

By means of these propositions we can finally compute the Wilson loop expectation values
reusing the calculations of Thiemann and Ashtekar et al.

2 Preliminaries

In this section we summarize the basic facts about the space A/G of generalized connections
modulo gauge transformations following [AI92, AL93, ALM*96].



Let P be a fixed principal fibre bundle over the base manifold M with structure group G
and m any fixed point in M. Furthermore, let {U;} be a covering of M, {x;} a trivialization
of P over {U;} and j a fixed index with m € U;. In the following we suppose G to be either
SU(N), N > 2, or U(1). Connections on P are described by their connection 1-form A on P
or, equivalently, their localized forms A; on U;. Similarly, we describe a gauge transformation
by its corresponding equivariant map p : P — G or its localized forms p; : U; — G. We will
only consider C'*° connections and C'*° gauge transformations. The spaces of all connections
and all gauge transformations are denoted by A and G, respectively, and their quotient w.r.t.
the natural action of G on A is denoted by A/G.

Next, we define £,, to be the set of all piecewise analytic loops in M with base point m,
i.e. all piecewise analytic maps « : [0,1] — M, a(0) = a(1) = m. Two loops a; and ay

1
are multiplied by a; o ay(t) := o1(2¢), for £ € [0, 5]. Note, that o is not associative.
ay(2t — 1), fort e [i,1]

For any o € £,,, and A € A we define the holonomy h,(A) = ha(a) = h(a, A) € G as the
group element, which corresponds to the parallel transport w.r.t. A of Xj’l(m, ec) along a.
In the trivialization x; we have h(a, A) = Pe~ a4 if a is completely contained in U;. A
change of the trivialization yields a conjugation of h(«, A) independent of «. Moreover, we
have hohs = hqop for all o, B € L.

The fundamental idea of Ashtekar and Isham was to use the description of connections by
the traces of their holonomies, the so-called Wilson loops. First, they defined an equivalence
relation on L,,. Two loops ai,as € L,, are said to be holonomically equivalent a; ~ a»
iff ho,(A) = ha,(A) for any A € A. The equivalence classes [a] are called hoops'. The
hoop group HG is the set of all hoops with the well-defined projected multiplication of L£,,:
[a1] o [an] = [ag 0 ay] and [a] ! = [B] with 8(¢) = «(1 — ). For instance, two loops are
holonomically equivalent if they can be obtained from each other by reparametrization or
insertion of retracings. Second, Ashtekar and Isham made use of the so-called Wilson loops
T, : A — C defined by T(a, A) = To(A) = 5tr ho(A). Obviously, T factorizes over ~ and
G,ie. T :HG x A/G — C. Next, they defined the algebra HA :={f: A/G— C| f=
Yo ill— Ty, | nyni € Nye; € C} of all finite linear combinations of finite products of
Wilson loops and called its completion H.A with respect to the sup-norm on 4/G holonomy
algebra. Clearly, HA is a commutative C* algebra. This allows to use the powerful tools
provided by the theory of C* algebras. Due to the Gelfand-Naimark theorem there exists a
compact Hausdorff space M (H.A), the space of all characters of H.A, i.e. all nontrivial, linear,
multiplicative functionals on HA, such that HA = C(M(HA)). Giles [Gil81] had proved
that given all Wilson loops one can reconstruct the corresponding connection up to a gauge
transformation. Rendall [Ren93| observed that, therefore, A/G can be densely embedded into
M(HA). This justifies the Ashtekar-Isham definition A/G := M(H.A) of the space of the
generalized connections modulo gauge transformations. The elements of .A/G are denoted by
A. The isomorphism between HA and C(M(H.A)) is given by the Gelfand transformation

~: HA — C(A/G) with f: AlG — C.
fo— A — A

The theory of C* algebras yields also the measure theory and representation theory on

A/G. There is a one-to-one correspondence between Borel measures 1 on A/G, linear con-

'In the following we often drop the brackets. Then the symbol = means equality of loops and the symbol
~ means equality of hoops.



tinuous positive functionals F' on H.A and continuous cyclic Hilbert space representations ¢
of HA. More precisely, any such functional F' can be obtained by F(f) = fmfd,u}w with a
certain unique Borel measure pr and any such ¢ is unitary equivalent to the representation
¢ of HA on L?(A/G,dus) by multiplication operators ¢(f)y = f - with a certain measure
He-
Ashtekar and Lewandowski [AL93] (in the following shortly denoted by A-L) discovered
a second description of A/G via the hoop group HG.? They defined two kinds of indepen-
dence on L,,. A finite subset B := {;} of L,, is called strongly independent iff each f;
contains an open segment which is traced once and only once by 3; and which is intersected
by the remaining (; at most in a finite set of points. B is weakly independent iff to any
(g1,.-- ,9n) € G™ there exists an A € A such that hg,(A) = g; for all i. They proved that
strong independence implies weak independence. Then they could give a bijection between
A/G and the space Hom(HG, G)/Ad of all homomorphisms from HG to G modulo a hoop
independent conjugation. More precisely, any h € Hom(HG, G)/Ad yields an A, € A/G via
Ap(T,) := +tr h(c) and vice versa.

This graph-theoretical approach was used by A-L to define a natural integration measure,
the so-called induced Haar measure [AL93]. They introduced an equivalence relation on A/G
for finitely generated subgroups HG(8) C HG: Ay ~ A, with respect to HG(B) iff hz (v) =
g~ h, (v)g for all v € HG(B) with a (hoop independent) g € G. 75 : A/G — A/G/~ is
the corresponding projection. Thus, there is a bijection A/G/~ <— Hom(HG(B),G)/Ad
as for A/G and Hom(HG, G)/Ad. Hom(HG(B), G)/Ad itself is isomorphic to G#P/Ad if 8
is weakly independent. Therefore A-L could reduce the integration over A/G under certain
circumstances to the case of the integration over a finite dimensional Lie group. In detail, they
defined cylindrical functions, i.e. functions f being pullbacks 73 fg of continuous functions fg
on Hom(HG(B), G)/Ad = G#P/Ad with strongly independent 3 and showed that the set C of
all such functions is dense in HA = C(A/G). Now, they defined [ f duo := [gus,rq f8 118
and chose djg to be the Haar measure for each 3. Thus they got a well-defined, regular and
positive measure py on A/G, the so-called induced Haar measure.

Ashtekar and Lewandowski realized that jy could serve as a kinematical measure of phys-
ical theories in the functional integral approach. Since the elements of A/G are classical
potential configurations, the completion A/G seems to be a candidate for the space of his-
tories in the quantum regime and the physical measure is built from dp by multiplication
with e=®, where S is the physical action of the theory. The crucial point was to choose such
an S defined not only on A/G but on A—/Q Neglecting that fact, one could compute via
(fy = [ €5 f duo any expectation value of the theory supposed f to be a function on A/G.
Thiemann [Thi95] and Ashtekar et al. [ALM*96] (in the following shortly denoted by T-AT)
proposed a solution of that problem in the case of the 2-dimensional quantum Yang-Mills
theory using lattice regularization. The main problem was the replacement of the Yang-Mills
action Syy = i Il o Fuw F*dx by an expression whose domain is A—/Q The only a priori
available quantities are the generalized holonomies. This indicates the use of Wilson’s lattice
regularization. For this one places a finite quadratic lattice with spacing a and length R on
the 2-plane and defines Sy}, = gQ% >-o(1 — %Re tr hg) where the sum goes over all plaque-
ttes of the lattice. h denotes the holonomy around the plaquette (1. In the limit @ — 0 and

2Marolf and Mourdao [MM95] obtained a third description of A/G via projective limits. However, this
approach is unimportant for our purpose and we only mention it for completeness.



R — o0 one can show naively the regularized action to converge to Syj;. The advantage of
Sy, is its natural extendability to A/G. Now, T-A" could compute the expectation values
of the Wilson loops expected to determine the whole pure quantum YMs theory:

1

<Tal o Tan> = 7 dlu’o 67 hma—)O,R—)oo S;E]&Tal T TOLn
Z Jarg
1 TE
= lim / dpg e T, - T,, (1)
a—0,R— Za,R m
after exchanging limit and integral.® Afterwards they expressed each loop a1, ... , a, and each
plaquette loop O by a product of ”simple” loops (i.e. loops traversing exactly one plaquette
and connecting it with the base point m by conjugation), provided, however, a4, ... ,q, are

contained in the lattice. Under the assumption that these loops are independent they could
reduce the integration over A/G to the integration over G™, n finite. Finally, they computed
the integrals explicitely and got an algebraic expression depending only on the areas enclosed
by the loops. For general o, ..., «a, they suggested to approximate these loops naively by
lattice loops and to consider the limit of the expectation values, but this is simply given by
the limit of the enclosed areas.

3 Moderate Independence

In this section we will introduce a new type of independence being crucial for the considera-
tions below — the so-called moderate independence.

3.1 Why a New Type of Independence?

We consider a quadratic lattice with spacing a and length R = la, | € N*, ie. with [?
plaquettes, see e.g. figure 1. Now we assign (see [ALMT96]) a loop By = puy © fuy © p;’;
to each plaquette [, ,. @,y indicates the position of the plaquette, as follows: First, choose
a path p,, from the base point m to the bottom left corner (z,y) and then define 3, , =
Poy © foy© p;; where f,, is a path traversing [1,, counterclockwise. For our example, we
choose p,, to consist of a horizontal and a subsequent vertical path as in figure 1.

y —Q—

2
. N LAt
00 1 5 - —

Figure 1: Example of a lattice (I = 3) and the loop £,

Obviously, the set B of all these loops f3,, is not strongly independent (for the exact
definition see next subsection) because, e.g., 11 does not have a segment which is intersected
by any other f3,, at most in a finite number of points. Of course, one can prove that 3

3The factor & guarantees (T1) = 1.



is weakly independent, but this is not sufficient to allow the application of the integration
calculus. Therefore we need a third type of independence between these two ones; this will
be the moderate independence.

3.2 Moderate Independence: Definition and Position among the
Independences

In the following, 3 denotes any finite subset {3;} of £,, (or HG) and HG(3) the subgroup of
HG generated by 3.1 First, we recall the definition of the strong independence [AL93].

Definition 3.1 Strong Independence in £,,
B C L,, is strongly independent iff any (3; € 3 contains an open segment e;,
the so-called free segment, traced exactly once by [3; and intersected by any
Bj, j # i, in at most a finite number of points.”

Our definition of the moderate independence differs very little from the previous one. We
only replace j # 1 by j <

Definition 3.2 Moderate Independence in L,,
B C L, is moderately independent iff any (; € B contains an open segment
e;, the so-called free segment, traced exactly once by (; and intersected by
any f;, j < i, in at most a finite number of points.®

We have simply replaced the rigid condition of a simultaneous freeness of segments by the
flexible condition of an iterative freeness. We will see that this keeps the integration calculus
valid and makes the set of all plaquette loops (cf. fig. 1) independent.

We mention that the simple specification of the elements of a moderately independent
set B is not sufficient. If we say "3 is moderately independent” then there is an order of
the elements 3; € 3, such that the above criterion is valid. Analogously, the specification
"{B1, B2} or {Ps, B1}, resp., are moderately independent” should be clear.

Finally, we recall the definition of weak independence [AL93].

Definition 3.3 Weak Independence in L,,
B C L, is weakly independent iff for any (g1,...,9,) € G", n = #8, there
is an A € A, such that hg(A) =g; foralli=1,... n.

Obviously, this kind of independence can be extended from L,, to HG.

Instead of the previous two definitions being graph-theoretical we have here an algebraic
condition. Weak independence of B means no relations between the holonomies hg, and so it
ensures the freeness of the corresponding subgroup HG(3) C HG, see subsection 3.3.

The position of the moderate independence clarifies the next

Proposition 3.1 3 strongly independent = [ moderately independent =—> 3 weakly
independent.

Proof e The first implication is obvious.
e The proof of the second implication is technical and can be found in appendix A.
qed

4To avoid technical complications we set HG(0) = {[1]}.

>The intersection condition can be replaced by "e; N 3; = 0 Vj # i”. However, this yields to an
equivalent definition.

6Footnote 5 holds analogously in the case of moderate independence: "e; N B; =0 Vj <i”.
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3.3 Algebraic Consequences of the Weak Independence

Proposition 3.2 Let 8 C HG be weakly independent. Then the following holds:
1. HG(B) is freely” generated by 3.
2. Let there be given a v C HG, such that HG(8) = HG(vy). Then we
have:
~ is weakly independent <= 3 and ~ have the same cardinality.

Proof 1. See [AL93].
2. &
o For HG(v) = HG(B) there are expressions

K;
€(i,ki)
i~ [ Bk and B~ H ylj
k=1

=1
for any i,j € [1,n], n := #08 = #-, and thus
K, Litik) ek | e(i ki)
MINGRG )b (i k) .
Vi ™ H H ryi(j(i,ki),ljj(iqki)) VZ c []_, TL]

ki=1\lji,kg) =1

e Due to the first point 3 is a free system of generators for HG(3). Since v also
generates HG(B) = HG(v) and #v = #03, ~ is a free system of generators
for HG(B) = HG(v) ([Kur70]).

e Let there be given (g1,...,9,) € G™ and let H be the group generated by
{g1,...,9n}. Since HG(y) has the free rank n there is [Kur70] an epimorphism
7 : HG(y) — H with 7(v;) = g;.

e Since B is weakly independent, there exists an A € A with hg (4) =

Hz] 1 9 J]ll]) Vj, i.e. we have for all i € [1,n]

Ki Lj(iaki) ( ( f ) . ) E(i,ki)
= — IR )G (i,k;)
h’yz(A) - th 1/6,6(1 kg )(A) - H ( H gi(j(iaki)alj(i,ki))>

J(ik;) k;=1 l,](l,k,b)zl
K; Lj(z,k,b) o C(Z,kiz)
- 7 H H n(](laki)zl]‘(i,ki)) o 71'( ) o
N fyi(j(i;ki);lj(i,ki)) - Yi) = Gi-
k:iil lj(i,ki)zl

Thus, -« is weakly independent.

—
Let v be weakly independent, i.e. HG(v) = HG(B) is free. Consequently, 3 and
~ have the same cardinality [Kur70]. qed

3.4 Graphs and Loops

We recall some fundamental facts about graphs (see e.g. [Mas89]).

A graph (X, Xy) consists of a Hausdorff space X and a discrete subspace X, the space of
the so-called vertices. X \ Xj is a disjoint union of edges, i.e. open subsets e; isomorphic to
the interval (0,1). e; can connect one or two vertices. In the first case e; is called sling. Two

"In the case G = U(1) we understand by ”free” anytime ”abelian free”.



vertices are connected by a multiple edge iff there are at least two different edges connecting
these vertices. Iff a graph has neither slings nor multiple edges, it is called ordinary. Fur-
thermore, (X, Xy) is finite iff both the set of edges and the set of vertices are finite. A graph
(X', X)) is called subgraph (or refinement) of a graph (X, X,) iff X’ € X and Xj C X,.
Obviously, any (finite) graph is subgraph of an ordinary (finite) graph. In the following we
will briefly denote a graph by X instead of (X, X,). Additionally, X < X' means that X is
a subgraph of X'.

In a natural way one can choose an orientation to any edge. The initial (terminal) vertex
of an edge e is denoted by v, (v]). A path f in a graph is a finite sequence of (oriented)
edges (e1,...,e,), n <0, such that the terminal vertex of e; coincides with the initial vertex
of ;41 (1 <i < n) w.r.t. the chosen orientation. Iff n = 0, f is called trivial. Iff the initial
vertex v, and the terminal vertex U;I of f are equal, f is called closed path or loop with base
point vy = v}:. f is called reduced iff no edge is retraced immediately and is called genuine
iff no vertex is traced twice (exception: initial and terminal vertex can be equal). Finally, a
tree 1" is a graph without any non-trivial genuine closed path.

Obviously, any graph contains trees. If we partially order the set of all trees in a graph
using the inclusion, i.e. subgraph relation, we get

Lemma 3.3 Any tree in a graph X is contained in a maximal tree in X. If X is connected,
then a tree T in X is maximal if and only if 7" containes all vertices of X.

Using this lemma one can construct explicitely the fundamental group of a connected graph.
First choose a vertex vy and a maximal tree. Let {e) | A € A} be the set of all edges of X not
contained in T" and choose an orientation for each ey. Now denote by ¢, and ¢} the (unique)
reduced path along 71" from vy to the initial vertex of e, and resp. from the terminal vertex
of ey to vg. Finally, define a) to be the product of ¢, ey and t}f. We have

Proposition 3.4 The fundamental group 7(X, vg) is the free group generated by {a, | A €
A}, where «, denotes here not the loop itself, but its homotopy class.

The Euler-Poincaré characteristic x(.X) of a finite graph is per def. the difference of the
number of vertices and the number of edges.

Proposition 3.5 Let X be finite and connected. Then (X, vp) is a free group with 1—x(X)
generators and X is a tree iff y(X) = 1.

Let there be given now a finite set of loops B8 = {f;} C L,, in a manifold M. Note that
L,, contains only piecewise analytic loops. The image of 3 in M defines naturally a finite
connected graph I'g via the following (see also [AL93])

Construction 3.4 1. Mark all end-points of overlapping intervals of two loops and all
intersection points outside those overlapping intervals. These points
become the vertices of I'3g. Due to the piecewise analyticity the
number of vertices is finite.

2. Divide any ; into paths between "neighbouring” vertices and call
these paths edges of I'3. Again due to the piecewise analyticity the
set of edges is finite.

3. Since any [(3; is a loop with base point m, I'g is connected.



3.5 Relations between the Fundamental Group and the Hoop
Group of a Graph

In this subsection I' is a finite connected graph and m an arbitrary, but fixed vertex of I'.
Furthermore, we denote by HG(I") the subgroup of HG generated by all loops in T

It was an important observation of Ashtekar and Lewandowski [AL93] that there is a close
relation between the representation of a loop as a hoop and as an equivalence class w.r.t. the
homotopy in a graph. In detail, they got

Lemma 3.6 Two homotopically equivalent loops are holonomically equivalent, i.e. there is
an epimorphism ¢ : (', m) — HG(I'). ¢ is an isomorphism if G = SU(N).
For G = U(1) we have ker ¢ = [7(I',m), n(I", m)].

Consequently, in the case G = SU(N) two loops are holonomically equivalent if and only
if they can be obtained from each other by reparametrizations or (if necessary successively)
cancelling retracings. Obviously, we have

Lemma 3.7 Let T be a maximal tree and {a,} the set of the corresponding generators of
(I, m) as in Proposition 3.4. Then {a, } is strongly independent and complete

in I, i.e. we have HG({an}) = HG(D).

The free segments are the edges e, not contained in 7. Additionally, one can express any
finite set of hoops by a finite set of strongly independent hoops [AL93].

Lemma 3.8 For any finite set [3] of hoops there is a set o C L,,, such that
1. HG(B) C HG(a),
2. « is strongly independent and
3. #oa =rank 7(I'g, m).

For this choose the natural graph I'g of 8. Choose now some generating set a of the funda-
mental group 7(I'g, m). Obviously, e fulfills the required conditions.
Now we want to investigate the independence of loops.

Lemma 3.9 Let n be the rank of 7(I';m). Then any 8 C £, with #8 = n and HG(8) =
HG(T) is weakly independent.

Proof Choose any maximal tree 7" in I and a corresponding system {«a,} of generators of
m([y,m). {a,} has n elements and is a free generating system. Due to Lemma 3.7
{a,} is strongly independent and thus weakly independent. Proposition 3.2 finishes

the proof. qed
Generally, one can not conclude that 3 is even moderately independent. To see this let
7(I',m) be generated by two loops ai,ay as in Proposition 3.4. Set 3, := ajasa;’ and
B = .

e We have HG(B) = HG(T) = HG({a1,a2}), because a; = B; '3 and ag = By 312

e Suppose {f, Oz} are moderately independent. Any segment of (3, is already traced by f;.
This is a contradiction to the assumption 35 has a free segment.
The case "{ (3, 41} are moderately independent” yields an analogous contradiction.

Thus 3 is not moderately independent.
We finish this section with a criterion for the completeness of loops in a given graph.
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Proposition 3.10 Let " be a finite connected graph and 3 a set of moderately independent

loops in I'. Then is B complete w.r.t. I' if and only if the cardinality of
(3 equals the rank of (T, m).

Proof The = direction is simple. Due to Lemma 3.8 there is a set a with HG(a) =
HG(T') = HG(B), whose cardinality is just equal to the rank of 7 (I, m). Proposition
3.2 yields that a and B have the same cardinality.
The <= direction is a little bit technical.
The free segments of the (; are as usual denoted by ¢; and the cardinality of 3 by n.
Suppose first that no ; has a retracing interval.

1.

W.l.o.g. the free segments e; of 3; are edges of I'. Otherwise, if necessary, restrict
any e;, such that it is still contained in only one edge k;. Since 3; has no retracing
intervals, the whole k; is a free segment of ;. Thus one can set ¢; := k;.

The graph T':=T'\ U;_,{e;} created by removing all free segments is again a

connected graph.

Set I'; := I'\ U;_;{e:}. Then T',;; =T, I'y = T". Due to the moderate indepen-

dence of the 3; we have 3;Ney =0 Vi’ >4, i.e., §;isaloopin I';;;. Suppose T

is not connected. Then there would exist a j € [1,n], such that all I'; with ¢ > j

are connected, but I'; is not connected. Since (3; is a loop in I';1; and [; passes

e;, f; has to pass vertices of both connected components of I'; = I';1; \ {e;}.

Thus e; must be passed at least once in each direction by 3;, i.e. we have a

contradiction to the assumption that e; is a free segment. Thus, I'; is connected

for all 7 € [1,n + 1].

T is a maximal tree in ['.

Due to Proposition 3.5 we have n = rank n(I'ym) = 1 — x(I') = 1 — ep + &r,

where er and kp are the numbers of vertices and edges of ', respectively. Since

T =T\ ,{ei} we have kp = kr — n and obviously er = er. For T connected,

we have x(T) = er —kyr = ep — kp +n = x(I') + n = 1. Thus T is a tree in I’

due to Proposition 3.5. 7' is even maximal because 1" contains all vertices of I.

Let e := {a;} be a free system of generators of 7(I', m) due to Proposition 3.4

for the just constructed maximal tree 7" and the edges {e;}. Thus, « fulfills

HG(a) = HG(T). W.lo.g. «; traces the edge ¢; in the same direction as ;. We

show that 3 is complete in I'.

a) [ is aloop in T U{e;} = I'14q, where e; is traced once and in the same
direction as ay is. Thus (y = t,ejt_ ~ oy with certain paths ¢4 in 7', i.e.
HG({P1}) = HG({ar}), ie., {41} is complete in [y 4.

b) Let HG({f1,...,0:;}) = HG(Tir1) = HG({aq,...,q;}) hold for all i <

j. We have now f; = kj;_ejk;_, where k;. are some paths in T'j4 \
{e¢;} = I';. Furthermore, we have o; = ¢, e;t;_ with t;, C T C T,
Thus g; ~ kj,+tj_jr o tj_,ikj,—- Since kj7+tj_7i and tjjikj,_ are loops

in Tj, we have [k;t4],[t; k-] € HG(L;) = HG({on,...,a51}) =
HG{P1,... . Bj—1}). Due to a; ~ tj,+k;iﬁjk;itj,, € HG{B,-..,0i})
we have HG({a1,...,a;1} U {ay}) € HG{B,...,0;}). Since f; is
a loop in I'j1y, we get immediately the D relation, ie. HG('j11) =

HG({a1,...,0;}) = HG({B1,...,B;}). Thus {B,...,05;} is complete in

T
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The induction yields also HG(8) = HG(a) = HG(T41), ie., B is complete in
Fn+1 - F
We allow now the (; to have retracing intervals. Denote by ! the loop that remains
after cancelling all these intervals in ;. Obviously, (! lies in the same hoop class as
B;, i.e. HG(B) = HG(B'). Thus, since we have already proven the proposition for
the retracing-free 3', we get immediately the claim for arbitrary 3. qed

4 Flag Worlds

This section provides some facts about the hoop group of a graph ("lattice”) I' in the two-
dimensional manifold M = R?. For this we can specialize the facts of subsection 3.5 to the
case of planar graphs (see e.g. [Hal89]). These have a crucial advantage: one can define
domains enclosed by the graph edges. The set of all these domains induces a basis of the
corresponding hoop group HG(I'). Finally, we will investigate the behaviour of that set under
refinement of the graph T' generalizing the results of T-A™.

4.1 Planar Graphs

This subsection collects some basic and simple facts about planar graphs and is intended to
clarify the notations. We call a graph X planar iff there exists a homomorphism ¢ : X —
' € R%. We identify X and T in the sequel. Furthermore, in the following any graph is
supposed to be planar, finite and connected.

Any graph is the complement of a disjoint union of domains. Exactly one of them if
unbounded — the so-called exterior domain Gey;. The set of the remaining domains, the so-
called interior domains, is denoted by Ly (') and we set L(I') := Ly (') U {Gext}. We say
that a domain G is contained in I iff its boundary 0G is in I’ and G' N Gey = 0.

One easily proves Euler’s polyhedron formula ¢ — x + A = 2, where ¢, x and A are the
numbers of vertices, edges and domains, resp., of the graph. Since A\—1 = 1—(e—x) = 1—x(T'),
we have using Proposition 3.5

Lemma 4.1 The number of interior domains of a graph I is equal to the rank of 7(T", m).

We are now interested in the behaviour of L(I'") under refinement of I''. Clearly, if we refine
a graph 1" to a graph I', then any domain of I is refined into a certain set of domains in I
(see e.g. figure 2). We have in detail the simple

Proposition 4.2 Let I' < T'. Then the following holds:

1. Forany G € L(T'),G" € L(I") we have GNG' # ) = G C G'.
Especially, two interior domains of one and the same graph are disjoint
or equal.

2. Forany G € L(T') there exists exactly one G' € L(I") with GNG" # 0.

3. For any G’ € L(I") there exists exactly one Lo C L(T'), such that
GﬂGI%®<:>G€LG/ and UGeLGIGQGI'

4. Let now G’ be any domain in I', not necessarily an interior domain.
There is exactly one set L (I') C Liy(T'), such that for all interior
domains G holds: G € Le:(I') <= GNG # 0 and Uge, , G 2 G

11



L(F) = {G17 G27 G37 G47 G5} U {Gext}
L(I") ={G15, G5} U{GL

ext

Examples:
G4QGQ5#®:>G4QGZ5

For G there is exactly one domain (G),)
in L(I'"), such that Gy N G, # 0.

For G5 there is exactly one domain é)Géxt)
Gext in L(I'), such that G5 N G|,

ext

Exactly {G4, G5} corresponds with G;.

Figure 2: Example for the decomposition of domains

We call L(I") a refinement of L(I') (and analogously for Ly, ) iff ' is a refinement if I".

Definition 4.1 A domain G C R? is called simple iff it is the interior of a Jordan curve.
A graph I is called simple iff each of its interior domains is simple.

Finally, we need

Proposition 4.3 Any ordinary graph I' is subgraph of a simple, ordinary graph I"” whose
exterior domain coincides with that of I'.

The proof is quite easy. First one eliminates the retracings, second the repetitions of edges,

and finally the repetitions of vertices by inserting appropriate edges as demonstrated in figure
3.

®

U1

Figure 3: Cancelling (a) retracings, (b) repetition of edges, (c) repetition of vertices

4.2 Boundary Loops and Flags
We start with a simple

Lemma 4.4 For any simple domain G C I' and any m € I'g N OG there is exactly one
genuine loop® ag 7 in I' with base point m, such that
e agm = 0G and
® g traverses the domain G counterclockwise.
Vice versa, any such loop determines exactly one simple G C I,
We call ag 7 boundary loop of G with base point m.

8We recall that we do not distinguish between loops and hoops in the sequel. The symbol = means equality
of loops and the symbol ~ means equality of hoops.

12



Analogously, for any G C I' and any m € 'y N OG there exists a loop agm in I' with base
point m and the properties above.

Now we are interested in loops with base point m, that traverse only one domain G in I'.
This is provided by

Definition 4.2 Flag
Let G be a simple domain in a graph I'.

We call a loop fg m,m flag with base point m, flag point m and domain G
iff
[ = P mps
o, 1s a boundary loop of G with base point m and
Pmin 18 a path from m to m in I
there is a v € G, such that
Pmin = PmoPoins
Pmw NOG = {U}a
Pmo traces neither an edge nor a vertex twice and
Poin € OG holds.
Then p,,7 is called flagpole.
We call fg mm minimal iff v =m.

Since [' is connected, we get from Lemma 4.4

Lemma 4.5 For any tripel {G, m, m} with the above properties there exists a corresponding

flag fc m,i-
o Pmim
minimal flags non—ﬁnéglmal no flags
........................................................................ i
SR I P B IR SSSSIEist IR SO I RS
LG ol SRR SRR T N
e ) Pmm e o e TS
P S L I SN e SRLaD PRI b A

ag,m m=uv P

mm
pmm ———

m m m m m

Figure 4: Flags: Examples and counterexamples

Remark 1. To any simple domain G and any m € Iy there exists a minimal flag.

For this choose a maximal tree 7" and an m' € 0G N Iy. Furthermore, choose
the shortest path p from m to m' along T'. Let m be the nearest to m (w.r.t.
the up to there traced edges of p) point in G N p and p,,7 the corresponding
initial path of p from m to m. Obviously, fomm = pmmag,mp;llm with the
boundary loop ag 4 is a minimal flag for G.

2. All flags beginning with the same p,,, are equal modulo holonomy equivalence,
esp. any flag is holonomically equivalent to a minimal flag.
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3. For G = U(1) all flags to one and the same domain are holonomically equiva-
lent.

Let f; = pmmiag,mip;llﬁ”,i =1,2. We have
i = Pminy QG Py ™ Prmiia pmlﬁlQOéG,mQP%ime;z}ﬁf
N~ P P Py P OG s Py P Py s Prig
~ pmﬁhpﬁhﬁmpr_nﬁupmﬁupr_ﬁlﬁmpr_nmlpm’fleaG,ﬁmpr_nﬁzQ
~  fa
Pinyin, 18 any path from m; to my along 0G. In the last but one step we used
the commutativity of HG O HG(I') induced by the commutativity of U(1).

4. Two flags to disjoint domains are non-overlapping.

4.3 Flag Worlds: Definition and Existence

In this and the next subsection we only consider simple graphs, i.e. graphs with only simple
interior domains, to avoid technical complications.

We are looking for a set 3 of hoops, such that any hoop in I' can be expressed by a product
of elements of 3, i.e. HG(B) = HG(') holds. Furthermore, we are interested in integrating
cylindrical functions over HG(3). For this we need the moderate independence of 3, that
means at least the weak independence. Due to Proposition 3.2 that is guaranteed only if the
number of elements of 3 equals the number of generators of HG(I'), i.e. equals the number
of generators of the fundamental group 7 (I',m). This in mind one could choose B to be a
system of generators as in Proposition 3.4. But, because of our regularization we need loops
enclosing an area being as tiny as possible, i.e. enclosing only one interior domain. For this
the above defined flags are well-suited. We already know that the number of interior domains
of I' equals the rank of the fundamental group (cf. Euler’s polyhedron formula in section 4.1).
Thus the following definition is obvious.

Definition 4.3 Flag World
A set F of flags is called flag world to the simple graph I' (with base point
m) it F = {fc | G € Lin(T')}, where fi is any flag to the domain G and
to the base point m.
F is called complete ift HG(F) = HG(T).

Using Proposition 3.2 we have immediately
Corollary 4.6 The flags of a complete flag world are weakly independent.

Now we are interested in moderately independent flag worlds because they are necessary
for the integration calculus and because of

Proposition 4.7 Let F be a moderately independent flag world in a simple graph I". Then
F is complete.

Proof T is a finite, connected graph and F is a moderately independent set of loops in I,
whose cardinality is equal to the rank of 7(I',m) due to Lemma 4.1. Proposition

3.10 finishes the proof. qed

We can construct naturally a flag world to any tree as follows.
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Definition 4.4 Let T be a maximal tree in a simple graph T.

F is called T—flag world for I' iff the following holds for all flags f € F:
1. f is a minimal flag.
2. The flagpole of f is a path in T

Proposition 4.8 Let T be a maximal tree in a simple graph I'.

1. There is a T-flag world for T'.
2. Any T—flag world for I' is moderately independent.

From this we get the crucial

Corollary 4.9 For any simple graph I' there exists a moderately independent, i.e. also

complete flag world.

Corollary 4.10 Any loop in I' is holonomically equivalent to a product of mutually non-

overlapping loops.

Proof (Proposition 4.8)

First, let I be a tree, i.e. I' = T. Then there is no interior domain and therefore

no flag, too. We have F = () and HG(F) = {1} = HG(I).

Now, I' is not a tree. Let T' be a maximal tree in I" and E := {e,} the correspond-

ing set, of edges of I not contained in 7. Now we can construct [' from 7" inserting

successively edges e). The intermediate graphs are denoted by I'y. This allows to

use induction on the number of interior domains increased exactly by 1 in each

step. We can insert these edges, such that any new edge e, lies on the boundary

of the corresponding graph I'y.® Thus the interior domains of the intermediate

graphs are simple due to Liy(I'y) € Lin(I'). Obviously, any 'y is finite, planar

and connected.

Suppose the proposition holds for any graph with £ — 1 > 0 interior domains.

Now, I' has k interior domains, 7" and E are chosen as above and e € E is an

edge in OI'. We set ' :=T"\ {e} and E' := E \ {e}. By inserting e in I we get

a new (simple) interior domain G, i.e. Liy(I') = Lin(I") U {G}. Obviously, T is

also a maximal tree in IV and E’ is the set of all edges of I not contained in 7.

[ has exactly k& — 1 interior domains and we have by induction:

1. There exists a T-flag world for I'".

2. Any T-flag world for I is moderately independent.

1. Existence of a T—-flag world for I'
We construct a flag for G. Since any vertex of I' is contained in 7', there is a
path in 7" from m to a vertex of 9G. We choose from among these paths a
path p which is minimal w.r.t. to number of traced edges. The terminal vertex
of p is denoted by m, m € 0G. Due to Lemma 4.4 we choose a boundary
loop « of G with base point m. f := pap ! is now a minimal flag for G' and
F :=F U{f}is a Tflag world for T

9Suppose there is a tree T’ with O C T'. Then OT is a tree itself and OT' has no interior domain.
Consequently, I' has no interior domain, i.e. I' is a tree. Thus, there is no tree T' with 0I' C 7" and so for
any tree 7' in I there is an edge ey C OI' that is not contained in T'.
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2. Moderate independence of any T-flag world for I'

[V, E'" and G are still chosen as above. Set F' := F \ {fq}, where fo € F,
fa = pap™!, is the flag for G with flagpole p C T'. Obviously, F’ is a T—flag
world for I, and therefore moderately independent by induction.

Since fg is minimal, e is traced exactly once by fg, and because F' is a flag
world in [ = T'\ e, not any f; € F' traces e. Therefore e is now a free segment
of fc;.

Finally, F' itself is moderately independent with the free segments e; of the
corresponding f; € F'. Thus, F = F'U{fs} is moderately independent with
the free segments {e;,... e, 1,€}. qed

Remark For G = U(1) even any flag world F is complete.
To prove this choose any complete flag world F' for I'. Since (for G = U(1)) all
flags belonging to one and the same domain are equal up to holonomy equivalence,
we have HG(F) = HG(F') = HG(T), i.e. F is complete.
In other words, for U(1) all flag worlds to one and the same graph I' are equal
modulo holonomy equivalence.

The completeness of a flag world is not at all trivial for the SU(N) because of

Proposition 4.11 Let G = SU(N). Then there exists a simple graph I', such that a non-
complete (and so also not moderately independent) flag world exists to
.

Proof It is sufficient to give an example.
Due to G = SU(N) holonomy equivalence equals homotopy equivalence and we will
indentify hoops and the corresponding elements of the fundamental group 7 (I, m).
It is sufficient to construct a flag world F, such that there is a loop f € n(I',m) =
HG(T') not contained in the subgroup HG(F) of the fundamental group generated

by F.

es 5 S RO P PR
Slal L s
G1 G2 f 5

/3 fa

maximal tree

Figure 5: Example of a non-complete flag world

Let I be the graph in figure 5 with the flag world F := {f1, f2, f3, f1}, the maximal
tree T" and the corresponding free edges ey, es, €3, e4. We constuct from 7" and e; the
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free generators oy, ..., a4 of m(I',m) as in Proposition 3.4. We will prove, that F is
not complete showing that f¢ HG(F), where f is the loop defined in figure 5.
A simple calculation shows:!°
[~ ai'as
i ~ o
2 e%)
f3 agazaltay
fa a?,_la;lcmag.
Suppose f € HG(F), ie. f~ H;:l Z-Z_j ~ [y oy with n; € Z and ¢ € {-1,+1}.
Choose this decomposition, such that the number J of used factors fgj is minimal.
Due to the freeness of HG(I') = =(I',m) there must exist a j' with iy = 3 and

1

2 22

T]j/ Z +1, le
i'=1 J ;!
—1 n; g5 nj €k -1 -1 Ex!
aytog ~ o [LAE 57 T 77~ 1Lof en [J(0sen™) an Lo
j=1 j=j'+1 k k!

In the last step f;-7 has been replaced by the corresponding reduced representation in
the a (see above), e.g. fi by ay(aza; ')y’ (i.e. not by (auaza; ta, )", since here
(for || > 1) the ayay ' terms are not reduced).

The right-hand decomposition of f in ) is (w.r.t. the number of used factors) longer
than the left-hand one. Again by the freeness of HG(I') there must exist in the right-
hand decomposition of f in ay a k with o} = a;:ﬁl. This case does not occur in the
decompositions of the f; in ) above, thus this must occur during the multiplication
f;;j 2’:11 of two flags. From the decompositions above we see that such a collision
of a is only possible, if 7; = ¢;4;. This is a contradiction to the minimality of the
decomposition of f into a product of flags f € F.

Thus, f¢& HG(F), and F is not complete. qed

Remark 1. Up to now, we do not know, whether non-complete flag worlds can be con-
structed for graphs with less than 4 interior domains.
2. Simultaneously, we have constructed an example for the fact that from
HG(B) € HG(a) and the equality of the cardinalities of & and 3 not generally
follows, that HG(8) = HG ().
But, obviously, HG(F) is freely generated by {fi, fo, f3, fs}. Thus, we have
constructed a genuine (free) subgroup of HG(I') having the same rank as

HG (D).

4.4 Refinement of Flag Worlds

Now we want to investigate the behaviour of flag worlds under refinement of the underlying
graph. We need the following

Lemma 4.12 Let " be a simple graph and G a simple domain in I' (m¢ G) with correspond-
ing refinement {G; | i € I} C Ly (I'). Let f be a minimal flag belonging to
G with base point m. Furthermore, e is an arbitrary edge of I' on 0G.
Then, there exist minimal flags f; with base point m, such that:

10Note, that in our convention the multiplication 313, of two paths means, that 3; is traced first and
second.
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e f;is a flag to domain G for all 7 € [;
e f is holonomically equivalent to the product of all f; in a certain order;
e {f;} ismoderately independent and any of the free segments lies in intGUe.

Proof Induction on the cardinality of 7.1t
1. I =1 is trivial, i.e. G = (] is an interior domain itself.
2. First, we consider the case I = {1,2}.
We consider the case, that e and m do not lie on the boundary of one and the same
interior domain. Topologically, we have the situation of figure 6; if necessary, one
has to exchange the domains 1 and 2. Let p,,7 be the flagpoles of f from m to

- -

€1
Pmm/ p1 P2 Pmin /" p1
m m
Q= Plzpf? P12
m Q3 1= P2pig e

Pmin/" pp= P2
Figure 6: Refinement into two domains

m, p, p1, P2, P12 as in figure 6 and «; the corresponding boundary loop for G; with

base point m;.

We set f; := pmmplaipflp;ﬁ% for 1 = 1, 2, after cancelling possible retracings, i.e.

we consider f; to be minimal.

e Obviously, f; is a flag for G;.

e We have f ~ f5f;.

e Choose an edge e; C 0G; N 0Gy, i.e. e; C pig, and set ey := e. Then {fi, fo}
is obviously moderately independent with the free segments e, e5 C int GUe.

In the case that e and m lie on the boundary of one and the same domain, one

has to exchange, if necessary, p; and p in construction above, such that enp, = 0.

The rest of the proof is completely analogous.'?

3. Suppose the lemma is proven for refinements by £ — 1 > 2 domains und let now

{G;} be a refinement of G by k > 3 domains.

a) Choose any i € I, such that G; N G contains at least one edge of I' and
the domain G built from the remaining G; is again simple. (W.l.o.g. we set
i = k and j runs in the following from 1 to k& — 1.) More precisely: 0G,

1T is finite, since I is finite and thus Lin(T) is finite.

12Let e lie between m and mo. Then f; is constructed as above. Only, {f2, f1} is now moderately indepen-
dent if es is any edge in p12 and e; :=e.

Let e lie between m and my. Then m; and ms have to be exchanged. Thus, also p; is exchanged with p.
By fi = pmmpraip; ' p, = we get f ~ fif>. Furthermore, {fs, fi} are moderately independent with e» to be
an edge of p12 = 9G; NIG, and e :=e.
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0G), and ppm span a finite and for G, N 0G # () again connected graph. We
demand that the set of the interior domains in this graph is equal to {G, Gy}
and that G is simple.

It remains the question, whether such an Gy exists. The first condition is
trivial. To prove the second one it is sufficient to choose a domain Gy, such
that 0G, N G is connected.

To see this let « be a boundary loop of G. One gets an « from this, if one
replaces the subpath «y of « belonging to 0Gy by the path oy corresponding
to the boundary 0Gy \ 0G. Obviously, @ is a path in I'. «a has neither
repetitions of vertices nor of edges, because neither a nor a; have the like
and because qy, touchs a only in its initial and terminal vertex (these are
distinct). Otherwise, we would have a contradiction to the connectivity of
0G N OG. Therefore a is a Jordan path, i.e. a boundary of exactly one
simple interior domain G.

It remains now to ask for the existence of such a domain. Suppose not any
0G,;NOG is connected. Then there would exist a pair of indices (i1, i), such
that we have the situation in figure 7. Obviously, this is a contradiction to
the connectivity of G;, and G,.

0G,,

0G;,

le

oG
Figure 7: Existence of a Gy with connected 0G N 0G

Thus, there is a refinement of G into two simple domains {é, Gy}, such that

G itself has a refinement into {G;}inT.

Due to point 2. there are minimal flags f, fr for G and G, resp., such that

« [~ Ffi(or fif):

o {f,fx} or {fk, f} is moderately independent, where the free segments €
and e liein int GUe. B

Let € be the free segment of f. It is obviously an edge in I' N 0G. Thus, by

induction there are minimal flags f;, such that:

e fisa product of the f; in a certain order;
e {f;} is moderately independent, where any of the free segments e; lies in
int GUE.

Thus, f can be represented as a hoop product of the f; in a certain order.

The proof of the moderate independence of {f;} U {fi} goes completely

analogously to the case of two domains. B

i) Let {f, fx} be moderately independent. Then e lies in (int G Ue) \ f,
otherwise e, would already be traced by ]? Thus, e, = e, since (int G\
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f) N fx =0, and so € C int G. Due to e; C int GUE C int G we have
ej,er C int G Ue.

{fi,- - fe—1, fe} is moderately independent because e,...,e,_; are
free segments of fi,..., fr_1, and e, is free, because e, N f; C e, N
(fUuint G) = (ex N f) U (e, Nint G) = 0. The second intersection van-
ishes obviously and the first one does because {f, fr} are moderately

independent.

ii) Let {fi, f} be moderately independent. The argumentation is analo-
gous to the other case, however, here {fx, f1,..., fk_1} is moderately
independent. qed

We have now

Proposition 4.13 Let I',I” be simple graphs, I'" a refinement of I' and m € I'.
Then there exists for any moderately independent flag world F of I'
a moderately independent flag world F’ of I, such that the following
holds for all interior domains G of I': The flag f; € F to Gy is the
hoop product of exactly these flags f;,;, € F', that belong to the interior
domains Gy, with G;;, C Gy, in a certain order.

Proof Obviously, we have mé¢ G for all G; € L (') because m € T'.

First, we define I'" to be the graph built from all interior domains of I that are

contained in the exterior domain of I' and from all interior domains of I'. Obviously,

[ is simple, ' < T" < T” and the exterior domains of I'" and I'" coincide. Let now

F=A{fr} ={f1,-.., fa} be moderately independent with the free segments e;. We

can refine F to a moderately independent flag world F” = {fi,..., far} D F of

I'”, where A” is the number of interior domains of I, analogously to the proof of

Proposition 4.8. Next, we consider for any interior domain of I" the corresponding

refinement of G into the Gy;, € Liy(I"). Due to Lemma 4.12 there exist minimal

flags fr,;, with base point m, such that:

1. fr, is a flag to the domain G, ,.

2. fr is holonomically equivalent to the product of all f;;, in a certain order.

3. {fri,} is moderately independent and any free segment er;, is contained in
int G[ U 6[.13

The flags fr in F” \ F, i.e. those flags that belong to the interior domain of I, but

are contained in the exterior domain of ', are left untouched. We only set i; := 1

and ff,ij = f[. NOW14 F' = {le, ce >f1,/\1> f271, ce ,f27A2, ...... ;fA”,l; ce 7fA”7/\A”}

is a moderately independent flag world of I'" because:

e ¢, is traced exactly once by fr;, per constructionem and is not traced by any
fr; with j < i; because due to the just stated point 3. {fr; | j € [1, (]} is
moderately independent with the free segments e; ; for a fixed 1.

e DBut, e;,, is also not traced by f;; with J < I:
fsj traces only f;Uint G; and we have e;;, C int Gy Ue;. Since the domains of I'
are disjoint, we have intG;NintG; = ), f;NintG; = () and intG ;Ne; = (). Finally,

13W lo.g. er is an edge of I' on G7.
14); is the number of domains, that the G are refined into.
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we have f; Ne; = () since F" = {fi,..., far} itself is moderately independent.
ThUS, fJJ‘ N €ri; = @
Thus, e, ;, fits all conditions for a free segment. Since F' is obviously a flag world of
I, we get the proof. qed

4.5 Conclusions

We collect the most important facts with regard to the applications in section 6 neglecting
sometimes mathematical details. For this see the cross-references. Any graph is finite, planar,
connected and non-empty.

Let there be given an arbitrary graph I

There is a refinement of I' to an ordinary graph I".

Any graph can be naturally associated with a finite set of connected interior domains and

an exterior domain (section 4.1). By a refinement of I this set is refined.

e A graph is called simple iff its interior domains are simple, i.e. are bounded by Jordan
loops.

e Any ordinary graph I is subgraph of a simple, ordinary graph I'”. The exterior domains
of both graphs are the same (Proposition 4.3).

e Any simple domain G in a graph can be naturally associated with a flag, i.e. a loop
running from a base point m to 0G, traversing GG exactly once and running back to m
(Definition 4.2).

e By choosing a flag to each interior domain one gets a flag world (Definition 4.3). It is
called complete iff it spans the full hoop group of I'.

e We are looking for moderately independent and complete flag worlds. The completeness
ensures that any loop in I' can be expressed by elements of a flag world. The moderate
independence is necessary for the integration of cylindrical functions. Fortunately, the
moderate independence implies the completeness (Proposition 4.7).

e One can naturally construct flag worlds to any simple graph. For this one chooses a
maximal tree in this graph and then for any interior domain a flag consisting of a path
along the tree, a boundary loop of the corresponding domain and the inverse initial path.
Any such flag world is moderately independent (Proposition 4.8).

e There is a moderately independent flag world for any simple graph (Corollary 4.9). Thus,
any hoop can be represented as a hoop product of mutually non-overlapping loops.

e Under refinement of a simple domain G with a flag f one can choose flags f; to the new
domains G; such that these generate all hoops ”in G” and that f can be expressed as a
hoop product of the f; in a certain order (Lemma 4.12).

e In simple graphs [" any moderately independent flag world F of a simple subgraph I" can
be refined to a moderately independent flag world F' von I such that any flag fo € F
is a product of the flags fo € F' to the interior domains G’ C G in a certain order
(Proposition 4.13).

In section 6 we will see that especially the last point is crucial for the regularization of the

Wilson loop functionals. We can now decompose the ”banner” of a given flag in smaller

"banners”. But all small ”banners” have "equal rights” since f; ~ fr1--+ f1,. That is why

they give identical contributions if we integrate cylindrical functions in f;.
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5 Integration on A/G

In this section we slightly generalize the integration calculus on A—/g which was in detail inves-
tigated by Ashtekar and Lewandowski [AL93]. Their key idea was to define first an equivalence
relation on .4/G which identifies two connections iff their holonomies on a certain finite set 3
of hoops are equal (up to conjugation), i.e. factorizing w.r.t. that relation they extracted the
properties of a generalized connection on that finite set. But, if one knows these properties
for all finite sets of hoops, one can reconstruct via A/G ~ Hom(HG, G)/Ad the generalized
connection in 4/G. The main advantage of the factorization is the reduction of the infinite-
dimensional problem to a finite-dimensional one, since A/G/~ = Hom(HG(3),G)/Ad =
G#P/Ad. Comparing that situation with the case of infinite-dimensional topological vector
spaces, A-L defined first cylindrical functions as functions on A/G/~ and second the integral
of cylindrical functions f = 75fg via fmf dp = fT/g/N fa dug, where djig is a measure on

A/G/~ = G#P/Ad. The main problem is to guarantee that this integral is well-defined. A-L
could prove this for the choice that dug is the Haar measure on G#P/Ad, and if only strongly
independent 3 are allowed for calculating the integral above. The use of merely weakly in-
dependent 3 leads to contradictions. Our task is now to prove that the use of moderately
independent 3 keeps instead the definition valid. This point is crucial for the calculation of
the Wilson loop expectation values using the not strongly, but moderately independent flag
worlds.

5.1 Equivalence of Connections
We recall [AL93] the following

Definition 5.1 Equivalence of Connections
Let HG(B) C HG be a finitely generated subgroup of the hoop group HG
with weakly independent 3. Two (generalized) connections A, and A, are
called equivalent w.r.t. HG(B) iff

ha, (V) = g ' ha, () Vv € HG(B)

with a fixed (hoop independent) g € G.
Furthermore, let 73 : A/G — A/G/~ be the corresponding canonical
projection.

Using the bijection A/G <— Hom(HG,G)/Ad Ashtekar and Lewandowski [AL93] could
easily analyze the structure of A/G/~.

Lemma 5.1 1. There is a bijection A/G/~ — Hom(HG(B),G)/Ad. That means, two
generalized connections are equivalent if and only if they coincide mod Ad

on HG(B3).

2. Any choice of n weakly independent generators 3; € HG(3) yields a bijec-
tion ¢5: A/G/~ — G"/Ad.

3. Given HG(B) C HG the topology on A/G/~ induced by the last point is
independent of the choice of generators.

Furthermore, we have [AL93]
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Corollary 5.2 Let HG(3) be a finitely generated subgroup of the hoop group and ~ the
induced equivalence relation on A/G. Then any equivalence class [A] €
A/G/~ contains a regular connection.

5.2 Cylindrical Functions

In the following we set Bg := Hom(HG(3), G)/Ad = G"/Ad with 3 a weakly independent
set of n hoops. Furthermore we usually do not distinguish between a function f € HA and
its Gelfand transform f : A/G — C.

We now provide a slightly modified version of the Ashtekar-Lewandowski definition of a
cylindrical function.

Definition 5.2 Cylindrical Function
f: A—/g — C is called cylindrical function iff there is a finite set 3
of weakly independent hoops and a continuous fg : B3 — C, such that
[ =mpfp. I f can be obtained that way for a given 3, f is called cylindrical
w.r.t. 3.
The set of all cylindrical functions is denoted by C.

Lemma 5.3 Let f be cylindrical w.r.t. 3. Then f is cylindrical w.r.t. «, if the following
holds:
1. « is weakly independent.

2. HG(a) 2 HG(B).

Proof We set m := #a and n := #3 and we have
m5: A/G — Hom(HG(B),G)/Ad =

A hgz mod Ad — [h[ (ﬁn)}Ad
and analogously for 7. Due to HG(B) C Hg(a) there ex1sts for all i € [1,n] a

G” /Ad

decomposition 3; = Hk ] ; k . Set
TH G™/Ad — G"/Ad.
e(Lk1) Ko  e(nkn)
(915« s Gmlaa — [Hk1 195 1161 : kp=1 9](: kn)]A
Obviously, 7§ is continuous and mg = mgme. The functlon fa = [pmg Is again

continuous and we have
f= ngﬁ = (Wgﬁa)*fﬁ = (Wa)*fa-
Thus, f is cylindrical w.r.t. a. qed

Remark In contrast to [AL93] we define cylindrical functions not only on strongly inde-

pendent, but also on weakly independent 3. For the present the set of cylindrical
functions seems to be enlarged. But, it is easy to see, that given an f € C there is
a set a of strongly independent loops, such that f is cylindrical w.r.t. B,.
Let f € C, i.e. there is a finite set B of weakly independent hoops w.r.t. that f is
cylindrical. Following Lemma 3.8 there is a set a of strongly independent loops,
such that HG(8) C HG (). Due to the just proven lemma f is cylindrical w.r.t.
the strongly independent set . Thus, our definition is equivalent to that one in
[AL93].

Finally, we quote [AL93]

Proposition 5.4 C is a normed *-algebra and C is isomorphic to H.A.
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5.3 The Induced Haar Measure on A4/G

Definition 5.3 Let be f € C and 3 C HG be a moderately independent set of n hoops,
such that f is cylindrical w.r.t. 8, i.e. f =m5fg with a continuous function
fa : Bg — C. Furthermore, dpug is an arbitrary measure on Bg.

Then we define [ f du = fBﬁ fa dug.

We have to guarantee that the measures on the distinct Bg are compatible in order to make
the integral in the definition above well-defined.

Ashtekar and Lewandowski suggested to choose the Haar measure on each Bg, B strongly
independent, induced from G™/Ad with n the cardinality of 3. Indeed, they could prove
that the definition above provides a well-defined integral on \A/G. We are only left with the
proof that the integral is still well-defined if we allow 3 to be merely moderately independent
instead of strongly independent. Fortunately, for this we can reuse the A-L proof with slight
modifications. Thus, we have

Theorem 5.5 Let fmf djp be defined as in Definition 5.3, where the measure on Bg is

in each case the Haar measure on d" fiyaar-
1. The integral fmf djig is well-defined.

2. The functional F: HA — C
fo— J(A) dpo(A)

AlG
is linear, continuous, positive and Diff(M)-invariant.

3. The cylindrical measure dyq is a regular, positive and Diff(M)-invariant
measure on A/G.

Proof It remains to prove the integral to be well-defined. If it is, then our measure coincides
with the A-L measure defined by the only use of strongly independent hoops, since
the A-L measure is unique and we did not remove any of the conditions the integral
has to fulfill - because any strongly independent 3 is moderately independent. Con-
sequently, all the other assertions of the theorem already proven in [AL93] using the
strong independence can be generalized to our problem.

e Let there be given an f € C and two sets 3, 8" C L,, of moderately independent
loops, such that f is cylindrical w.r.t. Bg and Bg:.

e W.lo.g. choose the free segments e}, el of 3,3}, such that they are in each
case completely contained in an edge of I'g,g7.*° Connect now any vertex v # m
of I'gygr with the base point m by a piecewise analytic Jordan path h,, such
that h, N hy  Yv # o' and h, N Fﬁfuﬁu consist of at most a finite number of
points. Construct all paths 3; := h,-e;h .} o where e; runs over all egdes of I'g g0
Obviously, 8',8" C HG(B),8 = {ﬂz |i=1,...,n}, and also HG(B'), HG(B") C

HG(B). More precisely: Let ﬁ’ = fﬂl ef((]] ,]j]) be a (minimal) decomposition of

) is a (minimal) decomposition of

f3; into a sequence of edges, so 3 ~ Hk]_l ﬁz
B; in f;. The same holds for 3}

Next, 3 is strongly independent with the free segments e;.

I15Tf necessary, free 3’ and 8" from retracings and use then the argumentation of Proposition 3.10. For the
definition of I'gg see Construction 3.4.
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Since HG(B'), HG(B") C HG(B), [ is also cylindrical w.r.t. Bg. Thus, it is
sufficient to prove fBﬁ, fe dus, = fBﬁ fa dus,.

e Since we fixed the generators of #G(3), we can interpret the integration on Bg
as an integration on G"/Ad. Since the Haar measure is Ad-invariant, we can
pull back any function of G"/Ad onto the whole G™ and integrate hereon. The
analogon holds for Bg.

e Now we can express any 3, € 3 by a product of 3; € 3, such that for alli € [1, /]
there exists a K (i') € [1,n] and that the following holds:
1L @ # ] = K@) #K(j);

2. Pk() is not used in any decomposition of the 3}, j* < ', into elements of 3;
3. Bk (or ﬁ;(%i,)) is used in any decomposition of 3; exactly once.

To see this choose K (i), such that ey contains the free segment of 3;,. Since
there is a bijection e; <— f3;, these three conditions are only a reformulation of
the criteria for the moderate independence of the 3.

e Since f is as well cylindrical w.r.t. Basw.r.t. 3, f = sl = ngfﬁl. Analogously
to Lemma 5.3 we have 75 = mmg, where

m: G'/Ad @ — G" /Ad
01, galad — [H,ﬂ VI Tl g |
is defined due to the decompositions 5;1 ez((l,]]j,'))
Thus, we have fg = 7" fg, i.e. fg([gl, o Onlad) = (™ fa)([915- -+ s Gnlaa) =

1 k: Kn’ 6(71’,]6"/)
([Hkl 1 gz 1 kll <o 1k, =1 gi(n’,kn/)i|Ad>'
o NOW we can integrate (considering /s to be both a function on G" and G"/Ad):

Ip dpsg

n
" i=1
n K1 Kn’
— E(l,k ) €(TL ,kn/)
[ T o [Tt TL it
G™ =1 k=1

k1=1

= / , H dﬂi/ dMK(l)"'/ dpig (nr)
n—n' | . G G

i=1ag K([L,n])
fﬁ, ("'gKu)"' . 7...gK(n,)...)
(Permutation of the order of integration. The three dots in - -« gg(y) - -
denote a product of g;, which because of the construction above
does not contain a g ;) with j' > i'.)
n

= / , T dw / dpig () / dpgy -+ / i (n—1)
Ggn-n' . ) G G G

i=1ig K ([1,n)

Ia ("'9K(1)"' yeee s YK -1) "t agK(n’))
(Results from the translation invariance of the Haar measure,
since for all j' < n’ o= gK(jr) - does not contain a factor g (,/) and
since gpe(n) appears in -« - gr(pry -+ - exactly once.)
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n
= / 1 d#i/ dprcy - / dicy fo (9x1): - > 9can)
G i=1,ig K ([1,n)) G G
(We used successively the translation invariance of the Haar measure
in order to eliminate the - - - -products as in the step above.)

nl
= / ,Hdﬂi f[-}’ (91;--- 7gn’)
G™ =1

(Normalization of the Haar measure and bijection ' «— K(i'))

= fe dps,,.
By

e Thus, f dug is well-defined.*® qed

Ja

Remark The proof that the integral is well-defined gives us the earlier mentioned impor-
tance of moderate independence. Though the flag worlds in section 4 are usually
not strongly independent, they can be used for the integration calculus. If one
instead demanded only the weak independence for the definition of the integral,
the integral would become ill-defined. Let, e.g., G = SU(2) and 3 be a strongly
or, equivalently, a moderately independent loop. v := 3? is no longer moderately
independent, but, of course, still weakly independent, since extracting the square
root is possible in SU(2). Let now f = tr h, = tr k3. f is cylindrical w.r.t. v and
w.r.t. 3. We integrate f w.r.t. § and receive fmfdﬂo = [ tr gdpigaa = 0. But,
w.r.t. 7 we have fmf ditg = [g tr g° dpisaar = —1, i.e. the integral is ill-defined.
Thus, the moderate independence is best-suited for the mathematically rigorous
calculation of the Wilson loop expectation values in section 6.

6 Calculation of the Wilson Loop Expectation Values

In this section the expectation values of the Wilson loop products
- : =S¥, e
<Ta1 . Tan> — aﬁ(),[l,g%yaoo Za’Lw7Ly mduo e 9T 0, Ty,
of the pure Yang-Mills theory are computed. Thiemann [Thi95] and Ashtekar et al. [ALM*96]
were the first who succeeded in calculating (T,, - --T,,,) — at least for loops «; that lie in a
certain quadratic lattice — in the Ashtekar framework. Our goal is now to generalize their
results for arbitrary «.

It is well-known [AL93] that given the expectation values (T, - --T,,) for all a; one can
reconstruct the measure dpy s of the theory and vice versa. A direct definition dpyy =
e~5dpy is difficult since one has to define the action S not only on .4/G but on the whole
A/G. The first step to overcome this problem is an appropriate regularization S/ (A) of

reg

Sym(A) = [,, itr F,,F" dx. Since the only variables used a priori in the Ashtekar approach

16We assumed in our calculation, that in any case - - gk (1) -+ appears and - - -g;(b,) --- does not. Otherwise
in the last but three step we get a function partially in g;& ;- The claim remains valid since the Haar measure
is invariant under inversions, i.e. we have [ dpipaar f(9) = [q dptaar f(971).
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are the Wilson loops, it seems very likely to use the lattice regularization. Strictly speaking,
T-AT set

N

g2 a?

Sreg(4)

reg

(1-— %Re tr hg(A)), (2)

where a denotes the lattice spacing, O runs over all plaquettes of the lattice and hg(A) is the
holonomy around the boundary of [1. On the one hand, STVZQ converges naively to Sy s, when

the lattice grows ad infinitum and a goes to zero, and on the other hand, S}/Zg is a function of

Wilson loops, i.e. it can be naturally extended from A/G onto the whole A/G. The second
step of T-AT was now the definition of (T,, ---T,,) exchanging limit and integration (L is
the length of the lattice):

1
(T, -+ T, = lim / dpg € 51Ty, - Ty,
a—0,L—00 Zg 1, A/G
1 .
Ra— Z _d,UO e hma—)O,L—nxJ S’l/‘e/gTal e Tan‘
AlG
Now they were able to calculate explicitely the expectation values for all a4, ... , a;, contained

in a quadratic lattice. Finally, they suggested to compute these values for general «; by
approximating them by certain lattice loops.

We aviod this problem using a slightly modified regularization. The idea is to adapt the
regularization to the given loops and not vice versa. We consider any finite lattice with certain
interior domains G generalizing the quadratic plaquettes [J. Then we replace in (2) O by
G and also a* by |G/, the area of the interior domain G, in the denominator. Following the
calculations of T-A™ we get an explicite formula for (T, ---T,,) with arbitrary ay,...,a,
that coincides with the naive limit of T-A™T.

6.1 Regularization of the Wilson Loop Functionals

In this subsection we want to introduce and discuss our regularization.

Definition 6.1 Regularized Yang-Mills Action
Let G be a simple domain in R?, |G] its area, ag a boundary loop of G and
[A] € A/G. Then we set'”
N 1 1 N 1
Sc([4]) = Z1G] <1 — NRQ tr hog (A)> e (1-ReT,,(A)).
Let now {G} be a finite set of mutually disjoint simple domains in R?, such
that int (UG) is again a simple domain. {G} denotes not only the set of
domains GG, but also the supremum sup. diam G of their diameters. Finally,
R denotes the supremum of the diameters of all circles with center'® in m,
which are completely contained in UG.
We set the regularized Yang-Mills action to be Sigy([A]) = Yo Sa([A])
and define S(A) = S([A]) := limp_o0 {a3-0 S{ay ([4])-

17This definition is obviously independent of the choice of the boundary loop and the chosen A € [A].
18The choice m is arbitrary. One can choose any point in M = R?, but one has to fix that point once for
all.
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Our definition' reduces to that of Thiemann, Ashtekar et al. [Thi95, ALM196, AL95] if all
domains G are quadratic and congruent with area |G| = a? (a...lattice spacing). One can
prove — at least in a naive limit — that S(A) converges pointwise to Sy := i fM tr F,, F'*dx
with F),, = 0;,A,) — ig[A,, Ay]. Naive means that one expands A,(x) and consequently also
ho(A) = Pe~8la4 into a power series in . Further calculations yield a series in |G| and
diam G. Comparing coefficients and applying the definition of the Riemann integral gives the
limit. Obviously, this proof is only valid for analytical connections, for C*° connections the
power series need not converge. But, using more sophisticated analysis one can surely get the
prove in the general case.

The main advantage of Definition 6.1 is that it can be easily extended from A/G to A/G.

One has only to replace the ”standard” holonomy by the generalized holonomy ha(A) via

A(T,) = +Re tr ho(A). Thus, we have under the identical assumptions as in Definition 6.1

Definition 6.2 Generalized Yang-Mills Action _
Let A € A/G. We define S(A) := limg_ oo {610 Y Sa(A) to be the
generalized Yang-Mills action.

In the rest of this subsection we want to focus on some properties of S on A/G. First
we investigate the existence of the limit for an important class of limiting processes — the
refinements.

Lemma 6.1 If ({G},) — 0 is an arbitrary, but fixed limiting process where each {G},1
is a refinement of {G},, then for all A € A/G the limit limgy 0 >, Sa(A) €
[0, +00] exists.

Proof e A short calculation shows that 1 — +Re tr [[7, ¢; < > (1 — +Re tr g;) for all
neNg,...,g, €G.
e Next, we prove that > gy, Sg(A) increases with n.
Let {G[ | I € J} = {G}n and let {G}n+1 = {GI,iI | I € J, i € J[} be a
refinement of {G},, for all n. Then we have » ; _; |G1,| = |Gr| VI, especially

|G| <|Gf|  VI,i;. Thus, we have (c:= g%)

1 1 _
= — | 1— —=Ret he . (A
CXI:IGA( N H i )>
< CE LE 1—iRetrha.(Z)
= - |G[| - N Iig

19While writing the present paper we found the article ” Study of Wilson loop functionals in 2D Yang-Mills
theories” of Aroca and Kubyshin [AK98]. They used an analogous regularization, i.e. they also permitted
arbitrarily bounded domains instead of the usual quadratic plaquettes. They even considered a more general
class of actions S;g1(A4) = > Si(hag(A)), where G runs over all plaquettes which the lattice on the
(compact) two-dimensional manifold is divided into and where S; has to fulfill the following axioms
1. Si(9) =Si(g7?) for all g € G;
2. Si(g) has an absolute minimum in g = eg;
3. limg_, .y ‘é;—lsl (hag (A)) = 2tr Fyy(x)FH (z).

28



1 1 _
R (1= yhe e, 1)
= ) Se(A).

Ge{G}lnt1

Here we have to explain the product Hi, hfu,' First the boundary loop aj is
expressed by a product a; = Hil fr.i, of flags to the domains G'r;, due to Lemma
4.12. After pulling back the product on i; we used tr hy,, = tr hq,, for any
boundary loop a;j .
e Since any monotonically increasing sequence in R has a limit, we get the proof
with Si;(A) > 0 (which follows from 1 — LRetr g >0 Vg € G). qed
We emphasize we did only prove that the limit S(A) exists uniquely for any fixed sequence
of refinements. But, nevertheless, the limit still depends on the concrete choice of such a
sequence ({G},). To prove this we use generalized connections with one-point — say = —
support defined by A-L [AL93]. L
For this they used that any connection A in A/G can equivalently be described (mod
Ad) by a homomorphism h of the hoop group HG to the structure group G via A(T,) =
~Re tr hz(e) and vice versa. So they could define an A € A/G in the following way. The
corresponding h is equal to e if a does not pass x. If a does, then they set

hala) = ¢(=vy) "o(v) - d(=v,) "o(v)), (3)

where v; and v;" is the direction of the incoming and outcoming tangent of oz when it passes
x for the ith time. Furthermore, ¢(v) is any function from the space of directions in the
tangent space of M in x, i.e. from S4m7=M=1 to G. Since h is obviously a homomorphism,
it determines uniquely an Ace A—/g

Let us now consider two sequences {G},, and {G'},, of refinements. The first does not
contain a domain G with z € 9G for any n, but the second contains exactly two domains G,
and Gj, | for each n with x € 0G, ;. Furthermore, w.l.o.g. we demand that the boundaries
aG%,i pass the point x for all n in the same directions +v. We now specialize the connection

A to be considered. For this we define ¢(v') to be equal eq if v’ # v and we subject the values
in v = v only to the condition ¢(—v) '@d(+v) # eg. The corresponding h(c) is defined by
equation (3) and so we get A.

Obviously, we have Siqy, (A) = 0 for all n since no boundary of the considered domains
contains 2 which is the support of A and we get S(A) = 0 for the first limiting process. On

the other hand, in the second sequence we have anytime contributions by the domains G, .,

namely SG%’i(Z) = gEZ|G'1—1| (1 — &Re tr ¢(£v)'o(Fv)) = ﬁ with C by construction a

non-vanishing constant. Thus we get S{y, (4) = Ser +(Z) +Se _(A) = ﬁ + ﬁ But,
’ ’ n,+ n,—

{G'} — 0 implies |G/, ;| — 0 and thus S(A) = limp_,e0,{ar}—0 Sar} (A) = +00. Consequently,
the limit S(A) depends, in general, on the limiting process.

Moreover, if we consider even limiting processes that are not successive refinements there
is almost no chance at all to ensure the existence of the limit. For example, one can construct
from the just treated sequences a third, new one, taking alternately a term of the first and of

the second sequence. Obviously, S(A) does not have a limit for this limiting process.
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However, why should we need the existence or uniqueness of the limit S(A4). Actually, we
only have to calculate terms like

/ e_limR_’OO,{G}_}O Z{G} SG(Z)TM (Z) t 'Tan (A) d,uo-
AlG
In order to use the integration calculus one has to exchange the limit and the integral. A

priori we do not know, whether this is — at least mathematically — correct. Astonishingly, we
will see that such an exchange makes the limit of the integrals independent of the limiting
process. By now, we do not really know which effect is responsible for that behaviour and
thus we stop the discussion here and will return very briefly to it after the explicit calculation
of the Wilson loop expectation values.

6.2 What to calculate?

Given a finite set @ = {ay, ... ,a,} of loops. We have to calculate the following expressions
1 o~ -
)= i - “ 2S¢ (A)--- T, (A) duo .
Wonseoon)i= w2 [ ()T, (A) dp

-~

=x{a}(Q,...,an)

Z is chosen here so that we have y(1) = 1.2

Due to the analyticity of the loops the set a generates a finite, non-empty, planar and
connected graph I'y. We enlarge I'y to an ordinary graph (subsection 3.4) and afterwards
to a simple, ordinary graph (Proposition 4.3) denoted by I' with the interior domains G7.
Furthermore we choose any moderately independent flag world F = {f;} for I existing due
to Proposition 4.9.

Now, due to Corollary 4.10 any hoop in I' can be expressed by a hoop product of flags in
F,i.e. by a product of non-overlapping loops: a; = [[j, f;((fj)) Vi=1,...,n;¢(i,j) = £1.

Thus, we get

]\mT&1 .- -Tan = tr thl (1) - - tT hl—[jn e(n,j) (4)
J=171(1,5) J=171(n,j)
jl ,]'n,
= ftr |Ihe(1,j)'--t1“ |Ihe(n,j).
L1105 LL 1)
J=1 J=1

6.3 Calculation of the Expectation Values x(ay,...,q,) for G =
SU(N)

Throughout this subsection we reuse the calculations done by Ashtekar et al. in [ALM'96]
and generalize them if necessary.

6.3.1 Tensorial form of the Wilson loop products

The expression (4) can be rewritten in a tensorial form. For this we use that any g € G can
be described by its matrix elements g%. Thus, tr g = g5d5 and (gh)5 = gShE = gGhB6E =
(g @ h)SBSL are only contractions.

20Strictly speaking, Z actually depends on {G}, but we suppress this here and in the sequel.
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We have (for simplicity we write T, and h,, instead of T,,(A) and h,(A), respectively):

4 hy,) (@4 1) CE.

1

Ey

N™T,, -
I:l

Here gli, éli, C , D are certain multi-indices containing the tensor indices which are explicitely
given in [ALM'96] or [Fle98]. The tensor Cg collects the d-contractions.
Since det g = 1, we can express (¢ )5 as follows [ALMT96]:

Fn_1

1
-nB _ Y BE.Ey, !
(g ) € €AF1...FN719E1 gEN 1

AT (N +1)!

and we get with A the number of flags in F
NnTou e Ta - H(@"Ihh)glcggf?

Here Sg is the tensor that is built from the single e-tensors. Furthermore n; =k} + (N — 1)k}
with k] the number of the occurrence of f; and k; that of (f;)! in the decomposition of the
«; into flags f; € F. Thus, we have

1

X{Gl}(a) = Z A/g _Z{GI}SGI(A)T (Z) Tan(Z) dluo
1 Z{GI}%ﬁ(lf%Retrhh(Z)) A - BB oF
T NZ Ja© & 161 IH(@ hy ()5 CEEE dpo
=1

(tr hay = tr hy, if ag is boundary loop and fg flag for the domain G.)

1

1 -3 l—(lfiRe trg ) A
= / e —iGrrgZfa\" N Ir H(@nlg )BchgF d .
A

NnZ A CYE
I=1
(Replace A/G — G* and hy, (A) — gy, as in section 5.)
A —ﬁ— —LRetryg n Br
B L fG 2 [G; N f[)(® Igf[) dMHaar Cﬁé‘ﬁ
N N7 % 1——Retrgf1) CE
I=1 fG & dftaar A,

(Properties of the Haar measure and definition of Z).

In the last but one step we used that F is moderately independent.

6.3.2 Refinement of the graph

Let I'" be a refinement of I'. Due to Proposition 4.13 there is a moderately independent and
complete refinement F' = {f;;} of the flag world F = {f;}, such that f; = f;1--- f;, and
0 hy, = hy o hy, o A" is equal to A, i.e. the number of interior domains in F, plus the
number of interior domains in I'” which are in the exterior domain of I'. A; is the number of
domains which G7 is refined into, where \; = 1if I > A.
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Completely analogously to the preceding paragraph we have for the refined graph

By
(e
n A
(a) = ﬁ fG/\z |G | (® Igfl,l‘.'gfL)‘I) U aar C?gfj
X{Gr1,:} - Nn - % (1-xRetrgp;) o
I=1 fG,\I |G | d,uHaar A
I
" 72?11 ]\; : (1—%}{6 tr gfI)
A
H fG/\I |G | d:uHaar
Zz 1 1\2 (I_LRE tr gf )
I=)+1 fGAI |G“ ! d:uHaar
N L B
R \ 7 (1——Re tr 9f1,i ) n
= W[ (" 91.) dhtner | g
N\ g e e R on) d o
e HHaar A,
B
1A (S @ s dime, N L
=1 \i=1 JG |G“ Ar

In the first line we used that the flags f;,; for / > A, i.e. for domains of I that are outside
I', do not occur in the decomposition of the «; since these a; only contain the flags f; of F
and thus only the flags f;, with I < A. Thus, also the tensor indices for I > A are trivial.
Consequently, the loops outside I" do not make a contribution to x(a).
In the last step we set
( duHaar(g)'

due(9) =
Obviously, dpq is a conjugation invariant measure on G.

1

% f%Re tr g)

€

6.3.3 Calculation of the integrals

We have to calculate terms such as fG(®"g) dpg). First we decompose ®"g into irreducible

representations using the projectors . [F1e98, ALM™'96] built from the jth Young tableau

(m),j
: Iy (m)
(m). Since 1 = @) B, D,y ; We get
@
fero ana = |3 g | [ 6, o) dua 6, | o o
G (m) i=1 (m) G
& ()
= (X:Zd( [/ X(m (g)dmg} Pimy; @ €a
=tJ(m)( |G\ N)

where we used that the integral of a function ¢ w.r.t. a conjugation invariant measure on G
is already determined by the integral of tr ¢. Since all representations of one and the same
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tableau are mutually equivalent, the integral in the first line is independent of j. Finally,
we set d(y) to be the dimension of the representation corresponding to the tableau (m) and

X(m)(g) == tr (pgnm))yj ®™ g) to be the character of (m).

6.3.4 Calculation of the limits y(«)

We have (0 denotes the trivial representation)

A [ A B
1 ! N) ) B oF
vaa(@ = w1 HZ 7 |G“| ) P ©" 1| Cats
I=1 =1 m A‘I
A A Br
1 T (Gl s N) ) ) 5 o
= — ML me"1| CREE
N"H Z(H Jo(|Gril, N) P @ cr
=1 (m) 1=1 A'[

(since p(o)p(y = Oy 2{1))-

We consider now an arbitrary limiting process R — oo, {G;;} — 0, where all terms of the
sequence {Gy;} are refinements of {G,}, i.e., all the corresponding graphs are refinements
of the simple graph I' that corresponds to the graph 'y, spanned by a = {a, ... ,a,}. We
observe first that the limit R — oo is trivial since the expression above depends only on the
domains in the interior of I', but this graph is finite and all graphs in the limiting process are
refinements of I'. Consequently, we have only to deal with the limit {G;;} — 0. Note that
from {G;} — 0 follows \; — oo VI. Thus, we get using the finiteness of the product over
I and the sum over (m)

— 1j ,
x(@) R—>oo,~%gi,i}—>0X{GI’l}(a)
~ lim & ﬁ 3 ﬁJ(m)(|G1,i|>N) (W) gn Blcﬁgﬁ
T (o NE LL=5 0G0 vy ) e e
I=1 (m) =1 ’ A‘I
1 ﬁ Y i ﬁ‘](m)(|GI,i|aN) () gn élcf)gﬁ
= _— 1 = -
N7 =0 \ ML 77qG o vy ) Pow ¢TE
=1 (m) 1=1 ’ /_(I
A BI
1 —Lg2cim[Grl, (M) om DeF
- WH Ze 28" C(m)| [‘p(m)® 1 chetk
I=1 (m) g]

(see appendix B).

C(m) is the eigenvalue of the quadratic Casimir operator of the representation (m).

In conclusion we emphasize that obviously the limit above is completely independent of
the limiting process R — oo, {G;;} — 0 supposed I' is a restriction of any graph in the
limiting process. Thus, the existence and uniqueness of the limit is proven.
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6.4 Calculation of the Expectation Values x(«y, ... ,q,) for G = U(1)

The computation of x(e) is much easier in the case G = U(1) than for G = SU(N). The
main reason for this is the commutativity of U(1) which induces the commutativity of HG.
Furthermore, U(1) is one-dimensional, i.e. we do not need tensor analysis, and the trace is
trivial. Since the integration over 4/G is completely analogous to that with G = SU(N), we
can use the same strategy as in the last subsection.

Moreover, we have T}, -+ Ty, = T4,..a, for all {a;} C HG. Therefore it is sufficient to
compute the expectation values only for T, a € HG. We get with N =1 from (4)

Ty Ty =Ty, thf

Here n; is the "effective” winding number of a := a1 -, around the domain f;. More

precisely: ny is equal to the difference between the occurrence of f; and that of f; ' in the

decomposition of « into the flags f;. Due to the commutativity n; is obviously independent

of the choice of such a decomposition. In contrast to the SU(N), n; can become negative.
We have analogously to SU(N)

Xion(@) = = [ e Zwen T () qu,

Let now I be a refinement of I'. Then we have due to Proposition 4.13 a refinement ' = { f7,;}
of the flag world F = {f;}, such that f; = f;1--- f;, with A\; the number of domains G/ is

___(1 e s) d:uHaar(g) we get

refined into. Using djg(g) := e 19
A A1 fG g;}IIz d'u|G1,¢|
X{GI 1} H H .

I=1 \i=1 JG d’u|G1,¢|

As for SU(N) the domains of I outside I make no contributions, such that the product over
I runs only to A and not to \”.

Any g —> g™, m € Z, yields a one-dimensional irreduzible representation of the U(1)
with charakter x,,,(g9) = g™. We set J,,(|G|,1) := [5 Xm(9) dpyc|, where the 1 denotes the
U(1), and get

A AT
n (|Gril s 1)
X{Gu} H <H JO |G“| 1)

I=1 \:i=1
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Using appendix B the limit {G,;} — 0 and R — oo is calculated as follows:

= li .
x(a) R Xr (G} (@)

A A1
= lim —
{Gl,i}—mll_‘[ <]‘—[1 J0(|Gl,i| ) 1) )

A Al
— 1 1 AR
1 <{G:f?ﬁoi1]1—zfo< D )

=1

A
= H _%g2CnI‘G[|

A

_ H n3|Gy|

=1

In the last step we used that the normalized Casimir operator (or, more precisely, its eigen-

value) of the representation g — g™ is equal to (( ))2 , e ¢, =n3.

As for G = SU(N) the limit x(«) exists and is unique, i.e. is independent of the limiting
process.

7 Discussion

In the last section we ”calculated” the expectation values of the Wilson loop products. Ac-
tually, the word ”calculated” is an exaggeration — de facto we defined the values even if the
Yang-Mills action on A/G influenced the definition of x. But we did not deduce the values
of x from Syj; in a mathematically correct way. Formally we got x by

X(a) — /_d/j/o e_SYM(Z)Tal e TOAn — /_d/'LO e_limSTEQ(Z)Tal e Tan,
A/C A/G

i.e. by extending Sy onto A/G, and subsequently by exchanging the limiting process and
the integration

x(e) = lim | dpy e 5T, ... T,
A7G

Consequently, this definition is the actual start of our considerations. In principle, that
approach is a kind of constructive quantum field theory that needs a physical justification

only a posteriori.
In section 6.1 we already discussed that the regularization of Sy ,; by

} N 1
S = RHOE%}%O{X:g |G| <1—NRetrh )

makes no problems on A/G, but breaks down on A/G, because the limit does not exist in
general. Thus, S cannot be in H.A. But, surprisingly the exchange of limit and integral yields
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very regular results. We have even shown that the limit x(a) for our choice of regularization
exists for all finite « C L£,, and is independent of the limiting process. Is there a deeper
reason behind that?

__ However, we know that the given expectation values define a unique Borel measure p on
A/G [AL93] because we can extend these values to a linear continuous positive functional on
HA. Note that originally the expectation values are not mutually independent, but subjected
to the so-called Mandelstam relations. Since we defined the expectation values using integrals
on T,, these relations are indeed implemented. What properties does p have? Is u strictly
positive or is 1 absolutely continuous w.r.t. the induced Haar measure 11? Is it even possible
to define an action S on A/G directly, i.e. without regularization, and is it therefore possible
to get the desired measure by du := e dpuy?

The choice of regularization is also worth being discussed. In the present case the regular-
ization of Sy, depends crucially on the dimension 2. It cannot be extended to three or more
dimensions because it uses — roughly speaking — the chance that for 2-dimensional manifolds
a loop has both dimension and codimension 1. But the codimension is decisive. To avoid
renormalization one has to regularize the d-dimensional Yang-Mills theory by

N 1 1 .
lim — 1 — —Re tr Pe #loc4
{GI}IEO gZvolG {ZG; ( N Pe > ’

where {G} is a decomposition of the base manifold into certain d-dimensional objects. How to
connect Pe 8Joc A and Pe 8Ja 4?7 Moreover, the used propositions for planar graphs cannot
be applied to higher dimensions. Thus, from dimension 3 on problems of knot theory will
be important and so also methods of the topological quantum field theory. Perhaps using
algebraic topology or invariant theory one can specify a class of constructible models.

Let us return finally to the concrete generalization of the two-dimensional Yang-Mills
theory within the Ashtekar approach. In the last years some papers were published that
calculated the expectation values of the Wilson loops in A/G (e.g., [KK87, Dri89, GKS89]) and
performed the continuum limit. They provided an area law, an indication for the confinement
in the theory. All in all these papers delivered the same result as the Ashtekar approach does
today. Thus, we get a little justification for our choice of the regularization. Perhaps it is
possible to translate further models into the new approach and to confirm that way the results
got on A/G. However, it seems to be unlikely that one gets — at least in the next time —
general assertions for the equivalence of the ”classical” and the Ashtekar approach. But, from
the mathematical point of view this would be very interesting because some problems of the
classical approach could be circumvented.

Acknowlegdements

I am very grateful to Gerd Rudolph for his great support while I wrote my diploma thesis and
the present paper. I thank the Studienstiftung des deutschen Volkes for its long-time grant
and the Max-Planck-Institut fir Mathematik in den Naturwissenschaften for its generous
promotion.

36



Appendix

A Proof of Proposition 3.1

Lemma A.1 Let v be a Jordan path in M contained completely in a chart U; with triv-

Proof

Proof

ialization y; and p any point in the fibre over v(0). Furthermore, let G be
compact and connected and € €]0, %[ arbitrary.

Then 7,4, ,(p) = Pyu), where A.,; is defined by A.,; := {A € A |
Ai(y(t)) = 0 for t¢ [¢, 1 —¢]}, i.e. any point of P,y can be reached by parallel
transport starting in p w.r.t. connections in A, ;.*!

o Let p=pi:=s:i(7(0) := x;'(7(0), eq). Then 7,,(4) = Pe” 4N where 4 is
the tangential vector field to v and A; is the connection A in the local trivialization
i 22

e Obviously, there is a 1-Form a; : TU; — C with a;(§) |y(qo,qupi—ep= 0 and
_fv a;(y) dt =1#0.

e Set Ay; :=a; ® X for any A € g and extend A, ; to a connection Ay on TP.%
Obviously, Ay € A.,; for any A € g.

For A constant, we have 7, ,(A)) = P~ ailM X — e,

e Since the image of the Lie algebra g under the exponential map is the connected
component of unity of the Lie group G, we have G D 7, (A1) 2 {7,(A)) |
regl={e*|Aeg} =G, ie G=r1,(A,,) and thus 7, 4_,(p) = Py).

e Let now p be arbitrary. Since the parallel transport commutes with the right
action, we have 7, 4, _.(p) = (Adyy)7y 4., (pi) = (Adyy) Pyay = Py1) because G
acts freely on P. We chose g, such that p =p; - g. qed

(Proposition 3.1)

Let a := {a,...,a,} be a set of moderately independent loops. We have to show
that for any n-tupel (g1,...,9,) € G" there is an A € A with h,,(4) =¢; V1<
i < n.?

Fix a covering {Uy} of M. Choose a free segment ¢; to any «; € a due to Definition
3.2, such that

o «a;= freft with ffne;=0and a;Ne; =0 Vj<iand

e any free segment lies completely in a chart U;.

Next, choose open neighbourhoods V; of e;, such that V; C U; are mutually disjoint
and that o; N V; = 0 for any j < i, and modify the covering of M in that way, that
V; lies in exactly one chart (denoted again by U;). Furthermore, choose open V;
and compact sets V;, Vi, with some € €]0, 5[, e; € V;* C Vi and V&, C V. C V£,
VieN fi£ = 0 and y(t) € Vi, ==t € [e,1 — ¢], where 7; : [0,1] — ¢; is a
parametrization of e;. (See fig. 8.)

2

17,.4(p) : P —> P is the parallel transport of p along v with respect to the connection A and 7, ,(A) the

corresponding group element.
22We dropped the factor ig.
23 This is possible, see e.g. [KN63](p. 67).
24Note, that we have fixed a trivialization y and therefore a base point p in P, from the very beginning.
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Figure 8: The domains V;, Vi, Vi and V5,

It is a well-known fact that there exists a ¢ € C*°(M) with ¢ =1 on UV and ¢ =0
on M \ UV; and analogously a ¢; € C*(M) with ¢; = 1 auf V and ¢; = 0 on
M\ 'V, for all 7.

Let B € A be some connection.

o 1 =0.
A® .= B — ¢B is again a connection?®. We have now Agi) = 0 on e; for all
j > =0 (and obviously ha,(A®) = g; for all j <i=0).

o 1 >0.
Let pj— := 4= q6-n(p) € Py0) be the parallel transport to AG=1D of p along
fi and p; 4 = T];Ll A(H)(p - g;) the "inverse” parallel transport with respect to

AUY along f;* leading from P,,1y to p- g;. Due to the lemma above there is an
A e A, with p; + = 7, a(p;,—) and we have
P 9 = Tprae-v (Tes,ar (Tf;,A(i—l) (»)))
= TpraG-Dyg, ar (Tey,ar (Tfi*’A(i71)+¢iq5A/ (p)) (due to ¢ =0 on fii)
TfH AG-Dyg, Al (Tei,A(i—l)-i—qﬁi,eA’ (Tf;,A<i71)+¢i,5A' ()
(due to Agiil) le,;= 0 and ¢;

supp A;ﬂeiz 1)
Tireifr AG=D 1o, A7 (p)
Ta;,A®) (p)a
where we set A := A= 4 ¢, A" Obviously, A® is a connection, and we get
ha, (A(i)) = Gi-
Since A = A=Y outside V; and V;Na; =0 Vj < i, we have also hy, (A®) =
ha, (AGY)y =g,  Vj <i by induction. Furthermore, we have Agi) = (0 on e, for
all 7 > 1.
The proof ends setting A := A™. qed

%5This simple notation means: There is an A(©) for that B, such that Ago) = (1—¢)B; on UV; and elsewhere
B = A since because of the special selection of V; the compatibility conditions of chart changes are not
touched.
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B Calculation of limg_, (HAI J(m)(|GI,i|:N)>

=1 Jo(|Gr4],N)

Our calculation is similar to that of T-A*. Let G = SU(N) for N > 1, G =U(1) for N =1,
¢ be a representation of G (and therefore also of the corresponding Lie algebra g) and d the
dimension of ¢. We set

1 C(1-iRetrg)p L . N 1
Jon®) = [ dulg) -t 9() = [ diinanlg) ¢ ORI Luw o) wich 5= o
G d¢ G d¢ g |G|
and analogously
(- iRewg)d L 1
Js(IG) :/ djimaar(g) € (1-nRetro) Ser — ¢ é(g).
G d¢

In the following we write J, instead of J,; y. (We note that we use J; both with the argument
[ and |G| without anytime explicitely distinguishing between them.) Furthermore, we define

‘]O(ﬂ) ::/ dMHaar(g) 67(17%1{6 i g)ﬂ and F¢(ﬂ) = ﬁ

J,

and analogously Jy(|G|) a?ld Fy(1G]). "
Obviously, Fy is a real C*° function on |G| € (0,00) and |Fy| < 1. Furthermore, we know
that e~ (1~ wRe tro)f goes exponentially to zero for large [ outside a small neighbourhood U,
of eg. Thus, for f — oo only U, makes contributions, but in U, the term iRe tr ¢(g) is near

1 and thus we have Fy(|G|) — 1 for |G| — 0.

The key idea is now to expand g into a Taylor series [ALMT96]. We have g = e with
A = t!7; € g, where 7; are the generators of g, such that tr 7;7; = —7N§;; with some
constant 7 € RT. Then we have

1 T K. K
1—NRetrg = 5;1& t +f1(f),
1 1,1
and 1— —Retr¢(g) = —=t't!—Retr ¢(r;7)) + fo(2),
d, 2" d,

where the f;(f), £ := (t!,... ,t4mG) collect the contributions of higher order in |¢]. The linear
terms vanish since SU(N) and ¢(SU(N)) are trace-free and since U(1) is even in ¢.

We can reduce now the integration over G to the integration over U C R¥™ G = x (Rry)
since there is a U with 0 € U = —U, e C G C eV and injective e : U — G. With the
Baker-Campbell-Hausdorff-Theorem one has [ALM*96]

[ diants) 1690 =r [ at| TS pigto)
or(s,t)

-1
bl =1+ f5(8), f3(£) — 0 for ‘ﬂ — 0, where r(t, s) is

with a positive finite k € R and

defined by et = e%el, r(s,t) € U.
Now we have to compute lim F or, equivalently, lim(Fy — 1)":

! ! !
(Fieh -1 = (22061 = -2 e+ BB 6
We treat only the first addend ’
g ) J dpmaae™ 73R WO B2(1 — LRe tr g)(1 - £Re tr #(9)
Jo fG dMHaare—(l—%Re tr 9)8

39



Again one easily proves that one can — up to corrections of the order of e — replace the
integration domain G for sufficiently large 3 by Uy () := = {e’ € G | max |t5] < T(e)}, T'(e) — 0
for e — 0. We have now (& means equality up to terms of order ¢)

(1—LRe tr 2
S, Arimaare” W DIE32(1 — TRe tr g)(1 — - Re tr ¢(g))
fUT(E) d,UHaLare_(l_%Re tr )6

_ ng dt f3(t_j e T Xk thK(1+61(f)),8/32(% ZL tLtL)(l _}_51({))(_% ZI,J tItJ%Re tr ¢(TITJ))(1 + 52(5)
N [ dt f3(f) e 5 Zut" (14005

J =~

g Jp odt e 2 ZKthK(lJrél(f))B/gz(% St (=LY, tItJiRe tr ¢(r175))
TN [ dt e F Tk K0 0)5

62 1 [ gy, dt €2 TR ENVID (37 4l (=137, 1 L Re tr ¢(ri7y)
Nt [, it o= 5 X i R (1401 (8/V/B7)) '

(5)

Here in the first step we performed a coordinate transform G — U, i.e. Upi) — T¢; in
the second step we used that d;, defined by fi(f) = 6,(f) (3 3 tXtX), and, analogously, d,
go to 0 and that f3 (f) goes to 1 for small ‘ﬂ, and in the third step we performed a second

coordinate transform t —s £//FT.

If 6, were zero, then the sum on I, J would reduce to a sum on I = J due to the symmetry
of the integral under reflections (t1,...,%;,... ,tdima) — (t1,--., —ti, ... ,taima)- Indeed,
since 6, is smaller than Ce for all ¢, //B7 € T¢, those addends are neglectable up to corrections
of order e. Now we can throw out the d;-terms because the term —1 >, ¢t/ - Re tr ¢(7777)

is bounded below by C Y~ , /¢!, C € R. Finally, since /G771, goes to Riim G for large  (and
fixed €), we have

g2 1 fmﬂ dt e*%ZK thK(1+51(t_'/\/m))(% ZL tLtL)(—% ZI tltléRe tr ¢(TITI))
N T -1 KK o (%) T
NT IWTE dt e 2 ZKt L (1+ l(t/\/ﬂ_))

1 KK
g_21fRdimG dt e 22 U (53T R (=5 30t - Re tr (7))
NTf . dt e_%ZKthK
Rdim G

J

Q

Q

fRdlmG HK(dtK 7lthK)tltItLtL
fRdlmG [ (dtX eifthK)

dt ZKthK
= == t 14 20'5) Sy
Rdim G

= —m; Z 7 —Re tr ¢(7;77)(dim G + 2).

In the last but one step we used

1,..° 1 1 1
/dt e 2% = / dt e 2% 2?2 = —/dt e 2 gt (7)
R R 3 Jr

Although we did not write down all details of the calculation, we have ”shown” that
there is a constant C' > 0, such that for all (sufficiently small) ¢ > 0 there is a ; with
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2

T — (— 5L 5, ARe tr g(rm)(dim G + 2))‘ < Ce for all § > fo. Therefore we have

o !
lim —7“0 Js)

_ gl |
1G—0 Jo (|G|) T AN~ z]: d¢Re tr ¢(T[T[)(d1mG + 2) (8)

Completely analogously we get for the second addend

Aol = Jy) Ty (o= o) o = (851 4 !
Jim (D = Jim () = { g dim G ;%Retm(m).

(9)

The only difference — out of the sign — between both addends is the missing of +2 in the dim G-
e |
term of the second addend that in the first one resulted from the integration of e 2"tt/¢/t!/¢!

in (6). Such an integrand does not occur while computing (9). There we have both in 1o

Jo
in (‘]‘);7‘]4’) only terms like e 277t/¢!. Due to (7) they yield only a factor 1 and not 3 unlike the
0

(t')*-Terms.
The result can be further simplified since ), ¢(7777) is the Casimir invariant, i.e., we
have Y, é(1/71) = ¢4 14, with the eigenvalue ¢y = >, - i —Re tr ¢(r;77) depending on the

0 and

normalization of the 7;. We choose it so that the elgenvalue ¢, of the Casimir invariant of the

fundamental representation is equal to 1. Then, since 1 = ¢; = == > ;Re tr ;77 = —7N
(we had set tr 7;7; = —TN6ys), T = —%.
Thus, we have lim|g Fj(|G]) = —3g%, and Taylor’s theorem gives Fy(|G]) = 1 —

58°Co |G|+ 3FY(9(|G)) |GI) |GI* with 9(|G]) € (0,1).

The last step to analyze the power series is the proof that the second derivative of Fy is
bounded in a neighbourhood on the right of |G| = 0. We skip that here because this is very
similar to the calculations above. Using the final lemma we have

A[ AI
. J(m)(|GIZ|7N) . 1 1 " 2
lim ] ’ — 1 L= e [Gral + S, Gril) [Gr
(50 =1 Jo(|IGral, N) {G1}r30i:1 2g ¢(m) |G y((Gral) 1Gral) |Gl

1.2
_ —=g“c G
= e 28 cm)|Cil

since Y- | |G| = |Gy for all A; and all refinements {G;,} of G.

Lemma B.1 Let Z?Zl Cin = C < 00 Vn, where all ¢;,, are non-negative. Then we have
limy, o0 [Ty (1 = € + f(Cin)cf,) = e€if:
e sup,|c;,| — 0 for n — oo;
e f:]0,00) — R is bounded in a neighbourhood on the right of 0;
e « > 1is fixed.

The proof is straightforward.
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