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Abstract

We consider a Ginzburg�Landau type functional on S� with a �th

order potential and the corresponding selfduality equations� We study

the limiting behavior in the two vortex case when a coupling parameter

tends to zero� This two vortex case is a limiting case for the Moser

inequality� and we correspondingly detect a rich and varied asymptotic

behavior depending on the position of the vortices� We exploit analo�

gies with the Nirenberg problem for the prescribed Gauss curvature

equation on S��

keywords� Ginzburg�Landau functional� �� theory� Moser�Trudinger inequality�

Nirenberg problem� phase transition� Chern�Simons Higgs theory

� Introduction

Functionals that exhibit a selfduality phenomenon in the sense that the
absolute minimizers satisfy a set of �rst order partial di�erential equations
are important in various areas of geometry and physics�

In the present paper� we investigate a special class of such functionals�
namely Ginzburg�Landau type functionals with a �th order potential� Such
functionals arise in Chern�Simons Higgs theories� as will be explained in x��
We consider a line bundle L over a compact Riemann surface �� and the
Lagrangian density

L�A��	 
 jrA�j
� �

k�

�

jF j�

j�j�
�



k�
j�j��� j�j�	��

Here� � is a section of L� and A is a unitary connection on L with curvature
F � k is a coupling parameter� and we are particularly interested in the
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limit analysis as k tends to �� This limit analysis reveals a geometrically
interesting phase transition that may also be relevant in superconductivity�
The selfduality becomes manifest by rewriting

L�A��	 


Z
�
L�A��	 


Z
�

�
j��A�j

� � �
k

j�j
F �

�

k
j�j�j�j� � 		�

�
�

Z
�
F�

If � is compact� or� more generally� if one requires certain decay conditions
at in�nity� Z

�
F 
 ��N

is a topologically quantity� where N is an integer� the so�called vortex num�
ber that �xes the number of zeroes of �� the vortices� For N � �� absolute
minimizers of L then have to satisfy the selfduality equations

��A� 
 �

F 

�

k�
j�j��� j�j�	�

As k � �� one expects that the minima of the potential

V ��	 
 j�j��� j�j�	�

at j�j 
  and � 
 � dominate the behavior of minimizers of L� except that
the topological constraint Z

�
F 
 ��N

�xes the number of zeroes of � as well as the integral of F � One thus expects
a solution � with j�j close to one except in the vicinity of N vortices� In the
case were � is a torus� such a solution has been constructed by Ca�arelli�
Yang �CaY�� One also expects a solution that approaches �� Such a solution
was recently obtained in an interesting paper of Tarantello �T� in case N 
 �
again for a torus� While the methods employed in the proofs of those results
extend to the case of an arbitrary compact Riemann surface �� the method of
Tarantello only works for N 
 � because it depends on the Moser inequality�
�She does obtain a second solution for arbitrary N � but as we shall see in
the present paper� the limiting behavior will depend on N in general�	 Here
we consider the case N 
 � on the sphere S� � This case is a limiting
case for the Moser inequality� and consequently the analysis and the results
become more subtle than for N 
 � In fact� one may rewrite the selfduality
equations by putting

u�x	 
 log j��x	j�

�



to obtain

�u 

�

k�
eu�eu � 	 � ��

NX
j��

�pj

where �p is the Dirac distribution concentrated at p� and p�� ���� pN are the
prescribed zeroes of �� not necessarily all distinct� As will be explained in
section �� in our case N 
 � this equation can be related to the prescribed
Gauss curvature equation

�u 
 ��Keu � ��

Thus� one expects that the methods developed for the Nirenberg problem�
i�e� the existence problem for that equation� become relevant �see section�
for references	� That is indeed the case� and in the present paper we shall
obtain two families of solutions depending on the coupling parameter k with
a precise asymptotic behavior di�erent from the one of the Ca�arelli�Yang
solution� The only exception is the case of a single vortex with multiplicity
two where the Kazdan�Warner equation prevents the existence of a solution
of the limiting equation and where we only �nd one additional family� Such
a case distinction is not untypical for limit cases of embedding theorems� On
the other hand� if the two vortices are antipodal� then an easy symmetry
argument produces one�parameter solution spaces� i�e� in�nitely many solu�
tions for each su�ciently small value of k� The case of the torus has been in�
vestigated in our companion paper �DJLW� and by Nolasco�Tarantello �NT��
By their results� it may be possible that a solution with a blow�up of the
curvature at a non�vortex point also exists for certain conformal classes of
tori�

In conclusion� the asymptotic analysis of the Chern�Simons Higgs func�
tional considered here is much richer than the corresponding one for the
Ginzburg�Landau functional with a �th order potential �j�j� � 	�� There�
it was shown in �HJS� that asymptotically� as k tends to �� � becomes a
covariantly constant section of L with j�j
� and the connection A becomes
�at� except near the vortices where all the topology concentrates� Solutions
of the type found by Tarantello and in the present paper do not occur in
that model� This is somewhat similar to the situation in the Seiberg�Witten
functional that again has a �th order nonlinearity where the limiting analy�
sis was carried out by Taubes �T��� We expect that a Seiberg�Witten type
functional with a �th order potential will exhibit very interesting features�
partly analogous to the ones found in the present paper� We hope to be
able to study this more closely� In fact� we consider the present analysis as
a model study for that problem�
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� The Chern�Simons Higgs model

Let S� be the standard sphere in R
� with the standard metric g�� and

M 
 R�S� with the Lorentzian metric g 
 dx��� g�� Consider the �trivial	
principle bundle M � U�	 � M � Let A 
 �i A� dx

�� A��x	 � R� x 

�x�� x�� x�	 �M be a connection on this principle bundle� The curvature of
A is given by

FA 

�i

�
F��� dx

� � dx�

with F��� 
 ��A� � ��A�� �� � 
 �� � �� The vector bundle associated to
M � U�	 is M � C � where C is the complex plane� Let ��x	 be a section
of the vector bundle M � C � i�e� ��x	 is a Higgs �eld� in physical notation�
Let DA� denote D��dx

� with D�� 
 ��� � iA��� In this paper� we are
interested in the following Chern�Simons�Higgs Lagrangian action density

L�A��	 
 D��D���


�
k����F��A� � V ��	���	

where k 	 � is the coupling constant which determines the strength of the
Chern�Simons term ����F��A� � V ��	 is the potential and the Levi�Civita
tensor ���� � �� �� 
 
 �� � � is �xed by ���� 
 � This Lagrange density was
�rst introduced by Hong�Kim�Pac in �HKP� and Jackiw�Weinberg in �JW��

The Euler�Lagrange equations for ���	 are�
�
�k�

���F�� 
 j� 
 i��D��� ��D��	�

�� 
 ��V ���
�� �

����	

where j� is the conserved matter current density� We are interested in static
solutions of ����	 with V ��	 
 �

k� j�j
��� j�j�	�

The energy density corresponding to the Lagrange density ���	 is

E 
 jD��j
� � jD��j

� � jD��j
� �



k�
j�j��� j�j�	����	

supplemented by the Gauss law

F�� 

�

k
J� 
 �

�i

k
��D��� �D��	�����	

Let ��A� 
 D� � iD�� We have

jD��j
� � jD��j

� 
 j��A�j
� � F��j�j

� �


�
�ik�ijk�

�



Therefore� the energy density ����	 may be written as

E 



�

�
k

j�j
F�� �

�

k
j�j�j�j� � 	

��
� j���j� � F�� � Im f�j�jk ��Dk�g�

where �jk 
 ��kj� j� k 
 � � and ��� 
 � Thus we obtain the following
energy functional

E�A��	 


Z
S�
E 


Z
S�



�

�� k
j�j

F�� �
�

k
j�j�j�j� � 	j� �

Z
S�
j��A�j

� �

Z
S�
F���

����	

The absolute minimizers of E under the homotopically invariant constraint



��

Z
S�
F�� 
 N����	

satisfy the Bogomolny type self�dual equations�
��A� 
 ��
F�� �

�
k�
j�j��j�j� � 	 
 ��

����	

with the Gauss law kF�� � �A�j�j
� 
 � �see ����		� Here N is an integer�

One can easily check that a solution of ����	 with the Gauss law satis�es
����	� In this paper� we are interested in �nding such special solutions of
����	�

As in �CaY� and �T�� one can �rst obtain a maximal solution as follows

Theorem ��� ��CaY�� Let p�� ���� pm be given points �or vortices� on S�

and n�� ���� nm positive integers such that
Pm

j�� nj 
 N � �� There exists a

kc � ��� ��
p
jS�j��N	 such that ����� admits a solution �Ak� �k	 for which

p�� ���� pm are the zeroes of � with multiplicity n�� ���nm if and only if � �
k � kc� Moreover

�i	 The energy� magnetic �ux and electric change of �Ak� �k	 are respec	
tively given by

E 
 ��N�� 
 ��N�Q 
 ��kN����	

�ii	 The solution �Ak� �k	 is maximal in the sense that if �A�� ��	 is another
solution of ����� with the same vortices as �A��	� then j��j � j�j�

�iii	 j�kj �  in S� and j�kj �  as k � � a�e� in S� and in H��q�S�	�  �
q � ��

F
�k�
�� � ��

NX
j��

�pj in the sense of measures as k � ������	

where each Dirac distribution �pj occurs with multiplicity nj� j 
 � ����m�

�



One can also obtain another solution by using the mountain pass Lemma
as �T�� Here we are interested in solutions of ����	 with a di�erent asymptotic
behavior when k � �� Motivated by Ca�arelli�Yang�s variational method�
when N 
 � Tarantello obtained in �T��

Theorem ��� There exists a solution � �Ak� ��k	 of ����� for small k 	 � such
that ���
� holds and k��kkCq�S�� � � as k � � for any q � ��

Although they did not consider ����	 on S�� the methods of Ca�arelli�
Yang and Tarantello extend to this case�

Tarantello used the Moser inequality �M��� to study this problem� Here
we consider the case N 
 �� As we already mentioned in the introduction�
this case is a limiting case �a critical case	� The main di�culty to �nd
solutions of ����	 is the lack of a coercivity condition� A crucial observation is
that our problem can be seen as a perturbation of the well�known Nirenberg
problem� Hence� methods developed in the Nirenberg problem may be used
to study ����	� First we obtain a solution of ����	 which has a new asymptotic
behavior as k � ��

Theorem ��� Let N 
 � and P� two vortices� For small k 	 �� there
exists a solution �A�

k� �
�
k	 such that

�i	 ���
	 holds�

�ii	 j��kj � � in C� uniformly�

�iii	 F���A
�
k	� ���Q�

where Q �
 P� is determined by P� �see section ���� Moreover� if P� 
 �P�
there exists a family of solutions �A�

k�	� �
�
k�		 such that �i�� �ii� and �iii�

hold with T�Q� where T� is the rotation with angle  about the axis from P�
to P��

This is a new interesting situation� We guess that such a solution exists in
the general case�

Theorem ��� Let N 
 � and P� two vortices� If P� �
 P�� then for small
k there exists another solution �A�

k� �
�
k	 of ����� such that

�i	 ���
	 holds�

�ii	 ��k � � in Cq� as k � �� for any q � ��

The potential j�j��j�j� � 	� has a minimum at j�j 
  and at � 
 ��
The solution of Theorem �� corresponds to the minimum at j�j 
 � the
one of Theorem ��� to the one at � 
 �� while the solution of Theorem ��� is
a saddle point solution for an associated functional� Of course� the vortices
prevent that j�j 
  or � � � are exact solutions� but in the limit k � ��
the obstructions concentrate at isolated points� According to the theorems�
for N 
 �� we have � di�erent cases for small k�

�



�	 If P� 
 P�� ����	 admits at least two solutions�

��	 If P� 
 �P�� ����	 admits in�nitely many solutions�

��	 If P� �
 	P�� ����	 admits at least three solutions�

It is clear that case ��	 is the generic case� Before we start to prove the
theorems� we �rst reduce ����	 to a semilinear equation� Such a reduction
was �rst used by Taubes in �T�� �T���

It is clear that the �rst equation of ����	 may be written as

����� iA� 
 ������	

where A 
 A� � iA� and �� 
 �
���� � i��	 is the usual Cauchy�Riemann

operator� Hence � can be considered as a holomorphic section of a line
bundle� and it therefore admits a �nite number of zeroes in S� with integer
multiplicities� Outside the zero set of ��Z��	 we have

A 
 ��i�� log �����	

Set u�x	 
 log j��x	j�� From ����	 and ���	 u satis�es

�u 

�

k�
eu�eu � 	 in S� n Z��	����	

and

u�z	 
 nk log jz � Pkj
� as z � Pk�����	

On the other hand� if we have a solution u of ����	�����	� set

��z	 
 exp

�
�

�
u�z	 � i

NX
j��

arg�z � Pj	

�
A

and A 
 ��i�� log�� then one can check that �A��	 satis�es ����	� Therefore�
we only have to consider ����	 and ����	� Clearly ����	�����	 is equivalent
to

�u 

�

k�
eu�eu � 	 � ��

NX
j��

�Pj �����	

where �P is the Dirac distribution concentrated at P �

�



� Proof of Theorem ���

Let P� and P� be two vortices on S�� Let u� be the unique solution of�
�u� 
 �� � ����P� � �P�	� in S�R
S� u� 
 ��

���	

Let � 
 ��k� and K 
 eu� � ����	 is equivalent to

�u 
 �Keu�Keu � 	 � � in S������	

We �rst summarize some simple properties of K in three di�erent cases�

Lemma ��� case �i�� P� 
 �P�� After a change of coordinates� we may
assume that P� is the north pole� Then K is axially symmetric� i�e�
invariant under rotations about the axis between north and south pole�
i�e� between P� and P�� as well as invariant under re�ections about
the equator of S�� i�e� K�x	 
 K��x	 for all x � S�� K achieves its
maximum for any point on the equator�

case �ii�� P� 
 P�� i�e� P� is a double vortex� K is again axially sym	
metric about the line between P� and �P�� It achieves its unique
maximum at �P��

case �iii�� P� �
 	P� � the generic case�� K has a unique maximum point
�Q �
 P�� P� and a unique saddle point Q 
 � �Q�

�

Equation ����	 is the Euler�Lagrange equation of the following functional

I	�u	 


Z


�
jruj� � �u�

�

�
�Keu � 	��

where
R
u is the average of u over S�� i�e�

R
u 
 �

	


R
S� u� As in �T��

motivated by the variational method used in �CaY�� we consider the following
functional

J	�u	 


Z
�


�
jruj� � �u�

�

�
�Ke�u���u�� � 	�	����	

����u	�
�

�
� � log �

in

A	 


�
u � H����S�	

�� Z eu 
  � �

Z
Keu	� �

�

�

Z
K�e�u � �

	
�����	

�



where

��u	 
 log

�
BB�
R
Keu �

r
�
R
Keu	� � 


	

R
K�e�u

R
K�e�u

�
CCA �

The term �	
� �log � ensures that J	 has a uniform lower bound �see Lemma

��� below	� This value of ��u	 is needed to satisfy the constraint that comes
from integrating ����	� Alternatively� this value of ��u	 is determined by
minimizing J	 among functions of the form u� � w�r�t� � for given u satis�
fying

R
eu 
 �

Set H 
 fu � H����S�	j
R
eu 
 g�

Lemma ��� If u �
�
A	� the interior of A	� is a critical point of J	� then

v 
 u� ��u	 is a solution of ������

Proof� The proof is straightforward �cf� �T�	� �

A crucial observation is that we may rewrite J	 in a suitable form as follows�
By the de�nition of �� we have

�e��u�
Z
Keu 


�
R
Keu

R
Keu �

r
�
R
Keu	� � 


	

R
K�e�u

�����	

Consequently�

� � �e��u�
Z
Keu � �� for any u � A	�����	

Set B	�u	 
 �e��u�
R
Keu� Again� by de�nition� we have

�

Z
K�e��u���u�� � �

Z
Keu���u� 
 ���

Thus� we can rewrite J	 as follows �deleting an irrelevant additive constant	

J	�u	 


Z
�


�
jruj� � �u	� � log

Z
Keu � � logB	�u	�



�
B	�u	

Set �	 
 infu�A�
J	�u	� In this section� we shall prove that �	 is achieved

by some u	 �
�
A	� For simplicity of notation� let f�t	 
 � log t � �

� t and
f	 
 f 
 B	� Then J	 is written as

J	 
 J � f	�

�



where

J�u	 


Z
�


�
jruj� � �u	� � log

Z
Keu�

The corresponding Euler�Lagrange equation of J is given by

�u 
 ��Keu � ������	

which is the so�called prescribed Gauss curvature equation� The correspond�
ing problem of existence of solutions of ����	 is called the Nirenberg problem�
This problem has been studied by many mathematicians� �See �M��� �A�� �H��
�CD�� �CY��� and �CkL� and references therein�	 J	 can be considered as a
perturbation of J for large �� So it is natural to apply methods developed
for the Nirenberg problem in our problem�

Now let us �rst introduce the de�nition of the center of mass of a function
u � H����S�	 which was �rst used in �CD� in the Nirenberg problem� For
u � H����S�	� the center of mass is de�ned as

P �u	 


R
S�
xeuR

S�
eu

�

Given q � S�� we choose coordinates x 
 �x�� x�� x�	 � S� such that q 

��� �� 	� The stereographic projection � � S� �  C 
 C � f�g with respect
to q is de�ned by

�x�� x�� x�	 � z 

x� � ix�
� x�

�

For t 	 �� let mt � C � C be the usual multiplication by t� i�e mt�z	 
 tz
for any z � C � For any u � H����S�	� there is �q� t	 � S� � ����	 and

w 
 u�q�t �
 u 
 �q�t � �q�t�

such that P �w	 
 �� where �q�t 
 ��� 
mt 
 � and �q�t 
 log det�d�q�t	�
�Note that our notation di�ers slightly from the one in �CY� and �CkL��	
In �CkL�� �see also �O�� �CD� and �CY�	 the authors proved

Lemma ��� H is di�eomorphic to H� � B� by sending u � H to �w 


u�q�t � q�  � t�� log t�� where H 
 fu � H����S�	 �
R
eu 
 g and H� 
 fu �

HjP �u	 
 �g�

Now we can rewrite J	 by this decomposition� First� let S�u	 

R

�
� jruj

��
�u� It is important that S is invariant under conformal transformations�
namely�

S�u	 
 S�u�q�t	

�



for any conformal transformations �q�t of S�� Let u 
 �w� q� t	 � H� We
write J	 as

J	 
 J	�w� q� t	 
 S�w	 � � log

Z
K 
 �q�te

w � f	�w� q	�

where

f	�u	 
 f 
B	�w� q� t	����	

and

B	�w� q� t	 
 �

�
B� �

vuuut�
�

�

R
K� 
 �q�te�w�det�d�q�t		��

�
R
K 
 �q�tew	�

�
CA
��

����	

For simplicity of notation� let b�u	 
 b�w� q� t	 

R
K�
�q�te

�w�det�d�q�t	
��	�

�
R
K 
 �q�te

w	�� We need

Lemma ��� ��CY�� If u � H�� then
R
jruj� � �� � a�	

��S�w	 for a

constant a� � �

The following asymptotic behavior for large t is crucial for the proofs of the
Theorems�

Lemma ��� For any b� 	 �� we have for all w with S�w	 � b� uniformly
in t as t��

�i	
R
K 
 �q�te

w 
 K�q	 �O�t�� log ��t	�

�ii	

Z
K� 
 �q�te

�w�det�d�q�t		
�� 
 t�K��q	

Z
e�w
�
 � x�

�

��
�O�t	�

�iii	 Z
K	 
 �q�te

	w�det�d�q�t		
�� 
 t	K	�q	

Z
e	w�

 � x�
�

		 �O�t�	�

Proof� �i	 was proved in �CY��
�ii	 We use the plane coordinates induced from the stereographic projection





with respect to q �see above	� By the Taylor expansion of K around q 

��� �� 	� we have

K�x	 
 K�q	 � a�x� � a�x� �O�jxj	

in fx � C
��jxj � Mg for a �xed large M 	 �� By a direct computation� we

have

det�d�q�t	�z	 
 t�
�

 � jzj�

 � t�jzj�

��

Let Rt 
 fz � C
��jzj �M�tg and Rc

t 
 C nRt� We decompose the left hand
side of �ii	 as follows



��


Z
Rt

�

Z
Rc
t

�
K��tz	 e�w�z� t��

� � t�jzj�	�

� � jzj�	�
dA�z	

where dA�z	 
 djzj�

���jzj��� � A direct computation shows that

Z
Rc
t

K��tz	 e�w�z� t��
� � t�jzj�	�

� � jzj�	�
dA�z	 � O�t��	

and Z
Rt

x��tz	 e
�w�z� t��

� � t�jzj�	�

� � jzj�	�
dA�z	

� �

Z
Rt

tjzj

 � t�jzj�
e�w�z� t��

� � t�jzj�	�

� � jzj�	�
dA�z	


 �

Z
Rt

 � t�jzj�

 � jzj�
t�� jzj e�w�z� dA�z	


 �

Z
jzj�M

t

 � t�jzj�

 � jzj�
t�� jzj e�w�z�

jzj

� � jzj�	�
djzj

� �t

Z
jzj�M

t

jzj	

� � jzj�	�
djzj

� O�t	�

Similar Z
Rt

x��tz	 e
�w�z� t��

� � t�jzj�	�

� � jzj�	�
dA�z	 
 O�t	�

�



We also have Z
Rt

K��tz	 e�w�z� t��
� � t�jzj�	�

� � jzj�	�
dA�z	


 t�
Z
Rt

K��q	 e�w�z�
jzj	

� � jzj�	�
dA�z	 �O�t	


 t�
Z
K��q	 e�w�z�

�
 � x�

�

��
dA�z	 �O�t	�

for z 
 �x� � ix�	�� � x�	� The preceding estimates prove �ii	�
�iii	 The proof is similar to that of �ii	� �

Lemma ��	 ��H���CY��� Infu�HJ�u	 
 � log�maxx�S� K�x		� and J does
not achieve its in�mum� if K is not constant�

�

Now we have

Proposition ��
 For all su�ciently large �� there exists u	 �
�
A	 with J	�u		 


�	�

To prove the proposition� we need one more Lemma� We recall �	 

infu�A�

J	�u	�

Lemma ��� �i	 lim	��	 �	 
 � log�max K	�  � � log �

�ii	 infu��A�
J	�u	 � � log�maxK	� � � � log ��

Proof� By Lemma ���� for any � 	 � there exists u� � H with

J�u�	 � � log�maxK	 � ���

On the other hand� B	 �

�
u � A	

��b�u	 � log �


converges to H as � �
��� Hence we can choose �� such that u� � B	 for any � � ��� If we
choose �� large enough� we have

J	�u�	 
 J�u�	 � f	�u�	

� � log�maxK	 � ��� � f�


 �
q

� 

	 log �

	

� � log�maxK	�  � � log � � ��

�



Clearly� for any u � A	� J	�u	 � � log�maxK	 �  � � log �� Hence
lim	�	 �	 
 � log�maxK	�  � � log ��
�ii	 If u � �A	� by de�nition� f 
 B	�u	 
 �� � � log �� Hence J	�u	 �
� log�maxK	� � � � log �� �

Remark� By Lemma ���� lim	�	 �	 � infu��A�
J	�u	 for any ��

Proof of Proposition ���� Consider a minimizing sequence fuig � A	 of J	�
According to Lemma ���� we rewrite it as ui 
 �wi� qi� ti	� First we claim
that S�wi	 is bounded� This is easy to prove� for f	�ui	 is bounded and

� log
R
K 
 �qi�ti e

ui � � log�maxK	� By Lemma ���� the boundedness of

S�wi	 implies that Z
jrwij

� is bounded�

Second� we claim that ftig is also bounded� Assume by contradiction that
ftig is unbounded� There are two possibilities

�	 qi � q and q is one of the vortices�

��	 qi � q and q is not equal to P� or P��

Case �	� Since S�wi	 is bounded� from �i	 of Lemma ��� we have

� log

Z
K 
 �qi�ti e

wi � ��

as i � ��� Since S�wi	 � � and f	 is bounded� it follows that J	�ui	 �
��� a contradiction�
Case ��	� Recalling ����	� ����	 and the boundedness of f	�ui	� Lemma ���
implies that

t�i

Z
e�wi � � x�	

� � c��

Recall that we have

t�i

Z
e�wi 
  and

Z
ewi x� 
 ��

This implies thatZ
e�wi� � x�	

� �

Z
ewi� � x�	 
 �

�



So

t�i � c�

is bounded�
Now it is clear that the boundedness of ftig implies that of fkuikH���g�

Hence we may assume that there exists u	 � H����S�	 such that ui converges
to u	 weakly inH���� and strongly in Lq for any q 	  and almost everywhere
in S�� It follows that Z

Keui �

Z
Keu�

and Z
K�e�ui �

Z
K�e�u�

as i � ��� Therefore J	�u		 � �	 and u	 � A	� Now� in view of Lemma

���� u	 �
�
A	�

Remark� We can prove the proposition in a di�erent way which does not
use conformal transformations� Actually� we can prove proposition ��� for
any compact surface in �DJLW��

By Lemma ���� we know that u	 � ��u		 is a solution of ����	�
Now we consider the behavior of u	 as � � ��� First� it is clear that

u	 cannot converge in H���� Otherwise� we can obtain a minimum of J in
H� which contradicts Lemma ����

Proposition ��� If we write u	 as �w	� q	� t		 then w	 � � strongly in
H���� t	 � � and q	 � Q as � � ��� where Q is one of the maximum
points of K� Moreover� w	 � � strongly in C� as �� ���

Proof� Since lim	�	 �	 
 � log�maxK	 �  � � log �� fS�w		g� hence
fkw	kH���g is bounded� From the above discussion� we know that ft	g is
unbounded� Assume q	 � Q and w	 � w� weakly in H��� as ���� By a
direct computation we have

lim
	�	

�	 
 lim
	�	

J	�u		 � S�w�	� logK�Q	�  � � log �

Consequently� S�w�	 
 �� hence w� � �� K�Q	 
 maxK and w	 converges
to w� 
 � strongly in H���� Clearly� w	 satis�es a suitable equation similar
to ����	� from which we can show that w	 � � strongly in C� as � � ��
by elliptic estimates� �

�



Corollary ��� When P� 
 �P�� there are in�nitely many solutions of
������

Proof� In this case� K is axially symmetric along the axis crossing P�
and P�� Denote by T� the rotation along this axis with angle � It is clear
that T�u	 is also a critical point of J	 for any  � ��� ���� From the previous
proposition� we know P �u		 � Q as ���� Hence� for large �� P �u		 is not
the origin of R� � On the other hand� it is clear that T��P �u			 
 P �T� u		
and T� has no �xed points except the origin� Hence P �T�u		 �
 P �u		 for
any  � ��� ���� which implies

u	 �
 T�u	 for any  � ��� ����

Hence ����	 admits in�nitely many solutions� �

Now we can prove Theorem ����

Proof of Theorem ��� From propositions ��� and ���� all properties except
�ii	 are easy to check� Now we prove �ii	� Recall that j�	j 
 eu��u����u�� 

Keu����u��� We claim

t�	
�
� � as ����

where u	 
 �w	� q	� t		� If the claim is true� by ����	 and Lemma ��� we
have

�e��u�	 �
�

K�Q	
as �� ���

By proposition ���� we can show that

max eu� � ct�	

for some constant c 	 �� In fact� we have

eu���q�t 
 ew��det d�q�t	
��

and w	 � � strongly in C�� Hence� we have

j�	j 
 Keu����u��

� c���t� � �

again by the claim� Therefore� we only have to prove the claim�

Assume
t�
�

	 � a� as ��� with a� � ������ By Lemma ���

b�w	� q� t		 � a�

which implies that

J	�u		� � log�maxK	 � f�a�	 	 � log�maxK	�  � � log ��

a contradiction� This completes the proof of the Theorem�

�



� Proof of Theorem ���

We �rst consider a simple case

Proposition ��� � If P� 
 �P�� then for large � 	 �� there exists a

solution v	 of ����� with v	�x	 
 v	��x	 ��x � S�	 such that v	 �
R
ev�

converges to u� � H�����	 strongly for � � �� where u� is the solution of
����� obtained by Moser �M���

Proof� The proof of the existence of a solution is very similar to the one
in �M�� �see also �T�	� If P� 
 �P�� Lemma �� says that K�x	 
 K��x	
for each x � S�� Therefore� we consider a special subspace Hs 
 fu �
H���

�� u�x	 
 u��x	��x � S�g� For each u � Hs� there is the improved
Moser inequality

log

Z
S�

eu �


�

Z
S�

jruj� � c

Z
S�

u���	

for some constant c 	 �� From this inequality� it is easy to show that J	
satis�es the Palais�Smale condition and the coercivity inHs�A	� The latter
is

J	�u	 � c�

Z
jruj� � c� for u � Hs �A	����	

for some positive constant c�� c�� Actually� by ���	 one can choose c 
 ���
Set �s	 
 infu�Hs
A�

J	�u	� As in section �� we have

lim
	�	

�s	 
 �s� �  � � log �����	

and

inf
u��A�
Hs

J	�u	 � �s� � � � � log ������	

where �s� 
 infu�Hs J�u	 was studied by Moser in �M��� By a standard

method� we show that �s	 is achieved by us	 �
�
A	 �Hs� The !symmetric

variational principle" �P� implies that us	 is a critical point of J	 in
�
A	�

Hence v	 
 us	 � ��us		 is a solution of ����	 by Lemma ����
Moreover� ����	 and ����	 imply thatZ

jrus	j
� � c

for some constant c� provided that � is large enough� In view of the normal�
ization

R
eu 
 � This implies that us	 is bounded in H����

�



Assume us	 � us� � H��� weakly in H��� and strongly in Lp�S�	 for any

 � p � ��� As in section �� we have
R
Keu

s
� �

R
Keu

s
� and

R
K�e�u

s
� �R

K�e�u
s
� � Thus ����	 implies that us	 converges to us� strongly in H����

Clearly� us� satis�es ����	 and was obtained in �M��� �

Proposition ��� If P� 
 P�� there is no solution v	 of ����� for large �

such that v	 �
R
ev� converges strongly in H����

Proof� Assume that u	 
 v	 �
R
ev� converges to �u strongly in H���� It

is easy to check that �u satis�es ����	� However� in this case� i�e� P� 
 P�
the equation ����	 admits no solution by the Kazdan�Warner identity

Z
hrK�rxiie

u 
 �

that has to hold for any solution of ����	� see �KW��
Now we consider the general and more di�cult case P� �
 	P�� In this

case� by Lemma ��� we know that K has a unique saddle point Q and a
unique maximum point �Q�
 �Q	� Moreover minx��K�x	 
 K�Q	� where
# is the great circle crossing Q and � �Q	� This # satis�es the condition ���	
in �CY��� hence we can de�ne a minimax value of J	 as in �CY�� �see also
�CkL� and �CD�	�

Let 
 � �D � # be a parametrization of #� where D is the unit disc in
R� with boundary �D�

De�nition ��� ��CY��� D�#	 
 fh � D � H is a continuous map with the
following asymptotic behavior for all z� � �D �

lim
z�z�

S�h�z		 
 �����	

lim
z�z�

P �h�z		 
 
�z�	 � S�g�����	

�Here� P is the center of mass de�ned in section �� and S�h	 

R

�
��jrhj

��

�h		�

Set �� 
 infh�Dmaxz�D J�h�z		�

Lemma ��� ��CY��� �CkL�� �� 	 � logK�Q	 � c� for a constant c� 	 ��

For our problem� we need to modify the de�nition of D�

�



De�nition ��� D� 
 fh � D � H is a continuous map satisfying the fol	
lowing asymptotic conditions for all z� � �D

lim
z�z�

S�h�z		 � �����	

lim
z�z�

P �h�z		 � B�
�z�		����	

for a �xed small � 	 �g�

We show that for small ��D� and D are essentially the same in the fol�
lowing Lemma�

Lemma ��	 There exists �� 	 � such that for any � � ���

�i	 maxz�D J�h�z		 is achieved in the interior of D for any h � D��

�ii	 ��� �
 infh�D� maxz�D J�h�t		 
 ���

Proof� For each h � D�� we �rst construct an �h � D such that

�	 S��h�t		 � � and P ��h�t		 � B�
�
z
jzj		� if �� � jzj � 

��	 �h�z	 
 h��z	� if jzj � ���

As in section �� we decompose h�z	 as �wz� tz� qz	 for z � D� where

qz 
 P �h�z��
jP �h�z��j �  � t��z log tz 
 jP �h�z		j and wz 
 h�z	 
 �qz�tz � �qz�tz � By

the de�nition of D�� q�z�	 � B�
�z�		 and S�wz	 
 S�h�z		 � � for any
z� � �D� We extend h to D� 
 fz � C

��jzj � �g by

h��z	 


�
�wz� qz� tz	 if jzj � �
��� � jzj	w z

jzj
� �qz� �tz	 if  � jzj � ��

where �qz and �tz � � jzj � �	 are de�ned by

�qz 

Qz

jQzj
and � �tz

��
log �tz 
 Qz

and
Qz 
 ��� jzj	P �h�

z

jzj
		 � �jzj � 	
 z

jzj
�

Since P �h� z
jzj		 � B�
�

z
jzj		� h

� is well�de�ned� Now� let �h�z	 
 h���z	 for

z � D� Clearly� �h � D� By Lemma ���� we have

max
z�D

J��h�z		 � �� 	 � logK�Q	 � c�

On the other hand� it is clear that for small � 	 � S�u	 � � and P �u	 �
B�
�z�		 for some z� � �D imply that

J�u	 � � logK�Q	 � ��

�



for �� � c���� Hence� we have maxz�D J��h�z		 
 maxz�D J�h�z		� Now it
is clear that �i	 and �ii	 follow� �

Now we return to consider our functional J	� LetD	 
 fh � D�
��h�D	 � B	g�

Recall that B	 
 fu � H
��b�u	 � log �g� For a �xed �� �for example �� as in

Lemma ���	 it is clear that D	 �� �� if � is su�ciently large� Set

�	 
 inf
h�D�

max
z�D

J	�h�z		

Lemma ��
 lim	�	 �	 
 �� �  � � log ��

Proof� In view of Lemma ���� for any � 	 � there exists h� � D� such
that

jmax
z�D

J�h��z		 � ��j � ����

Since B	 � H as �� ��� we can choose �� 	 � such that h��D	 � B	 for
any � 	 ��� Hence

max
z�D

J	�h��z		 � maxJ�h��z		 � f�


 �
q

� 

	 log �

	

� �� � ��  � � log �

provided that �� is large enough� On the other hand� for each h � D	� we
have

max
z�D

J�h�t		 � �� �  � � log ��

This proves the Lemma� �

Lemma ��� J	 satis�es the Palais	Smale condition in A	�

In fact� this was proved in the argument of proposition ���� �

Now we state our main result in this section�

Proposition ��� �	 is achieved by �u	 �
�
B	� provided that � is large enough�

Proof� We divide the proof into several steps�

Step � We have

�i	 For �� 	 � and large T�� there exist M� 	 � and 
� 	 � such that any
u 
 �w� q� t	 with J	�u	 � ��� �� log �� �� and t � T� satis�es that
S�u	 � M� and u 
 �w� q� t	 with q �� B���P�	�

��



�ii	 There exist small � 	 � and large T� 	 � such that� if u 
 �w� q� t	 with
S�u	 � �� q � B�
	 and t � T�� then J	�u	 � �� �  � � log �� c����

Note that �ii	 was used in the proof of Lemma ����
Step �� From �CkL� p�� there exist b�� e�� e�� T� and N�� N� 	 � such that
if u 
 �w� q� t	 with q �� B���P�	 and S�w	 �M�� then

�i	 k�wJk � e� �N�t
�� log��� t� if S�w	 � b� and t 	 T��

�ii	 h�wJ� �vi � e�S
����w	 � N�t

�� log��� t� if S�w	 � b� and for any �v �
TwH��

Here �wJ�u	 is the derivative with respect to w� Let T� 
 maxfT� T�� T�� T�g�
where T is determined in Lemma ����

Note that in steps  and �� all constants are independent of ��

Step �� There exists �� 	 � such that for any � 	 ��

X �
 fu 
 �w� q� t	jt � T�g � B	�

Step �� If u 
 �w� q� t	 � B	 with S�w	 �M�� q �� B���P�	 and t � T�� then

k�wf	�w� q� t	k � c�
t

�
� c�te

�c�t

k�tf	�w� q� t	k � c�te
�c�t�

and

k�qf	�w� q� t	k � c�
t

�
� c�te

�c�t�

for some positive constant c� and c��
It is enough to check that there exists a constant c such that

jh�wd�u	� vij � ctkvk

for any v � TwH��

h�wd�u	vi 

�
R
K� 
 �q�t e

�w � v�det�d�q�t	
��	

�
R
K 
 �q�t ew	�

�
�
R
K� 
 �q�t e

�w�det�d�q�t	
��	
R
K 
 �q�t e

w � v

�
R
K 
 �q�t ew	�

�
�fK	 
 �q�t e

	w�det�d�q�t	
��g����

R
jvj�	���

�
R
K 
 �q�t ew	�

�

R
K� 
 �q�t e

�w�det�d�g�t	
��	�

R
K� 
 �q�t e

�w	����
R
jvj�	

�
R
K 
 �q�t ew	�

� ct��

Z
jvj�	���� by Lemma ����

�



Since u � B	� we have� by Lemma ���

ct� � log ��

This is equivalent to ��� � e�ct
�

� Step � follows�

Step �� Extend J	jX to Y �
 ft � T�g � fu � �w� q� t	
�� S�w	 � M� q ��

B���P�	g� Let u � Y de�ne a functional H � Y � R as in �CkL� by

H�w� q� t	 
 S�w	� logK�q	�
��K�q	

K�q	
t�� log t�

One can check that

jJ �Hj �

��
�

N�t
�� log��� t if S�w	 � b t 	 T�

N� �jrK�q	j t�� log��� t S�w	
�t�� � S��w		

if S�w	 � b t 	 T�

see �CkL� p��� Extending J as in �CkL�� we obtain �J in Y � On the other
hand� by step � we can extend f	jX smoothly to �f	 
 Y � R such that

�i	 �f	jX 
 f	jX �

�ii	 �f satis�es Step ��

�iii	 �f	 
 � � � log �� when t is su�cient large�

Now we obtain a new functional �J	 
 �J � �f	 de�ned in Y satisfying

�a	 � �J	�w	 �� � if u 
 �w� q� t	 with t � T�

�b	 �J	 satis�es the Palais�Smale conditions on ��	���� �	���	 for a �xed
small constant �� 	 �

�c	 �J	jX 
 J	jX �

�d	 �J	 satis�es Steps ���

�a	 We can follow �CkL� to prove �a	� Here we give a sketch�
If S�w	 � t�� log t� then k�w �Jk � N�t

�� log��� t �see �CkL�	� �ii	 and
Step � implies that if t � T�

k�w �fk� � c te�ct
�

�����	

Hence k�w �J	k �
N�

� t
�� log��� t� provided that T� is su�cient large�

If S�w	 � t�� log t� it was shown in �CkL� that near Q or �Q

���t �J�u	� ��K�q	

K�q	

������	

��



is controlled by c log�� t if t � T� and away from Q and �Q

���q �J�u	 � �qK�q	

K�q	

�����	

is controlled by ct���� log t� if t � T�� Here � � � � � By �ii	 and Step �
it is clear that ����	 and ���	 hold also for �J	� Thus there are no critical
points of �J	 if t � T��

�b	 If fuig � Y is a Palais�Smale sequence for �J	� the argument in �i	 im�
plies that we may assume that fuig � X� Hence �b	 follows from Lemma ����

�c	 and �d	 are clear�
Step �� Now we set ��	 
 infh�D�

�
supz�D �J	�h�z		� where D�

	 
 fh �

D�
��h�D	 � Y g� Using the above argument� we have

D�
	 �� �

and

lim
	�	

��	 
 �� �  � � log �

Thus� for large � 	 �� ��	 � ��� �  � � log � � ��� � �  � � log � � ��	�
Since �J	 satis�es the Palais�Smale condition on ��� �  � � log � � ��� � �
�� log �� ��	� if �

�
	 is not a critical value of �J	� we can �nd a deformation

T ��� t	 � Y � ��� � � Y such that

�i	 T �u� �	 
 u�

�ii	 T �u� 	 � �J������ � if u �
�J������

�iii	 T �u� t	 
 u� if u � �J��
�
���� � �Y n �J��

�
����	�

where �Jb �
 fu � Y j �J	�u	 � bg and �� � ����� The construction of such a
deformation is standard� We refer to �Ck�� We claim

T �u� t	 
 u

if u � �Y � fu 
 �w� q� t	jS�w	 � �� P �u	 � B�
	g�
If u 
 �w� q� t	 with S�w	 � � and P �u	 � B�
	� then by Step  J	�u	 �

�� �  � � log � � c�
� � By �iii	 in the construction of the deformation T �

T �u� t	 
 u� If u � �Y � then u 
 �w� q� t	 satis�es either S�w	 
 M��
q � �B���P�	 and t � T� or S � M�� q � B���P�	 and t 
 T�� Again by
Step � we have J	�u	 	 ����� log ����� hence T �u� t	 
 u by �iii	 above�

Hence T
h � D�
	 for any h � D

�
	� Now it is clear that the existence of such

a deformation contradicts the de�nition of ��	� Therefore �
�
	 is a critical value

and there is u	 � Y such that u	 is a critical point of �J	 and �J	�u		 
 ��	�
By the construction of �J	� we know u	 � X and �J	�u		 
 J	�u	 
 �	� This
completes the proof of the proposition� �

��



Proposition ��� By taking a subsequence� u	 converges to u� strongly in
Cq for any q 	 � where u� is a solution of ����� obtained in �CkL� and
�CY��

Proof� From the argument in the proof of the previous proposition� we
have u	 � X� Therefore u	 is bounded in H���� Assume u	 converges to u�
weakly in H���� strongly in Lp for p 	  and almost everywhere� As before�
by Lebesgue�s theorem� we haveZ

Keu� �

Z
Keu� and

Z
K�e�u� �

Z
K�e�u� �

Hence�

�e��u�� �
�R
Keu�

as �� ���
Since v	 
 u	 � ��u		 satis�es ����	� i�e�Z

hrv	 � r�i� �

Z
Kev��Kev� � 	� � �

Z
� 
 ������	

we have Z
ru� � r�� �

Z
Keuo�� �

Z
� 
 ������	

which implies that u� is a solution of ����	� Choosing � 
 u	 � u� in ����	
and ����	� we concludeZ

jru	 �ru�j
� 
 ��

Z
Ke��u��eu��Ke��u��eu� � 	�u	 � u�	

��

Z
Keu��u	 � uo	


 ��

Z
Ke��u��eu��u	 � u�	

��

Z
Keu��u	 � uo	 � o�	


 o�	 as �� ��

It follows that u	 converges to u� in H���� Now it is easy to conclude that
u	 � u� in Cq�S�	 for any q �  by the elliptic estimates� �

Proof of Theorem ���� It follows from proposition ��� and ���� �

Remark� FA�
k
� �� eu��u�R

eu��u�
as k � �� where u� is a solution of ����	 and

u� is a solution of ����	 with K 
 eu� �

��
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