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Abstract Existence of minimizers for a volume constrained energy

E�u� ��

Z
�

W �ru� dx

where LN �fu � zig� � �i� i � �� � � � � P� is proved in the case where zi are extremal points of a compact�

convex set in Rd and under suitable assumptions on a class of quasiconvex energy densities W � Optimality

properties are studied in the scalar�valued problem where d � �� P � �� W ��� � j�j�� and the 	�limit as the

sum of the measures of the � phases tends to LN�
� is identi�ed� Minimizers are fully characterized when

N � �� and candidates for solutions are studied for the circle and the square in the plane�

���� Mathematics subject classi�cation �Amer� Math� Soc��� ��A��� ��J��� ��J��� ��K��
Key Words � volume constraints� free boundary problems

� Introduction

In recent years there has been a remarkable development of techniques in applied analysis motivated
in part by questions arising in the study of materials	 Some of the underlying mathematical problems
lie at the boundary of classical analytical methods� requiring new ideas and the introduction of
innovative tools	 In this paper we treat a seemingly simple constrained variational problem which
falls outside the usual techniques of the Calculus of Variations for proving existence of minimizers	

In ���� Morton Gurtin� motivated by a problem related to the interface between immiscible 
uids
����� suggested that we study existence of minimizers and possible optimal designs for the energy

I
u� ��

Z
�

jruj� dx

where � � R
N is an open� bounded� connected Lipschitz domain� and u � �� R is subjected to the

volume constraints

LN 
fu � �g� � � and LN 
fu � �g� � �� 
�	��

Here LN denotes the N �dimensional Lebesgue measure in R
N and �� � � � satisfy �� � � LN 
��	

Previous works by Alt and Ca�arelli ��� and Aguilera� Alt and Ca�arelli ��� address a similar
problem where only one volume constraint is present and Dirichlet boundary conditions are imposed
on u	 They obtain existence of minimizers for I and regularity properties for solutions as well as their
free boundaries	 In our context� and in the presence of two or more constraints� a priori continuity
of minimizers would imply separability of the phases fu � �g and fu � �g� thus enabling us to use
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their arguments and obtain additional regularity for u and the free boundaries	 However� continuity
had not been established during the making of this paper� and this seriously limited the choice of
variations and required the introduction of analytical methods speci�c to the multi�phase framework	
We must point out that since this work has been completed Tilli 
see ����� pursued it a step further
proving locally Lipschitz continuity of minimizers of I 	

In this paper we obtain existence of minimizers for I subjected to 
�	��	 More generally� in
Theorem �	� we prove existence of solutions of

min

�Z
�

W 
ru� dx � u � W ��p
��Rd �� LN 
fu � zig� � �i� i � �� � � � � P

�

where fz�� � � � � zPg are extremal points of a compact� convex set K � R
d � with P � �� �i � � andP

i �i � LN 
��� provided W � Rd�N � ������ is a C� quasiconvex function with p�growth� p � ��
satisfying the structure condition

dX
i�j��

NX
k��

�W

��ik

���jk�

i�j � � whenever �T � �� �� � � R
d�N � � � Sd�� 
�	��

where Sd�� is the unit sphere in Rd 	 A characterization of 
�	�� in terms of the behavior of W along
rank�one lines can be found in Remark �	�
ii�	 Certain isotropic energy densities� such as functions
of the type W 
�� � g
j�j� jadj �j� jdet �j� verify 
�	�� 
see Proposition �	��	

In Section �� using some optimality properties of minimizers obtained in Section � for W 
�� ��
j�j�� we characterize the asymptotic behavior of minimizers of I subjected to 
�	�� as �� LN 
���	
and � � 	� with 	 � 
��LN 
���	 Precisely� we show that the limiting con�gurations satisfy the
constrained least area problem

p� �� min

�
P�
E� � E � �� LN 
E� � 	

�

where P�
E� denotes� as usual� the perimeter of E in �	 Similar results have been obtained for phase
transitions problems where the formation of phases is driven by a double well potential 
see ����� ����
����� while here the creation of interfaces is due to the volume constraints	

In Section � we characterize fully the solutions of 
M� when W 
�� � j�j�� � is an interval and
d � � 
see Subsection �	��	 Explicit solutions are unknown when � � R

N and N � �	 We study
the cases where � is a circle or a square on the plane	 If � is a circle� then on Subsection �	� we
determine the minimum energy among radial con�gurations� and we construct a family of competing
con�gurations uab with energy strictly lower than the energy for radial functions if � � � �� �	
However� uab are not solutions either� as they violate some of the optimality conditions obtained in
Section �	 We remark that due to Theorem �	�� if ��� � L�
�� then radial con�gurations will still
not be minimizers for 
M�	 Finally� in Subsection �	� we address brie
y the case where � � 
�� ����
and we show that although the piecewise a�ne con�gurations of the form

u
x� �

��
�

� if x� � ��
�

�����x� � �
����� if � � x� � �� ��

� if x� � �� �

satisfy the optimality conditions� they are not minimizers for 
M� if ��� �� �� and� once again by
virtue of Theorem �	�� they will not have least energy when � � � approaches the measure of the
unit square	

� Existence

Let us �rst �x some notation	 In the sequel LN denotes the N �dimensional Lebesgue measure in
R
N � HN�� is the 
N � ���dimensional Hausdor� measure� M is the space of Lebesgue measurable

�



functions u � �� R
d and 
A stands for the characteristic function of a set A	 We denote by Rd�N

the vector space of d�N matrices � 
d rows� N columns� with components �ij � � � i � d� � � j � N 	
Finally� � is an open� bounded� connected Lipschitz domain� Ck

c 
�� is the space of k�di�erentiable
functions with compact support in �� k � N 	 f��g	
Proposition ���� For any sequence 
uh� � M converging a�e� to u � M and for any closed set
C � R

d we have

LN 
fx � � � u
x� � Cg� � lim sup
n���

LN 
fx � � � un
x� � Cg��

Proof� Since A �� R
d n C is open we have


A
u� � lim inf
n���


A
un� a	e	 in ��

By Fatou�s Lemma we have

LN 
fx � � � u
x� � Ag� �

Z
�


A
u� dx �
Z
�

lim inf
n���


A
un� dx

� lim inf
n���

Z
�


A
un� dx � lim inf
n���

LN 
fx � � � un
x� � Ag��

The statement now follows by passing to the complementary sets	

Note that since any Lp
���converging sequence has subsequences which converge almost every�
where� the upper semicontinuity property asserted in Proposition �	� is still valid with respect to
Lp
���convergence	

Let us consider a �nite collection of points fz�� � � � � zP g in R
d � with P � �	 In this section we

obtain the existence of solutions for the minimization problem


M� min

�Z
�

W 
ru� dx � u � W ��p
��Rd �� LN 
fu � zig� � �i� i � �� � � � � P

�

where p � �� �i � � and
P

i �i � LN 
��� under some technical assumptions on W 	
We �rst �nd conditions ensuring that the relaxed problem


M�� min

�Z
�

W 
ru� dx � u �W ��p
��Rd �� LN 
fu � zig� � �i� i � �� � � � � P

�

has a solution	

Proposition ���� Assume that W � Rd�N � ����� is a quasiconvex function satisfying

cj�jp �W 
�� � C
j�jp � �� 
� � R
d�N 
�	��

for some constants c� C � � and some p � 
������ Then problem �M�� has at least one solution�

Proof� It is easy to check that the class of competing functions in 
M�� is not empty	 Let 
uh�
be a minimizing sequence for the problem and denote by �uh the average of uh on �	 By Poincar�e�s
inequality and Rellich�s Theorem� without loss of generality we may assume that the functions
vh � uh � �uh converge in Lp
�� to some function v	 As

LN 
fuh � P�g��uh �

Z
fuh�P�g

�uh dx �

Z
fuh�P�g


P� � vh� dx�

we conclude that 
�uh� is bounded and hence� extracting if necessary another subsequence� the func�
tions 
uh� are converging in Lp
�� to some function u � W ��p
��Rd �	 By Proposition �	� the

�



function u satis�es the constraints of 
M��� and due to the growth condition 
�	�� it follows by the
lower semicontinuity theorem of Acerbi and Fusco 
see ���� thatZ

�

W 
ru� dx � lim inf
h��

Z
�

W 
ruh� dx�

This proves that u is a solution of 
M��	

Note that the previous argument may be carried through when the upper bound on W in 
�	��
is replaced by the weaker assumption that u �� R

�
W 
ru� is lower semicontinuous in the weak

topology of W ��p
��Rd �	
Next we �nd conditions on W which ensure that any solution of 
M�� actually solves 
M�	

Theorem ���� Let u be a solution of �M�� and assume that

�i� W is di�erentiable� satis�es

dX
i��

NX
k��

���� �W��ik
���� � C
� � j�jp��� 
�	��

for some C � � and all � � R
d�N � and

dX
i�j��

NX
k��

�W

��ik

���jk�

i�j � � whenever �T � �� �� � � R
d�N � � � Sd�� 
�	��

where Sd�� is the unit sphere in R
d �

�ii� z�� � � � � zP are extremal points of a compact convex set K�

Then u is a solution of �M��

Proof� We have to prove that

LN 
fu � zig� � 	i� for all i � �� � � � � P�

Suppose that LN 
fu � z�g� � ��	 Let r � � be such that LN 
fu � z�g� � r � ��� and consider a
smooth cut�o� function � � C�c 
RN � ��� ��� such that LN 
supp�� � r	 Without loss of generality�
we may assume that the extremal point z� is the origin� and let � � Sd�� be such that K n z� �
fy � R

d � y � � � �g	 Let � � � � minfzi � � � i � �� � � � � Pg� and de�ne f � R � ������ as

f
t� ��

��
�

�t� � if t � �

� otherwise�

Set w �� u � �� and consider the perturbations u� �� u� 
�f
w��	 If i � �� � � � � P� and if u
x� � zi�
then w
x� � � and f
w
x�� � �� so that u�
x� � u
x�	 Therefore

fu� � zig 
 fu � zig�

On the other hand�

LN 
fu� � z�g� � LN 
fu � z�g��LN 
supp�� � LN 
fu � z�g�� r � ���

�



and we conclude that u� is admissible for 
M��	 Thus� taking into account the growth assumption

�	�� and by virtue of Lebesgue�s Dominated Convergence Theorem� we can di�erentiate under the
integral to �nd

� �
d

d


����
���

Z
�

W 
ru� 
r ��f
w��� j� dx

�

dX
i��

NX
k��

Z
�

�W

��ik

ru�

�
� ��

�xk
f
w��i � �f �
w��i

dX
j��

�j
�uj

�xk

�
	 dx� 
�	��

Using a partition of unity� it is easy to see that any smooth function with compact support may be
written as a �nite sum of cut�o� functions � as above� each one of which with small support� so we
may consider � � � in �� and 
�	�� reduces to

Z
fw������g

dX
i�j��

NX
k��

�W

��ik

ru��u

j

�xk
�i�j dx � ��

By 
�	�� we deduce that rw � ruT � � � a	e	 on f� � w � �g� hence the function maxf��minfw� �gg
is constant in �	 On the other hand� LN 
fw � �g� � LN 
fu � z�g� � � and LN 
fw � �g� �
LN 
fu � z�g� � �	 We have reached a contradiction� and we may conclude now that LN 
fu �
z�g� � ���

Remark ���� 
i� Any di�erentiable quasiconvex function satisfying the growth condition 
�	�� ver�
i�es also 
�	�� 
see �����	

ii� In the scalar�valued case where d � �� quasiconvexity reduces to convexity� and the condition

�	�� may be rewritten as

NX
i��

�W

��i

���i � � for all � � R

N n f�g�

Since W is convex� this is equivalent to saying that W has a strict minimum at the origin	 More
generally� if W � Rd�N � R is a C� rank�one convex function then 
�	�� holds if and only if

t �� W 
A� t� � �� has a strict minimum at t � � 
�	��

whenever � � Rnf�g� A � R
d�N � � � SN�� and AT � � �� Note that in Proposition �	�W is assumed

to be quasiconvex� and� consequently� it is rank�one convex	 In order to prove the equivalence between

�	�� and 
�	��� assume �rst that � � R n f�g� A � R

d�N � � � SN��� AT � � �� and set

�
t� �� W 
A� t� � ���

Since � is convex and C�� � has a strict minimum at the origin if and only if sign��
t� � sign t for
t �� �	 As

dX
j��


A� t� � ��jk�
j � t�k� 
�	��

we have for t �� �

��
t� �
NX
k��

dX
i��

�W

��ik

A� t� � ���i�k

�
�

t

NX
k��

dX
i�j��

�W

��ik

A� t� � ��
A� t� � ��jk�

i�j � 
�	��

�



It follows from 
�	�� that

A� t� � ��T � � t� �� �

which� together with 
�	�� and 
�	��� yields

sign��
t� � sign t�

Conversely� if for some � � R
d�N � � � Sd�� such that �T � �� � 
�	�� was violated� setting

�
t� �� W 
A� t� � �T ��� A �� � � � � �T ��

then AT � � ��

��
�� �

dX
i�j��

NX
k��

�W

��ik

���jk�

i�j � ��

and this is in contradiction with 
�	��	

iii� Note that the function W 
�� � j�j�� corresponding to the Dirichlet integral� satis�es all the
hypotheses of Theorem �	�	 In this case a simple truncation argument proves that any solution u of

M� satis�es

minfz�� z�g � u � maxfz�� z�g�
More generally� in the isotropic 
scalar or vectorial� case where W 
�� � �
j�j�� the assumption 
�	��
reduces to ��
t� � � for t � �� and it can be shown that any solution u of 
M�� takes its values in the
closed convex hull K of fz�� � � � � zP g	 This follows by comparing u with �
u�� where � � Rd � R

d

is the orthogonal projection onto a half�space containing all points zi	 Precisely� set

	 �� inf

�Z
�

�
jruj� dx � u �W ��p
��K�� LN 
fu � zig� � �i� i � �� � � � � P

�
�

We claim that if an admissible u for 
M�� takes values outside K then we may modify it so as to
decrease its energy	 In fact� if LN 
fx � � � u
x� �� Kg� � � then there exists a hyperplane H with
normal � � Sd�� such that K is contained in one of the half�spaces determined by H � and the other
half�space contains a subset E of the range of u with LN 
u��
E�� � �	 Without loss of generality�
we may assume that

H �� fy � R
d � y � � � �g� K � fy � R

d � y � � � �g�
and that there exists � � � such that

LN 
fx � � � u
x� � � � �g� � ��

Let f��� � � � � �d��� �g be an orthonormal basis of Rd � and de�ne

�
u�
x� ��

d��X
i��


u
x� � �i� �i � f
x� �

where

f
x� ��

��
�

u
x� � � if u
x� � � � �

� otherwise	

Clearly� if u
x� � K then �
u�
x� � u
x�� so �
u� is still admissible	 Also jr�
u�
x�j � jru
x�j for
a	e	 x � �� and

jr�
u�
x�j � jru
x�j on a set of positive measure	 
�	��

�



In fact� if jr�
u�
x�j � jru
x�j a	e	 in � then ru � � � � a	e	 on fu � � � �g� and so the Sobolev
function v �� maxf
u � ��� �g would be constant� in contrast with the conditions

LN 
fv � �g� � LN 
fu � z�g� � �� � �� LN 
fv � �g� � ��

Since � is strictly increasing� by 
�	�� we haveZ
�

�
jr�
u�
x�j� dx �

Z
�

�
jru
x�j� dx�

As K is the intersection of a countable family of half�spaces� an iteration of this argument proves
that for any u admissible for 
M�� there exists a function �u still admissible for 
M��� with values in
K and with smaller energy	 Thus every solution of 
M�� takes its values on K	

iv� We do not know whether solutions of 
M�� are solutions of 
M� if the points zi are not extremal�
even when d � �� W 
�� � j�j�� and there are three or more phases	 However� in this particular case
it can be easily proved that any continuous solution of 
M�� is actually a solution of 
M�	 Indeed�
if for instance LN 
fu � z�g� � �� then we can make local additive variations to obtain that each
component of u is harmonic in the open set


x � � � u
x� � R
d n fz�� z�� � � � � zP g

�
�

This obviously contradicts the fact that LN 
fu � z�g� � �	

Next we exhibit a class of isotropic energy densities W which satisfy 
�	��	 We recall that W is
isotropic if it can be written as

W 
�� � �
��
��� � � � � �N 
���

for some function � of the vector of principal stretches 
��
��� � � � � �N 
���� where � � ��
�� �
��
�� � � � � � �N 
��� and f��i 
�� � i � �� � � � � Ng are the eigenvalues of �T �	

Proposition ���� Let W � RN�N � R be given by

W 
�� � �
��
��� � � � � �N 
���� � � R
N�N �

where � � RN � R is a symmetric C� function such that for every i � �� � � � � N

��

��i

�� � � whenever �i � � and �j � � for all j � �� � � � � N� j �� i�

Then W satis�es �	�
��

Proof� Consider �rst a matrix � � R
N�N such that

�T � ei � ��i 
�� ei� i � �� � � � � N� � � ��
�� � � � � � �N 
���

and fe�� � � � � eNg is an orthonormal basis of RN 	 Fix B � R
N�N 	 If t is small enough then

� � ��
� � tB� � � � � � �N 
� � tB��

�i
� � tB�� �i
�� as t� ��

and


� � tB�T 
� � tB� ei
t� � ��i 
� � tB� ei
t�� 
�	��

�



where ei
t� � ei as t � �� and jei
t�j � �� Di�erentiating 
�	�� with respect to t� making the inner
product of the resulting equation with ei
t�� and using the fact that ei
t� � d

dtei
t� � �� we obtain at
t � �

Bei � �ei � �i
��
d

dt
�i
� � tB��

In the case where B �� � � �T �� since Bei � �ei � 
�T � � ei��� we conclude that

d

dt
�i
� � tB� �

�

�i
��

�T � � ei��� 
�	���

We are now in a position to prove 
�	��	 Let � � R
N�N � � � SN��� be such that �T � �� �	 Writing

�T �ei � ��i 
��ei

for a suitable orthonormal basis of RN � fe�� � � � � eNg� then there is j � f�� � � � � Ng such that �T � �ej ��
�� and so �j � �	 Construct a sequence of matrices �n such that �n � � as n� ���


�n�T �nei � ��i 
�
n�ei� � � ��
�

n� � � � � � �N 
�n��

Using 
�	���� we conclude that

dX
i�j��

NX
k��

�W

��ik

���jk�

i�j � lim
n��

dX
i�j��

NX
k��

�W

��ik

�n��njk�

i�j

� lim
n��

d

dt

����
t��

W 
�n � t� � 
�n�T ��

� lim
n��

NX
i��

��

��i

��
�

n�� � � � � �N 
�n��
�

�i
�n�


�n�T � � ei��

� lim sup
n��

��

��j

��
�

n�� � � � � �N 
�n��
�

�j
�n�


�n�T � � ej��

�
��

��j

��
��� � � � � �N 
���

�

�j

�T � � ei�� � ��

A simple class of polyconvex functions satisfying the hypotheses of Proposition �	� is formed by
energy densities of the type

W 
�� � g
j�j� jadj �j� jdet �j�
where g
�� �� �� is a C� convex function on ������� such that

�g

��

�� �� �� � ��

�g

��

�� �� �� � �� and

�g

��

�� �� �� � � for all 
�� �� �� with � � ��

Here det � denotes the determinant of the N �N matrix �� and adj � is the adjugate of the matrix
�� i	e	 the matrix of the minors of order N � � with the property


adj ��T � � �T adj � � det � I� 
�	���

Using the same terminology for the principal stretches as above� we rewrite

W 
�� � �
��
��� � � � � �N 
���

where

�
��� � � � � �N � �� g

�


vuut NX

i��

��i �

vuut NX
i��

��� � � � �
�
i���

�
i��� � � � �

�
N � �� � � � �N

�
A

with ���� �N�� �� �	

�



� Optimality Properties of the Solutions

As it was shown in the previous section 
see Theorem �	�� Remark �	��� the problem


M� min

�Z
�

jruj� dx � u � W ���
��� LN 
fu � �g� � �� LN 
fu � �g� � �

�

admits solutions� and any solution belongs to u � W ���
�� ��� ���	 Below we study some optimality
properties of these solutions	

Theorem ���� Let u � W ���
�� ��� ��� be a solution of 
M�� Then

i� Z

�

�f �
u�jruj� � f
u�r� � ru dx � �

for all � � C�
�� and all f �W ���
�� with f
�� � f
�� � ��

ii� Z

�

jruj� g
u� dx �

�Z
�

jruj� dx
��Z �

�

g
s� ds

�
for all g � L�
R��

iii� �u is a signed Radon measure in � with support contained in fu � �g 	 fu � �g� and

j�uj
�� � �

Z
�

jruj� dx�

Moreover�

h�u� �i � lim
n���

n

Z
fu���ng

� jruj� dx � n

Z
fu�����ng

� jruj� dx

for every � � Cc
���

iv� if F �W ���

� 
��RN � satis�es divF � � then

NX
i�j��

Z
�

�Fi
�xj

�u

�xi

�u

�xj
dx � �� 
�	��

Proof� By Theorem �	� and Remark �	� ii� we know that any solution u of 
M� belongs to
W ���
�� ��� ���	 Taking � and f under the assumptions of part 
i�� it is clear that

fu � �g � fu� 
�f
u� � �g and fu � �g � fu� 
�f
u� � �g�
Therefore u� 
�f
u� is admissible for 
M��� and in light of Remark �	� ii��

� �
d

d


����
���

Z
�

jr
u� ��f
u��j� dx

� �

Z
�

�f �
u�jruj� � f
u�r� � ru dx�

proving 
i�	 Part 
ii� follows immediately from 
i� setting

� � �� f
t� ��

Z t

�

g
s� ds� t

Z �

�

g
s� ds�

To obtain 
iii�� consider the piecewise a�ne functions

fn
t� ��

��
�

nt if � � t � �
n

� if �
n � t � �� �

n�nt� n if �� �
n � t � ��

�



By 
i� we have for all � � C�
c 
��

h�u� �i � �
Z
�

ru � r�dx � � lim
n���

Z
�

ru � r�fn
u� dx

� � lim
n���

Z
�

jruj��f �n
u� dx � � lim
n���

h�n� �i�

where the �nite Radon measures �n are de�ned as

�n �� jruj� f �n
u�LNb��

By 
ii� we have

j�nj
�� �
Z
�

jruj� jf �n
u�j dx �

�Z
�

jruj� dx
��Z �

�

jf �n
s�j ds
�
� �

Z
�

jruj� dx�

thus there exists a Radon measure � such that� up to a subsequence�

�n
�
� � and j�
��j � �

Z
�

jruj� dx�

We conclude that

�u � �� � weak� lim
n���

�njruj�LNbfu � ��ng� njruj�LNbfu � �� ��ng�

Finally� let F be a Lipschitz mapping on �� with F � � on ��� and such that div F � �	 Consider
the 
ow ���

��
dw

dt

t� x� � F 
w
t� x��

w
�� x� � x


t� x� � R � ��

It is well known that

detrxw
t� x� � �� 
�	��

Indeed� using 
�	��� we have

N
d

dt
detrxw
t� x� � adjrxw
t� x� � d

dt
rxw
t� x� � adjrxw
t� x� � rx
F 
w
t� x���

� adjrxw
t� x�rxw
T 
t� x� � rF 
w
t� x�� � detrxw
t� x�I � rF 
w
t� x��

� detrxw
t� x� divF 
w
t� x�� � ��

Therefore

detrxw
t� x� � detrxw
�� x� � ��

De�ne

u�
x� �� u
w�
x��� where w�
x� �� w

� x��

These functions satisfy the volume constraints of 
M� because by 
�	��

LN 
fu� � �g� �
Z
fu��g

detrw�
x� dx � LN 
fu � �g��

��



and� similarly� LN 
fu� � �g� � LN 
fu � �g�� If u � C� then

d

d


����
���

Z
�

jr
u � w��j� dx � �

Z
�

NX
i�j��

��u

�xi�xj

dw�j
d


�u

�xi
dx � �

Z
�

NX
i�j��

Fj
��u

�xi�xj

�u

�xi
dx

� ��
Z
�

NX
i�j��

�Fj
�xi

�u

�xj

�u

�xi
dx�

By a simple approximation argument� the formula above is still valid if u � W ���
��R� is a solution
of 
M�� and we conclude that

� �
d

d


����
���

Z
�

jr
u � w��j� dx � ��
Z
�

rFru � ru dx�

Remark ���� If u is locally a Lipschitz function in �� statement 
ii� can be reformulated asZ
fu�tg

jruj dHN�� �

Z
�

jruj� dx

for L��a	e	 t � 
�� ��	 In order to prove this assertion we will use the co�area formula 
see ���� Chapter
�� Z

�

h
x�jrv
x�j dx �

Z ��

��

�Z
fv�tg

h
x� dHN��
x�

�
dt 
�	��

valid for any Borel function h � � � ������ and v � W ���
loc 
��R�	 By part 
i�� with � � ��

f � C�
c 
R�� and setting h
x� �� f �
u
x��jruj� we obtain

� �

Z
�

jruj�f �
u� dx �

Z �

�

f �
t�

�Z
fu�tg

jruj dHN��

�
dt � ��

This proves the existence of a constant C such that
R
fu�tg jruj dHN�� � C for L��a	e	 t � 
�� ��	

Using the co�area formula once again� we conclude that C �
R �
� jruj� dx	 As mentioned in the

introduction� following the present work Tilli 
����� has obtained the locally Lipschitz property of u	

In Proposition �	� we will need to exploit certain divergence�free �elds with a given trace on a
Lipschitz domain� and the result below can be used to ensure their existence	

Proposition ���� If � � L�
�� satis�es Z
�

� dx � �

then there exists f � W ���
� 
��RN � such that div f � ��

Proof�We �rst recall a consequence of Tartar�s equivalence lemma 
������ which� in turn� generalizes
a result of Peetre 
see ������ let E� be a Banach space� and let E�� E�� be normed spaces	 If A � E� �
E� is a linear bounded operator and B � E� � E� is a compact linear operator� then Range
A� is
closed provided

kukE� � C �kAukE� � kBukE� � 
�	��

��



for some constant C � �	 We apply the equivalence lemma with E� �� L�
��� E� �� �H��
���N �
E� �� H��
��� Au �� ru� and Bu �� u	 With these choices� the estimate 
�	�� reduces to

kukL� � C �krukH�� � kukH�� �

and it has been proved by Ne!cas in ����	
Since Range
A� is closed� then so is Range
AT �� where AT � �H�

� 
���
N � L�
�� is the divergence

operator	 We conclude that�
� � L�
�� �

Z
�

� dx � �

�
� �Ker
A��� � Range
AT � � Range
AT �

and the statement follows	

An immediate consequence of Proposition �	� is that if � � H���
���RN � satis�esZ
	�

� � n� dHN�� � ��

where n� is the unit outer normal to ��� then the problem��
�

div g � � in �

g � � on ��

admits a solution g � W ���
��RN �	 Indeed� it su�ces to apply Proposition �	� to the function
� �� �div h� where h �W ���
��RN � is such that h � � on ��� to obtain a function f � W ���

� 
��RN �
satisfying div f � �� and set g �� f � h	

In the following proposition we exploit 
�	��� to show that the normal derivative on the boundary
of the level sets fu � �g� fu � �g� is locally constant	 As it turns out� the normal derivative for
minimizers is globally constant 
����� and also see ��� in the case of one volume constraint�	

Proposition ���� If u � W ���
loc 
�� satis�es �
���� if �u � � in f� � u � �g� and if the free

boundary S �� fu � �g 	 fu � �g is C�� then then �u��n is locally constant on S�

Proof� Let g � C�c 
Br�� where Br is an open ball of radius r in � such that Br � fu � �g � �	
Suppose in addition that Z

	fu��g

g � � dHN�� � �

where � is the outer normal to fu � �g	 In view of Proposition �	� and the remark thereafter� we
consider the �elds F� and F� such that��

�
divF� � � in B�

r �� Br n fu � �g
F� � g on S� �� �B�

r � fu � �g
F� � � on �B�

r n fu � �g�
��
�

divF� � � in B�
r �� Br � 
intfu � �g�

F� � g on �B�
r � fu � �g

F� � � on �B�
r n fu � �g�

and de�ne

F ��

��
�

F� in B�
r

F� in B�
r

� otherwise�

��



A smoothing argument shows that 
�	�� holds with F 
which� a priori� is only in W ���
� 
Br�R

N � and
not necessarily Lipschitz� because jruj is bounded in Br by assumption	 Hence� we have

� �
NX

i�j��

Z
Br

�Fi
�xj

�u

�xi

�u

�xj
dx �

NX
i�j��

Z
B�
r

�F�
i

�xj

�u

�xi

�u

�xj
dx

�

NX
i�j��

Z
S�

gi�j
�u

�xi

�u

�xj
dHN�� �

Z
B�
r

F�
i

�

�xj

�
�u

�xi

�u

�xj

�
dx�

Note that

NX
j��

�

�xj

�
�u

�xi

�u

�xj

�
�

�u

�xi
�u�

�

�xi

�
�

�
jruj�

�
�

�

�xi

�
�

�
jruj�

�

hence

� �
NX
i��

Z
S�

gi
�u

�xi

�u

�n
dHN�� �

Z
B�
r

F�
i

�

�xi

�
�

�
jruj�

�
dy

�

Z
S�

NX
i��

gi�i

������u�n
����
�

� �

�
jruj�

�
dHN�� �

�

�

Z
S�

g � �
�����u�n

����
�

dHN��

by the identity �u��xi � �i�u��n on the boundary	 We have proved the implication

Z
S�

g � � dHN�� � � ��
Z
S�

g � �
�����u�n

����
�

dHN�� � � 
�	��

for g � C�c 
Br�R
N �	 for g � C�c 
Br�R

N �� and this ensures the existence of a constant � such that

Z
S�

g � �
�����u�n

����
�

dHN�� � �

Z
S�

g � � dHN�� for all g � C�� 
Br�R
N ��

We conclude that the normal derivative of u is locally constant on S�	

� Asymptotic Behavior of the Solutions

In this section we investigate the asymptotic behavior of solutions u�� of


M��� min

�Z
�

jruj� dx � u � W ���
���LN 
fu � �g� � �� LN 
fu � �g� � �

�

as 
� � �� � LN 
��	 We denote by m�� the Dirichlet integral of u�� and� for any constant 	 �

�� j�j�� we set

p� �� min

�
P�
E� � E � �� LN 
E� � 	

�

�	��

where P�
E� denotes� as usual� the perimeter of E in �	 The main result of this section is the
following�

��



Theorem ���� For any 	 � 
��LN 
��� we have

lim
��LN �����

���

����LN ���

�LN 
��� 
�� ��
�
m�� � p�� � 
�	��

Moreover� any limit point in the L�
�� topology of u�� is the characteristic function of a minimizing
set for ������

Theorem �	� will be deduced easily from Theorem �	� below� recalling that the theory of "�
convergence ensures that minimizers of 
M��� converge to minimizers for 
�	��� and that minima for

M��� tend to the minimum for the limiting problem� i	e	 
�	�� holds	

Theorem ���� For any u � L�
�� and �� � � � with �� � � LN 
��� we de�ne

F��
u� ��

����
���

Z
�

jruj� if u � H�
���LN 
fu � �g� � ��LN 
fu � �g� � �

�� otherwise�

and

G�
u� ��

��
�

�P�
E��� if u � 
E and LN 
E� � 	

�� otherwise�

Then�

"
�
L�
��

�� lim
��LN �����

���

����LN ���

�LN 
��� 
�� ��
�
F��
u� � G�
u� for all u � L�
���

Proof� Without loss of generality� we can assume that LN 
�� � �	 We �x sequences f�ng� f�ng�
converging to 
��	�� 	� respectively� and we denote by F�
u�� F�
u�� the upper and lower "�limits�
precisely�

F�
u� �� inf
fung

�
lim sup
n���

�
�� 
�n � �n�

�
F�n�n
un� � un � u in L�
��

�
and

F�
u� �� inf
fung

�
lim inf
n���

�
�� 
�n � �n�

�
F�n�n
un� � un � u in L�
��

�
�

We have to prove that F� � G� � F�	
Step �� We �rst establish the inequality F� � G� � namely

lim inf
h���

�
�� 
�n � �n�

�
F�n�n
u� � G�
u� 
�	��

for any sequence fung converging to u in L�
��	 It is not restrictive to assume that the lim inf in

�	�� is a �nite limit� and to assume� by a truncation argument� that � � un � �	

We �rst prove that u � 
E is a characteristic function and that LN 
E� � 		 Indeed� by Propo�
sition �	� with C � f�g and C � f�g we infer

LN 
fu � �g� � lim sup
n���

LN 
fun � �g� � 
�� 	�� LN 
fu � �g� � lim sup
n���

LN 
fun � �g� � 	�

In particular� there exists a Borel set E � � such that u � 
E 	 SinceZ
�

un dx � �n �

Z
Ln

un dx�

��



with Ln � f� � un � �g� passing to the limit as n� �� we obtain

LN 
E� �

Z
�

u dx � 	

as claimed	

Denoting by
R
� jDuj the total variation of a L�

loc
�� function u 
see for instance ����� we notice
that

Z
�

jDunj �

Z
Ln

jrunj dx �
�LN 
Ln�

�����Z
�

jrunj� dx
����

�
��
�� 
�n � �n�

� Z
�

jrunj� dx
����

F�n�n
un� � ��	 Therefore� asP�
E� �
R
�
jD
E j and u �� R

�
jDuj is L�

loc
�� lower semicon�
tinuous we get

G�
u� � �P�
E��� �

�Z
�

jDuj
��

� lim inf
n���

�Z
�

jDunj
��


�	��

� lim inf
n���

�
�� 
�n � �n�

� Z
�

jrunj� dx�

and this proves 
�	��	

Step �� Now we prove the inequality F�
u� � G�
u�	 It is not restrictive to assume that u � 
E
is a characteristic function� LN 
E� � 	 and P�
E� � ��	

We �rst assume that E � D � � for some bounded open set D with smooth boundary in R
N �

and we prove that

F�
u� � �HN��
�D � ��
��
� 
�	��

Let

d
x� ��

��
�

dist
x� �D� if x �� D

�dist
x� �D� if x � D

be the signed distance function from D	 Due to the smoothness of D� for � � � su�ciently small we
have that 


x � R
N � d
x� � t

�
�


�t
x� � x � �Dg 
�	��

for t � 
��� ��� where �t
x� �� x � t�
x� and � is the unit outer normal to D	 For n large enough
it holds

LN 
fx � � � jd
x�j � �g� � �� 
�n � �n�

and hence we can �nd �n� �n � 
��� �� such that �n � �n and

LN 
fx � � � d
x� � �ng� � �n� LN 
fx � � � d
x� � �ng� � �n�

By construction� the functions

un
x� �
�minfd
x�� �ng � �n�

�

�n � �n

��



satisfy the constraint LN 
fun � �g� � �n� LN 
fun � �g� � �n� and clearly un � u in L�
��	 Using
the identity jrdj � � and the co�area formula 
�	�� with h � � we can estimate

�
�� 
�n � �n�

� Z
�

jrunj� dx �
�
�� 
�n � �n�

� Z
fx�� 	 
n�d�x���ng

jrunj� dx

�
�� 
�n � �n�


�n � �n��
LN 
fx � � � �n � d
x� � �ng�

�

�LN 
fx � � � �n � d
x� � �ng�
�n � �n

��

�

�
�

�n � �n

Z �n


n

HN��
fx � � � d
x� � tg� dt
��
�

Hence� to get 
�	�� we need only to prove the inequality

lim sup
t��

HN��
fx � � � d
x� � tg� � HN��
�D � ��� 
�	��

Indeed� let us �x an open set A 
 �	 By 
�	��� for jtj � minf�� dist
�� �A�g we have

fx � � � d
x� � tg � �t
A � �D��

hence

lim sup
t��

HN��
fx � � � d
x� � tg� � lim sup
t��

HN��
�t
A � �D�� � HN��
A � �D��

Clearly 
�	�� follows by letting A � � 	

Finally� by Lemma �	� below we can �nd a sequence of bounded open sets Dn with smooth
boundary in R

N such that un �� 
Dn�� converge to u � 
E in L�
��� LN 
Dn � �� � 	� and

lim
n���

Hn��
�Dn � �� � P�
E��

Applying 
�	�� to un and using the lower semicontinuity of u �� F�
u� 
see ����� we obtain

F�
u� � lim inf
n���

F�
un� � lim inf
n���

HN��
�Dn � �� � P�
E��

Lemma ���� Let E � � be a set with �nite perimeter such that � � LN 
E� � LN 
��� There
exists a sequence of bounded open sets Dn � R

N with smooth boundary in R
N such that LN 
E� �

LN 
Dn � ��� 
Dn
converges to 
E in L�
��� and

lim
n���

HN��
�Dn � �� � P�
E��

Proof� Let us �rst assume the existence of nonempty balls B� B� such that B � E and B� � �nE	
By a local re
ection argument 
see for instance ���� we can extend E to a bounded set with �nite
perimeter E� in R

N such that jD
E� j
��� � �	 It is possible to �nd bounded open sets En with
smooth boundary� converging to E� and such that 
see ����

lim
n���

PRN
En� � PRN
E
���

��



By the lower semicontinuity of perimeter in open sets we infer

P�
E� � P�
E
�� � lim inf

n���
P�
En� � lim sup

n���
HN��
�En � ��

� lim sup
n���

PRN
En�� P�
En�

� lim sup
n���

PRN
En�� lim inf
n���

P
RNn�
En�

� PRN
E
��� P

RNn�
E
�� � P�
E

�� � P�
E�

whence HN��
�En � �� converges tp P�
E�	
Since LN 
En � �� converges to LN 
E�� possibly adding to En small balls contained in B� and

possibly removing from En small balls contained in B we obtain sets Dn with the same properties
such that LN 
Dn � �� � 		

To prove the general case� we notice that any set E � � such that � � P�
E� � �� can be
approximated� in area and perimeter� by sets Eh such that LN 
Eh� � LN 
E� and such that both
Eh and � nEh have nonempty interior� the approximation can for instance be achieved choosing a
point x � � where the density of E is ��� and de�ning

Eh �� E 	B��h
x� nB�h
x� h � �

with �h �
�LN 
B��h
x� nE���N

���N
� chosen in order to satisfy the volume constraint	 Hence� since

the approximation property is true for Eh� a diagonal argument leads to the existence of Dn also in
the general case	

Proof of Theorem ���� Let f�ng� f�ng be sequences converging to 
� � 	�� 	� respectively� and
let un � W ���
�� ��� ��� be the corresponding solutions to 
M��n��n 
see Remark �	�
ii�� 	 By the
general properties of "�convergence 
see ���� we need only to know that the sequence fung is relatively
compact in L�
��	

Let E � � be a set of �nite perimeter such that LN 
E� � 	� and in view of Theorem �	� let
fvng be a sequence converging to 
E in L�
�� and such that

lim
n���

�
�� 
�n � �n�

� Z
�

jrvnj� dx � �P�
E����

Since un are minimizing� we have

lim sup
n���

�
�� 
�n � �n�

� Z
�

jrunj� dx � �P�
E����

and 
�	�� yields

lim sup
n���

Z
�

jrunj dx � P�
E� � ���

Since the embedding BV 
�� � L�
�� is compact� and as the functions are equibounded� we conclude
that fung is relatively compact in the L�
�� topology	

��



� Competing Con�gurations

��� One dimensional solutions

In the scalar case where � is an interval� d � � and fz�� z�g � f�� �g� the solutions of 
M� can
be easily characterized	 Assuming with no loss of generality that � � 
�� ��� we claim that any
minimizer u in � is a�ne in f� � u � �g	 In fact� denoting by fAigi�I the connected components
of f� � u � �g� we have Z �

�

ju�j� dx �
X
i

Z
Ai

ju�j� dx �
X
i

�

L�
Ai�
�

The inequality between arithmetic mean an harmonic mean givesZ �

�

ju�j� dx � �card
I���P
i L�
Ai�

�
�card
I���

�� �� �
�

This proves that card
I� � �� i	e	 f� � u � �g has only one connected component� and that the
least energy is ��
�� �� ��	

This argument can basically be repeated in the vector�valued case with � � 
�� �� and d � �	
Recalling that in this case we have existence for any �nite set of constrained points K � fz�� � � � � zPg

not necessarily extremal points of a convex set� see Remark �	�
iv��� it can be shown that the
problem is equivalent to �nding the shortest connection between these points	 In fact� setting 	 ��
� �Pi �i the remaining length fraction� we denote by path any �nite sequence w �� fw�� � � � � wrg
such that

fw�� � � � � wrg � K�

and we claim that the in�mum of 
M� is given by

	�� inf

��
�
r��X
j��

jwj�� � wj j � w is a path

��
�

�

�

In fact� using the Lagrange multiplier rule� the above in�mum can be represented by


P� inf

��
�
r��X
j��

jwj�� � wj j�
aj

� w is a path�

rX
j��

aj � 	

��
� �

If u � H�
�� �� is any admissible function for 
M� and I is any connected component of Au �� fu ��
Kg� then the condition u
�I� � K implies thatZ

I

ju�j� dt � �osc
u� I���

L�
I�
� ��

where � � � is the least distance between two points in K	 Hence� Au has only �nitely many
connected components	 It is now easy to establish a one to one correspondence� with equivalence of
the energies� between admissible functions u � H�
�� �� for 
M� and admissible pairs 
wi� ai� for 
P�	
In fact� given u � H�
�� �� admissible for 
M�� the length of each connected component I � 
s� t� of
Au determines a certain positive number aj � and we set

wj �� lim
x	s

u
x�� wj�� �� lim
x
t

u
x��

If u is a solution for 
M� then Z
I

ju�j� dx �
jwj�� � wj j�

aj
�

��



and clearly 
wj � aj� is admissible for 
P�	 Conversely� any f
wj � aj�g admissible for 
P� corresponds
to a function u admissible for 
M� which is piecewise a�ne� with slope jwj�� � wj j�aj in intervals
with length aj � and whose whose level sets fu � zig are formed by ni intervals 
possibly reducing
to a single point� with total length �i� where

ni �� card 
fj � wj � zig� �

��� The circle � radial and comparison con�gurations

Here we study candidates for solutions of the problem


Mr� min

�Z
B

jruj� dx � u �W ���
r 
B�� LN 
fu � �g� � ��LN 
fu � �g� � �

�

where B is the unit ball of R� and W ���
r 
B� denotes the space of radial functions in W ���
B�	

Let u
x� �� g
jxj� � W ���
r 
B�� where g is continuous in 
�� ��	 We de�ne

�r �� sup fr � 
�� �� � g
r� � f�� �gg �

If g
�r� � � we can make a nonincreasing rearrangement of g� preserving the measure of level sets of
u 
see for instance ����� Lemma �	��� in order to obtain a new function #u
x� � #g
jxj� whose Dirichlet
integral does not exceed the one of u� and still admissible for 
M�	 If g
�r� � � the same argument can
be applied to � � u	 This proves that to determine the minimum energy we may restrict ourselves
to nonincreasing or nondecreasing functions g	

An elementary computation shows that g
r� � a � b ln r in f� � g � �g for suitable constants
a� b	 In the nonincreasing case these constants can be computed using the volume constraints to �nd
b � �� ln
r��r�� and a � �b ln r�� where

r� ��

r
�

�
� r� ��

r
� � �

�
�

With these choices of a� b� the Dirichlet integral reduces to ��� ln

� � �����	 Taking into account
also the nondecreasing case� we �nd that the minimal energy of 
M� is

min

�
��

ln 
��
�

�
��

ln 
��
�

 
�

We claim that� in general� the solutions of 
M� are not radial	 Consider the family of functions

uab
z� �� a� b ln

����z � �

z � �

����
�

in the complex variable z � x� iy� and de�ned in the unit disk � � fjzj � �g	 These functions are
harmonic� and their level sets are circles orthogonal to ��� i	e	� the solutions of the constrained least
area problem 
�	��	 This might suggest that the functions minfmaxf�� uabg� �g are solutions of 
M��
for suitable a� b depending on �� �� at least when ��� is close to �	 However� this is not true because
the normal derivative is not constant on level sets and the necessary condition for minimality stated
in Proposition �	� is violated	 This can be seen either by direct computation or by the conformal
change of variables w � log�
z����
z� ���� mapping the circles on vertical segments in the w plane
and � onto a strip� in the new con�guration the functions have constant normal derivative� hence
in the original one this property is not true	

��



However� these functions can be used to show that for �� � �� � the solutions of 
M� are not
radial� in fact� using the equations �uab � �� �uab��n � �� it can be proved thatZ

�

jruabj� dz �

Z
fx��g

�uab
�x

dH� � �b

Z �

��

�

y� � �
dy � �b��

Denoting by r� and r� the radii of the circles fuab � �g� fuab � �g� respectively� for �� � �� � we
have

� � a� b ln
�

r��
� � � a� b ln

r��
�
� � � �r��

�
� � � �r��

�

and we �nd that the least energy of 
M� cannot exceed

��

ln 

�

��

�

For � � �� this quantity is asymptotically � times smaller than the least energy of radial solutions	

��� The square� piecewise a�ne and comparison con�gurations

Let � � 
�� ���� d � �� �x �� � � 
�� ��� with � � � � �� and consider the piecewise linear function
u � 
�� ��� � R

� such that

u
x� �

��
�

� if x� � ��
�

�����x� � �
����� if � � x� � �� ��

� if x� � �� �

We claim that� in spite the fact that u satis�es the optimality conditions found on Section �� u will
not solve 
M� neither when �� � �� � nor when �� � is close to �	 IndeedZ

�

jruj� dx �
�

�� �� �
�

and if we consider a competing con�guration v such that v � � on a right triangle with right angle
at 
�� ��� v � � on a right triangle with right angle at the vertex 
�� ��� and v is linear in between�
then it can be shown that Z

�

jrvj� dx �
�� �� �



p
��p��p��� �

In particular� Z
�

jrvj� dx �
Z
�

jruj� dx

for � � � su�ciently small� for instance if � � � � � � �
p
�	 Finally� considering the limiting

con�guration which is equal to one on a quarter of a circle centered at 
�� �� with radius r� and
it is constantly equal to zero elsewhere on the square� then r � �

p
���� and the perimeter of the

interface is
p
��	 By Theorem �	� we conclude that if

p
�� � � then u cannot be a solution for 
M�	
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