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ON THE STABILITY OF QUASICONVEX HULLS

Kewei Zhang

Abstract� We study the stability problem of the quasiconvex hull Q�K� for a compact set
K � MN�n with respect to K by using Hausdor� metric over compact sets� We introduce
various stability criteria and examine some examples including the quasiconvex hull for the
two�well problem in modelling martensitic phase transformations�

x�� Introduction�

In this paper we use the Hausdor� metric on space of compact subsets in MN�n �the

space of N � n real matrices	 to study the stability of quasiconvex hulls� We introduce

various stability criteria and establish some stability results for quasiconvex hulls studied

in martensitic phase transformations�

For a compact subset K �MN�n
 we may de�ne its quasiconvex hull Q�K	 by cosets of

quasiconvex functions �Sv�
 or alternatively
 by direct quasiconvex relaxations of the dis�

tance functions to the set �Z��� In fact
 the study of quasiconvex hulls in MN�n goes back

to L� Tartar �T�� and J� M� Ball �Bl�� A compact subset K �MN�n is called quasiconvex

if Q�K	 � K �for more precise de�nitions
 see x below	� Examples of quasiconvex sets
include the sub�level sets of quasiconvex functions
 that is
 K � fP �MN�n� f�P 	 � �g
where � � R and f �MN�n � R quasiconvex� The study of quasiconvex hulls and quasi�

convex sets is motivated by the variational approach to martensitic phase transitions and

material microstructures �T�
BJ�
BJ
CK
Ki
Sv
MS
Mu�� Roughly speaking
 the quasi�

convex hull Q�K	 of a compact set K is the smallest closed set containing K
 such that

if uj is a bounded sequence in W ������RN 	
 uj converges to u in the weak�� sense and
Duj �approaches� K
 then Du�x	 � Q�K	 for almost every x � �� The set Q�K	 records
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the possible locations of the microstructure generated by K� In the study of martensitic

phase transitions
 the typical form of K is K � �mj��SO��	Uj
 where SO��	 is the set of
all orthogonal matrices with determinant � and Uj �s are positive de�nite matrices �BJ��

In this paper we look at issues related to the stability of Q�K	 with respect to K� One of

the reasons for such a study is that some physical parameters of Uj are obtained from ex�

periments
 which are only approximately accurate� Naturally
 we want to know whether or

not small perturbations of these parameters will make the quasiconvex hulls � the possible

locations of microstructure � change signi�cantly�

In this paper
 we introduce several notions of stability of Q�K	 with respect to K� Let

K � MN�n be compact and let dist�P�K	 be the Euclidean distance function of a point

P �MN�n from K
 given by dist�P�K	 � minfjP �Qj� Q � Kg and we denote by

K� � fP �MN�n� dist�P�K	 � �g

the closed ��neighbourhood of K� The Hausdor� distance between two compact sets K

and S is given by

d�K�S	 � minf� � �� K � S�� S � K�g

which de�nes a complete metric space over the set of all compact sets in MN�n �Mc�� The

advantage of using Hausdor� metric is that two compact sets are close to each other if

they have very similar �shapes� whereas the Euclidean distance between K and S
 that is


dist�K�S	 � minfjP � Qj� P � K� Q � Sg gives a poor measure because the distance is
zero as long as K 	 S 
� �� We have

De�nition ���� Suppose K � MN�n is nonempty and compact� The quasiconvex hull

Q�K	 is strongly stable with respect to K if for every � � �� there exists � � �� such that

d�Q�S	� Q�K		 � � whenever d�K�S	 � � and S �MN�n is compact�

It is easy to see that not every Q�K	 is stable with respect to K� If we consider a two�

point set K � fA� Bg � MN�n with n� N � 
 we have �BJ�
K
 BFJK
Z�� Q�K	 � K
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if rank�A � B	 
� �
 Q�K	 � ftA � �� � t	B� t � ��� ��g if rank�A � B	 � �� There�

fore
 when rank�A � B	 � �
 Q�K	 is unstable because we can perturb K slightly by

de�ning Sj � fA� Bjg such that rank�A � Bj	 � �
 d�K�Sj	 � � as j � � while

d�Q�K	� Q�Sj		 � jA � Bj�� for all j� However
 we have a weaker result �see Theorem
�� below	� Roughly speaking
 we have K � Q�K	 is upper semicontinuous in the sense

that Sj � K implies that the upper limit of the sequence Q�Sj	 is contained in Q�K	 �for

more precise statement
 see Theorem �� below	�

Strong stability means that for any sequence Sj of compact sets
 such that Sj � K


Q�Sj	 � Q�K	� This type of stability does not require the approximate sequences to

have similar geometric �shapes� as K� For example
 Sj can be a sequence of �nite sets�

If we require the geometric �shape� of Sj to be similar to that of K
 we should introduce

a �similar� notion of stability to that used in the study of structure stability problems for

dynamical systems
 under further topological restrictions of the approximate sets� Let

C�K�MN�n	 be the space of continuous mappings from K to MN�n with the norm

kfk� � supfjf�P 	j� P � Kg

and let �f � fP � f�P 	� P � Kg� We may consider �f as the �graph� of f and de�ne a
more restrictive notion of stability as follows�

De�nition ���� Suppose K � MN�n is nonempty and compact� Q�K	 is continuously

stable �C����stable� with respect to K� if for every � � �� there exists � � �� such that

d�Q��f 	� Q�K		 � � whenever kfk� � ��

The requirement for the approximate sequence in this de�nition is slightly more general

than assuming that every term in the approximate sequence is a homeomorphism of K�

We view �f as a continuous perturbation of K when kfk� is small�

De�nition ���� Suppose that K��	 � MN�n de�nes a family of nonempty compact sets

in MN�n parameterised by � � U � R
m and is continuous with respect to � under the
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Hausdor� metric d� where U is an open subset of Rm � We say that Q�K�		 is stable with

respect to the parameter at �� � U � if

lim
����

d�Q�K��		� Q�K���			 � ��

Stability with respect to parameters is the weakest among the the three stability criteria

above� However
 in practice
 it might be the most useful one� In the de�nitions above
 if

we view the approximate sequence for K as perturbations of K
 we see that the perturbed

sets are in a neighbourhood of K in MN�n which is an N � n dimensional Euclidean

space� At the moment
 it is hard to obtain strong stability results in full generality
 that

is
 to allow the perturbations in MN�n without any restriction� At the moment
 I can

prove results for strong stability only when K is itself a quasiconvex set �Theorem ���	�

Therefore
 it might prove fruitful to consider stability of Q�K	 with respect to K in a

subspace of MN�n� Suppose E � MN�n is a k�dimensional plane and K � E� If we

require the approximate sequences to lie in E
 then we can modify De�nition ��� to de�ne

strong stability with respect to E by requiring that S � E� For the analogue of De�nition

��
 we may restrict the mappings to be in C�K�E	 so that C����stability with respect to
E can be de�ned �see De�nition ���	�

In Section 
 preliminaries are given which will be used later� In Section �
 we establish

strong stability when K � Q�K	 �Theorem ���	 which turns out to be a useful tool in

the of study some more practical problems� We also show that the mapping K � Q�K	

from compact sets to compact sets is upper semicontinuous� An important consequence

of this result is that Q�K	 is in general �nitely approximable
 in the sense that for every

compact K there exists a sequence Sj of �nite sets such that Sj � K and Q�Sj	� Q�K	

as j ��� We also prove that the quasiconvex relaxation Q dist�P�K	 is continuous with
respect to P and K� In Section �
 we examine examples for C���� stability which include

the quasiconvex hull of a two�well set in M���� In Section �
 we study the stability of a

two�well structure in M��� ��BJ�	 with respect to some parameters� Some examples for
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stability and instability of quasiconvex hulls with respect to a plane E are also studied� In

Section �
 we introduce a new metric dQ over the family of all compact quasiconvex sets

under which every compact quasiconvex hull is stable with respect to the set� In fact we

show that

dQ�Q�K	� Q�S		 � d�K�S	�

Under the metric dQ
 we also show that the space of all compact quasiconvex sets Q�N�n	
in MN�n is a complete metric space and that a Blaschke type theorem for families of

compact quasiconvex sets is available� In the last section x�
 we use Hausdor� metric to
consider the relations among the quasiconvex hull
 the closed lamination convex hull and

the convex hull� For a compact set K � MN�n
 we may de�ne various other semiconvex

hulls such as the closed lamination convex hull Lc�K	
 the rank�one convex hull R�K	 and

the polyconvex hull P �K	 �see Section  below	� There is an obvious relation among these

semiconvex hulls

Lc�K	 � R�K	 � Q�K	 � P �K	 � C�K	

C�K	 being the convex hull of K� In �Z��
 it was established that Q�K	 � C�K	 implies

Lc�K	 � C�K	 and a complicated estimate on the boundary was also obtained� A natural

further question is whether certain type of �distance� between Lc�K	 and C�K	 is controlled

by that between Q�K	 and C�K	� We use a simple counter�example to show that under

the Hausdor� metric
 the answer to this question is negative�

x�� Preliminaries�

We denote by MN�n the space of all real N � n matrices
 with RNn norm� meas�U	

is the Lebesgue measure of a measurable subset U � R
n � From now on � denotes a non�

empty
 open and bounded subset of Rn � For a given set K � R
s 
 intK
 �K and �K denote

its interior
 closure and boundary� We denote by Du the gradient of a �vector�valued	

function u and we de�ne the space Ck
� ���R

N 	
 the Lp spaces and Sobolev spaces W ��p in

	



the usual way� K � MN�n has a rank�one connection if there exist A� B � K such that

rank�A� B	 � �� An n� n diagonal matrix will be written as diag�a��    � an	�
Let f �MN�n � R be a continuous function� The following are some conditions related

to weak lower semicontinuity of the integral �c�f� �Bl�
Mo
D�	

I�u	 �

Z
�

f�Du�x		dx�

�i	 f is rank�one convex if for each matrix A � MN�n and each rank�one matrix

B � a� b �MN�n
 the function t� f�A� tB	 is convex�

�ii	 f is quasiconvex at A � MN�n on �
 if for any smooth function 	 � � � R
N

compactly supported in �


Z
�

f�A�D	�x		dx �
Z
�

f�A	dx

holds� f is quasiconvex if it is quasiconvex at every A � MN�n� The class of

quasiconvex functions is independent of the choice of ��

�iii	 f is polyconvex if f�A	 � convex function of minors of the matrix A�

It is well�known that �iii	��ii	��i	
 while �i	 
��ii	 
��iii	 �cf� �Bl�
 Mo
 D
 Sv��	�
In the variational approach to martensitic phase transitions
 the integrand f is some�

times in a special form where f � �
 and f�P 	 � � if and only if P � K
 where K �MN�n

is compact �see �BJ�
BJ
Ki
BFJK
CK
Mu�	� This type of function is not in general quasi�

convex� Suppose �uj	 is a bounded sequence in the Sobolev space W
��p���RN 	
 such that

I�uj	� �
 as j ��� We are interested in the oscillating behaviour of the sequence �Duj	
and the possible �microstructures� it may generate� The following concepts of �semiconvex

hulls� for a set K are naturally introduced�

K � MN�n is called stable under lamination �or lamination convex	 �MS� if for all

A� B � K
 which satisfy rank�A� B	 � � and all � � ��� �	
 one has ��� �	A� �B � K�

For a given K � MN�n
 the lamination convex hull L�K	 is de�ned as the smallest

lamination convex set that contains K �MS�� We also de�ne the closed lamination convex






hull Lc�K	 as the smallest closed lamination convex set that contains K� It is not clear in

general whether for a closed set
 the lamination convex hull is closed� It has been proven

�cf� �MS�	 that L�K	 is an open set if K is an open set�

We also have the rank�one convex hull R�K	 �Sv�

R�K	 � fX �MN�n� f�X	 � sup
Y �K

f�Y 	� for every rank�one convex f �MN�n � Rg�

the quasiconvex hull Q�s��K	 �Sv�

Q�s��K	 � fX �MN�n� f�X	 � sup
Y �K

f�Y 	� for every quasiconvex f �MN�n � Rg�

and the polyconvex hull P �K	 �Sv�

P �K	 � fX �MN�n� f�X	 � sup
Y �K

f�Y 	� for every polyconvex f �MN�n � Rg�

Clearly
 if K is closed


��	 K � Lc�K	 � R�K	 � Q�s��K	 � P �K	 � C�K	�

C�K	 being the convex hull of K� If Lc�K	 is convex
 obviously
 all other �semiconvex�

hulls are identical to C�K	�

In �Sv�
 the above de�nition of quasiconvex hull is given for all K � MN�n� For a

compact setK
 Q�s��K	 is independent of the choice of the growth of quasiconvex functions

in the de�nition �see Proposition � below	� However
 for unbounded K
 if we restrict the

choice of quasiconvex functions to satisfy a particular growth condition at in�nity
 then the

quasiconvex hulls thus de�ned may depend on the growth rate of the quasiconvex functions

�Y
Z
Z��� Therefore we de�ne the quasiconvex hull here in a di�erent way� However
 these

de�nitions are equivalent when K is compact�

De�nition ���� Let K � MN�n be a closed set� Then the p�quasiconvex hull of K for

� � p 
� is de�ned by

���	 Qp�K	 � fA �MN�n� Q distp�A�K	 � �g�

Q distp�� K	 being the quasiconvexi�cation �D� of the p�distance function distp�� K	 to K�

For a compact set K �MN�n
 we have

�



Proposition ���� �see �Z��� Suppose K �MN�n is compact� Then

Q�s��K	 � Qp�K	

for all p � ����	�

Because of this result
 we may de�ne the quasiconvex hull of K as Q�K	 � Q�s��K	 �

Qp�K	 for all p � ����	 when K is compact� The advantage of De�nition �� is that

to study quasiconvex hull for a compact set K
 we only need to deal with one particular

quasiconvex function
 say
 dist��� K	 or dist�� K	�
To construct quasiconvex functions
 we need the following

De�nition ���� � �D�� Suppose f � MN�n � R is a continuous function� The quasicon�

vexi�cation of f is de�ned by

supfg � f � g quasiconvex g

and will be denoted by Qf �

Proposition ���� � �D�� Suppose f �MN�n � R is continuous� then

Qf�P 	 � inf
��C�� ���RN �

�

meas��	

Z
�

f�P �D	�x		 dx�

where � � R
n is a bounded domain� In particular the in�mum in ���	 is independent of

the choice of ��

The following is a result for quasiconvex hulls of sets contained in a plane without rank�

one connections� It is a consequence of a result in �BFJK
 Th� ����� For the proof
 see �Z�


Prop����

Proposition ���� Suppose K � E � MN�n be a closed set and E is a plane without

rank�one connections� Then

Q��K	 � K�

�



x�� Strong Stability�

In this section
 we establish a su�cient condition for strong stability of the quasiconvex

hull
 and examine the upper semicontinuity property of the mapping K � Q�K	� We

begin with a simple proposition to show that the stability problem for the quasiconvex

hull is much more complicated than that for the convex hull� The convex hull is always

strongly stable under Hausdor� metric� This is a direct consequence of Carath�eodory�s

theorem in convex analysis �see
 for example �L�	
 and is well�known to experts� In fact


we have the following stronger statement�

Proposition ���� Suppose K� S � R
n are compact� Then

d�C�K	� C�S		 � d�K�S	�

Proof� Suppose d�K�S	 � � � �� For every P � C�K	
 we show that there exists a point

R � C�S	 such that

jP � Rj � ��

so that C�K	 � C�S	�� By Caratheodory�s Theorem �L
R�
 there are at most n�� points

P�� � � � Pn	� in K
 such that

P �
n	�X
i��

�iPi�

with � � �i � �
 i � �� � � � � n� �
 and
Pn	�

i�� �i � ��

Since Pi � K and K � S�
 there exists Ri � S
 such that jRi � Pij � �
 for i �

�� � � � � � n� �� Let

R �
n	�X
i��

�iRi�

we see that R � C�S	 and

jR� P j �
n	�X
i��

�ijPi �Rij �
n	�X
i��

�i� � ��





Therefore C�K	 � C�S	�� Similarly
 we can show that C�S	 � C�K	�� The proof is

complete�

The main results of this section are the following

Theorem ���� Suppose K �MN�n is compact and K � Q�K	� then K is strongly stable�

Remark ���� Theorem ��� turns out to be a useful tool when we study stability problems

under weaker criteria
 such as continuous stability� The idea is that when Q�K	 is known

explicitly
 and S is close to K
 we try to �nd a intermediate set S� which stays between

S and Q�S	
 that is S � S� � Q�S	
 with the property that S� is close to Q�K	� Then

Theorem ��� tells us that Q�S�	 should be close to Q�K	� Since Q�S	 � Q�S�	
 Q�S	

is then close to Q�K	� The reason for doing this is that in general we do not know the

explicit structure of the quasiconvex hull Q�S	 of the perturbed set S�

We call a real�valued function f 
 de�ned on compact sets
 upper �lower	 semicontinuous

at K� if

lim sup
K�K�

f�K	 � f�K�	� �lim inf
K�K�

f�K	 � f�K�	� respectively�

Theorem ����

��	 The mapping K � Q�K	 from non�empty compact sets to non�empty compact sets

in MN�n is upper semicontinuous� in the sense that for every � � � there is a

� � �� such that if S is compact and d�S�K	 
 �� then Q�S	 � Q�K	��

�	 For every �xed P �MN�n� the mapping K � dist�P�Q�K		 is lower semicontin�

uous� that is� if �Sj	 is a sequence of compact sets in MN�n such that Sj � K�

then

lim inf
j��

dist�P�Q�Sj		 � dist�P�Q�K		�

for every P �MN�n�

��



��	 For all A� B �MN�n and all nonempty compact sets K� S �MN�n� the following

inequality holds�

jQ dist�A�K	�Q dist�B� S	j � jA� Bj� d�K�S	�

Corollary ���� Suppose K is compact and Sj � K as j ��� such that Q�K	 � Q�Sj	

for every j � �� Then Q�Sj	� Q�K	 as j ���

Note that if we assume that K � Sj 
 we trivially have Q�K	 � Q�Sj	 in Corollary ����

The following is a direct application of Corollary ����

Corollary ���� Suppose f �MN�n � R is continuous and coercive� that is F �P 	� ��
if and only if jP j � ��� For � � R� let

K� � fP �MN�n� f�P 	 � �g�

Then if K�� 
� ��

lim
����	

K� � K�� � lim
����	

Q�K�	 � Q�K��	�

It is well known �L� that a compact convex set can be approximated by polytopes� As

a generalization
 we have

De�nition ���� The quasiconvex hull of a �nite set K � MN�n is called a quasiconvex

polytope�

Notice that the structure of a quasiconvex polytope can be very complicated� There are

two extreme cases which give rise to very di�erent quasiconvex polytopes�

Example ���� �a	� Let E �MN�n with n�N �  be a subspace without rank�one matrices�
Proposition �� implies that for every �nite set K � E
 Q�K	 � K� �b	� Consider Mn���

Then for every �nite set K � Mn��
 Q�K	 � C�K	 so
 in this case
 the quasiconvex

polytopes are the same as �convex	 polytopes�

As another application of Corollary ���
 we have

��



Corollary ���� Suppose K � MN�n is compact� Then there exists a sequence of �nite

sets Sj� such that Sj � K and Q�K	 � Q�Sj	 for all j � � and limj��Q�Sj	� Q�K	�

In general
 it is very di�cult to estimate the modulus of continuity for quasiconvex sets

given by Theorem ���� However
 for some special cases
 we still can establish some kind of

estimates�

Example ��	� Let K � SO�n	 � Mn�n� It is well known that Q�K	 � K� It was

established in �Z�� that for every � � �
 there is a constant C�n	 � � depending only on

n � 
 such that Q�K�	 � KC�n���

This result provides an estimate of the modulus of continuity for Theorem ��� in the

case K � SO�n	� We now show that

d�Q�S	� Q�K		 � C�n	d�S�K	�

where C�n	 is given above�

For a given � � �
 let S � Mn�n be compact with d�S�K	 � �� We have S � K�
 and

d�S�K�	 � �� From the estimate above


Q�S	 � Q�K�	 � KC�n���

Since K � Q�K	
we know that d�Q�S	� Q�K		 � d�Q�S	� K	� Also S � Q�S	 and K � S�

implies K � Q�S	�� Therefore
 by the de�nition of Hausdor� metric
 we have

d�Q�S	� Q�K		 � C�n	� � C�n	d�S�K	�

Example ���� It was established in �Ko� that for the two�point set K � fA�Bg � MN�n

with n� N � 
 and rank�A� B	 � �
 the quasiconvex relaxation of the squared distance

function dist��P�K	 is explicitly given by

Q dist��P�K	 � min
�����

�jP � �A� ��� �	Bj� � ���� �	�jA�Bj� � �max�
�
�

��



where �max is the greatest eigenvalue of the matrix �A�B	T �A�B	� Notice that for � � �

su�ciently small
 and P � K� � fP �MN�n� dist�P�K	 � �g
 we have

Q dist��P�K	 � dist��P�K	

so that

Q�K�	 � K��

As in the argument in Example ��
 we have for su�ciently small � � �


d�Q�S	� Q�K�		 � d�S�K�	

whenever S �MN�n is compact and d�S�K	 � ��

Proof of Theorem ���� We use Theorem �� ��	 to give a simple proof� For every � � �


there is a � � � �we can certainly choose � � �	
 such that Q�S	 � Q�K	� whenever

d�S�K	 � ��

On the other hand
 since Q�K	 � K
 when d�S�K	 � ��

Q�K	 � K � S� � Q�S	� � Q�S	��

Hence by de�nition
 d�Q�S	� Q�K		 � �� The proof is complete�

Remark ��	� Since the approximate sets allowed in the de�nition of strong stability are so

general
 I am not able to �nd a compact set K 
� Q�K	 such that Q�K	 is strongly stable�

A possible example
 however
 could be the following set�

Let K � fA� Bg
 with rank�A � B	 � � and consider the closed ��neighbourhood

K� of K
 which is the union of two small balls centred at A and B respectively� We have

Q�K�	 � C�K�	� Let Sj be an sequence approaching K�� A simple idea to prove stability is

to �nd rank�one connections between two subsets of Sj approaching each balls respectively�

However
 the worst situation is that Sj is a �nite subset d�Sj � K�	� �� Let

K� � �B��A	 � �B��B	� �B��A	 	 �B��B	 
� ��

��



The Sj � S
���
j � S���j such that

d�S
���
j � �B��A		� �� d�S

���
j � �B��B		� ��

Since the two small balls are convex
 we see that

Q�S
���
j 	 �Q�S���j 	 � Q�Sj	

and

d�Q�S
���
j 	� �B��A		� �� d�Q�S

���
j 	� �B��B		� ��

If we can show that Q�S
���
j 	 �and respectively Q�S

���
j 		 contain more points than S

���
j 


�and respectively S
���
j 	
 and if furthermore
 we can prove that Q�S

���
j 	 and Q�S

���
j 	 contain

interior points
 we might have a chance to �nd rank�one connections between them
 so that

C�K�	 could be approximated by Q�S
���
j 	�Q�S���j 	 plus some rank�one sigments between�

At the moment
 I cannot even prove that Q�S
���
j 	 
� S

���
j for large j � �� This leads to the

following ball packing type problem�

Question ���� Suppose D � MN�n is the closed unit cube� Let fDk�N�n
j g be a division

of D into knN even cubes with side�length �k and with disjoint interiors� Let HN�n
k �

fP k�n�N
j � intDk�N�n

j g be any �nite set� Then

�i	 is there a k� � k��n�N	 � �
 such that Q�HN�n

k 	 
� HN�n
k � whenever k � k� �

�ii	 is there a k� � k��n�N	 � �
 such that Q�HN�n
k 	 contains interior points whenever

k � k� �

I do not know the answers to either of the questions� At the moment
 only under further

restrictions such as Sj � E
 a plane in MN�n �for example
 the subspace of all diagonal

matrices in M��� or M���	
 are some positive partial answers known �T
BFJK
MP�� We

will return to these questions in Section ��

Proof of Theorem ��	� Part ���� We use the minimizing sequence for one variational in�

tegral to estimate the other� We prove the claim by contradiction� Suppose the claim is

��



not true
 then for some nonempty K � MN�n
 there exists �� � �
 such that for any

integer j � �
 we may �nd a compact set Sj �MN�n
 with d�Sj� K	 
 ��j and such that

Q�Sj	 is not contained in Q�K	�� � Hence for each j � �
 there is Pj � Q�Sj	
 such that

dist�Pj � Q�K		 � ��� Since K and Sj are uniformly bounded
 up to a subsequence
 we may

assume that Pj � P� as j ��� so that dist�P�� Q�K		 � �� � ��

Now
 since Pj � Q�Sj	
 there exists a sequence 	
�j�
m � C�� �D�R

N 	
 where D � R
n is

the unit cube ��� �	n
 such that

lim
m��

Z
D

dist�Pj �D	�j�m �Sj	dx� ��

We apply the following inequality

����	 dist�P�K	 � dist�P� Sj	 � ��j �proof to follow	


which holds for every P �MN�n to obtain

Q dist�Pj � K	 �
Z
D

Q dist�Pj �D	�j�m � K	dx �
Z
D

dist�Pj �D	�j�m � K	dx

�
Z
D

dist�Pj �D	�j�m � Sj	dx�
�

j
�

Passing to the limit as m�� in the above inequalities
 we have

Q dist�Pj � K	 � ��j�

Letting j �� and noticing that Q dist�� K	 is continuous
 we have Q dist�P�� K	 � � so
that P� � Q�K	� This contradicts the fact that dist�P�� Q�K		 � �� � ��

To prove ����	
 let P� � Sj such that dist�P� Sj	 � jP � P�j� Since Sj � K��j
 there is

some P� � K
 such that jP� � P�j � ��j� Therefore

dist�P� Sj	 � jP � P�j � jP � P�j � jP� � P�j � dist�P�K	� �

j
�

����	 is proven�

�	



The proof of part ��	 is complete�

Part �	� is a direct consequence of part ��	� For every � � �
 from part ��	
 we see that

there is a J � �
 whenever j � J 
 Q�Sj	 � Q�K	�� Hence

dist�P�Q�Sj		 � dist�P�Q�K	�	 � dist�P�Q�K	� ��

Therefore

lim inf
j��

dist�P�Q�Sj		 � dist�P�Q�K		� �

for each �xed � � �� The conclusion follows�

Part ���� Since

jQ dist�A�K	�Q dist�B� S	j � jQ dist�A�K	�Q dist�B�K	j�jQ dist�B�K	�Q dist�B� S	j�

the conclusion follows if we can prove that

���	 jQ dist�A�K	�Q dist�B�K	j � jA� Bj

and

����	 jQ dist�B�K	�Q dist�B� S	j � d�K�S	�

We prove ���	 �rst� Let 	j � C�� �D�R
N 	
 be a sequence such that

Q dist�A�K	 � lim
j��

Z
D

dist�A�D	j � K	dx�

where D is the unit cube� Now
 since the distance function is ��Lipschitz
 we have

Q dist�B�K	 �
Z
D

Q dist�B �D	j � K	dx

�
Z
D

dist�B �D	j � K	dx �
Z
D

dist�A�D	j � K	dx� jA� Bj�

Letting j � �
 we have Q dist�B�K	 � Q dist�A�K	 � jA � Bj� Similarly
 we can show
that Q dist�A�K	 � Q dist�B�K	 � jA� Bj� Thus ���	 follows�

�




We use similar arguments as in the proof of Part ��	� Let 	j � C�� �D�R
N 	
 be a

sequence such that

Q dist�B�K	 � lim
j��

Z
D

dist�B �D	j � K	dx�

We then have

Q dist�B� S	 �
Z
D

Q dist�B �D	j � S	dx �
Z
D

dist�B �D	j � S	dx

�
Z
D

dist�B �D	j � K	dx� d�K�S	�

Passing to the limit as j ��
 we have

Q dist�B� S	 � Q dist�B�K	 � d�K�S	�

Similarly
 we can prove that Q dist�B�K	 � Q dist�B� S	 � d�K�S	� Example ��� The

conclusion follows�

Remark ���� S� M�uller showed me that there is a direct proof of Theorem �� by choosing

� as

� � inf
P�MN�nnQ�K��

Q dist�P�K	�

which can be attained because of the coercivity of Q dist�P�K	�

Proof of Corollary ���� For every �xed � � �
 from Theorem �� we can �nd a � � � such

that Q�S	 � Q�K	� whenever d�S�K	 
 �� Now
 since Sj � K
 there is a J � � such

that whenever j � J 
 d�Sj � K	 
 �
 so that Q�Sj	 � Q�K	� From the assumption of the

theorem
 Q�K	 � Q�Sj	 for all j � �� Therefore
 by de�nition of the Hausdor� metric


d�Q�Sj	� Q�K		 � � whenever j � J � The proof is �nished�

Proof of Corollary ��	� It can easily be seen that K� is compact if it is not empty� The

�rst conclusion is a direct consequence of continuity and coercivity of f � In fact
 if for some

��



��
 the statement was false
 then for some �� � �
 there would be a sequence �j � ��
 as

j ��
 such that �j � �� for all j and

d�K�j � K��	 � ���

Since �j � ��
 we have K�� � K�j by de�nition� d�K�j � K��	 � �� then implies �K��	��

does not contain K�j � Hence there is some Aj � K�j such that dist�Aj � K��	 � ���

Since �Aj	 is a bounded sequence
 up to a subsequence we may assume that for some

A� �MN�n
 Aj � A� as j ��� We then have
 on the one hand


dist�A�� K��	 � �� � ��

But on the other hand
 since f�Aj	 � �j 
 we pass to the limit j � � to conclude that

f�A�	 � ��
 so that A� � K�� � This contradicts dist�A�� K��	 � �� � ��

Now since K� � K�� as �� ��
 � � ��
 and K� � K�� � Corollary ��� implies

lim
����	

Q�K�	 � Q�K��	�

We need the following simple lemma for the proof of Corollary ����

Lemma ���� Let ei�k be the N � n matrix with the value � at the �i� k	�entry� and zero

otherwise� for i � �� � � � � � N � k � ��  � � � � n� Let V��N�n	 be the Nn vertices of the unit

cube

U � fA � �ai�k	 �MN�n� � � ai�k � �g�

in MN�n formed by �� ei�k� that is�

V��N�n	 �f�g � fei�k� i � �� � � � � � N� k � ��  � � � � ng

� fei��k� � ei��k� � �i�� k�	 
� �i�� k�	g �    � f
X

��i�N� ��k�n

ei�kg�

��



Then Q�V��N�n		 � U �

Proof� We notice that U is convex� If we can show that the laminated convex hull

L�V��N�n		 �given by sequential rank�one lamination	 equals U the proof is �nished� We

notice that every vertex P of U other than � is in the form P �
Pm

s�� eis�ks for some

m
 � � m � nN without repeated terms� Every neighbouring vertex is formed either by

adding an extra et�l not in the set feis�ksg to P or by subtracting a term from the set�

Therefore all neighbouring vertices are rank�one connected� Therefore all the ��faces are

in L�V��N�n		� Suppose all k�faces are in L�V��N�n		 for some k � �� For any k � ��face
Mk	� of the polytope
 the boundary of the face are k�faces of U and ofMk	�� Mk	� is the

convex hull of the union of a k� face and its translation by a rank�one matrix of the form

ei�k� Therefore Mk	� is also in L�V��N�n		� Hence the L�V��N�n		 � Q�V��N�n		 � U �

Obviously the centre of the cube U is at

P� �
�



X
��i�N� ��k�n

ei�k�

Proof of Corollary ���� Let V �N�n	 � V��N�n	 � P� � fP � P�� P � V��N�n	 and

V ��N�n	 � f�P� P � V �N�n	g for any �xed � � �� Then Q�V ��N�n		 � C�V ��N�n		

which is a small cube centred at � with side�length �� Therefore every cube with sides

parallel to coordinate axes in MN�n is the quasiconvex hull of its nN vertices�

Now
 for any integer j � � and for any point P � K
 we may �nd an open cube centred

at P with sides parallel to axes
 such that the distance between the centre P and any

point in the cube is less that ��j� We denote such an open cube as U
�j�
P � Now
 since

fU �j�
P � P � Kg is an open cover of K and K is compact
 there is a �nite subcover U

�j�
� 


U
�j�
� �    � U �j�

m 
 satisfying K � �mi��fU �j�
i g� Let fS�j�i g be the set of the Nn vertices of

the closure fU �j�
i for i � �� �    �m� and de�ne Sj � �mi��fS�j�i g� Then Sj is a �nite set


d�Sj � K	 
 ��j and

Q�Sj	 � �mi��U �j�
i � K�

�



so that

Q�K	 � Q�Sj	�

Theorem �� implies Q�Sj	� Q�K	�

Remark ���� At least intuitively
 quasiconvex polytopes have simpler structure than quasi�

convex hulls of general sets� Corollary �� provides an outer approximation of quasiconvex

hulls by quasiconvex polytopes� Therefore
 �nitely generated quasiconvex sets are dense in

the space of all compact quasiconvex sets under Hausdor� metric� From Theorem ���
 we

see that if K is a quasiconvex set itself
 we can also �nd a sequence of �nite sets Wj con�

tained in K such that the sequence of quasiconvex hulls Q�Wj	 converges to Q�K	 � K�

hence when K is quasiconvex
 there are both inner and outer approximations by �nitely

generated quasiconvex sets� It is therefore interesting to know more about gradient Young

measures supported on �nite number of matrices�

x�� Continuous stability�

In this section we examine several examples of quasiconvex hulls which are C����stable�
Since we restrict ourselves to continuous deformations of the set K
 we have more tools

at our disposal� The plan for this section is to look at some interesting simple examples

�rst
 and then to use our the ideas for more general cases� We conclude this section by

showing that the quasiconvex hull Q�K	 of the two well structure K � SO�	 � SO�	H
with H � diag��� ���	
 with � � �
 is continuously stable� In this case Q�K	 is explicitly

given in �Sv��

Example 
��� Let us re�visit the example of a closed neighbourhood of the two point set

B��A	 � B��B	 with rank�A� B	 � � considered in Section �
 under the new criterion of

stability for quasiconvex hulls�

��



It is easy to see that Q�K	 � C�K	� By translation and dilation
 we may assume that

� � �� By Theorem ���
 for every � � �
 there exists a � � �
 d�Q�G	� Q�K		 � � whenever

d�G�Q�K		 � �� Let f � C�K�MN�n	 be such that kfk� � � and S � �f � We �rst

show that B����A	 � B����B	 � S� Since for every R � B����A	
 we have
 for every t


� � t � �

�P � tf�P � A	� R	  �P �R	 � jP � Rj� � �jP � Rj � �

for P � �B��A	
 we may conclude that either there exists some P � B��A	
 such that

P � f�P 	 � R or

deg�id� f�B��A	� R	 � deg�id� tf� B��A	� R	 � deg�id� B��A	� R	 � �

where deg is the Brouwer degree and id is the identity map on B��A	� Therefore
 B����A	 �
S� Similarly
 B����B	 � S
 so that

Q�B����A	 � B����B	 � C�B����A	 �B����B	 � Q�S	�

LetW � S�B����A	�B����B	
 we see that d�W�C�K		 � �
 so that d�Q�W 	� Q�K		 � ��

Since S �W � Q�S	
 Q�W 	 � Q�S	� The conclusion follows�

The following is an example of a quasiconvex hull which is continuously stable but not

strongly stable in M����

Example 
�	� Let

K � fdiag�����	� diag�t� t	� � � t � �� diag��s� �	� � � s � �g �M����

We let P� � diag�����	� By using the quasiconvex function f � M��� � R �Sv�� de�ned

by

����	 F	�P 	 �

�
detP� if P is positive de�nite�

� �� otherwise�

��



�or alternatively
 the weak separation lemma in �Z��	 it is easy to see that Q�K	 � K �W 


where

W � fdiag����r	� � � r � ��g

Now
 let f � C�K�M���	 with kfk� � � and �f be the graph of f � Noticing that

diag��� �	 and P� are rank�one connected in K
 we need to �nd a rank�one connection

close to these two matrices� To do this we parameterize K n fP�g by a function

g�t	 �

��
�
diag��� t	� �� � t � ��

diag�t� t	� � � t � ��

We see that

det�g�t	� P�	 �

�
t� �� � t � ��

t�t� �	� � � t � ��
Therefore

h�t	 �� det�g�t	 � f�g�t		� �P� � f�P�		 � det�g�t	� P�	 �O��	

is continuous� Hence we may conclude by the intermediate value theorem that there is

some t� � O��	
 such that g�t�	 � f�g�t�		 � O��	 and h�t�	 � �� Hence

J �� f�g�t�	 � f�g�t�		 � ��� �	�P� � f�P�	� � � � � �g � Q��f 	�

and d�J�W 	 � O��	� Therefore

d�� � J�Q�K		 � O��	

so that by adjusting �
 we we can have
 by Theorem ��� that

d�Q�� � J	� Q�K		 � ��

Since Q�� � J	 � Q��	� we see that Q�K	 is continuously stable�

��



Now we show that K is not strongly stable� Set

K� � K nB���	�

where B���	 is an open disc centred at � inM
��� with radius �� We see that d�K�K�	 � ��

Now we prove that Q�K�	 � K� so that d�Q�K	� Q�K�	 � ����
Let P � diag�a� a	 � B���	 with a � � and let us consider K�

P � fR � P� P � K�g�
Since quasiconvex hulls are translation invariant in the sense that P �Q�S	 � Q�P � S	


where P � S � fP � R� R � Sg
 we only need to prove that Q�K�
P 	 � K�

P � It is easily

seen that K�
P � J	 � J�
 where

J	 � fdiag�t� a� t� a	�
�p

� t � �g

with ��
p
 � a
 and

J� � fdiag��a� s� a	� �� � s � ��g � fdiag��a��a� �	g�

Obviously
 all the elements in J	 �respectively J�	 are positive de�nite �negative de�nite	�

Suppose R � Q�K�
P 	� There is a homogeneous Young measure ��KP�	 � supported in

K�
P with �� � R� Also because there is a  � �
 such that detA �  for all A � K�

P 


we see from the weak�� continuity of Jacobians
 that detR � � It is also easy to see

that Q�K�
P 	 is contained in the subspace of diagonal �  matrices� Therefore R is either

positive de�nite or negative de�nite� If R is negative de�nite
 the separation lemma �Z��

implies that supp � � J�� We can further apply the separation lemma to see that supp � is

contained either in fdiag��a� s� a	� �� � s � ��g or at fP � P�g� In both cases
 we see
that R � J�� If R is positive de�nite
 we see that supp � � J	 which is convex
 therefore

R � J	� Hence Q�K
�
P 	 � K�

P 
 K is not strongly stable�

The following example is a more general C��stability result�

Theorem ���� Let F �MN�n � R be quasiconvex and bounded below� Let

� � inffF �P 	� P �MN�ng

��



be a real number� Suppose

K � fP �MN�n� F �P 	 � �g

is compact and let

K� � fP �MN�n� F �P 	 � �g�

Suppose that �K � K� and K� is a codimension � smooth manifold in MN�n� Then

Q�K�	 � K and Q�K�	 is continuously stable with respect to K��

Proof� For every P such that F �P 	 
 �� we may �nd a rank�one matrix R�
 and t� � �


t� 
 �
 such that P � t�R�� P � t�R� � K�� Hence K � L�K�	
 the lamination convex

hull of K�
 so that Q�K�	 � K�

Now
 let f � C�K��M
N�n	
 such that kfk� � � and consider �f � Let P � intK such

that dist�P�K�	 � �� Since the Gauss map g � K� � SNn�� de�ned by

g�A	 �
A� P

jA� P j

has Brouwer degree deg�g�K�� S
Nn��	 � �� �see �Mi�	 and

gf � K� � SNn��

de�ned by

gf �A	 �
A� f�A	� P

jA� f�A	� P j
is homotopic to g
 we see that

deg�gf � K�� S
Nn��	 � deg�g�K�� S

Nn��	 � ���

Therefore gf maps K� onto S
Nn��� Hence for a rank�one matrix P�
 there exist t� � �


t� 
 �
 and A�
 A� � K�
 such that

P � t�P� � A� � f�A�	� P � t�P� � A� � f�A�	�

��



Since �A��f�A�	���A��f�A�	� � �t��t�	P� is a rank�one matrix
 we see that P � Q��f 	�

Let

S� � fP � K� dist�P�K�	 � ��

We see that

S� � �f � Q��f 	

and

d�S� � �f � K	 � ��

Since K � Q�K	 is quasiconvex
 for a given � � �
 we may �nd � � �
 when d�S���f � K	 �
�


d�Q�S� � �f 	� K	 � ��

Since Q�S� � �f 	 � Q��f 	
 we see that K � Q�K�	 is continuously stable�

Example 
��� As an example of Theorem ���
 we consider the explicit quasiconvex relax�

ation of a two�point set K � fA� Bg �MN�n and let f�P 	 � Q dist��P�K	� It is known

�K� that

f�P 	 � min
�����

�jP � �A� ��� �	Bj� � ���� �	�jA� Bj� � �max�
�
�

where �max is the greatest eigenvalue of the matrix �A�B	T �A�B	� Supposing rank�A�
B	 � �
 it is easy to see that there is a � � �� such that whenever dist��P�K	 � �


Q dist��P�K	 � dist��P�K	� We see that

K� �� fP �MN�n� f�P 	 � �g

is given by B��A	�B��B	 is the union of two closed balls
 and �K� � ��B��A	�B��B		

is the union of two spheres� Theorem ��� implies that Q��K�	 � K� and Q��K�	 is

continuously stable with respect to �K��

The following is a stability result for the two�well problem in M����

�	



Theorem ���� Let � � � and H � diag��� ���	 and let K � SO�	 � SO�	H� Then

Q�K	 is continuously stable with respect to K�

Proof� Following the approach in �Sv�
 we set

���	 X �

�
y� �y�
y� y�

�
�

�
z� �z�
z� z�

��
� �
� �

�
�

and write X � �y� z	� It was established in �Sv� that

����	

P �K	 � Q�K	 � R�K	 � L�K	 ����
��
fX � �y� z	� jyj� jzj � � and detX � �g if �� � �

fX � �y� z	� jyj � �� detX � �
��� � and jzj � detX � �

��� � g if �� � ��

In this case the lamination convex hull equals the quasiconvex hull� Our proof of continuous

stability is based on the structure of the lamination convex hull� Consider the subspace

M � fX � �y� z	� z� � �g and let  � fX � M� detX � �g
 then  is a one�sheeted

hyperboloid in L� It is known �Sv� that

L�K	 � SO�	�M 	 C�K		 � fRA� R � SO�	� A �M 	 C�K	g

and  �M 	 C�K	 which consists of two connected surfaces S� and S� with boundaries�
As in �Sv�
 let S� be the component such that H � S�
 and S� � fX� �X � S�g� Let
f � K �M��� such that kfk� � �
 for some small � � � and let �f � fP�f�P 	� P � Kg�
We seek to prove that there is an intermediate set S
 such that �f � S � L��f 	 � Q��f 	

and d�Q�K	� S	 is small
 say bounded by O��	� Since S is close to Q�K	
 we may conclude

that d�Q�K	� Q�S		 is small by quoting Theorem ����

The lamination convex hull L�K 	M	 �M 	C�K	 is formed in two consequent steps�
We parameterize SO�	 as

SO�	 �

	
R��	 �

�
cos � � sin �
sin � cos �

�
� �� � � � �



�

and show that we can �nd an intermediate set which is close to Q�K	�

�




Step ���� Since M 	K � SO�	�fH� �Hg
 we may �nd ��� such that det�R����	�
H	 � � and � 
 �� 
 ��� Since rank�R����	 � H	 � �
 and rank�R���	 �H	 � �
 the

two line segments

l� � ftR����	 � ��� t	H� � � t � �g� l	 � fsR���	 � ��� s	H� � � s � �g

are both contained in L�M 	 K	� The boundary of S� consists of l�
 l	 and the arc

�R����	� R���		 containing I� In order to show that there are two line segments l
���
� and

l
���
	 contained in L��f 	 which are close to l� and l	 respectively
 we need to compute the

derivative of

g��	 � det�R���	�H	 � �
�
��

�

�

�
cos �

at ���� It is easy to see that
cos �� �



�� �
�

�

We have
dg��	

d�
�

�
��

�

�

�
sin ��

Since � 
 �� 
 ��
 we have

g����	 �

�
��

�

�

�s
��

�


�� �
�

��
�

s�
��

�

�

��
� � � ��

g�����	 � �
s�

��
�

�

��
� � 
 ��

Therefore the graph of g�	 is transversal at ��� to the ��axis� Since kfk� � �
 there

exists ��
 ��
 such that j�� � ����	j � O��	
 j�� � ��j � O��	 and

det��R���	 � f�R���			� �H � f�H		� � ��

det��R���	 � f�R���			� �H � f�H		� � ��

so that
rank��R���	 � f�R���			� �H � f�H		� � ��

rank��R���	 � f�R���			� �H � f�H		� � ��

��



Thus
 the line segments

l
���
� � ft�R���	 � f�R���			 � ��� t	�H � f�H		� � � t � �g

and

l
���
	 � fs�R���	 � f�R���			 � ��� s	�H � f�H		� � � s � �g

are both contained in L��f 	 and are close to l�
 l	 respectively under the Hausdor� metric�

Step ���� S� is constructed by rank�one connections as follows� For any R��	 � SO�	

with ��� 
 ��� 
 � 
 �� 
 ��
 there is a Ps��� � l	 �also Qt��� � l�	 such that

det�R��		� Ps���	 � � so that the union of the line segments

l
�	�
� � f�R��	 � ��� �	Ps��	� � � � � �

forms S�� Let us compute h��� s	 �� det�R��		� Ps	
 where Ps � sR���	 � ��� s	H� We

have
h	��� t	 � det�R��		� Ps	 � det�R��	� �sR���	 � ��� s	H	�

� det��R��	� R���	�� ��� s	�H � R���		�

� det��R��	� R���	� � ��� s	 tr�adj��R��	� R���	��H �R���		��

which is an a�ne function in t for �xed �� Here we have used the fact that det�H�R���		 �
�� When j� � ��j � ���
 there is a constant c � � independent of �
 such that

j tr�adj��R��	�R���	��H � R���		�j � c � ��

We may then conclude that the graph of h	��� s	 is transversal to s�axis uniformly with

respect to � � ����� ����� Therefore we may �nd some Ps������ � l�	
 such that

js�����	� s��	j � O��	�

and

det��R��	 � f�R��			� Ps������� � ��

��



for � � ����� ����� We also have the line

l���	���	 � f�R��	 � f�R��			 � ��� �	Ps������� � � � � �g

contained in L��f 	
 such that

d�l���	���	� l
�	�
� 	 � O��	�

Similarly
 we may also consider Qt��� � l�
 such that det�R��	� Qt���� � �
 and �nd line

segments l
���
� � We may also see that the graph of h������ t	 � det�R��	�Qt� is transversal

to the t�axis uniformly with respect to � � ������ ��� so that we can show that there is

another family of line segments l�������	 in L��f 	 which are close to l
���
� for � � ������ ����

Let

S��� �
�

����������

l���	���	 �
�

����������

l�������	�

Then S��� � L��f 	 � Q��f 	 and d�S
���� S�	 � O��	� We can also establish a similar result

for S�� Since Q�K	 is obtained by rotating S� � S� and for each �xed rotation R
 we can
construct a similar set contained in L��f 	 which is close to R�S� � S�	 uniformly
 we see
that there exists Sf � L��f 	
 such that d�Sf � Q�K		 � O��	� Theorem ��� implies Q�K	

is continuously stable with respect to K� The proof is complete�

Remark 
��� In the proof of Theorem ��
 we have used two important facts� �i	 The

quasiconvex hull can be constructed by laminations in �nite steps� and �ii	 there is a scalar�

valued function det�	 which provides most of the information on rank�one connections
and transversality of graphs
 which makes it possible to �nd rank�one connections of the

perturbed sets near rank�one connections of the original set� For a set in M���
 it is

di�cult to describe rank�one connections by simple functions�

�



x	� Stability with respect to parameters and planes�

The main result of this section is that the quasiconvex hull established by Ball and

James �BJ� for the two well problem inM��� is stable with respect to parameters� Before

we give precise statement of the result
 let us �rst consider the stability problem when we

restrict our approximate sets to be within a lower dimensional plane� It is easy to see that

if E �MN�n is a plane and K � E
 then Q�K	 � E�

De�nition 	��� Let E � MN�n be a k�dimensional plane and let K � E be compact�

Q�K	 is strongly stable with respect to K in the plane E if for every � � �� there exists

� � �� such that d�Q�S	� Q�K		 � � whenever S is compact� S � E and d�S�K	 � ��

Remark ���� De�nition ��� can be generalized to the case when E is a quasiconvex set�

However
 De�nition ��� seems to be more geometrically meaningful because we can apply it

to restrict approximating sets to vary along certain directions while �xing other directions�

We can also de�ne continuous stability for quasiconvex hulls with respect to a plane
 that

is


Q�K	 � E is continuously stable with respect to K in E if for every � � �
 there exists

� � �
 such that d�Q��f 	� Q�K		 � �
 whenever f � C�K�E	 and kfk� � ��

Example ���� Let E be the space of all �  diagonal matrices and let K� � l � l� where

l � fdiag�t� t� �	� � � t � �g l� � fdiag�t��t	� � � t � �g �

and K� � l � l	
 where
l	 � fdiag�t� t	� � � t � �g �

We will show that �i	 K� is continuously stable in E while not strongly stable in E
 and

�ii	 K� is strongly stable in E�

To prove �i	 we �rst observe that

Q�K�	 � C�K�	 � fdiag�x� y	� �x � y � x� �� � � x � �g �

��



Now let f � K� � E be continuous and kfk� � �� For �xed t� such that � 
 t� 
 �� �

let P �t�	 � diag�t�� t� � �	 � l and let R�s	 � diag�s��s	 � l�� We consider

g�s	 � det�P �t�	� R�s		�

We have g�t�	 � �
 g��t�	 � ��t� � �	
 and so the graph of g is transversal with respect
to t�axis� We see that there exists s� � �t� � �� t� � �� such that

det��P �t�	 � f�P �t�		� �R�s�	 � f�R�s�		� � ��

Hence P �t�	 � f�P �t�		 and R�s�	 � f�R�s�		 are rank�one connected� Therefore the line

segment connecting these two points is contained inQ��f 	� Letting S be the union of all the

line segments thus de�ned
 we see that d�S�Q�K�		 � O��	
 since Q�K�	 is quasiconvex�

The conclusion follows from Theorem ����

In order to prove that K� is not strongly stable in E
 we de�ne
 for every � � �
 an

approximate set S for K�
 such that d�S�K�	 
 � that Q�S	 � S�

Let tk� sk � ��� ��� � � k � m be such that � � sk 
 tk 
 � and both �tk	 and �sk	 are

strictly increasing �nite sequences� Let

S � fP �tk	� R�sk	� � � k � mg�

where P �tk	 � diag�tk� tk � �	 � l and R�sk	 � diag�sk��sk	 � l�� We may choose tk
 sk

and m in such a way that d�S�K�	 
 �� Since the function F	 �M
��� � R de�ned by

F	�P 	 �

�
detP� when P is symmetric and positive de�nite�

�� otherwise

is quasiconvex �Sv��
 we can use this function and its simple variations and prove induc�

tively
 that Q�S	 � S� An alternative proof of this fact is based on the notion of completely

separable sets de�ned in �Z�� and the separation lemma� A �nite subset K of the space

E of diagonal  �  matrices is completely separable if for every subset M of more than

��



one element
 there exists some C � E
 such that M � C �� fP � C� P � Mg consists of
two nonempty subsets M� and M� where either M� �respectively M�	 contains only pos�

itive �respectively negative	 de�nite matrices
 or JM�
 JM� satisfy this property
 where

JMi � fdiag�����	P� P � Mig
 i � �� � If we project E to R� by diag�a� b	 � �a� b	


then !C separates M" just means that if we move the origin to C
 M is divided into

two subsets
 one is in the �rst quadrant
 the other is in the third quadrant
 or one in the

second and the other in the fourth� It was established in �Z�� that if a �nite K � E is com�

pletely separable
 then any gradient Young measure supported in K is trivial� This implies

Q�K	 � K� It is easy to check that the set S in this example is completely separable�

Hence
 Q�S	 � S and K� is not stable with respect to E�

�ii	 It is easy to see that

Q�K�	 � C�K�	 � fdiag�x� y	� � � x � �� x � y � x� �g�

Let us �rst re�examine the well�known four�point set K �T
BFJK� in E
 K � fAi� i �

��    � �g where Ai � diag�ai� bi	 with a� 
 a
 
 a� 
 a�
 b
 
 b� 
 b� 
 b�� Let M

be the closed rectangle formed by B� � diag�a�� b�	
 B� � diag�a�� b�	
 B� � diag�a
� b�	


B� � diag�a
� b�	
 and let Li be the closed line segment formed by Ai and Bi
 i � ��    � ��
It is well known that Q�K	 �M �
i�� Li�
We shall use the above result repeatedly in order to establish �ii	� Let � � � be su��

ciently small and S � E be closed
 such that d�S�K�	 � �� We can �nd a �nite subset of

S
 say S� � S
 such that d�S�� K�	 � ��� and S� can be decomposed into two subsets Sl

and Sl� 
 S� � Sl � Sl� 
 d�Sl� l	 � ��
 d�Sl� � l		 � ��� Recall that K� � l � l	� We may

set Sl � fAk� � k � �� � � � �mg
 Sl� � fA	
k � k � ��    �mg� and require that

�a	 the components of Ak and A
	
k are both increasing�

�b	 A	
k	�
 Ak	�
 Ak
 A

	
k form the above four�point set K�

We see that S� � �m��k�� Q�K
k	 for k � �� � � � �m � �� Let SQ � S � ��m��k�� Q�K

k		
 we

see that d�Sq� Q�K�		 � O��	� Since Q�S	 � Q�Sq	
 Theorem ��� implies that for a given

��



� � �
 we may choose  � �
 such that d�Q�M	� Q�K�		 � � whenever d�M�Q�K�		 � �

So we may choose � � � with O��	 � 
 so that d�S�K�	 � � implies d�Sq� Q�K�		 � 


hence d�Q�Sq	� Q�K�		 � �� The conclusion follows from the fact that Q�Sq	 � Q�S	�

Remark ��	� In fact the conclusions of Example ��� are still valid for more general situ�

ations� If we project K� and K� to R
� with coordinate system Oxy
 then as long as the

angle from the positive direction of x�axis to l is between � and �� and to l� is between

��� and �
 we may reach the same conclusion as for K�� For K� if the angles with l and

l	 are both between � and ��
 the stability property for Q�K�	 still holds�

It was established in �MP� that in R� 
 it is possible to �nd a �nite set whose �separately

convex hull� is stable with respect to the set� This is relevant to Question ���� It is not

known whether the corresponding quasiconvex hull is stable for that set if we embed the

set in the space of � � � diagonal matrices
 even in the more restricted sense of stability
with respect to a plane�

Let us turn to our main result of this section� Let us consider the two well set K �

SO��	U� � SO��	U� studied in �BJ�� Without loss of generality
 we may assume that

U� � I � the �� � unit matrix and

U� � diag��� ���� �	�

with � � �� The explicit form of the quasiconvex hull of K was obtained in �BJ
 Th� ���


Th������ However
 if we only consider the two�dimensional version of these results
 that is


for SO�	 � SO�	U 
 with U � U��� ���	 � diag��� ���	 and follow their arguments
 we

see that

Q�K	 � SO��	

�
Q�SO�	 � SO�	U	� �

�� �

�
�

For the general case of two compatible wells V ��� �	 in M���
 that is
 for V ��� �	 �

SO�	� SO�	U with U � diag��� �	 satisfying �� � �
 the quasiconvex hull of V ��� �	 is

given by ����	 �Sv�� We have

��



Theorem 	��� Suppose K��� �	 � SO��	 � SO��	U with U � diag��� �� �	� Then for

every �xed �� � ��

lim
���������������

d�Q�K��� �		� Q�K���� ����		� � ��

Notice that it is easy to see that

lim
���������������

d�K��� �	� K���� ����	� � ��

Proof� Since we have the explicit formula for Q�K���� ����		
 that is

Q�K���� ����		 � SO��	

�
Q�V ���� ����		� �

�� �

�
�

We also know that

K��� �	 � S��� �	 � Q�K��� �		�

where

S��� �	 � SO��	

�
Q�V ��� �		� �

�� �

�
�

Since Q�V ���� ����		 is continuously stable
 we see that

d�S��� �	� Q�K���� ����		�� �

as �� ��
 �� ����
 it follows from Theorem ��� that

d�Q�S��� �		� Q�K���� ����		�� ��

The conclusion follows from the fact that Q�S��� �		 � Q�K��� �		�

Remark ���� In the proof above
 we do not need to know the explicit formula for the

quasiconvex hull of K��� �	 because of Theorem ���� In fact we have proven that the

quasiconvex hull of K���� ����	 is stable with respect to parameters in the class of plane

strains �BJ���

��



If we perturb the third eigenvalue � for U � diag���� ����� �	
 there will be no rank�one

connections� If K���� ����	 is stable with respect to the third eigenvalue
 then

Q�K���� ����� �		 
� K���� ����� �	�

when � is close to �
 where

K���� ����� �	 � SO��	 � SO��	U

with U � diag���� ����� �	� A conjecture in �BJFK� due originally to D� Kinderlehrer would

implies that if there are no rank�one connections for the two well set K in M���
 then

Q�K	 � K� A positive answer to this conjecture would imply that the quasiconvex hull of

K���� ����� �	 is not stable with respect to the parameter � at � � �� S� M�uller recently

informed me that in his joint work with G� Dolzmann
 B� Kirchheim and V� #Sver�ak
 for

certain range of the eigenvalues much larger than known before
 they can �nd the explicit

formulas for the quasiconvex hull of the two well set�

There is another case for the two well structure with rank�one connections
 that is
 for

n � 

K��	 � SO�n	 � SO�n	U�

where

U �

�
In��� �
�� �

�

with � � �
 � 
� �
 where In�� is the �n� �	� �n� �	 identity matrix� It was mentioned
in �BJ� that this is an unstable case� Here we give a proof�

Theorem 	��� Let K��� �	 � SO�n	 � SO�n	U with

U � diag����    � �n��� �	�

where � � ����    � �n��	 � R
n�� � Then Q�K��� �		 is not stable with respect to � at

� � ���    � �	 � R
n�� �

�	



Proof� We may assume that � � �� For the case � 
 � the proof is similar� It is not hard

to see that

SO�n	

�
In�� �
� ��� ��

�
� Q�K��� �		

where

SO�n	

�
In�� �
� ��� ��

�
�

	
R

�
In�� �
� t

�
� R � SO�n	� � � t � �



�

just by observing that for each R � SO�n	
 R and R diag���    � �� �	 are rank�one con�
nected� In fact
 Q�K��� �		 equals the set above
 but we shall not pursue this point here�

Let us consider a simple family of sets K�s	 given by K�s	 � SO�n	�SO�n	U�s	
 where

U�s	 �

�
sIn�� �
� �

�

for s � �� It is easy to see that for each s � �
 K�s	 satis�es Matos�s condition �Ma�
 that

for K�H	 � SO�n	 � SO�n	H with H diagonal and positive de�nite


n� n detH � tr adjH � trH � �

which implies Q�K�H		 � K�H	�

In our case

n� n detU�s	� tr adjU�s	� trU�s	

� n� nsn���� sn�� � �n� �	sn���� �n� �	s� �

� �n� �	�s� �	�sn���� �	 � ��� �	�sn�� � �	 � ��

Therefore K�s	 satis�es Matos� condition
 so that Q�K�s		 � K�s	 for every s � � �notice

that if � 
 �
 we may let � 
 s 
 � so that the inequality above for U�s	 still holds	�

Obviously d�K�s	� K��� �		� � as s� �	 while

lim inf
s���

d�Q�K�s	� Q�K��� �		�� ��

�




In fact


A��	 ��

�
In�� �
� �	�

�

�
� Q�K��� �	�

while dist�A��	� K�s		 � ��� �	� � �
 so that

d�Q�K�s	� Q�K��� �		�� ��� �	��

for all s � ��

x
� A new metric on compact quasiconvex sets�

In this section we de�ne a new metric on the set Q�N�n	 of all compact quasiconvex
subsets of MN�n� A natural question is whether there is a metric dQ over Q�N�n	 such
that the quasiconvex hulls are strongly stable� More precisely
 does d�K�S	 � � imply

dQ�Q�K	� Q�S		� �� In fact we can de�ne such a metric� Unfortunately the geometric

meaning of the closeness of two quasiconvex hulls under dQ is not as clear as under the

Hausdor� metric�

De�nition 
��� Suppose K� S are compact quasiconvex sets� The quasiconvex distance

of K and S is de�ned by

����	 dQ�K�S	 � inff� � �� K � Q�S�	� S � Q�K�	g�

We have

Theorem 
��� dQ is a metric over the set of compact quasiconvex sets�

Theorem 
��� For any compact subsets K� S �MN�n�

���	 dQ�Q�K	� Q�S		 � d�K�S	�

Proof of Theorem ��	� It is easy to see that dQ�K�S	 � dQ�S�K	 and dQ�K�S	 � � from
the de�nition of dQ� Now
 suppose dQ�K�S	 � �
 we have for any � � �� K � Q�S�	


��



S � Q�K�	� Similar to the proof of Theorem ���
 we have
 for every P � K
 existence of

a sequence 	j � C�� �D�R
N 	
 such that

lim
j��

Z
D

dist�P �D	j � S�	 � ��

Since

dist�P �D	j�x	� S	 � dist�P �D	j�x	� S�	 � ��

for every x � D
 we have
 as in the proof of Theorem ��� that

Q dist�P� S	 � ��

Letting � � �	
 we see that P � Q�S	 � S
 hence K � S� Similarly
 we can show that

S � K� Hence K � S�

To prove the triangle inequality

dQ�S�K	 � dQ�S�H	 � dQ�H�K	�

we need the following lemma�

Lemma 
��� For every nonempty compact quasiconvex K �MN�n�

Q��Q�Ks	�t	 � Q�Ks	t	�

Proof of Lemma ���� It is easy to see that �Ks	t � Ks	t� Let W � Ks
 what we need to

prove is that Q��Q�W 		t� � Q�Wt	 for every t � �� Since W � Q�W 	
 we see that Wt �
�Q�W 	t� so that Q�Wt	 � Q�Q�W 	t�� In order to prove the other inclusion Q�Q�W 	t� �
Q�Wt	
 we only need to prove Q�W 	t � Q�Wt	� Let P � Q�W 	t� There exists some

P� � Q�W 	 such that jP �P�j � dist�P�Q�W 		 � t� Since P� � Q�W 	
 there is a sequence

	j in C
�
� �D�R

N 	 such that

����	 lim
j��

dist�P� �D	j �W 	dx � ��

��



Since W is compact
 we see that the sequence D	j is bounded in L��D�MN�n	 and is

equi�integrable� For every �xed � � �
 let

H�
j � fx � D� dist�P� �D	j �W 	 � �g�

From ����	 we also see that meas�H�
j 	� � as j ��� Therefore on D nH�

j 


dist�P �D	j�x	�W 	 � dist�P � P� � P� �D	j�x	�W 	 � t� ��

so that

dist�P �D	j �Wt	 � ��

Therefore

Z
D

dist�P �D	j �Wt	dx �
Z
H�
j

dist�P �D	j �Wt	dx� �meas�D nH�
j 	�

Since meas�H�
j 	� � as j �� and D	j is equi�integrable
 we see that

lim
j��

Z
H�
j

dist�P �D	j �Wt	dx � �

so that

lim sup
j��

Z
D

dist�P �D	j �Wt	dx � ��

for every � � �� Thus

lim
j��

Z
D

dist�P �D	j �Wt	dx � �

so that P � Q�Wt	� The proof is complete�

Proof of Theorem ��	 continued� Once as Lemma ��� is established
 the proof becomes

routine� Let s � dQ�S�H	
 t � dQ�H�K	
 and let r � s � t� Since H � Q�Ss	
 so that

Ht � �Q�Ss	�t� Lemma ��� implies

Q�Ht	 � Q��Q�Ss	�t	 � Q�Ss	t	 � Q�Sr	�

�



Thus K � Q�Ht	 � Q�Sr	� Similarly
 H � Q�Kt	
 so that

S � Q�Hs	 � Q�Kr	�

Therefore

dQ�K�S	 � r � s� t � dQ�S�H	 � dQ�H�K	�

The proof is complete�

Proof of Theorem ���� Suppose for some � � �
 K � S�
 S � K�� Since S � Q�S	


K � Q�K	
 we have K � S� � �Q�S	��
 and S � K� � �Q�K	�� so that

Q�K	 � Q��Q�S	��	� Q�S	 � Q��Q�K	��	�

Hence dQ�Q�S	� Q�K		 � �� The proof is �nished�

Let Sj be a sequence of compact quasiconvex sets inM
N�n� We say that Sj is bounded

if there is a closed ball B in MN�n
 such that Sj � B� With the help of Theorem ���
 it

is very easy to establish that

Theorem 
��� Let Q�N�n	 be the family of all compact quasiconvex subsets of MN�n

with metric dQ� Then

�i	 Q�N�n	 is complete �that is� every Cauchy sequence is convergent��

�ii	 A subset of Q�N�n	 is sequentially compact if and only if it is bounded and closed�

Proof of �i�� Suppose Sj is a Cauchy sequence and Let �Br � fP � MN�n� jP j � rg be
the closed ball centred at � with radius r � �
 and let �B� be the closed unit ball� We see

that �Br is quasiconvex because it is convex� We �rst prove that Sj is bounded� Since Sj

is a Cauchy sequence
 there is some N � �
 such that dQ�Sj � Sk	 � � whenever j� k � N �

Therefore for j � N 


dQ�Sj � �B�	 � dQ�Sj� SN 	 � dQ�SN � �B�	 � � � dQ�SN � �B�	�

��



Let dQ�Sj � �B�	 � �j 
 we see from the de�nition of dQ that

Sj � Q�� �B���j 	 � Q� �B�	�j 	 � �B�	�j �

Hence it is easy to see that there exists some r � �
 such that Sj � Br for all j � �� Sj

is then a bounded sequence� Therefore we may �nd a subsequence Sjk and a compact set

S�
 such that under the Hausdor� metric
 Sjk converges to S�
 that is


lim
k��

d�Sjk � S�	 � ��

and S� is a compact set� Theorem ��� implies that

lim
k��

dQ�Sjk � Q�S�	 � lim
k��

d�Sjk � S�	 � ��

Now
 using a similar method to that used in many calculus textbooks to prove that the

real line R is complete
 we can easily see that

lim
j��

dQ�Sj � Q�S�		 � ��

Proof of �ii�� The necessity part is easy� For the su�ciency
 we assume that C � Q�N�n	 is
a bounded and closed subset� Let Sj be a bounded sequence of compact quasiconvex sets�

Then there exists a subsequence Sjk and a compact set S�
 such that limk�� d�Sjk � S�	 �

�� Since dQ�Sjk � Q�S�		 � d�Sjk � S�	� the conclusion follows�

Remark ���� Part �ii	 in Theorem ��� is a generalized version of Blaschke Selection Theorem

which asserts that for a bounded in�nite family of compact sets
 there exists a sequence

that is convergent under Hausdor� metric �Mc�� Because of inequality ���	
 we can bypass

most of the di�culties in proving it�

x�� A short note on relations among various semiconvex hulls�

In this section
 we shown that d�Q�K	� C�K		� � does not imply d�Lc�K	� C�K		� ��

More precisely
 we have

��



Propostion ���� The following statement is not true

Let R � � be �xed� For every � � �� there is a � � �� such that

d�Lc�K	� C�K		 � �

whenever K � �BR��	 and d�Q�K	� C�K		 � �� where �BR��	 is the closed ball in MN�n

with n� N � �

Example� Let us consider a special case of Tartar�s �gure �T
BFJK� in M���� For a �xed

� � �
 let

A
���
� � diag�� � �� �	� A

���
� � diag������ �	

A
���
� � diag���� ����	� A

���

 � diag���� � � �	�

and de�ne

K� � fA���
� � A

���
� � A

���
� � A

���

 g�

Obviously
 K� � �B���	 when � 
 � � �� It is obvious that K� does not have rank�one

connections
 so that Lc�K�	 � K�� We also know �T
BFJK� that the rank�one convex

hull of K� is given by

R�K�	 � fdiag�x� y	� �� � x � �� �� � y � �g �
m�� J
���
m �

where

J
���
� � fdiag�� � t� �	� � � t � �g� J

���
� � diag������ t	� � � t � �g�

J
���
� � diag���� t���	� � � t � �g� J

���

 � diag���� � � t	� � � t � �g�

It is easy to see

d�R�K�	� C�K�		 � ��

From the relation R�K	 � Q�K	 � C�K	
 we also see that

d�Q�K�	� C�K�		 � d�R�K�	� C�K�		�

��



so that

d�Q�K�	� C�K�		 � ��

Now
 by direct calculation
 we see that

d�Lc�K�	� C�K�		 � ���

for every � � �� Therefore the claim in Proposition ��� is justi�ed�

Remark ���� Part of the reason why the statement in Proposition ��� is false is because

the closed lamination convex hull is not necessarily stable under small perturbation� The

example above showed this� In that example
 when � � � Lc�K�	 � C�K�	
 while Lc�K�	 �

K� when � � � which consists only four matrices�

In the example above
 we also have that Q�K�	 � R�K�	� It is then natural to ask

whether d�Q�K	� C�K		 can control d�R�K	� C�K		� More precisely I do not know whether

the following statement is true or not�

Let R � � be �xed� For every � � �
 there is a � � �
 such that

d�R�K	� C�K		 � �

whenever K � �BR��	 and d�Q�K	� C�K		 � �� where �BR��	 is the closed ball in MN�n

with n� N � �
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