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1. INTRODUCTION

Let N be a smooth, compact manifold without boundary of dimension k. By
Nash’s embedding theorem we may assume N C R" isometrically for some n. A
wave map u = (u',...,u"): R x R2 - N < R" by definition is a stationary point
for the action integral

Alu; Q) = /Q,C(u) dz,QQ CC R x R?,

with Lagrangian
1
£(u) = 3(Vul? — fuf?)

with respect to compactly supported variations u. satisfying the “target constraint”
u:(R x R?) C N. Equivalently, a wave map is a solution to the equation

Ou = uy — Au = A(u)(Du,Du) L T, N, (1)

where A is the second fundamental form of N, T, N C T,R" is the tangent space to
N at a point p € N, and “L” means orthogonal with respect to the standard inner
product {-,-) on R”.

We denote points on Minkowski space as z = (,2) = (z%)o<a<2 € R x R?
and let Du = (us, Vu) = (Jatt)o<a<2 denote the vector of space-time derivatives.
Moreover, we raise and lower indeces with the Minkowski metric n = (703) =
(n*8) = diag(—1,1,1). A summation convention is used; thus, Ou = —9%9,u.
Finally, we abbreviate

A(u)(Du, Du) = A(u)(0%u, Oqu).

Recall that locally, near any point pg € N, letting vg41,...,v, be a smooth or-
thonormal frame for the normal bundle TN near pg, that is, vector fields such
that (v(p))k<i<n is an orthonormal basis for the normal space T,N* at any p near
Po, we have

A(p)(v,w) = A (p) (v, w)w1(p)
at any such p, where
Al (p) (Ua w) = <U7 dy, (p)7 w)

is the second fundamental form of IV with respect to v;.
1
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Given ug: R* = N,u;: R? — R" satisfying the condition u; () € Tyy(a)V for
all x € R?, that is, (ug,u1): R2 — TN, we consider the Cauchy problem for wave
maps v with initial data

(U;Ut)h:o = (ug, u1): R> - TN (2)
of finite energy

1 .

F = 5/ (Jur? + |Vuo|?) dz.
R2

Specifically, in the present paper we study the relation between solutions u of (1),

(2) on R x R? and their spatially discrete counterparts u”: R x M, — N — R,

where R? is replaced by a uniform square lattice My, = (hZ)? of mesh-size h — 0.

In a previous paper [12], jointly with Vladimir Sverdk, we studied the time-
independent case and showed that a weakly convergent family of harmonic maps
u" € HY(Ty; N) on a periodic lattice Tj, = (hZ)?/Z? as h — 0 accumulates at a
harmonic map u on the 2-torus T2 = R? /Z2.

Here we extend this result to the time dependent case; see our main result
Theorem 4.1 below. Since the Cauchy problem for wave maps on a spatially discrete
domain is equivalent to an initial value problem for a system of ordinary differential
equations which can be solved globally for any mesh-size h in view of the uniform
energy bounds available, as a corollary we reobtain our existence result from [11]
for global weak solutions to the Cauchy problem (1), (2) for wave maps on (1 + 2)-
dimensional Minkowski space; see Theorem 5.1. The methods we use are similar to
the methods of [12]. We essentially rely on our previous weak compactness results
[7], [8] with Freire and exploit the equivalent formulation of (1) as a Hodge system
as in [3] or [9] to which compensation techniques may be applied in a way similar
to the work of Hélein [9], [10], Evans [5], and Bethuel [1] on weakly harmonic maps,
that is, time independent solutions of (1). (See [7] for further references and a
detailed comparison of the elliptic and hyperbolic cases.)

2. TECHNICAL FRAMEWORK

Whenever possible, we use the same notations as in [12] regarding difference
calculus, discrete Hodge theory, interpolation and discretization. For the reader’s
convenience we recall the definition at each first appearance of a symbol.

2.1. Differential forms. For h > 0 with h~! € Nlet M}, = (hZ)? T}, = (hZ?)]Z?
with generic point & = z;, = (z},,23), and let S* = R/Z with generic point ¢ = 2° =
z9. Differential forms on Rx M), or S* x T}, may be most conveniently expressed in
terms of the standard basis dz®, dz® Adz®,0 < a < # < 2, and dt Adz' Adz? = dz.
In particular, for a 1-form " we have p" = p"dz®, and a 2-form b" may be written
in the standard form

bt = bhdrt A de® — bida® A da? + bhda® A dat = bgﬁdma A dzP

with real-valued functions ¢, b,
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The Hodge *4-operator with respect to either the Euclidean metric g = eucl or
the Minkowski metric ¢ = 7 in terms of this basis is defined as
xg1 =dz,xgdz =1
*g<ph = googogd:cl Adz? — otda® A da? + phda® A dat
0" = gPblda® + b dxt + blida?,
where (g%%) = g7 = diag(£1,1,...,1) and ¢" = p"dz?, etc., as above.
From this definition we immediately deduce that x4 o x, = ¢d and, moreover,
O" Nxg" = (x,0") A" = g*P ol oldz,
D" A gb” = (xgb") AV = g*Pbhbldz
for any 1-form " or 2-form b as above.

Finally, two forms ¢", 9" of the same degree may be contracted by letting
@ g Yz = " Axgp" = g*Pplplidz.
Spatially discrete differential and co-differential are defined as follows.
For uP: R x My, — R h # 0, we let d"u" = 0'u"dz® with components
(z + he,,) — u(z)
h
where (e,)1<a<> is the standard basis for R?. For a 1-form ¢" = ¢ dz® then

d"ph = ahgogdxa A dzP

«

u
Ohul = dhul = dyu = ul, Mu(z) = ya=1,2

and for a 2-form b" as above,
d"vh = 9"l dz.
The co-differential (with respect to g) is
63 =— % od "o *g.
Explicitly, for " = phdz®, h # 0, we have
Syt = —g*PoT ol = =0y "ol — 07"l — g%°0 ",

and similarly for forms of higher degree. Clearly, we have d" o d"* = 0,6" 0 " =0
for all h # 0.

Finally, for h > 0, we let

h _ —h _ ghsh | shih _ 3—hs—h | s—h—h
0" =0""=d"6, +6,d" =d™"0," +4,"d

denote the spatially discrete wave operator, acting on forms on R x M} . Explicitly,
we have

0" = gpd"u = (87 — AMu", O"(phda®) = (O"ph)da?,
uh(bgﬁdma AdzP) = (Dhbzﬁ)d:ca Adz?, Ot (fhdz) = (O" fh)dz,

where A" = A~" is the discrete (5-point) Laplace operator on T},; that is, 0" acts
as a diagonal operator with respect to the standard basis of forms.
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Also note the product rule

ol (uhov™) = hulvh + rhuh "

= Olulrhol 4+ uhoto" (3)
= OMulmho + mhuholoh,
and
(M) = =g PO (el ") = =g [(BRel) [+ ThelOR ]
in particular, we have
0" (ra "phda® - ") = =g [(0." 0B " + ¢sda f"] = (G5 ") " = " g d" .

Here and in the following we denote

1
il = mEhut =l rERuR = uh (- + hey), mErut = 2(u + rEhyhy o =1,2.

2.2. Dirichlet’s integral. For u”: R x M; — R we let
1 _
en(") = 7 D {10ku" + 107" "} (4)
0<a<2
be the energy density and let
Buut(0) = [ enluh®): =1 Y entu(t,20)
Mp zh€EMp

be the energy of u” at any time t. If h~' € N and if u” has period one in each
variable, we regard u” as a map u”: S' x Tj, — R. Then we define

1
D) = [ et = [0 3 enlut) (e
SIXTh 0 zh€Th

and similarly for forms of degree > 1.

Note that the first variation of Dy, at u” in direction v" is given by

(dDy (u"),v") = d%Dh(uh + ev™)

1
==Y / {Ohu" 0" + 07 a0 "
2 a Sleh

= E / aguhagvh :—/ Aguhvh
Sleh 51><Th
where —Ah =oh

h oy gh
eucld +d 5eucl -
ator, acting on forms on S* x T},.

‘5:0

—0? — A" is the spatially discrete Laplace oper-

Similarly, for u”: R x Mj, — R” the spatially discrete Lagrangian of u”

Cuu) = {0k, Ot + (97", 05" ™).

The action integral over any spatially discrete domain @ CC R x M, then is

" Q) =/Q£h<uh>,
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and u” is stationary for A, with respect to compactly supported variations if and
only if

(dAp(u),v") = d%Ah(uh + ev™)

le=o0

— / naﬂ(aguh,agvh> — / Dhuhvh =0
R x Mp RxMp

for any v € C§°(R x Mjy); that is, if and only if O"u? = 0.

()

2.3. Hodge decomposition. Analogous to the continuous case or the case of a
planar lattice, we have the following result on Hodge decomposition of forms on
Sl X Th.

Proposition 2.1. Any 1-form " = tdz® on S* xT}, may be decomposed uniquely

as
=d"a" + 6" " + " (6)
where a® and b are normalized to satisfy
/ ah:/ bZAB:0f0r0§a<ﬂ§2,dhbh:O, (7)
S1xTy, S1xT,
and d"c" = 0,6" " =0.

Proof. Let a”,b" be the unique solutions to the equations
_Ah b= 5eucl90 7_Agbh = dh h?

normalized by (7), obtained, for instance, by minimizing the integral
Fala") = [ fen(a) = a" ")
S1x Th

among functions a”: S'xT}, — R satisfying (7), and similarly for *. The remainder
h =l — dha™ — 5", b" then satisfies

dch = d"o" + AL = 0,88, " = 00" + Aba™ =0,

as desired. O

Via the Euclidean Hodge *-operator, we obtain an analogous decomposition of
2-forms. Observe that the decomposition (6) is L?-orthogonal and hence we have

LNt a8t ) ®
S1xTy S1XxTh

2.4. Discretization and interpolation. We discretize a map u: R x R — R by
letting, for each t € R,

ul(t,zp) = hfz/ u(t, z) dz, xp € My,
Qf (n)

where for [ € N the set
Qf(zn) = {z = (z',2%) e B2 <2® <zff +1h,a=1,2}

is a square with lower left corner xj of size [h, and similarly for periodic maps
u: T3 =S'x T — R, assuming h~! € N.
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Conversely, we interpolate a map u”: R x M, — R either trivially, by letting
u"(t,x) = u"(t,z3) for z € Qj (xn),zn € M,
or bilinearly, by letting

u"(t,w) = ul (o) + D €208 (t,xn) + €1 010NN (¢, )
a=1,2

whenever © =z, + £ € Q;{(mh),mh € My, and similarly for maps u”: S' x T}, — R.
Observe that
O Ml (t, x) = O M ul (¢, xp)
forallte Stz € Q;(ach),mh € Ty; moreover,
oMl (t, xp + hE) = (1 — &)OMu™ (t, x) + 00U (t, xp, + hey)
fort € S*,xy, € Ty, € € Q7 (0), and similarly with z'- and 2-directions exchanged.

iFrom this identity the following result is immediate.

Proposition 2.2. For u": R x M;, — R with sup, Ej,(u"(t)) < co we have T" €
L°(R; H (R?)) N C°(R x R?), and with a uniform constant C' for all t € R there
holds

i) ||(@" — uh)(t)||2w(Q:(zh)) < Cfth(zh) en(u(t)) for all z), € My;
ii) (1@ — ")) agun, < OB En(uh(1));
i) C~1En(ul(t)) < E(@"(t)) < CEx(u”(t)).

Moreover, by comparing u” and 7", using Proposition 2.2 i), it is clear that the
Poincaré inequality

| (u" — Uﬁ,xo (t)||%2(Qr(xo)) < Cr? Ep(u"(t); Qryn (o))
holds for every (t,z9) € R x My, any r = kh, k € N, where

Qr(mo) = {:I’. = (wlij); |$a - iI,'g| <roa= 172}

() = ][ u*(t,2)
Qv‘(mo)

Similar results hold true if we also take time dependence into account.

and where

is the mean value.

For zp = (z§)o<a<2,r > 0, let

2
P.(z0) = H]xg —rxy +7|

a=0

and let u”: R x M), — R with locally finite energy as above. For z € R x My,r =
kh,k € N, we also let

denote the average of u” on P,(z).
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Proposition 2.3. For any z = (t,z) € R x M,,0< h <r=kh,k € Na € {1,2},
with an absolute constant C there holds

D (e — )P < CH [y en(uh);
i) [lu" = up:lza(p, ) < O [p, (0 €n(u®)-

Proof. i) Integrating in time, for any s €]t — h,t + h[ we obtain

t+h
|(rau” —u")(t,2)] < |(rgu” —u")(s,2)| +/ (10 (rau™)| + |0vu"]) ds.
t—h

Squaring and averaging with respect to s, in view of Proposition 2.2 i) we find

t+h
(7l — ) ()P < B / (it — ) (s, )| ds
t—h
t+h
+Ch (|0ehu"? + |0pu™?) ds < Ch™? en(ul).
t—h ch(z)

ii) The asserted inequality is immediate from Proposition 2.2 i) and the usual

Poincaré inequality, applied to the function @". O

If we consider the trivial extensions of a function u”: Rx M}, — R and its energy
density e (u") to R x R2, Proposition 2.3 ii) remains valid for all z € R x R? and
O0<h<r.

Regarding a function u”: S' x T}, — R as a periodic function on R x M}, the
above results also hold for u: S x T, — R. In addition, by integrating in time,
from Proposition 2.2 iii) we obtain the following result.

Proposition 2.4. For u": S x T}, = R with Dy (u") < oo we have " € H'(T?)
and with a uniform constant C' there holds

1 .
C1Du(u") < D@@") = 5/ (lul'[2 + |Vu"[2) dz < CDy(u").
T3
In view of Proposition 2.4 we will say that u" — u weakly in H'(T?) as h — 0,
if @* — u weakly in H'(T®), or, equivalently, if u* — u and d"u" — du weakly
in L?(T?), where u", d"u" denote the trivial extensions of u",d"u" to T3, defined
above.

3. SPATIALLY DISCRETE WAVE MAPS

In analogy with the continuous case a map u": Rx M;, — N — R" is a spatially
discrete wave map if and only if u” is stationary for A, among maps u”: Rx M}, —
N such that u® = u" at ¢ = 0 and outside some compact set Q C R x Mp; in
particular, then
d%:Ah(wN(uh + Evh))|5=0 =0
for all v € C§°(Rx My,; R"), where my : Us(N) — N is the smooth map projecting
a point p in a tubular neighborhood of N of sufficiently small width § > 0 to its
nearest neighbor 7 (p) € N.
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Computing the first variation using (5), we deduce that u” satisfies the equation

dry (u)Omu = 0;

that is,
oful L TnN. (9)
Hence, letting vg11,... ,v, be a local frame for TN+ as above, we have
Ofuh = My o uh,

where A may be computed as
N = (@™ vy oul) = —naﬁah@ ul, vy oul) + naﬁ@guh,@g(lq ou)).
(10)
Observe that for a = 0, 3 = 0 the first term vanishes because (9;u”, v; o u") = 0.

In view of this representation of (9), for h > 0 equation (9) is equivalent to a
system of ordinary differential equations of the form

Uy = F(U", U}) (11)
for UR(t) = (u"(t, 1)), e, , with coupling involving only neighboring lattice sites.

Given (ul,u?): M, — TN with finite energy
1 . .
B ) =5 [ (ul 1), (12)
h

we therefore expect to obtain a unique global solution u” of the initial value problem
for (9) with initial data

(", uf)) o = (ug, ul). (13)
In fact, we have the following result.
Theorem 3.1. For any h > 0, any (ul,ul): My — N with E;(u"(0)) < oo there

i
exists a umque global solution uh R x My, — N of the Cauchy problem (9), (13),
and Ep(u"(t)) = Ey(u"(0)) for all t.

The proof is achieved by combining the local existence and uniqueness results
for systems of ordinary differential equations with the a priori bounds on solutions
resulting from the following energy inequality.

3.1. Energy inequality. For u": R x Mj, — N let e (u”) be the energy density
defined in (4), and for « = 1,2 let

+h(, h +h, h , h
o (U ): <aa u Jut>
be the momentum of u” in direction a.
For a solution of (9) then we have
d

0= (0"u", uf) = —en(u") —

a 3 (@hga () + 0 gk W), (14)

a=1,2

N | =

In particular, the total energy is conserved; that is,

En(u"(t) = /M en(u'(t)) = By (uh(0)) (15)



SPATIALLY DISCRETE WAVE MAPS ON (1 + 2)-DIMENSIONAL SPACE-TIME 9

for all ¢.

For the proof of Theorem 3.1 and for our later purposes, we also need a local
version of this result. Observe that in the discrete case (9) cannot exhibit finite
propagation speed. However, as h — 0 equation (9) approximates a system of wave
equations. Therefore we expect the (essential) domains of influence and dependence
of any given point to approach the light cone through that point; in particular, in
the limit A — 0, on any bounded region of space-time the discrete evolution should
essentially be determined by the data on a finite region of the hyperplane ¢ = 0.

Below we verify this behavior in detail. Because in the discrete case we are
working on a quadratic lattice, we prove the local energy inequality on squares, not
on circles.

3.2. Local energy inequality. For any function ¢, upon multiplying (14) by the
discretized function " we obtain

0= Denuhe™) — 3 30 [Pz weh) + 07" (gl ("))

a=1,2
1 _ -
= en(u")dip" + 5 > (g™ @)a7 o) (- + hea) + (g2 (u)Ohe™) (- = hea)] .
a=1,2
Now let ¢o: R — R be given by
—p~ /3
e ,§ >0
Ve = {2 —eh 520
and choose
p(t,x) = 1§1ng2¢(|:6 |+1) = ¢(Sl;plw | +1), (16)
satisfying
(B + max{|9g ", 105" " })(t 2n) < (¢'(s) + max{|0"y(s)], [0~ "V (s)]}),
for x,, € My, where s = sup,|z}| + t.

Integrating in spatial direction and shifting coordinates in the last two terms,
we then find that

a /. enlu)")

= /Mh <€h(“h)5t¢h +% > (g (u)jog e + |gg(uh)||62<ph|)>

a=1,2

h h h, h —h, h
< /Mh en(u") (@rp" + mas {108,109, " }).

Remark that at any point (¢, z5) at most two of the terms 97" #£ 0; hence in
the Cauchy Schwarz inequality we may replace the Euclidean norm of 8X"¢" by
the maximum norm.

Let

p(s) = 9'(s) + max{[0"p(s)], [0~ "4 ()|}
We distinguish the cases s < —h,s > h,—h <s<0,and 0 <s < h.
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If s < —h, we have

2/3 _,2/3
p(s) = <—h1/3 + max { R }) eh™! s
h 7 h

B2/3
_po1/a s [€ =1
=h e ( =IE 1].

By Taylor’s formula

eh2/3 -1
h2/3

for h < hg. Hence for such h and s we conclude

_1= lh2/3 +O(h4/3) < h2/3
2 >

pls) < hM3e™ s < B3 < /34 (s).

Similarly, if s > h, for h < hg we find

p2/3
pls) = W Pemh e (T_l - 1) < BB = py(s).

If —h < s <0 we only need to check that

_ 2 — =135 _ __h=1/3(sth)
P(s) 10" (s)] < MR 22

_po1/B _p2/3 _op—1/3
< p=1/3gh™%s <_1+2€ f—-1-e e s)

h2/3
< ORV3eh ™% < CRMB < ChY/Py(s)

with an absolute constant C, if h < hg. The estimate ' (s) + |0~ (s)| < h'/3¢(s)
for h < hg is obtained as in the case s < —h.

Similarly, for 0 < s < h < hg we have
W' (8) + 10 "p(s)| < Ch'Py(s).
The remaining estimate
Y'(s) +10"(s)| < W29(s), h < ho,

is obtained as in the case s > h.

Thus, we conclude that with the above choice of ¢ for i < hg there holds
O™ + max{ |0k, 0, "o |} < ORM3 "

with an absolute constant C', and hence also

d
d—/ eh(uh)goh SChl/B/ eh(uh)goh.
t Mh Mh

We may shift the argument of ¢ by an arbitrary vector (to,zo) and integrate in
time to obtain the following result.
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Lemma 3.2. There exist constants hg > 0,C such that for any h < hg, any solu-
tion u” of (9), any zo = (to, 7o) € R X My, if 0 <t < to there holds

/ en(ul)pl < M / en(u™)el,
{t}x My, {0} x Mp,

where @, (t,x) = p(t — to,z — o) is given by (16).

Proof of Theorem 3.1 We first consider initial data (ul,u?): M) — TN having
compact support in the sense that uf = const.,uf = 0 outside some compact set.
Then for sufficiently large K € N the support of d¥*uf uf is strictly contained
in the square of edge-length 2K h centered at (0,0). Extending ul!,u? periodically
with period 2Kh in the x'- and x?-directions, we may regard uf, u? alternatively

as maps (ull,ul): Mp/(2KhZ)?> =: My x — TN or as periodic maps on Mj,.

The Cauchy problem for equation (9) now reduces to an initial value problem for
a finite-dimensional system (11) of ordinary differential equations, which in view of
the uniform a-priori bound on the energy

Ep i (ufe () = /M en(u (1)) = En x (ui (0) = By (u"(0)) (17)

of a solution u., which results from integrating (14) over M, , can be solved
uniquely for all time.

Moreover, regarding u? : R x M, — N as spatially periodic solutions of (9), in
view of these uniform energy bounds a subsequence u% — u”, d;ut. — d,u" locally
uniformly on R x M} as K — oo, where u” satisfies (9). Combining (17), Lemma
3.2, and (15) we conclude that Ej(u”(t)) = const.. Indeed, given t > 0,29 =

(to,xo), by exponential decay of ¢ there are constants Ky, Ch = e“"*t such that
for L > K > Ky there holds

o) /M en (u"(0))g". (0) > Cy / en(ul (0))¢" (0)

My

> /Mh en(ul (1)l (1) > / en(ult (1) (2).

{zn€Mnp;|z5 |<Kh}

Fixing K and letting L — oo, from locally uniform convergence u” — uf, d"u” —
d"u" we conclude that

/ en(u (1)) " (1) < 4C, By (u™(0)).
{zn€Mp;lay|<Kh}

Letting K — oo and then ¢ty — oo, we deduce that
Ep,(uh(t)) < 2C1E(u"(0)) < o0

locally uniformly in time and therefore, in fact, Ej(u”(t)) = Ej,(u"(0)) for all ¢, by
(15).

Uniqueness of u” is obtained as follows. Let u*,v": Rx M, — N be solutions to
(9) with u”(0,-) = v"(0,-) = ul,ul(0,-) = v} (0,-) = u? and such that Ep(u”(t)) +
En(v"(t)) < C, uniformly in . Observe that this also implies that

lu (8, wn)[* + [of (t,20)]* < Ch72,

uniformly in R x Mj,.
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Expanding (9) and (10), we deduce that w" = u" — v" satisfies
otwh| < C > (107 0hw" | + BT 0E WM + TP w" (- + heo)| + RT3 |w"])
a=1,2

+C(lug ] + o ) lwi'| + C (Juf * + o) *) [w"|

< Ch™? < > Jwh (- + hea)| + |wh|> + Ch™t|wh|.

a=1,2
Multiplying by w! and integrating over M), we obtain

LB ) < CO+h) [t + o o)
o (18)
<C+12) /M " (8)]2 + O(L + b 2)En (" (1)).

Moreover, by Hélder’s inequality, for any ¢t > 0, any « € M}, we have

t 2 t
|w" (t,z))* = </ wh (s, ) ds) < t/ |wh (s, z)|? ds.
0 0

Hence for 0 <t < T we can estimate

/ lw" (t)]? <2t/ Ep(w"(s))ds < 2T% sup Ej(w"(s)).

0<s<T
Given T > 0, we fix t € [0,7] such that

Ep(w(t) = S Ep(w"(s)).

We may assume that T < 1. Integrating (18) from 0 to ¢, it then follows that

Ep(w"(t)) = JSup Ep(w"(s)) <CT(1+h?) Jsup En(w"(s));  (19)

Choosing T' > 0 sufficiently small, we conclude that w" = 0 on [0,T] x Mj. By
iteration therefore w”® = 0 on R x My,

Finally, we may use (18) to remove the assumption that d"u?, u? have compact
support. Indeed, given data (ul,u?): M; — TN of finite energy we may approx—
imate (ul,u?) by data (ugl,u1 )i My — TN,l € N, such that d" “017“11 have
compact support for any [ and such that

[ty = P+ = ) -
My

as I — oco. (The proof of this density result is analogous to the proof that maps
u € H'(R%; N) with supp(Vu) CC R? are H'-dense in this space; see for instance
[13].) Letting (u}')ien be the solutions to (9) with data (u}!, dyu'),_, = (u(’il,uf’l),
from (18), applied to w" = uf* — u" for large I,m € N, we obtain convergence of

(ul') to the unique solution u of (9), (13). |
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4. PASSING TO THE LIMIT h — 0

Our aim in this section is to prove the following weak convergence result.

Theorem 4.1. Let u: Rx M, — N < R* h > 0, be spatially discrete wave maps
such that

En(u"(t)) < C uniformly inh > 0,t € R. (20)

Then a subsequence u — u locally in L*(R**?), d"u" — Du weakly-+ in L>(R; L? (R?))
as h — 0 where u: R x R2 — N < R" is a weak solution of (1) with

But) = 3 [ 1) do < limsup B, (" (1)) < O

uniformly in t € R,

The proof of Theorem 4.1 uses certain compensation properties of Jacobians
exhibited by the first order equations equivalent to (1), (9), respectively, as in [7],
(8], [12].

To derive these equations we proceed as in [3] or [9]. First suppose that TN

is parallelizable and let €1,... ,€; be a smooth orthonormal frame field. For any
h >0 and any R": R x M}, — SO(k) then

e’-l:th(e]ou ),1<i<k,

(3

is a frame field for (u?)~'TN.

4.1. First order equations. Let
020 = (8tuh,e?>dt,6f7a = (83uh,e?(- + he,)),a=1,2;
observe that the shift is arranged so that the functions
;2 =08 (- — hey) = (07 "u ef), a0 = 1,2,

are the coefficients of the representation of d "u" in terms of the frame (e?). Also
let

= (@€l el), wiEh, = (9ENeh, mEhely o = 1,2.

Clearly, the wl-j are a discrete approximation of the connection 1-forms w;; =
(de;, e;) of a frame (e;) in the continuum limit A = 0. The definition is made
to insure anti-symmetry w?j = —wfj also in the discrete case.

ZJO

Letting 97" = 9,,¢e, =0, mih = id, we have

62 <8huh €; "+ he o)), 0r o = (0, hal, h) wiha = <6ih mih ?)
for all . Then
10l = Pl = —yPalgTh = (@Rt by — (ol Blch).
That is, u": R x My, — N solves (9) if and only if
(529? = —naﬁ’(aguh, age?) = —77“’89;-’7& -w?jﬂ + Tlhi, (21)

where

et (- + he,) — el
= {eﬁa <%8ﬁ +(Ohu", mou" (-+hey ) (miou® (+he,), el .
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Observe that there exists a constant C' = C(N) such that for p,q € N there
holds [{p — q,vi(p))] < Clp — q|*. It follows that

|(8§uh, voul(- + he,))| < Ch_1|uh(- + he,) — uh|2 = C’h|82uh|2.
Moreover, remark that
10 (€4 + hey) — o), Ohe)| < BBl J[00eh]? < Ju(-+ hey) —u||ofel .

Thus, we may estimate the error term

i S C D " + hey) —ul| | 10au P+ |0ke]

a=1,2 7

Our aim is to pass to the distributional limit in (9) or, equivalently, (21) for a
suitable sequence h — 0. As in [7], [8] we may convert this convergence problem
into a problem on a compact domain, as follows. Given ¢ € C§°(Rx R?), let @ be a
cube centered at (0, 0) containing the support of ¢. Scaling the coordinates suitably,
we may assume that Q = [—1, %]3; moreover, we may suppose that - € N. We
then extend u” by even reflection in the faces of ) to periodic functions v* on
R x Mjp, of period 1 in each variable, satisfying (9) on the support of .

Given a frame (e;) for (v") TN, then also (21) will hold on the support of ¢.
Regarding v" as maps v": S! x T;, — N on the compact spatially discrete 3-torus;
moreover, following Hélein [9], we may choose a frame (e;) which is in minimal
Coulomb gauge, defined as follows.

4.2. Gauge condition. Choose R" = (R};) € H'(S' x T,; SO(k)) such that

h th —h _h|2y _ : — h
Du(E'Eou) =7 [ SO + 102 el ) = inf Du(R(Eo u")

1
X T, a,i

and let e = Rl (€; o uM),1 < i < k. Observe that
Dy(e}) < C en(u") < CDy(u"). (22)
SIXTh

Moreover, minimality implies

d .
0= EDh((zd +e5)e")._,

-1 / ((Dhel, b (Sizel)) + (05 elt, 85" (Siselh))
2 JsixTy,

- / {oa(0z el m3el) + 05 (Oel mise]) } Sij
2 JsixT,

h
_/ a Wij, aSij
Sleh

for all S;; € SO(k), where we also used anti-symmetry of S and the discrete product
rule (3) to derive the second identity.

Since w?j o= —wé’i o We conclude
h, h h
8 wz] « 6euclwzj 6euclw21 =0.
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In view of (22) we may assume that, as h — 0 suitably,

el — e; weakly in H'(T?),
6" — 6; weakly in L*(T?),
w?j — w;j weakly in L*(T°?),
where e; is a frame for w'TN and 0; = (du, e;),w;; = (de;, €;).

Our aim is to show that
/ (0; - do + wij - 050)dz =0,
Q

where ¢ € C5°(R x R?) with supp(¢) C Q is the testing function that we chose
above.

In fact, we will show that
8y + wij -y 0; = 0in D'(Q), (23)
where we extend u periodically as above and regard @ as part of a fundamental
domain for 7% = R? /Z3. In view of the equations (21), that is,
57’;9? +wlhj ‘n (9? = Tlhi in Q,
and distributional convergence 0,8 — 6,6; in D'(T?), it will suffice to show that

z; n 9;’ TM — wij =y 0; in D' (T?) (24)

as h — 0 suitably.
Let

*p Oz._h dhah + 5guclb? + c? (25)

be the Hodge decomposition of *HG;h on S! x T}, as determined in Proposition 2.1.
We may assume that as h — 0 suitably

al — a;, b — b; weakly in H'(T?),

and ¢ — ¢; smoothly. Observe that the harmonic forms c?, ¢; are constant linear
combinations of the basis dz® A dz”®,0 < a < 8 < 2.

Using this decomposition, we may write

w057z = wi A = wih Adrall + wi A SR+ wi A

Since c;-’ — ¢; smoothly, passing to the desired limit in the last term is no

problem. To show convergence of the second last term, for convenience denote
— %euet b = B, Observe that 3! is a scalar function and 8 — 8; = — *cyct b;
weakly in H(T®), whence strongly in L?(T?) by the Rellich-Kondrakov theorem.
Then

Wi AN O = Wi A seuad B = wiit eua d" B dz
= (*euclwl‘j YAdT"BY = d " (xeuaw)s ),
((5euclw”),@h = 0 on account of the Coulomb gauge condition. (In coordinates,
Wi ewet 7B} = Wi OB} = 07wl o B)) — (05wl 0) B} )
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Since wj — wij weakly in L?, while 8} — f; strongly in L?, we conclude that

_h A 5euclb — wi; A 5euclbj in D'

For the remaining term by the discrete product rule we have

wz.;h A dhah =w " aﬁaj ,Yda: Adz® A dz?

zya

I:aﬂ( Wij, a( hg,@)ah ) a h ;ha ;L,y dxz® /\diIJB/\d.CL'FY

=d "o /\a + 05 (”};TB a’_)dz* AdaP A dz?.
Since we also have that 72a/ — a; weakly in H'(T®) and hence strongly in L?, as
h — 0 the last term converges to 95(wij,aaj)dz® A dzP A dz? = —d(w;; A a;) in
D'.
Thus we have shown distributional convergence

wi;h ‘n Hj_hdz - dihwi;h Aal — wij -y 0;dz — dwij A aj (26)

as h — 0, and it remains to prove that

d=" Wy /\a —h — dwi Aa;in D' (27)

The proof of (27) will be accomplished by adapting the ideas of [8] to the spatially
discrete case.

Passing to a further subsequence, if necessary, we may assume that, as h — 0,
en(u™) +ep(e") = pin M(T?)

as Radon measures. Theorem 4.1 then will be a consequence of the following
Proposition.

Proposition 4.2. There ezists a Radon measure v such that, as h — 0 suitably,
d*hwi;h Aalt — 1 — dwij Aaj — v inD'(Q),
where
supp(v) C ¥ = {z = (t,z);limsup(R™'u(Pgr(z))) > 0}
R—0

has finite 1-dimensional Hausdorff measure.

Proof of Theorem 4.1 Combining Proposition 4.2 and (26), we conclude that, as
h— 0,

0= 6h9h +wh
in D'(Q). Hence

h h
i 779] Tll-—,én(%-{—w,-j n 9]'—11

V:6n9i+w,~j “n 9j EH71+L1.

But since the support of v is contained in a set of finite 1-dimensional Hausdorff
measure, as in [8], Proof of Theorem 1.3, we conclude that, in fact, v = 0 and

(5779,' + wij g Gj =0in DI(Q),

as claimed. O
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4.3. Proof of Proposition 4.2. We proceed as in [8]. The key ingredients in the
proof are the duality between the Hardy space H! and BMO (due to Fefferman and
Stein [6]), the H' estimates for Jacobians of Coifman, Lions, Meyer and Semmes [4]
(see Lemma 4.4 below for the discrete setting), and a characterization of concen-
tration points in the spirit of concentration compactness for sequences of products
whose factors are bounded in H! and BMO, respectively (see [8], Lemma 3.7). To
obtain the BMO estimate (see Lemma 4.3 below) we exploit the energy inequal-
ity and apply Campanato theory and Poincaré’s inequality. For elliptic problems
similar arguments were used by Hélein [9], [10], Evans [5], Bethuel [1], and others.

Fix a function ¢ € C§°(B1(0)) with [,;¢dz =1. For f € L'(T?) then let

/TS r=3 (z ;Z(’) f(z)dz

be the regularized maximal function of f. The Hardy space on T then is the space

T ={f e LT [ Fdz=0.M, () e 1T

(M f)(20) = sup

o<r<1

with norm

f 1l s = [IMo(H)llLr
Also let BMO(T?) be the space of functions f € L*(T?) such that
[flBrmo(Ts)y = sup  sup ][ |f = frzoldz <00
0<r<i z0€T® J P.(20)
with norm
I fllBaors) = |/T3 fdz| + [flBmo(rs)
where P,(zg) and f ., are defined as in Section 2.

By [6], BMO(T?) is the dual space of H! (1), and for g € H'(T?), f € BMO(T?)
there holds

(f,9)Broxnr < Clflemocrs gl -
Moreover, for any ¢ € C®(T?), f € BMO(T?) the function fo € BMO(T?) and
[felemo < CllfllBuollellors
see for instance [8], Proposition 3.8. In particular, for any f € BMO(T?),g €
H(T3) the product T = fg is defined as a distribution in T3 by letting
(T,p)pxp: = (fp,9)BMOXH
for any ¢ € C°(T?).
Finally, for 0 < A < 3, f € L3(T?) let
[f]QLZ’A = §Sup sup T_A][ |f - fr7zo|2 dz
0<r<i %o P (20)
and for 0 < A < 3 denote
1£[720 = sup SUPFA][ |fI? dz.
o<r<i %o Py (20)
Define the Morrey-Companato spaces

L2NT?) = {f € L*(T?);[flean <00}, L2NT?) = {f € L*(T°);]|fllp2r < 00}
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with norms || - ||z2x and ||f]|z2x = ||fllzz + [f]g2.», respectively. Recall that
L?A = 2 for 0 < A < 3 and £*? = BMO with equivalent norms.
For an open set U C T? define the local BM O-seminorm by letting
Navrowy =swplf.  1f = foe d: Belia) € U).
BT(Z())
Lemma 4.3. For any h >0 we have a} € BMO(T?) with d"a}} € L*>*(T?) and

llaj o < Clld"ag|[7z0 < CEp(u") < C

independently of h. Moreover, for any 0 < h<r < R < %, any zo € T? there holds

r _
[a" Bro(p, z0)) + [d" )] r21(p, (2)) < C (EHG?HBMO(JDR(W)) +110; h||L2>1(PR(z0))) .

Proof. A global bound for a? follows from (8). ;jFrom (25) we obtain the equation

h_h _ sh h_ h _ sh —h _ php—h
_A3aj _5eucld a; _6eucl *n j =D 0]‘ ’

where D" is a discrete first order differential operator with constant coefficients.
The proof now proceeds as the proof [8], Lemma 3.11, in the case h = 0. Omitting

the index j for brevity, given 0 < h <r < R = Kh < 1,29 € S* x Tj, we split

a" = a? + a? on Pgr(z), where

—Aal = 0in Pr(20),a" = a" on 0Pg(20),
and
—Alah = D"9~" in Pr(2),a? = 0 on 8Pg(z0).

Standard estimates yield that

llen (@) Lo (P (o) < CR™ lal — (@1) ks -
PR(Z())

Hence, from Proposition 2.3 ii), for any r = kh,z € S* x T}, such that P, ,(z) C
Pg/2(20) we conclude

]{3 et e <o / en(a) < Cr?{Jen(a) |1~ (paya(eo)

Prin(z)

r\2 L h 2 T\ 2
< c (E) ][F’R(ZO)|G1 - (al)R’Z°| < ¢ (E) [al]BMO(PR(ZO))'

Clearly, these estimates remain valid for any r > h and any z € T° with P.;,(z) C
Pry2(z0) if we extend a” as the spatially piecewise constant function

ah(t,x) = ah(taxh)v forx € Qh('rh)'

Moreover, for 0 < r < h, if we compare a? to its bilinearly interpolated function
ap, for any z1 = (t1,21) € T? with P.(21) C Pap(2n) C Prya(z0) for some z, =
(t,z1) € St x T}, from Proposition 2.2 i), iii) and the (standard) Poincaré inequality
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applied to @ we obtain

][ la = (@) P dz + 7! / dhal? dz
P,(z1) Pr(z1)

t14+7
<C (@t = @) O[7o (@ (21)) 4 + C][ @) — @)z [*dz + 17" / |d"a} | dz
t1—r P, 21) P, (Zl)
ti+r ti+r
<C / (eh(a?(t)) + |dﬁ?(t)|2) dedt < C / en(al(t))
ti—r JQan(xn) ti—r JQan(xn)

A n\?
< CR?|len(a)] L (Prya(z0)) < C <§> [at] BMO(Pr (20))-

It follows that for » > h there holds
[a1]Brop, (z0)) + 114" a’l Hllzza(p (z0))
< c [a1]BMO(PR(z0)) <C (%[ah]BMO(PR(zO)) + [ag]BMO(PR(zo))) :
The analogous estimate
[03]8110(Fr(z0)) < Clld" a5 L21(Pr(z0)) < ClOT"[|L21 (Pre(20))

is obtained exactly as in the continuous case from [2], Teorema 16.1, and Poincaré’s
inequality. |

Observe that the local energy inequality Lemma 3.2 implies that
hr}? S}le ||0j_h||2L2x1(PR(Z0)) < CR™*u(Psr(20))- (28)
—

Indeed, for any r < R, any z; = (t1, 1) such that P.(z1) C Pr(20), if 3r < R by
Lemma 3.2 we have

(4r) 716, Ba oy <UD / en(uh (1)) < / en(uh(t1 — 1)) + o(1)
Qr(z1) Qar (1)

[t—t1|<r
) Uh o t1—7r o
S/Qzﬂ(nco) Ao )+ ti—r— R/QSR (zo) ))dt+ W
<R! P3r(z )eh(uh(t)) +0(1) < R™ u(Psr(z0)) + o(1)

where o(1) = 0 as h — 0.

If R/3 <r <R, clearly
(3r)_1||0j_h||L2(Pr(21)) < R_1||6j_h||L2(PR(Zo)) < R 'u(P3r(20)) + o(1),

where o(1) = 0 as h — 0.

Regarding w!., we now introduce the bilinearly interpolated frame to split

wzg a (8h €5 ]) (826h mzey - €?> (29)

R

Lemma 4.4. For any h > 0 there holds d"(d"e",e") € H*(T?) and

Z ? j
d"(d" e} e}y = d(de;, e;) = dwy;
in HY(T?) as h — 0 suitably.
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Proof. In view of the identity d" o d"* = 0, we have

d"(d"e} ety = ot (Ofel &) dx® A da’

= (Opel (- + he,), 0" 7)dm A daP
= d"(d"e}, (€] —q))
for any ¢ € R™. Exactly as in [4], Theorem 2.1, we may therefore show that

d"(d"e},e}) € H'(T?)
with

ld"(d" e} e)lwx < CEn(e") < C,
where we also used Proposition 2.2 iii). Since the space VMO(T?), the pre-dual
of H'(T?) is separable, we conclude that (d"(d"e",e"))s>0 is relatively weakly-*

€;5€;
sequentially compact. But, as h — 0 suitably,
d"(d"e},e}) — dw;
in the sense of distributions.
By density of C°°(T®) in VMO(T?), therefore we also have weak-* convergence

d"(d"e} ety = dwi;

in H(T?), as claimed. ]

(From Lemma 4.3 and [8], Theorem 3.7, we hence conclude that, as h — 0,
d*h<d h h =

l,j)/\a — dwij Naj+ v in D', (30)

where 14 is a Radon measure with
supp(v1) C {z; lim limsup[a"] garo(p, (=) > 0}-
r—=0 p_s0
But by Lemma 4.3, for > h we have

(@"laroer, o < C (Ella oo + 10712 oy ) -
Fixing R > 0, from (28) we conclude that
lim lim sup[a”|% 1105, (zo)) < Chmsup||9 "2z (Pr(zo)) < C(R™ u(Psr(20)))-

r=0  h0
Since R > 0 is arbitrary, therefore supp(v1) C Y, as defined in Proposition 4.2.
The contribution to (27) from the second term in (29), after shifting in directions
«a and g, is

ol (Dgel ,mﬁeh - €h>7'h7'ﬂa dz® A daP A dx? = {82 (<8ﬂel ,mﬁeh - eh)TB ;Lv)

(aﬁel,mﬁe — e )8”7/6 ]V}dm AdzP Adx? =: I + IT".

Since, as h — 0 suitably, Tga?ﬂ — aj while mﬁe;’,éy — e; in LP(T?) for any
p < oo, and since (dfel) is bounded in L*(T?), the first term I* — 0 in D'(T?).

Observing that for any t € S',z), € Th,z =z, + £ € T, € € @ (0), we have

(mgeh — € Mt @) = ;(Tge? — €] Myt xn) — Z §°‘8§e?(t,mh) - 51526{’836?(1‘,:511),

a=1,2
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moreover, we can estimate
|(mge )(t z)| < Ch Z |8 "t ).
a=1,2
Thus, the second term above may be bounded
[II"] < [(@Bet, mbe) — e))dgmhaj,|
< Ch|dheh|2|8373ah| < C|T£(Tgah) — Tgah||dheh|2.
Shifting back, from (29) and (30) we thus obtain that
d=hw 7h/\a —dwij Naj =5 + T 4+ 11 +0(1),

where o(1) — 0 in D'(T®) and where

|TZZ|<CZ|a —a(- — he,)|en(e).

Lemma 4.5. 7\+78 — vy in M(T?), where vs is a Radon measure with supp(vs) C
>, as defined in Proposition 4.2.

Proof. For any ¢ € C°(T?) we can estimate

|/ T{z-sodz|+|/ Tszsodz|=|/ Y
T3 Sleh Slxh

<C Z |u"(- £ he,) —uh|+|a?(-ihga)—a?|)(eh(uh)+eh(eh))|cph|.

SIXTh a

Now by Proposition 2.2 i) and Lemma 3.2, for any z = (¢t,z) € S x T}, any
0<h<3h<r<iwehave

|(u (- £ hey) = u)(t 2n)|* < Ba(u (1); Q3 (2n)) < Cr‘l/ en(u") +o(1)
P.(z)
where o(1) — 0 as h — 0.
Similarly, for any z = (t,z) € S' x Ty, any 0 < h < 2h <r < R < %, by
Proposition 2.3 i) we can estimate
|(aj (- £ hey) — a})(t,2n)]* < Ch™ en(ag) < Cld"a}Tiza(p, (2))-
P2h(z)

Hence by Lemma 4.3 we obtain
.
(@} (- £ heo) = ) ()] < O (Fllal saowniey + 16420 o) -

It follows that 7f% + 70 — v» in M(T?) as h — 0, where 15 is absolutely continuous
with respect to p with density
1) _ gy 2000
a7 B (P (2))
T LT +h, h -1
< Clim hglj(l)lp (EH% lBrO(PR(2) + 1A u ||L2’1(PR(7,))) < CR™ u(Pr(2))

r

for any z € T°.

Since R > 0 is arbitrary, the asserted characterization of supp(r=) follows. |
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This completes the proof of Theorem 4.1 if T'N is parallelizable. In the general
case, by the results of [3] and [9] we may embed N as a totally geodesic subman-
ifold of another manifold N with this property. As above, we now obtain weak
convergence of a subsequence u” — u, where u: R x R? — N — N is a weak wave
map into N. But then as in [11], p. 255 f., it follows that u also is a weak wave
map into V.

5. GLOBAL EXISTENCE OF WAVE MAPS

Theorems 3.1 and 4.1 easily give rise to the following existence result, previously
established in [11] by a different method.

Theorem 5.1. For any (ug,u1) € H' x L?*(R*;TN) there exists a global weak
solution u of the Cauchy problem (1), (2) satisfying the energy inequality

1 1 .
B(u(t) = 5 [ IDuOF do < By =5 [ (il + [Vuol*) do

for all t and which continuously attains the initial data in H' x L.

Proof. Let u?,u? be the maps uo,u1, discretized as in Section 2.4. Note that

dist? (ul (z), N) < ]é+( )|u8(:c) — uo(y)|* dy
h x

s][ 7[ |uo<y)—uo<y')|2dydy'sc/ Vuol dy = 0
Qi (z) JQf (v) Qi (x)

as h — 0. Hence for 0 < h < hg the range of ul lies in a sufficiently small
tubular neighborhood of NV and we may project to obtain spatially discrete data

(ah = nn oult,af = ult): My — TN such that
- 1 _ _
Bi: =5 [ (@P+ 1) < oo
My

and such that
(al,a?) = (ug,ur) in H* x L*
as h — oo. In particular Ej, — Ey as h — 0.

By Theorem 3.1 now, for any h > 0 there exists a unique global solution @" of
(9) with data (a”,al')),_, = (al,a}), satisfying the energy identity Ep,(a"(t)) = Ep
for all ¢.

By Theorem 4.1 a subsequence (@") as h — 0 weakly converges to a weak solution
u of (1), (2) with

E(u(t)) <liminf Ey,(a"(t)) = Eo
h—0

for all ¢. In particular,

1
lim sup 5/ |Du(t)|? dz = limsup E(u(t)) < Ey
R2

t—0 t—0

and we conclude that Du(t) — Du(0) strongly in L?(R?) as t — 0, showing that
the initial data are attained continuously in H' x L2. O
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