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�� Introduction

Let N be a smooth� compact manifold without boundary of dimension k� By
Nash�s embedding theorem we may assume N � R

n isometrically for some n� A
wave map u � �u�� � � � � un� 	 R �R� � N �� R

n by de
nition is a stationary point
for the action integral

A�u�Q� �

Z
Q

L�u� dz�Q �� R � R� �

with Lagrangian

L�u� �
�

�
�jruj� � jutj

��

with respect to compactly supported variations u� satisfying the �target constraint
u��R � R

� � � N � Equivalently� a wave map is a solution to the equation

�u � utt ��u � A�u��Du�Du� � TuN� ���

where A is the second fundamental form of N�TpN � TpR
n is the tangent space to

N at a point p � N � and �� means orthogonal with respect to the standard inner
product h�� �i on Rn �

We denote points on Minkowski space as z � �t� x� � �x������� � R � R
�

and let Du � �ut�ru� � ���u������ denote the vector of space�time derivatives�
Moreover� we raise and lower indeces with the Minkowski metric � � ����� �
����� � diag���� �� ��� A summation convention is used� thus� �u � �����u�
Finally� we abbreviate

A�u��Du�Du� � A�u����u� ��u��

Recall that locally� near any point p� � N � letting �k��� � � � � �n be a smooth or�
thonormal frame for the normal bundle TN� near p�� that is� vector 
elds such
that ��l�p��k�l�n is an orthonormal basis for the normal space TpN

� at any p near
p�� we have

A�p��v� w� � Al�p��v� w��l�p�

at any such p� where

Al�p��v� w� � hv� d�l�p�� wi

is the second fundamental form of N with respect to �l�
�



� STEFAN M�ULLER AND MICHAEL STRUWE

Given u� 	 R
� � N� u� 	 R

� � R
n satisfying the condition u��x� � Tu��x�N for

all x � R� � that is� �u�� u�� 	 R
� � TN � we consider the Cauchy problem for wave

maps u with initial data

�u� ut�jt�� � �u�� u�� 	 R
� � TN ���

of 
nite energy

E� �
�

�

Z
R�

�ju�j
� � jru�j

�� dx�

Speci
cally� in the present paper we study the relation between solutions u of ����
��� on R � R

� and their spatially discrete counterparts uh 	 R �Mh � N �� R
n �

where R� is replaced by a uniform square lattice Mh � �hZ�� of mesh�size h� ��

In a previous paper ����� jointly with Vladimir �Sver�ak� we studied the time�
independent case and showed that a weakly convergent family of harmonic maps
uh � H��Th�N� on a periodic lattice Th � �hZ���Z� as h � � accumulates at a
harmonic map u on the ��torus T � � R

��Z��

Here we extend this result to the time dependent case� see our main result
Theorem ��� below� Since the Cauchy problem for wave maps on a spatially discrete
domain is equivalent to an initial value problem for a system of ordinary di�erential
equations which can be solved globally for any mesh�size h in view of the uniform
energy bounds available� as a corollary we reobtain our existence result from ����
for global weak solutions to the Cauchy problem ���� ��� for wave maps on ������
dimensional Minkowski space� see Theorem ���� The methods we use are similar to
the methods of ����� We essentially rely on our previous weak compactness results
���� ��� with Freire and exploit the equivalent formulation of ��� as a Hodge system
as in ��� or ��� to which compensation techniques may be applied in a way similar
to the work of H�elein ���� ����� Evans ���� and Bethuel ��� on weakly harmonic maps�
that is� time independent solutions of ���� �See ��� for further references and a
detailed comparison of the elliptic and hyperbolic cases��

�� Technical framework

Whenever possible� we use the same notations as in ���� regarding di�erence
calculus� discrete Hodge theory� interpolation and discretization� For the reader�s
convenience we recall the de
nition at each 
rst appearance of a symbol�

���� Di�erential forms� For h � � with h�� � N let Mh � �hZ��� Th � �hZ���Z�

with generic point x � xh � �x�h� x
�
h�� and let S� � R�Z with generic point t � x� �

x�h� Di�erential forms on R�Mh or S��Th may be most conveniently expressed in
terms of the standard basis dx�� dx��dx� � � � � 	 
 � �� and dt�dx��dx� � dz�
In particular� for a ��form �h we have �h � �h�dx

�� and a ��form bh may be written
in the standard form

bh � bh�dx
� � dx� � bh�dx

� � dx� � bh�dx
� � dx� � bh���dx

� � dx�

with real�valued functions �h�� b
h
��
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The Hodge 	g�operator with respect to either the Euclidean metric g � eucl or
the Minkowski metric g � � in terms of this basis is de
ned as

	g� � dz� 	gdz � �

	g�
h � g���h�dx

� � dx� � �h�dx
� � dx� � �h�dx

� � dx�

	gb
h � g��bh�dx

� � bh�dx
� � bh�dx

��

where �g��� � g�� � diag�
�� �� � � � � �� and �h � �h�dx
�� etc�� as above�

From this de
nition we immediately deduce that 	g � 	g � id and� moreover�

�h � 	g�
h � �	g�

h� � �h � g���h��
h
�dz�

bh � 	gb
h � �	gb

h� � bh � g��bh�b
h
�dz

for any ��form �h or ��form bh as above�

Finally� two forms �h� �h of the same degree may be contracted by letting

�h �g �
hdz � �h � 	g�

h � g���h��
h
�dz�

Spatially discrete di�erential and co�di�erential are de
ned as follows�

For uh 	 R �Mh � R� h �� �� we let dhuh � �h�u
hdx� with components

�h� u
h � �ht u

h � �tu
h � uht � �

h
�u�z� �

u�z � he��� u�z�

h
� � � �� ��

where �e������� is the standard basis for R� � For a ��form �h � �h�dx
� then

dh�h � �h��
h
�dx

� � dx�

and for a ��form bh as above�

dhbh � �h�b
h
�dz�

The co�di�erential �with respect to g� is

hg � � 	g �d
�h � 	g�

Explicitly� for �h � �h�dx
�� h �� �� we have

hg�
h � �g����h� �h� � ���h� �h� � ��h� �h� � g����h� �h� �

and similarly for forms of higher degree� Clearly� we have dh � dh � �� h � h � �
for all h �� ��

Finally� for h � �� we let

�
h � ��h � dhh� � h�d

h � d�h�h� � �h� d�h

denote the spatially discrete wave operator� acting on forms on R�Mh � Explicitly�
we have

�
huh � h�d

huh � ���t ��h�uh� �h��h�dx
�� � ��h�h��dx

��

�
h�bh���dx

� � dx�� � ��hbh����dx
� � dx� � �h�fhdz� � ��hfh�dz�

where �h � ��h is the discrete ���point� Laplace operator on Th� that is� �
h acts

as a diagonal operator with respect to the standard basis of forms�
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Also note the product rule

�h��u
hvh� � �h�u

hvh � �h�u
h�h�v

h

� �h�u
h�h�v

h � uh�h�v
h

� �h�u
hmh

�v
h �mh

�u
h�h�v

h�

���

and

�hg ��hfh� � �g���h���
h
�f

h� � �g��
�
��h��

h
��f

h � �h��
h
��

h
�f

h
�
�

in particular� we have

�hg
�
��h� �h�dx

� � fh
�
� �g��

�
���h� �h��f

h � �h��
h
�f

h
�
� �hg�

h�fh � �h �g d
hf�

Here and in the following we denote

��h� uh � m�h
� uh � uh� ��h� uh � uh�� 
 he���m

�h
� uh �

�

�
�uh � ��h� uh�� � � �� ��

���� Dirichlet�s integral� For uh 	 R �Mh � R we let

eh�u
h� �

�

�

X
�����

fj�h�u
hj� � j��h� uhj�g ���

be the energy density and let

Eh�u
h�t�� �

Z
Mh

eh�u
h�t�� 	 � h�

X
xh�Mh

eh�u
h�t� xh��

be the energy of uh at any time t� If h�� � N and if uh has period one in each
variable� we regard uh as a map uh 	 S� � Th � R� Then we de
ne

Dh�u
h� �

Z
S��Th

eh�u
h� 	 �

Z �

�

h�
X

xh�Th

eh�u
h��t� xh� dt�

and similarly for forms of degree  ��

Note that the 
rst variation of Dh at uh in direction vh is given by

hdDh�u
h�� vhi �

d

d�
Dh�u

h � �vh�j���

�
�

�

X
�

Z
S��Th

f�h�u
h�h�v

h � ��h� uh��h� vhg

�
X
�

Z
S��Th

�h�u
h�h�v

h � �

Z
S��Th

�h
	u

hvh�

where ��h
	 � heucld

h � dhheucl � ���t ��h is the spatially discrete Laplace oper�
ator� acting on forms on S� � Th�

Similarly� for uh 	 R �Mh � R
n the spatially discrete Lagrangian of uh is

Lh�u
h� �

�

�
���fh�h�u

h� �h�u
hi� h��h� uh� ��h� uhig�

The action integral over any spatially discrete domain Q �� R �Mh then is

Ah�u
h�Q� �

Z
Q

Lh�u
h��
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and uh is stationary for Ah with respect to compactly supported variations if and
only if

hdAh�u
h�� vhi �

d

d�
Ah�u

h � �vh�j���

�

Z
R�Mh

���h�h�u
h� �h�v

hi �

Z
R�Mh

�
huhvh � �

���

for any vh � C�� �R �Mh�� that is� if and only if �huh � ��

���� Hodge decomposition� Analogous to the continuous case or the case of a
planar lattice� we have the following result on Hodge decomposition of forms on
S� � Th�

Proposition ���� Any ��form �h � �h�dx
� on S��Th may be decomposed uniquely

as

�h � dhah � heuclb
h � ch ���

where ah and bh are normalized to satisfyZ
S��Th

ah �

Z
S��Th

bh��� � � for � � � 	 
 � �� dhbh � �� ���

and dhch � �� heuclc
h � ��

Proof� Let ah� bh be the unique solutions to the equations

��h
	a

h � heucl�
h���h

	b
h � dh�h�

normalized by ���� obtained� for instance� by minimizing the integral

Fh�a
h� �

Z
S��Th

feh�a
h�� ahheucl�

hg

among functions ah 	 S��Th � R satisfying ���� and similarly for bh� The remainder
ch � �h � dhah � heuclb

h then satis
es

dhch � dh�h ��h
	b

h � �� heuclc
h � heucl�

h ��h
	a

h � ��

as desired� �

Via the Euclidean Hodge 	�operator� we obtain an analogous decomposition of
��forms� Observe that the decomposition ��� is L��orthogonal and hence we haveZ

S��Th

j�hj� �

Z
S��Th

�jdhahj� � jheuclb
hj� � jchj��� ���

���� Discretization and interpolation� We discretize a map u 	 R �R� � R by
letting� for each t � R�

uh�t� xh� � h��
Z
Q�

h
�xh�

u�t� x� dx� xh �Mh�

where for l � N the set

Q�
lh�xh� � fx � �x�� x�� � R� �x�h � x� 	 x�h � lh� � � �� �g

is a square with lower left corner xh of size lh� and similarly for periodic maps
u 	 T 	 � S� � T � R� assuming h�� � N�
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Conversely� we interpolate a map uh 	 R �Mh � R either trivially� by letting

uh�t� x� � uh�t� xh� for x � Q�
h �xh�� xh �Mh�

or bilinearly� by letting

uh�t� x� � uh�t� xh� �
X
����

���h�u
h�t� xh� � �����h� �

h
�u

h�t� xh�

whenever x � xh� � � Q�
h �xh�� xh �Mh� and similarly for maps uh 	 S��Th � R�

Observe that

��h� uh�t� x� � ��h� uh�t� xh�

for all t � S�� x � Q�
h �xh�� xh � Th� moreover�

�h� u
h�t� xh � h�� � ��� ����

h
� u

h�t� xh� � ���
h
�u

h�t� xh � he��

for t � S�� xh � Th� � � Q�
� ���� and similarly with x�� and x��directions exchanged�

�From this identity the following result is immediate�

Proposition ���� For uh 	 R �Mh � R with suptEh�u
h�t�� 	 � we have uh �

L��R�H� �R� �� � C��R � R
� �� and with a uniform constant C for all t � R there

holds

i� jj�uh � uh��t�jj�
L��Q�

h
�xh��

� C
R
Q�

�h
�xh�

eh�u
h�t�� for all xh �Mh�

ii� jj�uh � uh��t�jj�L��R�� � Ch�Eh�u
h�t���

iii� C��Eh�u
h�t�� � E�uh�t�� � CEh�u

h�t���

Moreover� by comparing uh and uh� using Proposition ��� i�� it is clear that the
Poincar�e inequality

jj�uh � uhr�x��t�jj
�
L��Qr�x���

� Cr�Eh�u
h�t��Qr�h�x���

holds for every �t� x�� � R �Mh� any r � kh� k � N� where

Qr�x�� � fx � �x�� x��� jx� � x�� j 	 r� � � �� �g

and where

uhr�x��t� �

Z
Qr�x��

uh�t� x�

is the mean value�

Similar results hold true if we also take time dependence into account�

For z� � �x�� ������� r � �� let

Pr�z�� �

�Y
��

�x�� � r� x�� � r�

and let uh 	 R �Mh � R with locally 
nite energy as above� For z � R �Mh� r �
kh� k � N� we also let

uhr�z �

Z
Pr�z�

uh

denote the average of uh on Pr�z��
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Proposition ���� For any z � �t� x� � R �Mh� � 	 h � r � kh� k � N� � � f�� �g�
with an absolute constant C there holds

i� j��h�u
h � uh��z�j� � Ch��

R
P�h�z�

eh�u
h��

ii� jjuh � uhr�zjj
�
L��Pr�z��

� Cr�
R
Pr�h�z�

eh�u
h��

Proof� i� Integrating in time� for any s ��t� h� t� h� we obtain

j��h�u
h � uh��t� x�j � j��h�u

h � uh��s� x�j �

Z t�h

t�h

�
j�t��

h
�u

h�j� j�tu
hj
�
ds�

Squaring and averaging with respect to s� in view of Proposition ��� i� we 
nd

j��h�u
h � uh��z�j� � h��

Z t�h

t�h

j��h�u
h � uh��s� x�j� ds

�Ch

Z t�h

t�h

�
j�t�

h
�u

hj� � j�tu
hj�
�
ds � Ch��

Z
P�h�z�

eh�u
h��

ii� The asserted inequality is immediate from Proposition ��� i� and the usual
Poincar�e inequality� applied to the function uh� �

If we consider the trivial extensions of a function uh 	 R�Mh � R and its energy
density eh�u

h� to R � R
� � Proposition ��� ii� remains valid for all z � R � R� and

� 	 h � r�

Regarding a function uh 	 S� � Th � R as a periodic function on R �Mh� the
above results also hold for uh 	 S� � Th � R� In addition� by integrating in time�
from Proposition ��� iii� we obtain the following result�

Proposition ���� For uh 	 S� � Th � R with Dh�u
h� 	� we have uh � H��T 	�

and with a uniform constant C there holds

C��Dh�u
h� � D�uh� �

�

�

Z
T �
�juht j

� � jruhj�� dz � CDh�u
h��

In view of Proposition ��� we will say that uh � u weakly in H��T 	� as h� ��
if uh � u weakly in H��T 	�� or� equivalently� if uh � u and dhuh � du weakly
in L��T 	�� where uh� dhuh denote the trivial extensions of uh� dhuh to T 	� de
ned
above�

�� Spatially discrete Wave maps

In analogy with the continuous case a map uh 	 R�Mh � N �� R
n is a spatially

discrete wave map if and only if uh is stationary for Ah among maps uh� 	 R�Mh �
N such that uh� � uh at � � � and outside some compact set Q � R �Mh� in
particular� then

d

d�
Ah��N �uh � �vh��j��� � �

for all vh � C�� �R�Mh �R
n �� where �N 	 U��N�� N is the smooth map projecting

a point p in a tubular neighborhood of N of su�ciently small width  � � to its
nearest neighbor �N �p� � N �
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Computing the 
rst variation using ���� we deduce that uh satis
es the equation

d�N �uh��huh � ��

that is�

�
huh � TuhN� ���

Hence� letting �k��� � � � � �n be a local frame for TN� as above� we have

�
huh � �l�l � u

h�

where �l may be computed as

�l � h�huh� �l � u
hi � �����h� h�

�h
� uh� �l � u

hi� ���h�h�u
h� �h���l � u

h�i�
����

Observe that for � � �� 
 � � the 
rst term vanishes because h�tu
h� �l � u

hi � ��

In view of this representation of ���� for h � � equation ��� is equivalent to a
system of ordinary di�erential equations of the form

Uh
tt � F �Uh� Uh

t � ����

for Uh�t� � �uh�t� xh��xh�Mh
� with coupling involving only neighboring lattice sites�

Given �uh� � u
h
� � 	 Mh � TN with 
nite energy

Eh�u
h���� 	 �

�

�

Z
Mh

�juh� j
� � jdhuh� j

��� ����

we therefore expect to obtain a unique global solution uh of the initial value problem
for ��� with initial data

�uh� uht �jt�� � �uh� � u
h
��� ����

In fact� we have the following result�

Theorem ���� For any h � �� any �uh� � u
h
�� 	 Mh � N with Eh�u

h���� 	 � there
exists a unique global solution uh 	 R �Mh � N of the Cauchy problem ���� �����
and Eh�u

h�t�� � Eh�u
h���� for all t�

The proof is achieved by combining the local existence and uniqueness results
for systems of ordinary di�erential equations with the a priori bounds on solutions
resulting from the following energy inequality�

���� Energy inequality� For uh 	 R �Mh � N let eh�u
h� be the energy density

de
ned in ���� and for � � �� � let

g�h� �uh� � h��h� uh� uht i

be the momentum of uh in direction ��

For a solution of ��� then we have

� � h�huh� uht i �
d

dt
eh�u

h��
�

�

X
����

��h�g
�h
� �uh� � ��h� gh��u

h��� ����

In particular� the total energy is conserved� that is�

Eh�u
h�t�� �

Z
Mh

eh�u
h�t�� � Eh�u

h���� ����
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for all t�

For the proof of Theorem ��� and for our later purposes� we also need a local
version of this result� Observe that in the discrete case ��� cannot exhibit 
nite
propagation speed� However� as h� � equation ��� approximates a system of wave
equations� Therefore we expect the �essential� domains of in�uence and dependence
of any given point to approach the light cone through that point� in particular� in
the limit h� �� on any bounded region of space�time the discrete evolution should
essentially be determined by the data on a 
nite region of the hyperplane t � ��

Below we verify this behavior in detail� Because in the discrete case we are
working on a quadratic lattice� we prove the local energy inequality on squares� not
on circles�

���� Local energy inequality� For any function �� upon multiplying ���� by the
discretized function �h we obtain

� �
d

dt
�eh�u

h��h��
�

�

X
����

�
�h��g

�h
� �uh��h� � ��h� �gh��u

h��h�
�

� eh�u
h��t�

h �
�

�

X
����

�
�g�h� �uh���h� �h��� � he�� � �gh��u

h��h��
h��� � he��

�
�

Now let � 	 R � R be given by

��s� �

�
e�h

����s � s  �

�� eh
����s � s 	 �

and choose

��t� x� � inf
�����

��jx�j� t� � ��sup
�
jx�j� t�� ����

satisfying

��t�
h �max

�
fj�h��

hj� j��h� �hjg��t� xh� � ����s� � maxfj�h��s�j� j��h��s�jg��

for xh �Mh� where s � sup�jx
�
h j� t�

Integrating in spatial direction and shifting coordinates in the last two terms�
we then 
nd that

d

dt

�Z
Mh

eh�u
h��h

�

�

Z
Mh

�
eh�u

h��t�
h �

�

�

X
����

�jg�h� �uh�jj��h� �hj� jgh��u
h�jj�h��

hj�

�

�

Z
Mh

eh�u
h���t�

h � max
�����

fj�h��
hj� j��h� �hjg��

Remark that at any point �t� xh� at most two of the terms ��h� �h �� �� hence in
the Cauchy Schwarz inequality we may replace the Euclidean norm of ��h� �h by
the maximum norm�

Let
��s� � ���s� � maxfj�h��s�j� j��h��s�jg�

We distinguish the cases s � �h� s  h��h � s � �� and � � s � h�
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If s � �h� we have

��s� �

�
�h���	 �max

�
eh

���

� �

h
�
�� e�h

���

h

	�
eh
����s

� h���	eh
����s

�
eh

���

� �

h��	
� �

�
�

By Taylor�s formula

eh
���

� �

h��	
� � �

�

�
h��	 �O�h
�	� � h��	

for h � h�� Hence for such h and s we conclude

��s� � h��	eh
����s � h��	 � h��	��s��

Similarly� if s  h� for h � h� we 
nd

��s� � h���	e�h
����s

�
eh

���

� �

h��	
� �

�
� h��	e�h

����s � h��	��s��

If �h � s � � we only need to check that

���s� � j�h��s�j � �h���	eh
����s �

�� eh
����s � e�h

�����s�h�

h

� h���	eh
����s

�
�� �

�e�h
����s � �� e�h

���

e��h
����s

h��	

�

� Ch��	eh
����s � Ch��	 � Ch��	��s�

with an absolute constant C� if h � h�� The estimate ���s�� j��h��s�j � h��	��s�
for h � h� is obtained as in the case s � �h�

Similarly� for � � s � h � h� we have

���s� � j��h��s�j � Ch��	��s��

The remaining estimate

���s� � j�h��s�j � h��	��s�� h � h��

is obtained as in the case s  h�

Thus� we conclude that with the above choice of � for h � h� there holds

�t�
h �max

�
fj�h��

hj� j��h� �hjg � Ch��	�h

with an absolute constant C� and hence also

d

dt

Z
Mh

eh�u
h��h � Ch��	

Z
Mh

eh�u
h��h�

We may shift the argument of � by an arbitrary vector �t�� x�� and integrate in
time to obtain the following result�
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Lemma ���� There exist constants h� � �� C such that for any h � h�� any solu�
tion uh of ���� any z� � �t�� x�� � R �Mh� if � � t � t� there holdsZ

ftg�Mh

eh�u
h��hz� � eCh

���t

Z
f�g�Mh

eh�u
h��hz� �

where �z��t� x� � ��t� t�� x� x�� is given by �����

Proof of Theorem ��� We 
rst consider initial data �uh� � u
h
� � 	 Mh � TN having

compact support in the sense that uh� � const�� uh� � � outside some compact set�
Then for su�ciently large K � N the support of d�huh� � u

h
� is strictly contained

in the square of edge�length �Kh centered at ��� ��� Extending uh� � u
h
� periodically

with period �Kh in the x�� and x��directions� we may regard uh� � u
h
� alternatively

as maps �uh� � u
h
�� 	 Mh���KhZ�� �	 Mh�K � TN or as periodic maps on Mh�

The Cauchy problem for equation ��� now reduces to an initial value problem for
a 
nite�dimensional system ���� of ordinary di�erential equations� which in view of
the uniform a�priori bound on the energy

Eh�K�uhK�t�� �

Z
Mh�K

eh�u
h
K�t�� � Eh�K�uhK���� � Eh�u

h���� ����

of a solution uhK � which results from integrating ���� over Mh�K � can be solved
uniquely for all time�

Moreover� regarding uhK 	 R �Mh � N as spatially periodic solutions of ���� in
view of these uniform energy bounds a subsequence uhK � uh� �tu

h
K � �tu

h locally
uniformly on R �Mh as K � �� where uh satis
es ���� Combining ����� Lemma
���� and ���� we conclude that Eh�u

h�t�� � const�� Indeed� given t � �� z� �

�t�� x��� by exponential decay of � there are constants K�� C� � eCh
���t such that

for L  K  K� there holds

�C�

Z
Mh

eh�u
h�����hz����  C�

Z
Mh

eh�u
h
L�����

h
z����



Z
Mh

eh�u
h
L�t���

h
z��t� 

Z
fxh�Mh�jx�h j�Khg

eh�u
h
L�t���

h
z��t��

Fixing K and letting L��� from locally uniform convergence uhL � uh� dhuhL �
dhuh we conclude thatZ

fxh�Mh�jx�h j�Khg

eh�u
h�t���hz� �t� � �C�Eh�u

h�����

Letting K �� and then t� ��� we deduce that

Eh�u
h�t�� � �C�Eh�u

h���� 	�

locally uniformly in time and therefore� in fact� Eh�u
h�t�� � Eh�u

h���� for all t� by
�����

Uniqueness of uh is obtained as follows� Let uh� vh 	 R�Mh � N be solutions to
��� with uh��� �� � vh��� �� � uh� � u

h
t ��� �� � vht ��� �� � uh� and such that Eh�u

h�t�� �
Eh�v

h�t�� � C� uniformly in t� Observe that this also implies that

juht �t� xh�j
� � jvht �t� xh�j

� � Ch���

uniformly in R �Mh�
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Expanding ��� and ����� we deduce that wh � uh � vh satis
es

j�hwhj � C
X
����

�
j��h� �h�w

hj� h��j��h� whj� h��jwh�� 
 he��j� h��jwhj
�

� C
�
juht j� jvht j

�
jwht j� C

�
juht j

� � jvht j
�
�
jwhj

� Ch��

� X
����

jwh�� 
 he��j� jwhj

�
� Ch��jwht j�

Multiplying by wht and integrating over Mh� we obtain

d

dt
Eh�w

h�t�� � C�� � h���

Z
Mh

�jwh�t�j� � jwht �t�j
��

� C�� � h���

Z
Mh

jwh�t�j� � C�� � h���Eh�w
h�t���

����

Moreover� by H older�s inequality� for any t  �� any x �Mh we have

jwh�t� x�j� �

�Z t

�

wht �s� x� ds

��
� t

Z t

�

jwht �s� x�j
� ds�

Hence for � � t � T we can estimateZ
Mh

jwh�t�j� � �t

Z t

�

Eh�w
h�s�� ds � �T � sup

��s�T
Eh�w

h�s���

Given T � �� we 
x t � ��� T � such that

Eh�w
h�t�� � sup

��s�T
Eh�w

h�s���

We may assume that T � �� Integrating ���� from � to t� it then follows that

Eh�w
h�t�� � sup

��s�T
Eh�w

h�s�� � CT �� � h��� sup
��s�T

Eh�w
h�s��� ����

Choosing T � � su�ciently small� we conclude that wh � � on ��� T � �Mh� By
iteration therefore wh � � on R �Mh�

Finally� we may use ���� to remove the assumption that dhuh� � u
h
� have compact

support� Indeed� given data �uh� � u
h
�� 	 Mh � TN of 
nite energy we may approx�

imate �uh� � u
h
� � by data �uh��l� u

h
��l� 	 Mh � TN� l � N� such that dhuh��l� u

h
��l have

compact support for any l and such thatZ
Mh

�
jdh�uh��l � uh� �j

� � juh��l � uh� j
�
�
� �

as l � �� �The proof of this density result is analogous to the proof that maps
u � H��R� �N� with supp�ru� �� R

� are H��dense in this space� see for instance
������ Letting �uhl �l�N be the solutions to ��� with data �uhl � �tu

h
l �jt�� � �uh��l� u

h
��l��

from ����� applied to wh � uhl � uhm for large l�m � N� we obtain convergence of
�uhl � to the unique solution u of ���� ����� �
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�� Passing to the limit h� �

Our aim in this section is to prove the following weak convergence result�

Theorem ���� Let uh 	 R�Mh � N �� R
n � h � �� be spatially discrete wave maps

such that

Eh�u
h�t�� � C uniformly in h � �� t � R� ����

Then a subsequence uh � u locally in L��R��� �� dhuh � Du weakly�	 in L��R�L��R� ��
as h� � where u 	 R � R� � N �� R

n is a weak solution of ��� with

E�u�t�� �
�

�

Z
R�

jDu�t�j� dx � lim sup
h��

Eh�u
h�t�� � C

uniformly in t � R�

The proof of Theorem ��� uses certain compensation properties of Jacobians
exhibited by the 
rst order equations equivalent to ���� ���� respectively� as in ����
���� �����

To derive these equations we proceed as in ��� or ���� First suppose that TN
is parallelizable and let e�� � � � � ek be a smooth orthonormal frame 
eld� For any
h � � and any Rh 	 R �Mh � SO�k� then

ehi � Rh
ij�ej � u

h�� � � i � k�

is a frame 
eld for �uh���TN �

���� First order equations� Let

�hi�� � h�tu
h� ehi idt� �

h
i�� � h�h�u

h� ehi ��� he��i� � � �� ��

observe that the shift is arranged so that the functions

��hi�� � �hi���� � he�� � h��h� uh� ehi i� � � �� ��

are the coe�cients of the representation of d�huh in terms of the frame �ehi �� Also
let

��hij�� � h�te
h
i � e

h
j i� �

�h
ij�� � h��h� ehi �m

�h
� ehj i� � � �� ��

Clearly� the �hij are a discrete approximation of the connection ��forms �ij �

hdei� eji of a frame �ei� in the continuum limit h � �� The de
nition is made
to insure anti�symmetry �hij � ��hij also in the discrete case�

Letting ��ht 	 � �t� e� � ��m�h
� � id� we have

�hi�� � h�h�u
h� ehi ��� he��i� �

�h
i�� � h��h� uh� ehi i� �

�h
ij�� � h��h� ehi �m

�h
� ehj i

for all �� Then

h� �
h
i � ������h� �hi�� � �����h��

�h
i�� � �h�huh� ehi i � ���h�h�u

h� �h�e
h
i i�

That is� uh 	 R �Mh � N solves ��� if and only if

h� �
h
i � ����h�h�u

h� �h�e
h
i i � �����hj�� � �

h
ij�� � �h�i� ����

where

�h�i � ����


�hj��

�
ehj ��� he��� ehj

�
� �h�e

h
i

�
�h�h�u

h� �l�u
h���he��ih�l�u

h���he��� �
h
�e

h
i i


�
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Observe that there exists a constant C � C�N� such that for p� q � N there
holds jhp� q� �l�p�ij � Cjp� qj�� It follows that

jh�h�u
h� �l � u

h��� he��ij � Ch��juh��� he��� uhj� � Chj�h�u
hj��

Moreover� remark that

j����hj��h�e
h
j ��� he��� ehj �� �

h
�ejij � hj�hj��jj�

h
�e

h
j j
� � juh��� he��� uhjj�h�e

h
j j
��

Thus� we may estimate the error term

j�h�ij � C
X
����

juh��� he��� uhj

�
�j�h�uhj� �X

j

j�h�e
h
j j
�

�
A �

Our aim is to pass to the distributional limit in ��� or� equivalently� ���� for a
suitable sequence h � �� As in ���� ��� we may convert this convergence problem
into a problem on a compact domain� as follows� Given � � C�� �R�R� �� let Q be a
cube centered at ��� �� containing the support of �� Scaling the coordinates suitably�

we may assume that Q �
�
� �

 �

�



�	
� moreover� we may suppose that �


h � N� We

then extend uh by even re�ection in the faces of Q to periodic functions vh on
R �Mh of period � in each variable� satisfying ��� on the support of ��

Given a frame �ei� for �v
h���TN � then also ���� will hold on the support of ��

Regarding vh as maps vh 	 S� � Th � N on the compact spatially discrete ��torus�
moreover� following H�elein ���� we may choose a frame �ei� which is in minimal
Coulomb gauge� de
ned as follows�

���� Gauge condition� Choose Rh � �Rh
ij� � H��S� � Th�SO�k�� such that

Dh�R
h�e � uh�� �

�

�

Z
S��Th

X
��i

�j�h�e
h
i j
� � j��h� ehi j

�� � inf
R
Dh�R�e � u

h���

and let ehi � Rh
ij�ej � u

h�� � � i � k� Observe that

Dh�e
h
i � � C

Z
S��Th

eh�u
h� � CDh�u

h�� ����

Moreover� minimality implies

� �
d

d�
Dh��id� �S�eh�j���

�
�

�

Z
S��Th

�
h�h�e

h
i � �

h
��Sije

h
j �i� h��h� ehi � �

�h
� �Sije

h
j �i
�

� �
�

�

Z
S��Th

�
�h�h�

�h
� ehi �m

�h
� ehj i� ��h� h�h�e

h
i �m

h
�e

h
j i
�
Sij

� �

Z
S��Th

��h� �hij��Sij

for all Sij � SO�k�� where we also used anti�symmetry of S and the discrete product
rule ��� to derive the second identity�

Since �hij�� � ��hji�� we conclude

��h� �hij�� � heucl�
h
ij � �heucl�

�h
ij � ��
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In view of ���� we may assume that� as h� � suitably�

ehi � ei weakly in H��T 	��

�hi � �i weakly in L��T 	��

�hij � �ij weakly in L��T 	��

where ei is a frame for u��TN and �i � hdu� eii� �ij � hdei� eji�

Our aim is to show thatZ
Q

��i �� d�� �ij �� �j�� dz � ��

where � � C�� �R � R
	 � with supp��� � Q is the testing function that we chose

above�

In fact� we will show that

��i � �ij �� �j � � in D��Q�� ����

where we extend u periodically as above and regard Q as part of a fundamental
domain for T 	 � R

	�Z	� In view of the equations ����� that is�

h� �
h
i � �hij �� �

h
j � �h�i in Q�

and distributional convergence h� �
h
i � ��i in D

��T 	�� it will su�ce to show that

�hij �� �
h
j � �h�i � �ij �� �i in D

��T 	� ����

as h� � suitably�

Let

	� �
�h
i � dhahi � heuclb

h
i � chi ����

be the Hodge decomposition of 	��
�h
i on S��Th as determined in Proposition ����

We may assume that as h� � suitably

ahi � ai� b
h
i � bi weakly in H��T 	��

and chi � ci smoothly� Observe that the harmonic forms chi � ci are constant linear
combinations of the basis dx� � dx� � � � � 	 
 � ��

Using this decomposition� we may write

��hij �� �
�h
j dz � ��hij � 	��

�h
j � ��hij � dhahj � ��hij � heuclb

h
j � ��hij � chj �

Since chj � cj smoothly� passing to the desired limit in the last term is no
problem� To show convergence of the second last term� for convenience denote
� 	eucl b

h
j � 
hj � Observe that 
hj is a scalar function and 
hj � 
j � � 	eucl bj

weakly in H��T 	�� whence strongly in L��T 	� by the Rellich�Kondrakov theorem�
Then

��hij � heuclb
h
j � ��hij � 	eucld

�h
hj � ��hij �eucl d
�h
hj dz

� �	eucl�
�h
ij � � d�h
hj � d�h�	eucl�

h
ij


h
j ��

as �heucl�
h
ij�


h
j � � on account of the Coulomb gauge condition� �In coordinates�

��hij �eucl d
�h
hj � ��hij���

�h
� 
hj � ��h� ��hij��


h
j �� ���h� �hij���


h
j ��
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Since �hij � �ij weakly in L�� while 
hj � 
j strongly in L�� we conclude that

��hij � heuclb
h
j � �ij � euclbj in D

��

For the remaining term by the discrete product rule we have

��hij � dhahj � ��hij���
h
�a

h
j��dx

� � dx� � dx�

�
h
�h�
�
��hij���� � he��a

h
j��

�
� ��h� ��hij��a

h
j��

i
dx� � dx� � dx� �

� d�h��hij � ahj � ��h� ���hij���
h
� a

h
j���dx

� � dx� � dx� �

Since we also have that �h� a
h
j � aj weakly in H��T 	� and hence strongly in L�� as

h � � the last term converges to ����ij��aj���dx
� � dx� � dx� � �d��ij � aj� in

D��

Thus we have shown distributional convergence

��hij �� �
�h
j dz � d�h��hij � ahj � �ij �� �jdz � d�ij � aj ����

as h� �� and it remains to prove that

d�h��hij � ahj � �h�i � d�ij � aj in D
�� ����

The proof of ���� will be accomplished by adapting the ideas of ��� to the spatially
discrete case�

Passing to a further subsequence� if necessary� we may assume that� as h� ��

eh�u
h� � eh�e

h�
	
� � inM�T 	�

as Radon measures� Theorem ��� then will be a consequence of the following
Proposition�

Proposition ���� There exists a Radon measure � such that� as h� � suitably�

d�h��hij � ahj � �h�i � d�ij � aj � � in D��Q��

where

supp��� � ! � fz � �t� x�� lim sup
R��

�R����PR�z��� � �g

has �nite ��dimensional Hausdor	 measure�

Proof of Theorem ��� Combining Proposition ��� and ����� we conclude that� as
h� ��

� � h� �
h
i � �hij �� �

h
j � �h�i � ��i � �ij �� �j � �

in D��Q�� Hence

� � ��i � �ij �� �j � H�� � L��

But since the support of � is contained in a set of 
nite ��dimensional Hausdor�
measure� as in ���� Proof of Theorem ���� we conclude that� in fact� � � � and

��i � �ij �� �j � � in D��Q��

as claimed� �
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���� Proof of Proposition ���� We proceed as in ���� The key ingredients in the
proof are the duality between the Hardy space H� and BMO �due to Fe�erman and
Stein ����� the H� estimates for Jacobians of Coifman� Lions� Meyer and Semmes ���
�see Lemma ��� below for the discrete setting�� and a characterization of concen�
tration points in the spirit of concentration compactness for sequences of products
whose factors are bounded in H� and BMO� respectively �see ���� Lemma ����� To
obtain the BMO estimate �see Lemma ��� below� we exploit the energy inequal�
ity and apply Campanato theory and Poincar�e�s inequality� For elliptic problems
similar arguments were used by H�elein ���� ����� Evans ���� Bethuel ���� and others�

Fix a function � � C�� �B����� with
R
R�
�dz � �� For f � L��T 	� then let

�M	f��z�� � sup
��r��

����
Z
T �

r�	�

�
z � z�
r

�
f�z� dz

����
be the regularized maximal function of f � The Hardy space on T 	 then is the space

H��T 	� � ff � L��T 	��

Z
T �

f dz � ��M	�f� � L��T 	�g

with norm
jjf jjH� 	 � jjM	�f�jjL� �

Also let BMO�T 	� be the space of functions f � L��T 	� such that

�f �BMO�T �� � sup
��r� �

�

sup
z��T �

Z
Pr�z��

jf � fr�z� j dz 	�

with norm

jjf jjBMO�T �� � j

Z
T �

f dzj� �f �BMO�T ���

where Pr�z�� and fr�z� are de
ned as in Section ��

By ���� BMO�T 	� is the dual space ofH��T 	�� and for g � H��T 	�� f � BMO�T 	�
there holds

hf� giBMO�H� � C�f �BMO�T ��jjgjjH� �

Moreover� for any � � C��T 	�� f � BMO�T 	� the function f� � BMO�T 	� and

�f��BMO � Cjjf jjBMO jj�jjC� �

see for instance ���� Proposition ���� In particular� for any f � BMO�T 	�� g �
H��T 	� the product T � fg is de
ned as a distribution in T 	 by letting

hT� �iD��D 	 � hf�� giBMO�H�

for any � � C��T 	��

Finally� for � � � � �� f � L��T 	� let

�f ��L��� � sup
��r� �

�

sup
z�

r�

Z
Pr�z��

jf � fr�z� j
� dz

and for � � � 	 � denote

jjf jj�L��� � sup
��r� �

�

sup
z�

r�

Z
Pr�z��

jf j� dz�

De
ne the Morrey�Companato spaces

L��
�T 	� � ff � L��T 	�� �f �L��� 	�g� L��
�T 	� � ff � L��T 	�� jjf jjL��� 	�g
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with norms jj � jjL��� and jjf jjL��� � jjf jjL� � �f �L��� � respectively� Recall that
L��
 �� L��
 for � � � 	 � and L��	 �� BMO with equivalent norms�

For an open set U � T 	 de
ne the local BMO�seminorm by letting

�f �BMO�U� � supf

Z
Br�z��

jf � fr�z� j
� dz�Br�z�� � Ug�

Lemma ���� For any h � � we have ahj � BMO�T 	� with dhahj � L����T 	� and

jjahj jj
�
BMO � Cjjdhahj jj

�
L��� � CEh�u

h� � C

independently of h� Moreover� for any � 	 h � r � R 	 �
� � any z� � T 	 there holds

�ahj �BMO�Pr�z��� � �dhahj �L����Pr�z��� � C
� r
R
jjahj jjBMO�PR�z��� � jj��hj jjL����PR�z���

�
�

Proof� A global bound for ahj follows from ���� �From ���� we obtain the equation

��h
	a

h
j � heucld

hahj � heucl 	� �
�h
j � Dh��hj �

where Dh is a discrete 
rst order di�erential operator with constant coe�cients�
The proof now proceeds as the proof ���� Lemma ����� in the case h � �� Omitting
the index j for brevity� given � 	 h � r 	 R � Kh 	 �

� � z� � S� � Th� we split

ah � ah� � ah� on PR�z��� where

��h
	a

h
� � � in PR�z��� a

h
� � ah on �PR�z���

and

��h
	a

h
� � Dh��h in PR�z��� a

h
� � � on �PR�z���

Standard estimates yield that

jjeh�a
h
� �jjL��PR���z��� � CR��

Z
PR�z��

jah� � �ah� �R�z� j
��

Hence� from Proposition ��� ii�� for any r � kh� z � S� � Th such that Pr�h�z� �
PR���z�� we concludeZ
Pr�z�

jah� � �ah� �r�z j
� � Cr��

Z
Pr�h�z�

eh�a
h
� � � Cr�jjeh�a

h
� �jjL��PR���z���

� C
� r
R

�� Z
PR�z��

jah� � �ah� �R�z� j
� � C

� r
R

��
�ah� �

�
BMO�PR�z���

�

Clearly� these estimates remain valid for any r � h and any z � T 	 with Pr�h�z� �
PR���z�� if we extend ah as the spatially piecewise constant function

ah�t� x� � ah�t� xh�� for x � Qh�xh��

Moreover� for � 	 r 	 h� if we compare ah� to its bilinearly interpolated function
ah� � for any z� � �t�� x�� � T 	 with Pr�z�� � P�h�zh� � PR���z�� for some zh �

�t� xh� � S��Th� from Proposition ��� i�� iii� and the �standard� Poincar�e inequality
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applied to ah� we obtainZ
Pr�z��

jah� � �ah� �r�z� j
� dz � r��

Z
Pr�z��

jdhah� j
� dz

� C

Z t��r

t��r

jj�ah� � ah� ��t�jj
�
L��Qr�x���

dt� C

Z
Pr�z��

jah� � �ah� �r�z� j
� dz � r��

Z
Pr�z��

jdhah� j
� dz

� C

Z t��r

t��r

Z
Q�h�xh�

�
eh�a

h
� �t�� � jdah� �t�j

�
�
dx dt � C

Z t��r

t��r

Z
Q�h�xh�

eh�a
h
� �t��

� Ch�jjeh�a
h
� �jjL��PR���z��� � C

�
h

R

��
�ah� �BMO�PR�z����

It follows that for r  h there holds

�ah� �BMO�Pr�z��� � jjdhah� jjL����Pr�z���

� C
r

R
�ah� �BMO�PR�z��� � C

� r
R
�ah�BMO�PR�z��� � �ah� �BMO�PR�z���

�
�

The analogous estimate

�ah� �BMO�PR�z��� � Cjjdhah� jjL����PR�z��� � Cjj��hjjL����PR�z���

is obtained exactly as in the continuous case from ���� Teorema ���I� and Poincar�e�s
inequality� �

Observe that the local energy inequality Lemma ��� implies that

lim sup
h��

jj��hj jj�L����PR�z��� � CR����P	R�z���� ����

Indeed� for any r 	 R� any z� � �t�� x�� such that Pr�z�� � PR�z��� if �r 	 R by
Lemma ��� we have

��r���jj��hj jj�L��Pr�z��� � sup
jt�t�j�r

Z
Qr�x��

eh�u
h�t�� �

Z
Q�r�x��

eh�u
h�t� � r�� � o���

�

Z
Q�R�x��

eh�u
h�t� � r�� � o��� � R��

Z t��r

t��r�R

Z
Q�R�x��

eh�u
h�t�� dt � o���

� R��
Z
P�R�z��

eh�u
h�t�� � o��� � R����P	R�z��� � o���

where o���� � as h� ��

If R�� � r � R� clearly

��r���jj��hj jjL��Pr�z��� � R��jj��hj jjL��PR�z��� � R����P	R�z��� � o����

where o���� � as h� ��

Regarding �hij � we now introduce the bilinearly interpolated frame to split

�hij�� � h�h�e
h
i � e

h
j i� h�h�e

h
i �m

h
�e

h
j � ehj i� ����

Lemma ���� For any h � � there holds dhhdhehi � e
h
j i � H

��T 	� and

dhhdhehi � e
h
j i

	
� dhdei� eji � d�ij

in H��T 	� as h� � suitably�
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Proof� In view of the identity dh � dh � �� we have

dhhdhehi � e
h
j i � �h�h�

h
�e

h
i � e

h
j idx

� � dx�

� h��e
h
i ��� he��� �

h
�e

h
j idx

� � dx�

� dhhdhehi � �e
h
j � q�i

for any q � Rn � Exactly as in ���� Theorem ���� we may therefore show that

dhhdhehi � e
h
j i � H

��T 	�

with
jjdhhdhehi � e

h
j ijjH� � CEh�e

h� � C�

where we also used Proposition ��� iii�� Since the space VMO�T 	�� the pre�dual
of H��T 	� is separable� we conclude that �dhhdhehi � e

h
j i�h�� is relatively weakly�	

sequentially compact� But� as h� � suitably�

dhhdhehi � e
h
j i� d�ij

in the sense of distributions�

By density of C��T 	� in VMO�T 	�� therefore we also have weak�	 convergence

dhhdhehi � e
h
j i

	
� d�ij

in H��T 	�� as claimed� �

�From Lemma ��� and ���� Theorem ���� we hence conclude that� as h� ��

d�hhd�hehi � e
h
j i � a

h
j � d�ij � aj � �� in D

�� ����

where �� is a Radon measure with

supp���� � fz� lim
r��

lim sup
h��

�ah�BMO�Pr�z��� � �g�

But by Lemma ���� for r  h we have

�ah�BMO�Pr�z��� � C
� r
R
jjahjjBMO�PR�z��� � jj��hjjL����PR�z���

�
�

Fixing R � �� from ���� we conclude that

lim
r��

lim sup
h��

�ah��BMO�Pr�z���
� C lim sup

h��
jj��hjjL����PR�z��� � C�R����P	R�z�����

Since R � � is arbitrary� therefore supp���� �
P

� as de
ned in Proposition ����

The contribution to ���� from the second term in ����� after shifting in directions
� and 
� is

�h�h��e
h
i �m

h
�e

h
j � ehj i�

h
��

h
� a

h
j��dx

� � dx� � dx� �

�
�h�
�
h�h�e

h
i �m

h
�e

h
j � ehj i�

h
� a

h
j��

�
� h�h�e

h
i �m

h
�e

h
j � ehj i�

h
��

h
� a

h
j��

�
dx� � dx� � dx� �	 Ih � IIh�

Since� as h � � suitably� �h� a
h
j�� � aj�� while mh

�e
h
j � e

h
j � ej in Lp�T 	� for any

p 	 �� and since ��h�e
h
i � is bounded in L��T 	�� the 
rst term Ih � � in D��T 	��

Observing that for any t � S�� xh � Th� x � xh � � � T� � � Q�
h ���� we have

�mh
�e

h
j � ehj ��t� x� �

�

�
��h� e

h
j � ehj ��t� xh��

X
����

���h�e
h
j �t� xh�� �����h� �

h
� e

h
j �t� xh��
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moreover� we can estimate

j�mh
�e

h
j � ehj ��t� x�j � Ch

X
����

j�h�e
h
j �t� xh�j�

Thus� the second term above may be bounded

jIIhj � jh�h�e
h
i �m

h
�e

h
j � ehj i�

h
��

h
� a

h
j�� j

� Chjdhehj�j�h��
h
� a

hj � Cj�h� ��
h
� a

h�� �h� a
hjjdhehj��

Shifting back� from ���� and ���� we thus obtain that

d�h��hij � ahj � d�ij � aj � �h�i � �h�i � �� � o����

where o���� � in D��T 	� and where

j�h�ij � C
X
�

jah � ah�� � he��jeh�e
h��

Lemma ���� �h�i��
h
�i � �� inM�T 	�� where �� is a Radon measure with supp���� �P

� as de�ned in Proposition 
���

Proof� For any � � C��T 	� we can estimate

j

Z
T �

�h�i�dzj� j

Z
T �

�h�i�dzj � j

Z
S��Th

�h�i�
hj� j

Z
S��Th

�h�i�
hj

� C

Z
S��Th

X
�

�
juh�� 
 he��� uhj� jahj �� 
 he��� ahj j

�
�eh�u

h� � eh�e
h��j�hj�

Now by Proposition ��� i� and Lemma ���� for any z � �t� xh� � S� � Th� any
� 	 h � �h � r 	 �

� we have

j�uh�� 
 he��� uh��t� xh�j
� � Eh�u

h�t��Q�
�h�xh�� � Cr��

Z
Pr�z�

eh�u
h� � o���

where o���� � as h� ��

Similarly� for any z � �t� xh� � S� � Th� any � 	 h � �h � r 	 R � �
� � by

Proposition ��� i� we can estimate

j�ahj �� 
 he��� ahj ��t� xh�j
� � Ch��

Z
P�h�z�

eh�a
h
j � � C�dhahj �

�
L����Pr�z��

�

Hence by Lemma ��� we obtain

j�ahj �� 
 he��� ahj ��z�j � C
� r
R
jjahj jjBMO�PR�z�� � jj�hj jjL����PR�z��

�
�

It follows that �h�i� �h�i � �� in M�T 	� as h� �� where �� is absolutely continuous
with respect to � with density

d��
d�

�z� � lim
r��

���Pr�z��

��Pr�z��

� C lim
r��

lim sup
h��

� r
R
jjahj jjBMO�PR�z�� � jjd�huhjjL����PR�z��

�
� CR����PR�z��

for any z � T 	�

Since R � � is arbitrary� the asserted characterization of supp���� follows� �
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This completes the proof of Theorem ��� if TN is parallelizable� In the general
case� by the results of ��� and ��� we may embed N as a totally geodesic subman�

ifold of another manifold "N with this property� As above� we now obtain weak
convergence of a subsequence uh � u� where u 	 R � R� � N �� "N is a weak wave
map into "N � But then as in ����� p� ��� f�� it follows that u also is a weak wave
map into N �

�� Global existence of wave maps

Theorems ��� and ��� easily give rise to the following existence result� previously
established in ���� by a di�erent method�

Theorem ���� For any �u�� u�� � H� � L��R� �TN� there exists a global weak
solution u of the Cauchy problem ���� ��� satisfying the energy inequality

E�u�t�� �
�

�

Z
R�

jDu�t�j� dx � E� �
�

�

Z
R�

�ju�j
� � jru�j

�� dx

for all t and which continuously attains the initial data in H� � L��

Proof� Let uh� � u
h
� be the maps u�� u�� discretized as in Section ���� Note that

dist��uh� �x�� N� �

Z
Q�

h
�x�

juh� �x�� u��y�j
� dy

�

Z
Q�

h
�x�

Z
Q�

h
�x�

ju��y�� u��y
��j� dy dy� � C

Z
Q�

h
�x�

jru�j
� dy � �

as h � �� Hence for � 	 h � h� the range of uh� lies in a su�ciently small
tubular neighborhood of N and we may project to obtain spatially discrete data
�"uh� � �N � u

h
� � "u

h
� � uh�� 	 Mh � TN such that

"Eh 	 �
�

�

Z
Mh

�j"uh� j
� � jdh"uh� j

�� 	�

and such that

�"uh� � "u
h
��� �u�� u�� in H

� � L�

as h��� In particular "Eh � E� as h� ��

By Theorem ��� now� for any h � � there exists a unique global solution "uh of
��� with data �"uh� "uht �jt�� � �"uh� � "u

h
��� satisfying the energy identity Eh�"u

h�t�� � "Eh
for all t�

By Theorem ��� a subsequence �"uh� as h� � weakly converges to a weak solution
u of ���� ��� with

E�u�t�� � lim inf
h��

Eh�"u
h�t�� � E�

for all t� In particular�

lim sup
t��

�

�

Z
R�

jDu�t�j� dx � lim sup
t��

E�u�t�� � E�

and we conclude that Du�t� � Du��� strongly in L��R� � as t � �� showing that
the initial data are attained continuously in H� � L�� �
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