Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Universal covering maps and radial variation

by

Peter W. Jones and Paul F.X. Müller

Preprint-Nr.: 36 1998

Universal covering Maps and radial Variation

by

Peter W. Jones 1 and Paul F.X. Müller 2

June 18^{th} , 1998

 $^{^1\}mathrm{Supported}$ by NSF grant DMS-9423746.

 $^{^2 {\}rm Supported}$ by the Austrian Academy of Sciences, APART-Programm.

1 Introduction and Statement of Results

We let $E \subseteq \mathbb{C}$ be a closed set with two or more points. By the uniformization theorem there exists a Fuchsian group of Moebius transformations such that $\mathbb{C} \setminus E$ is conformally equivalent to the quotient manifold \mathbb{D}/G . The universal covering map $P: \mathbb{D} \to \mathbb{C} \setminus E$ is then given by $P = \tau \circ \pi$, where π is the natural quotient map onto \mathbb{D}/G and τ is the conformal bijection between $\mathbb{C} \setminus E$ and \mathbb{D}/G . In this paper we will show that there exists $e^{i\beta} \in \mathbb{T}$ such that

$$\int_0^1 |P''(re^{i\beta})| dr < \infty.$$

Considering $u = \log |P'|$, one obtains (1.1) from variational estimates.

Theorem 1 There exists $e^{i\beta} \in \mathbb{T}$ and M > 0 such that for r < 1,

$$u(re^{i\beta}) < -\frac{1}{M} \int_0^r |\nabla u(\rho e^{i\beta})| d\rho + M.$$

The class of universal covering maps contains two extremal cases. The case where $\mathbb{C} \setminus E$ is simply connected and the case where E consists of two points. We considered the simply connected case in [J-M] where we proved that Anderson's conjecture is true. The second case is easier; well known estimates for the Poincarè metric on the triply punctured sphere give (1.1) when P is the universal covering of $\mathbb{C} \setminus \{0,1\}$.

In the course of the proof of Theorem 1 we measure the thicknes of E at all scales, and we are guided by the following philosophy. If, at some scale, the boundary E appears to be thick then, locally, the universal covering map behaves like a Riemann map. On the other hand, if E appears to be thin, then, locally, the Poincarè metric of $\mathbb{C} \setminus E$ behaves like the corresponding Poincarè metric of $\mathbb{C} \setminus \{0,1\}$. With the right estimates for the transition from the thick case to the thin case, this philosophy leads to a rigorous proof. Our proof also shows the existence of a very large set of angles β for which Theorem 1 holds.

The following propositions present the main technical results of this paper. Each proposition gives estimates on the radial variation of $u = \log |P'|$. The hypothesis of Proposition 1 covers the case when to an observer at $w = P(\zeta)$ the boundary E looks like a connected set. The hypothesis of Proposition 2 covers the case when the boundary E looks like an isolated point. To express these alternatives analytically, we use the function

$$M(\zeta) = \sup_{z \in T(\zeta)} |\nabla u(z)| (1 - |z|)$$

where

$$T(\zeta) = \{ w \in \mathbb{D} : |w - \zeta| \le 1 - |\zeta|, (1 - |\zeta|)/2 \le 1 - |w| \le 1 - |\zeta| \}.$$

The first alternative corresponds to the case where $u = \log |P'|$ satisfies a Bloch condition near ζ . The second alternative causes the failur of Bloch estimates near ζ . Correspondingly the proof of Proposition 1 uses the condition

$$M(\zeta) \leq \text{ some constant},$$

whereas Proposition 2 requires that

$$M(\zeta) \geq$$
 a very large constant.

Further combinatorial considerations provide the tools for an iterative solution of Theorem 1 based on repeated applications of Propositions 1 and 2.

In both Proposition 1 and 2 the following family of curves plays an important role. We let $L \geq 1$ be a positive integer, and we let $z_1, z_2 \in \mathbb{D}$, $|z_1| < |z_2|$. Then $\Gamma(z_1, z_2, L)$ is the collection of all radial line segments

$$\gamma = \{ s \in \mathbb{D} : |z_1| < |s| < |z_2| \} \cap (0, t),$$

where $t \in \mathbb{D}$ satisfies $|t| = |z_2|$, $|t - z_2| \le 2^L (1 - |z_2|)$ and where (0, t) denotes the ray connecting $0 \in \mathbb{D}$ to $t \in \mathbb{D}$.

We let M_1, L be positive integers and we fix a point $\zeta \in \mathbb{D}$. Under the hypothesis that $M(\zeta) < C$, the universal covering map P behaves locally like a Riemann map. Hence in the proof of Proposition 1 we work with stopping time arguments and J. Bourgain's estimate for the radial variation of positive harmonic functions.

Proposition 1 There exist $C_1 \geq 1$ so that the following holds. If $L \geq C_1$ and if $M(\zeta) \leq M_1/2^{C_0L}$ then there exists $q \in \bar{\mathbb{D}}$ such that

a)
$$\int_{\gamma} |\nabla u(w)| |dw| \le C_1 M_1 L, \text{ for } \gamma \in \Gamma(\zeta, q, L).$$

b) If
$$|q| < 1$$
 then $u(q) - u(\zeta) \le -M_1/LC_1$.

c)
$$1 - |q| \le (1 - |\zeta|)/2 \text{ and } |q - \zeta| \le (1 - |\zeta|)2^{L}.$$

The constant $C_0 \geq 1$ appearing in the formulation of Proposition 1 is specified in Section 2. Let us assume temporarily that the point q obtained by Proposition 1 also satisfies the condition that $M(q) \leq M_1/2^{C_0L}$. Then we could apply Proposition 1 again with ζ replaced by q. Doing this would start an iteration leading to the desired variational estimates for u — until a point is reached for which $M(q) > M_1/2^{C_0L}$. Proposition 2 explains what we do when $M(q) > M_1/2^{C_0L}$: First using group invariance of P we replace q by a (specially chosen) point w such that

$$|u(w) - u(q)| \le C_2 + d_{\mathbb{D}}(w, q).$$

Then using geometric estimates for the hyperbolic metric in $\mathbb{C}\setminus E$ we prove variational estimates for u along the radius that connects w to the boundary of \mathbb{D} . Note that as stated Proposition 2 does not give any information about how $close\ w$ is to q. Only later, when we exploit that the machinery underlying the proof of Proposition 1 is composed of stopping time arguments, are we able to show that $M(q) > M_1/2^{C_0L}$ implies a bound like

$$d_{\mathbb{D}}(w,q) \leq C_4 L$$
.

(This is done in Lemma 3 of Section 3.)

Proposition 2 There exists $C_2 \geq 1$ so that for $q \in \mathbb{D}$ and $M(q) \geq M_0$ there exist $w, v \in \overline{\mathbb{D}}$ so that the following holds.

- a) $M(w)/C_2 \le M(q) \le M(w)C_2$.
- b) $|u(w) u(q)| \le C_2 + d_{\mathbb{D}}(w, q).$
- c) If |v| < 1, then $M_0/2 \le M(v) \le 2M_0$.
- d) $(1-|v|)/(1-|w|) \le 2^{(-M(q)+M_0)/C_2}C_2$ and w lies on the ray (0,v).
- e) If $\gamma \in \Gamma(w, v, L)$, and if w_1, w_2 are points on γ , with $(1 |w_1|)/(1 |w_2|) \ge 4$, then $u(w_2) u(w_1) \le -M(w_1)/C_2 + C_2L$.

Now we describe in more detail the relative positions of q, w and v. In the case when |v| = 1, the point w is the top of the horocycle that is tangent to \mathbb{T} at v and contains q. If v < 1, there exist $\zeta_1, \zeta_2 \in \mathbb{T}$ so that w is the top of the hypercycle S(q) containing ζ_1, ζ_2 and q. The point v is then the top of another hypercycle S_0 underneath S(q) that contains ζ_1, ζ_2 and satisfies

 $M_0/2 \leq M(v) \leq 2M_0$. We remark also that w will be hyperbolically very close to k(q), for a suitably chosen $k \in G$. And we will see that therefore the right hand side of part (b) does not depend on M(q). This is useful since we apply Proposition 2 when M(q) is a very large constant.

Repeatedly applied, Propositions 1 and 2 give the following result.

Proposition 3 There exists $C_3 \ge 1$ so that for $L > C_3$ and $M = 4C_1^2C_2L^2$, a sequence of points $s_k \in \mathbb{D}$ can be found satisfying the following conditions.

$$u(s_k) - u(s_{k-1}) \le -\frac{1}{M} \int_{\gamma} |\nabla u(w)| |dw| \text{ for } \gamma \in \Gamma(s_{k-1}, s_k, L),$$

b)
$$1 - |s_k| \le (1 - |s_{k-1}|)/4 \text{ and } |s_k - s_{k-1}| \le 2^L (1 - |s_{k-1}|).$$

2 Bloch estimates and Stopping time Lipschitz domains

In this section we will recapitulate and extend our arguments from [J–M]. In the first paragraphs of this section we discuss the tools necessary to define and analyze stopping time Lipschitz domains. Then we give the proof of Proposition 4 which implies Proposition 1.

We begin by describing a deep result of J. Bourgain [B]. It plays an important role in the proof of Proposition 1. We fix a positive harmonic function g in \mathbb{D} , and an interval $I \subset \mathbb{T}$ such that $m(\mathbb{T} \setminus I) \leq L^{-2}$. For $e^{i\alpha} \in I$ we let $\sum (e^{i\alpha}, L)$ be the collection of curves in \mathbb{D} which remain in a Stolz cone with vertex $e^{i\alpha}$ and opening angle $\pi - 1/L$, and have an L-Lipschitz parametrization. More precisely the curves in $\sum (e^{i\alpha}, L)$ admit the following representation,

$$\gamma(r) = re^{i\alpha}e^{i\theta(r)}, \ 0 \le r \le 1,$$

where $|\theta(r)| < L(1-r)$ and $|\theta'(r)| \le L$. Then the following holds.

Theorem (J. Bourgain) There exists $e^{i\alpha} \in I$ such that

a)
$$g(e^{i\alpha}) \le g(0) \left(1 + \frac{1}{c_0 L^2}\right) - c_0 \int_0^1 |\nabla g(e^{i\alpha}r)| dr,$$

where $c_0 > 0$ is universal, and such that

$$\int_{\gamma} |\nabla g(w)| |dw| \le C L g(0),$$

whenever $\gamma \in \sum (e^{i\alpha}, L)$. The constant $C \geq 1$ is universal.

Next we recall the result that a Bloch function is bounded on a dense set of radii. We fix a C_0 -Lipschitz domain $W \subseteq \mathbb{D}$. For $w \in W$ we let $s = \operatorname{dist}(w, \partial W)$ and we choose $w_0 \in \partial W$ such that $|w - w_0| = s$. Let r be contained in the intersection $\{y \in \mathbb{D} : |w_0 - y| = s/10\} \cap \partial W$, and let $I = \{y \in \mathbb{D} : |r - y| \le s/100\} \cap \partial W$. Let h be harmonic in W, and $M = \sup\{|\nabla h(z)|\operatorname{dist}(z, \partial W) : z \in W\}$. In the construction below we use the following theorem [P, Proposition 4.6].

Theorem (Ch. Pommerenke) There exists a geodesic γ in W, connecting w to a point in I such that for $z \in \gamma$, $|h(w) - h(z)| \leq MA_0$, where $A_0 > 0$ is universal.

The constant A_0 appearing in the above theorem is a fixed multiple of $1/\omega(I, W, w)$, where $\omega(I, W, w)$ denotes the harmonic measure of I in W evaluated at w. The upper bound for A_0 comes from Beurling's minorisation of harmonic measure.

Finally we discuss an estimate which controls the growth rate of

$$M(\zeta) = \sup_{z \in T(\zeta)} |\nabla u(z)| (1 - |z|).$$

We let g be a Moebius transform without fixed points in \mathbb{D} . Then on \mathbb{D} the function $\log d_{\mathbb{D}}(z, g(z))$ is Lipschitz with respect to the hyperbolic metric $d_{\mathbb{D}}$. Taking into account that $u = \log |P'|$ where P is actually a universal covering map, we obtain our next Lemma from the above remark and (3.1), (3.2) below.

Lemma 1 There exists a universal K > 0 such that the function $\log M(z)$ is K-Lipschitz with respect to $d_{\mathbb{D}}$.

We have completed the discussion of the preliminaries and will now describe the construction of stopping time Lipschitz domains. For the rest of this paper we fix $u = \log |P'|$. We also fix constants $M_1, L \in \mathbb{N}$ such that $M_1 > L > A_0$. We let $C_0 = K^2$, $\zeta \in \mathbb{D}$, and we assume that

$$M(\zeta) \le M_1/2^{LC_0}.$$

Around ζ , we wish to construct a large Lipschitz domain on which $u - u(\zeta)$ is bounded below and satisfies a Bloch estimate. This is done in two steps each of which uses stopping time procedures on dyadic intervals.

We define the box around ζ as follows,

$$D(\zeta) = \{ w \in \mathbb{D} : |\zeta/|\zeta| - w/|w| | \le 2^L (1 - |\zeta|), \text{ and } 1 - |w| \le 2^L (1 - |\zeta|) \}.$$

Note that the four sides and the four angles of the box $D(\zeta)$ are of the same size. For a dyadic interval $I \subset \mathbb{T}$ we let $T(I) = \{w \in \mathbb{D} : w/|w| \in I, |I|/2 \le 1 - |w| \le |I|\}$ and $M(I) = \sup\{M(\zeta) : \zeta \in T(I)\}$. Defining the first stopping time we let $\mathcal{E} = \{I_j\}$ be the collection of maximal dyadic intervals $\subseteq \mathbb{T}$ that satisfy $T(I) \cap D(\zeta) \neq \phi$ and

$$M(I) \geq M_1/LA_0$$
.

We let E(I) be the Euclidean convex hull of $\{w \in \mathbb{D} : 1 - |w| = |I|, w/|w| \in I\}$ and $16I \subseteq \mathbb{T}$, where 16I is the interval with the same midpoint as I and |16I| = 16|I|. Our first Lipschitz domain is given as

$$\mathcal{L}(\zeta) = D(\zeta) \setminus \bigcup_{I \in \mathcal{E}} E(I).$$

On $\mathcal{L}(\zeta)$, the function $u = \log |P'|$ satisfies a Bloch estimate. Indeed for $z \in \mathcal{L}(\zeta)$ we have by construction $|\nabla u(z)|(1-|z|) \leq M_1/LA_0$, and therefore $|\nabla u(z)| \mathrm{dist}(z, \partial \mathcal{L}(\zeta)) \leq M_1/LA_0$.

Next we will remove the points $w \in \mathcal{L}(\zeta)$ for which $u(w) - u(\zeta) < -M_1/2$. This will be achieved by the following stopping time procedure. Let $\mathcal{V} = \{J\}$ be the collection of maximal dyadic intervals J for which $T(J) \cap \mathcal{L}(\zeta) \neq \phi$ and there exists $v \in T(J)$ for which

$$u(v) - u(\zeta) < -M_1/2.$$

Using Pommerenke's theorem we will extract the information encoded in the stopping time collection \mathcal{V} . This requires some preparation. For $J \in \mathcal{V}$ we denote by w the point in T(J) which satisfies $u(w) - u(\zeta) < -M_1/2$, and which is of smallest possible modulus. Let $s = \operatorname{dist}(w, \partial \mathcal{L}(\zeta))$ and choose $w_0 \in \partial \mathcal{L}(\zeta)$ such that $|w - w_0| = s$. Also let $I_i = \{v \in \mathbb{D} : |v - w_i| \le s/100\} \cap \partial \mathcal{L}(\zeta)$, where w_1, w_2 are the points in the intersection $\{y : |w_0 - y| = s/10\} \cap \partial \mathcal{L}(\zeta)$. By Pommerenke's theorem there exists $y_i \in I_i$ such that for each z on the $\mathcal{L}(\zeta)$ -geodesic connecting w to y_i we have the upper bound

$$|u(w) - u(z)| \le M_1/L.$$

We call this geodesic γ_i . For $i \in \{1, 2\}$ we let R_i be the straight line segment (w, y_i) . Note that our construction gives the straight line segments R_1, R_2 in $\mathcal{L}(\zeta)$. Moreover for any point $v \in R_i$, there exists $z \in \gamma_i$ such that z and v can be connected by a curve in $\mathcal{L}(\zeta)$ and the $d_{\mathbb{D}}$ —length of this curve is $\leq K_1$. The constant $K_1 > 0$ is universal. In particular K_1 does not depend on our choice of L. This gives the following estimate for the deviation of u along R_i ,

$$|u(w) - u(v)| \le M_1/L + M_1 K_1/L A_0, \text{ for } v \in R_i.$$

We let $R_3 \subset \partial \mathcal{L}(\zeta)$ be the shorter arc in $\partial \mathcal{L}(\zeta)$ that connects y_1 and y_2 . Finally we define $V(J) \subseteq \mathcal{L}(\zeta)$ to be the domain in $\mathcal{L}(\zeta)$ that is bounded by R_1, R_2, R_3 , and we put,

$$W(\zeta) = \mathcal{L}(\zeta) \setminus \bigcup_{J \in \mathcal{V}} V(J).$$

From now on we will only consider $L \geq 4+4K_1/A_0$. The following list describes the basic properties of the domain $W(\zeta)$, and contains additional important information about the stopping time intervals in \mathcal{E} and \mathcal{V} .

Remarks.

- 1. If $z \in W(\zeta)$, then $M(z) < M_1/LA_0$ and $u(z) u(\zeta) > -M_1/2$.
- 2. The boundary of $W(\zeta)$ can be canonically decomposed into four very simple pieces: Two vertical line segments in $\partial D(\zeta)$, a horizontal line segment in $\partial D(\zeta)$, and a piece that is contained in the graph of a Lipschitz function defined on \mathbb{T} . To see this we only need to recall and compare the definitions of E(I) and V(J).
- 3. It follows from the stopping rule defining \mathcal{E} that $M(I)/M(\zeta) \geq 2^{LC_0}/LA_0$, whenever $I \in \mathcal{E}$. Comparing this estimate with Lemma 1 we find that the intervals $I \in \mathcal{E}$ satisfy $|I| \leq (1 |\zeta|)/8$.
- 4. For $I \in \mathcal{E}$ and $q \in E(I)$, we have $q/|q| \in 16I$.
- 5. The stopping rule for V together with Lemma 1 implies that any $J \in V$ satisfies $|J| \le (1 |\zeta|)/8$.
- 6. Let $I \in \mathcal{V}$ and assume that $q \in \partial V(I)$ and |q| < 1. Then by our choice of $L > 4 + 4K_1/A_0$ and by (2.1) we obtain that $u(q) u(\zeta) < -M_1/4$. We point out that this upper bound for the difference $u u(\zeta)$ on $\partial V(I) \cap \mathbb{D}$ is comparable to the lower bound of that difference in the entire domain $W(\zeta)$. Indeed by Remark 1, for $z \in W(\zeta)$ we have $u(z) u(\zeta) > -M_1/4$.

 $W(\zeta)$ is the domain we will be working with, in this section. The following subset of $\partial W(\zeta)$ is important for the construction below. It contains the points that play a role in the Future.

(2.2)
$$F(\zeta) = \{ w \in \partial W(\zeta) : |\zeta/|\zeta| - w| < 2^{L}(1 - |\zeta|) \text{ and } 1 - |w| \le (1 - |\zeta|)/2 \}$$

It follows from Remark 3) and 5) that $F(\zeta)$ is connected. Moreover, by Beurling, we have the following minorization of harmonic measure

$$\omega(F(\zeta), W(\zeta), \zeta) \ge 1 - L^{-2}.$$

The main result of this section is the following Proposition.

Proposition 4 There exists $q \in F(\zeta)$ such that,

1)
$$\int_{\gamma} |\nabla u(w)| |dw| \le CM_1 L, \text{ for } \gamma \in \Gamma(\zeta, q, L).$$

2) If
$$|q| < 1$$
, then $u(q) - u(\zeta) < M_1 \left(\frac{C}{c_0 L^2} - \frac{c_0}{C L A_0} \right)$,

where $C \geq 1$ is universal, and where $c_0, A_0 > 0$ are the constants appearing, in Bourgain's theorem resp. Pommerenke's theorem.

PROOF. Let $f: \mathbb{D} \to W(\zeta)$ be the Riemann map normalized such that $f(0) = \zeta$. Recall that $F(\zeta)$ is connected and that $w(F(\zeta), W(\zeta), \zeta) \geq 1 - L^{-2}$. Hence $A = f^{-1}(F(\zeta))$ is an interval such that $m(\mathbb{T} \setminus A) \leq L^{-2}$. By Remark 1 the pullback

$$g(w) = u(f(w)) - u(f(0)) + M_1$$

is a positive harmonic function in \mathbb{D} . Applying Bourgain's theorem gives $e^{i\alpha} \in A$ such that

$$g(e^{i\alpha}) \le g(0) \left(1 + \frac{1}{c_0 L^2}\right) - c_0 \int_0^1 |\nabla g(re^{i\alpha})| dr.$$

As $g(0) = M_1$ this is the same as

(2.3)
$$u(f(e^{i\alpha})) - u(f(0)) \le \frac{M_1}{c_0 L^2} - c_0 \int_{\gamma_0} |\nabla u(w)| |dw|,$$

where $\gamma_0 = f((0, e^{i\alpha}))$. The second part of Bourgain's theorem gives

$$\int_{\gamma} |\nabla g(w)| |dw| \le C M_1 L, \quad \text{for } \gamma \in \sum (e^{i\alpha}, L).$$

With a change of variables we rewrite this line as follows,

(2.4)
$$\int_{f(\gamma)} |\nabla u(w)| |dw| \le CM_1 L, \text{ for } \gamma \in \sum (e^{i\alpha}, L).$$

The admissible curves in (2.4) are $f(\gamma)$ with $\gamma \in \sum (e^{i\alpha}, L)$. Below we will use estimates on harmonic measure to show that the straight line segments in $\Gamma(\zeta, f(e^{i\alpha}), L)$ are also admissable curves. In fact we will show that (2.4) implies,

(2.5)
$$\int_{\sigma} |\nabla u(w)| |dw| \le C M_1 L, \text{ for } \sigma \in \Gamma(\zeta, q, L).$$

Now we let $q = f(e^{i\alpha})$. Note that we chose the interval A such that $f(e^{i\alpha})$ is contained in $F(\zeta)$. By construction the set $F(\zeta)$ splits canonically into three subsets carrying different pieces of information: The subset that intersects \mathbb{T} . The subset where $u - u(\zeta) < -M_1/4$. And the set of points z for which we know that somewhere in the Stolz cone centered at z the Bloch constant was larger than M_1/A_0L . Accordingly we continue by distinguishing between the following three cases:

- a) |q| = 1.
- b) |q| < 1 and there exists $I \in \mathcal{V}$ such that $q \in \partial V(I)$.
- c) |q| < 1 and $q \in \partial \mathcal{L}(\zeta)$.

Note that these cases cover all possibilities for $q \in F(\zeta)$. Treating different cases by different means, we will now verify that $q = f(e^{i\alpha})$ satisfies the conclusion of Proposition 4.

ad a) If $q = f(e^{i\alpha})$ satisfies |q| = 1 then we only have to show that

$$\int_{\sigma} |\nabla u(w)| |dw| \le C M_1 L, \text{ for } \sigma \in \Gamma(\zeta, q, L).$$

This however is just the estimate in (2.5).

ad b) By Remark 6 we have that $u(q) - u(\zeta) < -M_1/4$. When we combine this estimate with the variational estimate in (2.5) we obtain the assertions of Proposition 4. Note that in case b) the resulting decay of u is much better than claimed or needed.

ad c) By Remark 4 there exists an interval $I \in \mathcal{E}$, such that $q/|q| \in 16I$. Hence T(I) is contained in a Stolz cone with vertex q. As $I \in \mathcal{E}$ we have

$$M(I) \geq M_1/LA_0$$
.

In $W(\zeta)$, the geodesic $\gamma_0 = f((0, e^{i\alpha}))$ passes through a fixed enlargement of T(I). Moreover $\gamma_0 = f((0, e^{i\alpha}))$ is a C^2 curve with uniform constants in T(I). Hence by a simple normal families argument,

$$\int_{\gamma_0} |\nabla u(w)| |dw| \ge \frac{M_1}{CLA_0},$$

where C > 0 is universal, and in particular independent of L. We insert the last estimate into (2.3) and obtain

$$u(q) - u(\zeta) < M_1 \left(\frac{C}{c_0 L^2} - \frac{c_0}{C L A_0} \right).$$

We have dealt with all possible cases, and Proposition 4 is proven, provided that (2.4) implies (2.5). To show this implication we use the following lemma which is folklore.

We let I, J be adjacent intervals in \mathbb{T} which have $e^{i\alpha}$ as endpoint and $m(I) = m(J) = m(\mathbb{T})/2$. Their images under the Riemann map f are A = f(I) respectively B = f(J). Let $\gamma \subset W(\zeta)$. Using lower bounds for the harmonic measures of A and B we obtain useful information about the location of $f^{-1}(\gamma)$.

Lemma (Folklore) If for any $z \in \gamma$, $w(A, W(\zeta), z) \ge 1/L$ and $w(B, W(\zeta), z) \ge 1/L$, then $f^{-1}(\gamma)$ is contained in a Stolz cone of vertex $e^{i\alpha}$ and of opening angle $\pi - 1/CL$.

We can now show that (2.4) implies (2.5). We choose $\gamma \in \Gamma(\zeta, q, L)$, i.e., γ is of the form

$${s: |q| < |s| < |\zeta|} \cap (0, t),$$

where t satisfies |t| = |q|, $|t - q| \le 2^L (1 - |q|)$. By elementary geometry and Beurling's minorization of harmonic measure we find $t_1 \in \gamma$, whose hyperbolic distance to t is $\le LC$, and so that for each $z \in \gamma_1 = \gamma \cap (t_1, 0)$ we have the estimates $w(A, W(\zeta), z) \ge \eta/L$ and $w(B, W(\zeta), z) \ge \eta/L$, with an universal $\eta > 0$. The above folk lemma and the Koebe distortion theorem imply that $f^{-1}(\gamma_1)$ is a curve in $\sum (e^{i\alpha}, CL)$. Hence by (2.4)

$$\int_{\gamma_1} |\nabla u(w)| |dw| \le C M_1 L.$$

Finally for $\gamma_2 = \gamma \cap (t_1, t)$ we estimate

$$\int_{\gamma_2} |\nabla u(w)| |dw| \le M(t_1) d_{\mathbb{D}}(t, t_1) \le C M_1.$$

REMARK. We will use Proposition 4 to deduce Proposition 1. Therefore it is important that the constant appearing in condition 2) of Proposition 4,

$$\left(\frac{C}{c_0 L^2} - \frac{c_0}{C L A_0}\right),\,$$

is negative and independent of M_1 . But for L large enough the expression in (2.6) is just a small perturbation of $-c_0/CLA_0$. Here our argument really needs the additional freedom gained

by introducing the parameter L. It now follows that Proposition 4 implies Proposition 1 when we choose $L > 2C^2A_0/c_0^2$ and $C_1 = 2CA_0/c_0$. Note that such a choice is compatible with our previous lower bound on L.

3 When Bloch estimates fail

In this section we prove Proposition 2. We recall that there exits a Fuchsian group G without elliptic elemets so that $\mathbb{C} \setminus E$ is conformally equivalent to \mathbb{D}/G . The universal covering map is $P = \tau \circ \pi$ where π is the natural projection, and τ is the conformal bijection between \mathbb{D}/G and $\mathbb{C} \setminus E$. The density of the hyperbolic metric on $\Omega = \mathbb{C} \setminus E$ is given by

(3.1)
$$\lambda_{\Omega}(P(z))|P'(z)| = \frac{1}{1-|z|^2}, \qquad z \in \mathbb{D}.$$

By the result of A.F Beardon and Ch. Pommerenke [B-P], the density λ_{Ω} admits the following geometric estimate,

(3.2)
$$\lambda_{\Omega}(v_0) \sim \frac{1}{\operatorname{dist}(v_0, E)(\beta(v_0) + 1)}, \quad v_0 \in \mathbb{C} \setminus E,$$

where

$$\beta(v_0) = \inf \left\{ \left| \log \frac{|v_0 - a|}{|a - b|} \right| : |v_0 - a| = \operatorname{dist}(v_0, E) \text{ and } a, b \in E \right\}.$$

If for a given $v_0 \in \mathbb{C} \setminus E$ the infimum in the definition of $\beta(v_0)$ is attained in $a, b \in E$, then one of the following cases holds. (We let K(a, r) denote the open disk with radius r > 0 and center a.)

P1: There exists $B, \eta \in \mathbb{R}_0^+$ such that $\mathbb{C} \setminus E \supset K(a, B) \setminus \bar{K}(a, \eta), \eta < B^{-1}, b \notin K(a, B)$ and $\beta(v_0) \sim \log |\operatorname{dist}(v_0, E)/B|$.

P2: There exists $\eta > 0$ such that $\Omega \supset K(a, \eta^{-1}) \setminus K(a, \eta)$, $a, b \in K(a, \eta)$ and $\beta(v_0) \sim |\log(\operatorname{dist}(v_0, E)/\eta)|$.

We define these cases as giving rise to pictures; for example we will say that we see picture P1 at v_0 if P1 holds.

The following geometric lemma will be very useful when we study the decay of $\log |P'|$ along radial line segments. We consider the following annuli centered at $a \in E$,

$$A_k = \{ v \in \mathbb{C} : \operatorname{dist}(v_0, E)/2^{k+1} \le |a - v| \le \operatorname{dist}(v_0, E)/2^k \}, \text{ for } k \in \mathbb{N}_0.$$

We will only use these A_k when $\beta(v_0)$ is large and in this case the annuli A_k are disjoint from E when $k \leq C\beta(v_0)$. We also remark that these annuli allow us to trace the changes of the hyperbolic metric in $\Omega = \mathbb{C} \setminus E$, as we approach the boundary of Ω . In fact, by (3.2), the density of the hyperbolic metric remains essentially constant on each of the A_k , and the corresponding value can be computed from k and $\beta(v_0)$. The formulas are given in the proof below.

Lemma 2 Let $s = \operatorname{dist}(v_0, E)$ and let $\gamma : [0, 1] \to K(a, s) \cap \mathbb{C} \setminus E$ be a curve satisfying the following conditions:

- 1. $\gamma(0) = v_0$.
- 2. The linear measure of $\gamma \cap A_k$ is bounded by $C \operatorname{diam} A_k$, $k \in \mathbb{N}$.
- 3. There exists c < 1/2 so that if $\gamma(t) \in A_k$ and $t_1 > t$ then $\gamma(t_1) \notin A_{kc}$.
- 4. $4 > \int_{\gamma} \lambda_{\Omega}(w) |dw| > 1/4$.

Then $|\gamma(1) - a|/|v_0 - a| \le C2^{-\beta(v_0)/C}$ and $\beta(\gamma(1)) \le C\beta(v_0)$, where $C \ge 1$ is universal.

PROOF. First we consider the case when we see the picture P1 at v_0 . There exists a smallest $\eta \geq 0$ so that P1 holds. We denote it by $\epsilon \geq 0$. Now we determine how $\beta(v)$ changes when v moves through the annuli A_k . For $v \in A_k$, we have $\operatorname{dist}(v, E) = |v - a| \sim |v_0 - a|/2^k$. Let $k_0 \in \mathbb{N}$ be the first integer for which $|v_0 - a|/2^{k_0} \leq \sqrt{B\epsilon}$. One observes that $\beta(v)$ increases as v moves through the first k_0 annuli, and after that $\beta(v)$ decreases until it reaches ~ 0 . In fact, for $v \in A_k$ and $k \leq k_0$ we have $1 + \beta(v) \sim 1 + \beta(v_0) + k$. For $k \geq k_0$ we have $1 + \beta(v) \sim \max\{1, \beta(v_0) + 2k_0 - k\}$. We let $l \in \mathbb{N}$ be the smallest integer for which

$$\gamma \subset \bigcup_{k=1}^{l} A_k$$
.

The rest of the proof is used to show that l is comparable to $C\beta(v_0)$. We let $\gamma_k = \gamma \cap A_k$ and we need to consider only the case when $k_0 < l$. Then using hypothesis 2) we estimate as follows.

$$\int_{\gamma} \lambda_{\Omega}(v)|dv| = \sum_{k=1}^{l} \int_{\gamma_{k}} \lambda_{\Omega}(v)|dv| \sim \sum_{k=0}^{k_{0}} \int_{\gamma_{k}} \frac{|dv|}{\operatorname{dist}(v, E)(1 + \beta(v_{0}) + k)}
+ \sum_{k=k_{0}}^{l} \int_{\gamma_{k}} \frac{|dv|}{\operatorname{dist}(v, E)(1 + \beta(v_{0}) + 2k_{0} - k)}
\sim \sum_{k=0}^{k_{0}} \frac{1}{\beta(v_{0}) + k} + \sum_{k=k_{0}}^{l} \frac{1}{\beta(v_{0}) + 2k_{0} - k}
\sim \left| \log \frac{(\beta(v_{0}) + k_{0})^{2}}{\beta(v_{0})(\beta(v_{0}) - l + 2k_{0})} \right|.$$

Next using that $\int_{\gamma} \lambda_{\Omega}(v) |dv| \ge 1/4$ we obtain

$$\beta(v_0)(\beta(v_0) - l + 2k_0)e^{1/C} \le (\beta(v_0) + k_0)^2.$$

A simple calculation, using $k_0 \leq l$, gives $l \geq \beta(v_0)/2$. Hypothesis (3) gives the estimate

$$\frac{|\gamma(1) - a|}{|\gamma(0) - a|} \le 2^{-l/C}.$$

Combining this with $2^{-l/C} < 2^{-\beta(v_0))/2C}$ gives the first conclusion of the lemma when we "see" P1 at v_0 and $k_0 < l$. Finally we remark that the above line of inequalities can be reversed and we obtain also

$$\int_{\gamma} \lambda_{\Omega}(v) dv \ge \left| \log \frac{(\beta(v_0)) + k_0)^2}{\beta(v_0))(\beta(v_0) - l + 2k_0)} \right|.$$

Hence if $\int \lambda_{\Omega}(v) < 4$ then, by a simple calculation, $l \leq C\beta(v_0)$. This gives the second conclusion of Lemma 2. If we see P2 at v_0 then

$$1 + \beta(v) \sim \max\{1, \beta(v_0) - k\},\$$

for all k, and $v \in A_k$. Hence this case corresponds to $k_0 = 0$ in the above consideration, and the above calculation can simply be repeated, setting $k_0 = 0$.

Proof of Proposition 2. We are given $q \in \mathbb{D}$. The first part of the proof consists of constructing the points $w \in \mathbb{D}$, $v \in \overline{\mathbb{D}}$. The construction is based on the following estimate which holds when $M(q) \geq 1$,

(3.3)
$$\frac{1}{CM(q)} \le \inf_{g \in G} d_{\mathbb{D}}(q, g(q)) \le \frac{C}{M(q)}.$$

The right hand side of (3.3) follows from Lemma 1 and Koebe's distortion estimate by rescaling. The left hand side is obtained from univalence criteria by rescaling. See [M, Proposition 1.3] for an elementary univalence criterion that suffices here.

Now we select a group element $g \in G$ such that $d_{\mathbb{D}}(q, g(q)) \leq CM(q)^{-1}$. As G does not contain elliptic elements, there are either one or two fixed points of g on \mathbb{T} . Each case requires a different construction to obtain w, v.

We first treat the case where g has two fixed points in \mathbb{T} . Let $\zeta_1, \zeta_2 \in \mathbb{T}$ be the fixed points of g, and let A be the hyperbolic geodesic connecting ζ_1 to ζ_2 . We let S(q) be the hypercycle in \mathbb{D} which contains ζ_1, ζ_2 and q. Now we let $K \subseteq \mathbb{D}$ be the region which is bounded by the

axis A of g and the interval $I \subset \mathbb{T}$, $m(I) \leq m(\mathbb{T})/2$, whose endpoints are ζ_1, ζ_2 . We consider the hypercycle

$$S_0 = \{ s \in K : \sinh(d_{\mathbb{D}}(s, g(s))) = \sinh(d_{\mathbb{D}}(q, g(q))) M(q) / M_0 \}$$

and the ray R that connects $0 \in \mathbb{D}$ to the midpoint of I. Note that the hypercycle S_0 is well defined; it lies underneath the axis A, and also underneath S(q). Depending on the position of q relative to A the hypercycle S(q) may be above or underneath the axis A. We point out however that when we apply Proposition 2 the hypercycle S(q) will be above the axis A, and the point q we use will be close to the top of S(q). (See Lemma 3 below.) Now we define

$$(3.4) w = R \cap S(q), v = R \cap S_0.$$

We turn to the case when $g \in G$ has one fixed point $\zeta_1 \in \mathbb{T}$. The first step is again the construction of $w \in \mathbb{D}$, $v \in \mathbb{T}$. We let S(q) be the horocycle through $q \in \mathbb{D}$ and $\zeta_1 \in \mathbb{T}$. Without loss of generality we may assume that $0 \in \mathbb{D}$ is not contained in the disk bounded by S(q). Then we define

$$(3.5) w = S(q) \cap (0, \zeta_1), v = \zeta_1.$$

Again we point out that we will only apply this when q is near the top of the horocycle.

The following properties of w, v are easily verified:

(3.6)
$$C^{-1} \le M(w)/M(q) \le C,$$

(3.7) if
$$|v| < 1$$
, then $C^{-1} \le M(v)/M_0 \le C$,

$$(3.8) 1 - |v|^2 / 1 - |w|^2 \le 2^{-M(q) + M_0},$$

$$(3.9) |u(q) - u(w)| \le C + |\log((1 - |w|^2)/(1 - |q|^2))|.$$

As S(q), S_0 are levelsets for $s \mapsto \sinh d_{\mathbb{D}}(s, g(s))$, (3.6) and (3.7) follow from (3.3). Condition (3.8) is a consequence of elementary circle geometry. To verify (3.9) we exploit group invariance of P. We choose $m \in \mathbb{Z}$ so that for $k = g^m$

(3.10)
$$d_{\mathbb{D}}(k(q), w) \le CM^{-1}(q).$$

This is possible by (3.3). As $P = P \circ k$ we obtain k'(q)P'(k(q)) = P'(q). Consequently

$$\log |P'(q)| - \log |P'(k(q))| = \log |k'(q)|,$$

and $1 - |w|^2/2(1 - |q|^2) \le |k'(q)| \le 1 - |w|^2/1 - |q|^2$. By (3.10) we have

$$|u(k(q)) - u(w)| \le M(w)d(w, k(q)) < C.$$

Clearly, the last two estimates give (3.9):

$$|u(w) - u(q)| \le C + |\log((1 - |w|^2)/(1 - |q|^2))|.$$

So far we have verified conditions a) – d) of Proposition 2. The remaining condition e) follows from our next proposition.

We let R be the radial line segment connecting w and v, that is, R = (w, v). When a point moves along R towards the boundary of \mathbb{D} we observe the following decrease of $u = \log |P'|$:

Proposition 5 If $z_1, z_2 \in R$ satisfy $1/32 \le 1 - |z_2|/1 - |z_1| \le 1/4$, then $u(z_2) - u(z_1) \le -M(z_1)/C + C$, where C > 0 is universal.

PROOF. By choice of R, the line segment $t \mapsto z_1 + t(z_2 - z_1)$ minimizes the $\lambda_{\mathbb{D}}$ -distance between the hypercycles (respectively horocycles) $S(z_1)$ and $S(z_2)$. Therefore among all curves connecting $P(z_1)$ and $P(z_2)$ the following,

$$\gamma: t \mapsto P(z_1 + t(z_2 - z_1)),$$

has minimal length with respect to the hyperbolic metric on $\mathbb{C}\setminus E$. And so γ satisfies conditions (1) - 4 of Lemma 2, with $\gamma(0) = v_0 = P(z_1)$ and $\gamma(1) = P(z_2)$. To verify condition 2 of Lemma 2 we first note that for each A_k and $z, z' \in A_k$,

$$C^{-1}\lambda_{\Omega}(z) \le \lambda_{\Omega}(z') \le C\lambda_{\Omega}(z).$$

If condition 2 would fail then we could make a new curve with the same initial point and same last point as γ , and such that the hyperperbolic length of this new curve is less than the hyperbolic length of γ . The same argument proves also that condition 3 holds.

Applying Lemma 2 to our curve γ gives the following estimates.

$$\beta(P(z_2)) \leq C\beta(P(z_1)),$$

and

$$|a - P(z_2)|/|a - P(z_1)| \le C2^{-\beta(z_1)/C}$$
.

Combining these estimates with (3.1) and (3.2) we obtain

$$\frac{|P'(z_2)|}{|P'(z_1)|} = \frac{\lambda_{\Omega}(P(z_1))(1-|z_1|^2)}{\lambda_{\Omega}(P(z_2))(1-|z_2|^2)} \\
\leq C \frac{|a-P(z_2)|}{|a-P(z_1)|} \frac{(\beta(P(z_2))+1)}{(\beta(P(z_1))+1)} \\
\leq C 2^{-\beta(P(z_1))/C}.$$

We remark that by rescaling and normal families $M(z_1) \leq C\beta(P(z_1))$; this completes the proof of Proposition 5.

Finally we conclude the proof of Proposition 2: Conditions a) - d) of Proposition 2 follow from (3.5) - (3.8). We will now verify condition e), using Proposition 5, Lemma 1, (3.9) and (3.10).

Let $\Lambda \in \Gamma(w, v, L)$ and choose $w_1, w_2 \in \Lambda$ such that $(1 - |w_1|)/(1 - |w_2|) > 4$. As above we denote R = (w, v). Let us first treat the case when |v| = 1. In that case $\Gamma(w, v, L)$ contains only one element namely R, and applying Proposition 5 to $\Lambda = R = (w, v)$ gives condition e) of Proposition 2.

Next we consider the case when |v| < 1. This condition implies that our group element g has two fixed points $\zeta_1, \zeta_2 \in \mathbb{T}$. For $i \in \{1, 2\}$ we let $z_i \in R$ be the top of the hypercycle containing w_i and the fixed points $\zeta_1, \zeta_2 \in \mathbb{T}$. As in (3.6) we have $M(w_i)/C \leq M(z_i) \leq M(w_i)C$. Combining (3.9) and (3.10) we obtain $|u(z_i) - u(w_i)| \leq CL$. Applying Proposition 5 to z_1, z_2 gives $u(z_2) - u(z_1) \leq -M(z_1)/C + C$. Summing up we obtain that

$$u(w_2) - u(w_1) \le -M(w_1)/C_2 + C_2L.$$

We will now link the Lipschitz domains of Section 2 to elements of the above construction. Recall that we have isolated the following connected subset on the boundary of our Lipschitz domain $W(\zeta)$,

$$F(\zeta) = \{ w \in \partial W(\zeta) : |\zeta/|\zeta| - w| < 2^{L}(1 - |\zeta|) \text{ and } 1 - |w| \le (1 - |\zeta|)/2 \}.$$

We recall also that for $q \in \mathbb{D}$ we started the proof of Proposition 2 by selecting a group element $g \in G$ satisfying $d_{\mathbb{D}}(q, g(q)) \leq CM(q)^{-1}$. Then we defined S(q) to be the hypercycle containg q and the fixed points ζ_1, ζ_2 of g, when g was hyperbolic. In the case of a parabolic g, S(q) was the horocycle through q that was tangent to \mathbb{T} at the (sole) fixed point of g. In our next lemma we will utilize again that $W(\zeta)$ is the result of stopping time arguments, and we find that for $q \in F(\zeta)$ the top of S(q) is close to q, whenever M(q) is a large constant.

Lemma 3 Let $q \in F(\zeta)$, and assume that $M(q) \geq M_1/2^{C_0L}$. Let $w \in \mathbb{D}$ be the top of S(q). Then in \mathbb{D} the hyperbolic distance between q and w is bounded by C_4L .

PROOF. We assume to the contrary that the lemma is false. Under this assumption we will construct a long sequence of points $w_i \in W(\zeta)$ so that $M(w_0) \geq M_1/C_2 2^{LC_0}$ and $M(w_i) \geq 2^i M(w_0)$. On the other hand the points $w_i \in W(\zeta)$ satisfy the stopping time condition $M(w_i) \leq M_1/LA_0$. This gives a contradiction when the sequence of points is long enough.

Now we assume that $d_{\mathbb{D}}(q, w) > CL$ for arbitrary large C. We let R_0 be the straight line segment $R \cap W(\zeta)$ where R is the straight line connecting w to v. We recall that 0, w and v are points on the same radial ray. As $d_{\mathbb{D}}(q, w) > CL$, there exists $\tau > 0$ depending only on the Lipschitz constants of $W(\zeta)$, such that the hyperbolic diameter of R_0 is $\geq \tau CL$. Therefore we find points $w_0 = w, w_1, \ldots, w_{i_0}$ on R_0 with $1 - |w_{i+1}|^2/1 - |w_i|^2 < \eta$ and $i_0 \geq \eta \tau CL$. It follows from [Be, Section 7.35] and an elementary calculation that the displacement function decreases at a geometric rate on R_0 . Hence

$$d_{\mathbb{D}}(w_{i+1}, g(w_{i+1})) \le \eta d_{\mathbb{D}}(w_i, g(w_i)), \qquad i \le i_0.$$

If moreover $\eta > 0$ is small enough, it follows from (3.3) that

$$(3.11) M(w_i) \ge 2^i M(w_0), i < i_0.$$

Finally, it follows from our hypothesis on M(q) and condition (a) of Proposition 2, that

$$(3.12) M(w_0) \ge M_1/C_2 2^{C_0 L}.$$

On the other hand, in Section 2 the stopping time Lipschitz domain was constructed such that for $w_i \in W(\zeta)$, we have $M(w_i) \leq M_1/LA_0$. This contradicts (3.11) and (3.12) for i_0 large enough, and the assumption was that we can make i_0 as large as we please.

4 Selecting good rays

In this section we first prove Proposition 3 and then Theorem 1. The inductive construction of the points $\{s_k\}$ in Proposition 3 is based on repeated application of Proposition 1 and 2. These propositions can interact when the constants M_0 , M_1 , L are specified as follows. We recall that we have imposed the lower bound $L > 4 + 4K_1/A_0$ in Section 2 during the construction of the domains $W(\zeta)$, and that later, in the remark following the proof of Proposition 4, we have chosen L such that also $L > 2C^2A_0/c_0^2$. Now we let $M_0 > 1$ be such that

$$-M_0/C_2 + C_2 \le -M_0/2C_2 \le -1,$$

where $C_2 \geq 1$ is the constant apearing in Proposition 2. Finally we take M_1 large enough so that $M_1/2^{C_0L} \geq 2M_0$ and

$$(4.2) -M_1/LC_1 + 4C_4L \le -M_1/2LC_1.$$

We will verify Proposition 3 with $C_3 = \max\{4+4K_1/A_0, 2C^2A_0/c_0^2\}$ and $M = 4C_1^2C_2L^2$. The proof begins with the inductive construction of the sequence $\{s_k\}$. Assuming, as we may that for $u = \log |P'|$, u(0) = 0, and $|\nabla u(0)| = 1$ we take $s_0 = 0$. We assume that s_0, \ldots, s_n have been constructed such that the conclusion of Proposition 3 holds, and such that $M(s_n) \leq M_1/2^{C_0L}$. Now we determine s_{n+1} as follows.

We start by constructing the stopping time Lipschitz domain $W(s_n)$ and apply Proposition 1, to obtain $q \in F(s_n)$ such that

$$(4.3) u(q) - u(s_n) \le -M_1/C_1L,$$

when |q| < 1, and

(4.4)
$$\int_{\gamma} |\nabla u(z)| |dz| \le M_1 L C_1,$$

for $\gamma \in \Gamma(s_n, q, L)$. Now we consider three cases:

- 1. If |q| = 1 then we put $s_{n+1} = q$ and we stop the construction.
- 2. If |q| < 1 and if $M(q) \le M_1/2^{C_0L}$ then we put $s_{n+1} = q$. By (4.3) and (4.4) the induction step is completed. We may continue with the construction of the next point.

3. If |q| < 1 and $M(q) > M_1/2^{C_0L}$ then we apply Proposition 2 to $q \in \mathbb{D}$ and obtain $w \in \mathbb{D}$, $v \in \overline{\mathbb{D}}$ for which the conclusion of Proposition 2 hold. We define $s_{n+1} = v$. In the next paragraph we will verify that s_{n+1} satisfies the conclusion of Proposition 3.

The assumption in the third case is that $M(q) > M_1/2^{C_0L}$. By Lemma 3 this implies that $d_{\mathbb{D}}(w,q) \leq C_4L$. We fix $\gamma \in \Gamma(s_n,s_{n+1},L)$, and we let $\sigma = \gamma \cap \{s: |z_n| < |s| < |q|\}$ and $\rho = \gamma \cap \{s: |w| < |s| < |s_{n+1}|\}$. Note that $\gamma = \sigma \cup \rho$. We estimate the difference $u(s_{n+1}) - u(s_n)$ by breaking it into three pieces: Recalling that $s_{n+1} = v$ and Proposition 2 (e) give

$$u(s_{n+1}) - u(w) \le -\frac{1}{M} \int_{\varrho} |\nabla u(z)| |dz|.$$

Lemma 3 together with Proposition 2 (b) gives $|u(w) - u(q)| \le C_2 + C_4L \le 2C_4L$, and (4.1) – (4.4) imply

$$u(q) - u(s_n) + 2C_4L \le -\frac{1}{M} \int_{\sigma} |\nabla u(z)| |dz|.$$

Summing up we have,

$$u(s_{n+1}) - u(s_n) \leq u(s_{n+1}) - u(w) + u(w) - u(q) + u(q) - u(s_n)$$

$$\leq -\frac{1}{M} \left(\int_{\sigma} |\nabla u|(z)|dz| + \int_{\rho} |\nabla u|(z)|dz| \right)$$

$$\leq -\frac{1}{M} \int_{\gamma} |\nabla u(z)||dz|.$$

Finally we have to distinguish between the cases $|v| = |s_{n+1}| = 1$ and $|v| = |s_{n+1}| < 1$. If $|s_{n+1}| = 1$ then we stop the construction, and Proposition 3 is true in that case. If $|s_{n+1}| < 1$ then by Proposition 2 (c) we have $M(s_{n+1}) \leq M_0 2 \leq M_1/2^{C_0 L}$, and we may continue to construct the next point. This completes the proof of Proposition 3.

We turn to the proof of Theorem 1. Let $\{s_k\}$ be the sequence of points given by Proposition 3. This sequence converges to a point in \mathbb{T} ; we denote its limit by $e^{i\beta}$. Now we let $R = (0, e^{i\beta})$ be the ray connecting 0 to $e^{i\beta}$. We will show that uniformly on R the radial variation of u is of the smallest possible order. More precisely we will verify that for any $\xi \in R$,

$$u(\xi) \le -\frac{1}{M} \int_{(0,\xi)} |\nabla u(z)| |dz| + M M_1,$$

where M_1 has been chosen in (4.2) and M is the constant appearing in Proposition 3. We decompose $R = (0, e^{i\beta})$ as

$$R = \bigcup \gamma_k,$$

where $\gamma_k = R \cap \{s \in \mathbb{D} : |s_k| \leq |s| \leq |s_{k+1}|\}$. Note that by condition b) of Proposition 3 the straight line segment γ_k belongs to $\Gamma(s_k, s_{k+1}, L)$. Next we choose an arbitrary point $\xi \in R$. Let $k_0 \in \mathbb{N}$ be such that $\xi \in \gamma_{k_0}$. We will treat two cases depending on how s_{k_0+1} was obtained during the proof of Proposition 3. In the first case s_{k_0+1} was obtained by an application of Proposition 1. As $\xi \in \gamma_{k_0}$ it follows from condition a) of Proposition 1 that,

$$|u(\xi) - u(s_{k_0})| \le \int_{\gamma_{k_0}} |\nabla u(z)| |dz| \le C_1 L M_1.$$

Summing a telescoping series we obtain from Proposition 3,

$$u(s_{k_0}) - u(0) \le -\sum_{l=0}^{k_0-1} \frac{1}{M} \int_{\gamma_l} |\nabla u(z)| |dz|.$$

We let $\rho = R \cap \{s : |s| < |s_{k_0}|\}$. Now we estimate the difference $u(\xi) - u(0)$ by adding the last two inequalities.

$$u(\xi) - u(0) = u(\xi) - u(s_k) + u(s_k) - u(0)$$

$$\leq \int_{\gamma_{k_0}} |\nabla u(z)| |dz| - \frac{1}{M} \int_{\rho} |\nabla u(z)| |dz|$$

$$\leq C_1 L M_1 - \frac{1}{M} \int_{(0,\xi)} |\nabla u(z)| |dz|.$$

In the second case s_{k_0+1} was obtained by an application of Proposition 2. This means the following: Applying Proposition 1 to s_{k_0} gives $q \in F(s_{k_0})$ with $M(q) \geq M_1/2^{C_0L}$; applying Proposition 2 to q gives $w \in \mathbb{D}$, $v \in \bar{\mathbb{D}}$ and $s_{k_0+1} = v$, $M(s_{k_0+1}) \leq 2M_0$.

We distinguish between the cases $(1-|w|)/(1-|\xi|) < 4$ and $(1-|w|)/(1-|\xi|) \ge 4$. In the first case we estimate $u(\xi) - u(w) \le 4M(q) \le M_1$. Combining condition b) of Proposition 2 with Lemma 3 and condition b) of Proposition 1 gives

$$u(w) - u(s_{k_0}) \le -M_1/C_1 + 4LC_4.$$

Now we let $\rho = R \cap \{s : |s| < |s_{k_0}|\}$, and using Proposition 3 we estimate as follows.

$$u(\xi) - u(0) = u(\xi) - u(w) + u(w) - u(s_{k_0}) + u(s_{k_0}) - u(0)$$

$$\leq -\frac{1}{M} \int_{\rho} |\nabla u(z)| |dz| - M_1/2C_1 + M_1$$

$$\leq -\frac{1}{M} \int_{(0,\xi)} |\nabla u(z)| |dz| + M_1.$$

Finally we consider the case where $(1-|w|)/(1-|\xi|) \ge 4$. By Proposition 2 (e),

$$u(\xi) - u(w) \le -\frac{1}{M} \int_{\sigma} |\nabla u(z)| |dz|,$$

where $\sigma = R \cap \{s : |w| < |s| < |\xi|\}$. We let $\rho = R \cap \{s : |s| < |s_{k_0}|\}$, then $(0, \xi) = \sigma \cup \rho$. Hence using Proposition 2 (b), Lemma 3 and Proposition 3 we obtain the following estimate

$$u(\xi) - u(0) = u(\xi) - u(w) + u(w) - u(s_{k_0}) + u(s_{k_0}) - u(0)$$

$$\leq -\frac{1}{M} \int_{\sigma} |\nabla u(z)| |dz| + 2C_4 L - \frac{1}{M} \int_{\rho} |\nabla u(z)| |dz|$$

$$\leq -\frac{1}{M} \int_{(0,\xi)} |\nabla u(z)| |dz| + 2C_4 L.$$

This completes the proof of Theorem 1.

References

- [Be] A.F. Beardon, The geometry of discrete groups, Springer Verlag, New York, (1983).
- [B-P] A.F. Beardon, Ch. Pommerenke, The Poincaré metric of plane domains,
 J. London Math. Soc. (2), 18 (1978), 475-483.
- [B] J. Bourgain, Bounded variation of measure convolution, Mat. Zametki 54 (1993), 24-33.
- [J-M] P.W. Jones, P.F.X. Müller, Radial variation of Bloch function, Math. Res. Lett. 4 (1997), 395-400.
- [M] N.G. Makarov, Probability methods in the theory of conformal mappings, Leningrad Math. J. 1 (1990), 1-56.
- [P] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer Verlag, Berlin Heidelberg (1992).

Department of Mathematics

Yale University, New Haven, CT 06520, USA

Institut f. Analysis und Numerik

J. Kepler Universität, A-4040 Linz, Austria

e-mail address:

jones@math.yale.edu

pfxm@caddo.bayou.uni-linz.ac.at