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1 Introduction and Statement of Results

We let E C C be a closed set with two or more points. By the uniformization theorem there
exists a Fuchsian group of Moebius transformations such that C\ E is conformally equivalent
to the quotient manifold D/G. The universal covering map P : D — C\ E is then given by
P = 7 om, where 7 is the natural quotient map onto D/G and 7 is the conformal bijection

between C\ E and D/G. In this paper we will show that there exists ¢/’ € T such that
1 .

(1.1) / |P"(réi®)|dr < oco.
0

Considering u = log | P’|, one obtains (1.1) from variational estimates.

Theorem 1 There exists e’ € T and M > 0 such that forr < 1,

1

5y o _ L
u(re’) i

/0 \Vu(pe)|dp + M.

The class of universal covering maps contains two extremal cases. The case where C\ £
is simply connected and the case where F consists of two points. We considered the simply
connected case in [J-M] where we proved that Anderson’s conjecture is true. The second case is
easier; well known estimates for the Poincaré metric on the triply punctured sphere give (1.1)
when P is the universal covering of C\ {0, 1}.

In the course of the proof of Theorem 1 we measure the thicknes of E at all scales, and we
are guided by the following philosophy. If, at some scale, the boundary E appears to be thick
then, locally, the universal covering map behaves like a Riemann map. On the other hand, if £
appears to be thin, then, locally, the Poincare metric of C \ E behaves like the corresponding
Poincare metric of C\ {0,1}. With the right estimates for the transition from the thick case
to the thin case, this philosophy leads to a rigorous proof. Our proof also shows the existence
of a very large set of angles (8 for which Theorem 1 holds.

The following propositions present the main technical results of this paper. Each proposition
gives estimates on the radial variation of u = log |P'|. The hypothesis of Proposition 1 covers
the case when to an observer at w = P(() the boundary E looks like a connected set. The
hypothesis of Proposition 2 covers the case when the boundary E looks like an isolated point.
To express these alternatives analytically, we use the function

M(¢) = sup [Vu(z)[(1—|z])

z€T'(¢)



where
TQ)={weD:|w—-¢[<1-[¢[,(1-[¢))/2<1—|w|<1-IC]}

The first alternative corresponds to the case where u = log | P’| satisfies a Bloch condition near
(. The second alternative causes the failur of Bloch estimates near (. Correspondingly the

proof of Proposition 1 uses the condition
M (¢) < some constant,
whereas Proposition 2 requires that
M({) > a very large constant.

Further combinatorial considerations provide the tools for an iterative solution of Theorem 1
based on repeated applications of Propositions 1 and 2.

In both Proposition 1 and 2 the following family of curves plays an important role. We let
L > 1 be a positive integer, and we let 21, 29 € D, |21] < |22]|. Then I'(z1, 22, L) is the collection

of all radial line segments
v={seD: [a] <[s| <|z[} N (0,1),

where ¢ € D satisfies [t| = |2, |t — 22| < 2%(1—]22|) and where (0, ¢) denotes the ray connecting
0eDtoteD.

We let My, L be positive integers and we fix a point ( € D. Under the hypothesis that
M (() < C, the universal covering map P behaves locally like a Riemann map. Hence in the
proof of Propositon 1 we work with stopping time arguments and J. Bourgain’s estimate for

the radial variation of positive harmonic functions.

Proposition 1 There exist C; > 1 so that the following holds. If L > Cy and if M(¢) <
M, /2L then there exists ¢ € D such that

a) /7|Vu(w)||dw| < C\M\L, for v €T(C,q,L).
b) If l[q| <1 then u(q) —u(¢) < —M,/LC,.
c) 1— gl < (1 =1[¢)/2 and |¢ = ¢| < (1= [¢])2".



The constant Cy > 1 appearing in the formulation of Proposition 1 is specified in Section 2. Let
us assume temporarily that the point ¢ obtained by Proposition 1 also satisfies the condition
that M(q) < M;/2%%. Then we could apply Proposition 1 again with ¢ replaced by ¢. Doing
this would start an iteration leading to the desired variational estimates for u — until a point is
reached for which M (q) > M, /2%~ . Proposition 2 explains what we do when M (q) > M, /2% .

First using group invariance of P we replace ¢ by a (specially chosen) point w such that
u(w) — u(g)| < Cy + dp(w, q).

Then using geometric estimates for the hyperbolic metric in C\ E' we prove variational estimates
for u along the radius that connects w to the boundary of . Note that as stated Proposition
2 does not give any information about how close w is to ¢q. Only later, when we exploit that
the machinery underlying the proof of Proposition 1 is composed of stopping time arguments,

are we able to show that M(q) > M,;/2°F implies a bound like
d]D)(’U), q) S C’4L
(This is done in Lemma 3 of Section 3.)

Proposition 2 There ezists Cy > 1 so that for ¢ € D and M(q) > M, there exist w,v € D so
that the following holds.

a) M(w)/Cy < M(q) < M(w)Cs.

b) Ju(w) —u(q)| < C2 + dp(w,q).

¢) If |v| < 1, then My/2 < M(v) < 2Mp.

d) (1— Jo])/(1 = |w]|) < 20 M@+M)/C20, and w lies on the ray (0, v).

e) If v € D(w,v, L), and if wy,wy are points on v, with (1 — |wy|)/(1 — |wa|) > 4, then

u(wq) — u(wy) < —M(wy)/Cy + CoL.

Now we describe in more detail the relative positions of ¢,w and v. In the case when |v| =1,
the point w is the top of the horocycle that is tangent to T at v and contains ¢. If v < 1, there
exist (1,(s € T so that w is the top of the hypercycle S(q) containing (i, (> and ¢. The point
v is then the top of another hypercycle Sy underneath S(q) that contains (;,(; and satisfies



My/2 < M(v) < 2My. We remark also that w will be hyperbolically very close to k(q), for
a suitably chosen £ € G. And we will see that therefore the right hand side of part (b) does
not depend on M (q). This is useful since we apply Proposition 2 when M (q) is a very large
constant.

Repeatedly applied, Propositions 1 and 2 give the following result.

Proposition 3 There exists C3 > 1 so that for L > C3 and M = 4C?C,L?, a sequence of

points s € D can be found satisfying the following conditions.

1
a) u(sg) — u(sg_1) < i |Vu(w)||dw| for v € T'(sg_1, sk, L),
v

b) 1 —|sk| < (1= sk_1])/4 and |sk — sp_1] < 2L(1 — |sk_1])-

2 Bloch estimates and Stopping time Lipschitz domains

In this section we will recapitulate and extend our arguments from [J-M]. In the first paragraphs
of this section we discuss the tools necessary to define and analyze stopping time Lipschitz
domains. Then we give the proof of Proposition 4 which implies Proposition 1.

We begin by describing a deep result of J. Bourgain [B]. It plays an important role in the
proof of Proposition 1. We fix a positive harmonic function ¢ in D, and an interval I C T
such that m(T \ I) < L72. For e'® € I we let 3 (e'®, L) be the collection of curves in D which
remain in a Stolz cone with vertex ¢* and opening angle 7 — 1/L, and have an L—Lipschitz

parametrization. More precisely the curves in Y(e*, L) admit the following representation,
Y(r) =re® e, 0 <r <1,

where |0(r)| < L(1 —r) and |¢'(r)| < L. Then the following holds.

Theorem (J. Bourgain) There exists ¢* € I such that

a) 9(€) < g(0) (1 + c01L2> e /01 Vg(eier)dr,

where cg > 0 is universal, and such that
) | 199(w)ljdu] < CLg(0)
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whenever v € (e, L). The constant C' > 1 is universal.

Next we recall the result that a Bloch function is bounded on a dense set of radii. We fix a
Co-Lipschitz domain W C D. For w € W we let s = dist(w, OW) and we choose wy € W such
that |w—wp| = s. Let r be contained in the intersection {y € D : |wy—y| = s/10}NOW, and let
I={yeD:|r—y| <s/100}NOW. Let h be harmonic in W, and M = sup{|Vh(z)|dist(z, OW) :

z € W}. In the construction below we use the following theorem [P, Proposition 4.6].

Theorem (Ch. Pommerenke) There exists a geodesic v in W, connecting w to a point in I

such that for z € v, |h(w) — h(z)| < M Aq, where Ag > 0 is universal.

The constant Ay appearing in the above theorem is a fixed multiple of 1/w(I, W, w), where
w(I,W,w) denotes the harmonic measure of I in W evaluated at w. The upper bound for A,
comes from Beurling’s minorisation of harmonic measure.
Finally we discuss an estimate which controls the growth rate of
M(C) = sup [Vu(2)|(1— |2]).
2€T(C)
We let g be a Moebius transform without fixed points in D. Then on D the function log dp(z, g(2))
is Lipschitz with respect to the hyperbolic metric dp. Taking into account that u = log|P’|
where P is actually a universal covering map, we obtain our next Lemma from the above remark

and (3.1), (3.2) below.

Lemma 1 There exists a universal K > 0 such that the function log M(z) is K— Lipschitz

with respect to dp.

We have completed the discussion of the preliminaries and will now describe the construction
of stopping time Lipschitz domains. For the rest of this paper we fix u = log|P’|. We also fix
constants M, L € N such that M; > L > Ay. We let Cy = K2, ( € D, and we assume that

M(C) < M, /25,

Around ¢, we wish to construct a large Lipschitz domain on which u — u(() is bounded below
and satisfies a Bloch estimate. This is done in two steps each of which uses stopping time
procedures on dyadic intervals.

We define the box around ( as follows,
D) ={weD:[¢/[¢| —w/lw]| < 2"(1 = [¢]), and 1 — |w| < 2°(1 — [¢])}-
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Note that the four sides and the four angles of the box D(() are of the same size. For a
dyadic interval I C T we let T'(I) = {w € D : w/lw| € I,|I|/2 < 1 — |w| < |I]} and
M(I) = sup{M(¢) : ¢ € T(I)}. Defining the first stopping time we let £ = {I;} be the
collection of maximal dyadic intervals C T that satisfy T'(1) N D(() # ¢ and

M(I) > M,/LA,.

We let E(I) be the Euclidean convex hull of {w € D : 1 — |w| = |I|, w/|w| € I} and 16I C T,
where 161 is the interval with the same midpoint as I and |16I| = 16|I|. Our first Lipschitz

domain is given as

L(Q) =D\ U EU).

Iee
On L(¢), the function u = log|P’| satisfies a Bloch estimate. Indeed for z € £({) we have by

construction |Vu(2)|(1 — |z]) < M;/LAy, and therefore |Vu(z)|dist(z, 0L(C)) < My/LA,.

Next we will remove the points w € £(¢) for which u(w) — u(¢) < —M;/2. This will be
achieved by the following stopping time procedure. Let ¥V = {J} be the collection of maximal
dyadic intervals J for which T'(.JJ) N L(¢) # ¢ and there exists v € T(.J) for which

u(v) —u(C) < =M, /2.

Using Pommerenke’s theorem we will extract the information encoded in the stopping time
collection V. This requires some preparation. For J € V we denote by w the point in T'(.J)
which satisfies u(w) — u(¢) < —M;/2, and which is of smallest possible modulus. Let s =
dist(w, 0L(()) and choose wy € OL(() such that |w —wy| =s. Alsolet ; ={v e D: |v—w;| <
s/100} N OL(C), where wy, wy are the points in the intersection {y : |wy — y| = s/10} N AL(().
By Pommerenke’s theorem there exists y; € I; such that for each z on the £({)—geodesic

connecting w to y; we have the upper bound
lu(w) —u(z)| < M;/L.

We call this geodesic ;. For i € {1,2} we let R; be the straight line segment (w,y;). Note that
our construction gives the straight line segments Ry, Ry in £((). Moreover for any point v € R;,
there exists z € v; such that z and v can be connected by a curve in £(¢) and the dp— length
of this curve is < K;j. The constant K; > 0 is universal. In particular K; does not depend on

our choice of L. This gives the following estimate for the deviation of u along R;,
(21) |’U,(’U}) —’U,('U)| S Ml/L+M1K1/LAO, for v € RZ
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We let Ry C 9L(() be the shorter arc in dL(({) that connects y; and yo. Finally we define
V(J) C L(C) to be the domain in £(() that is bounded by Ry, Ry, R3, and we put,

W(¢) =L\ U V).

Jey

JFrom now on we will only consider L > 4+4K;/Aq. The following list describes the basic prop-

erties of the domain W((), and contains additional important information about the stopping

time intervals in £ and V.

REMARKS.

1.

If z € W((), then M(z) < M,/LAy and u(z) — u(¢) > —M;/2.

. The boundary of W(() can be canonically decomposed into four very simple pieces: Two

vertical line segments in 0D((), a horizontal line segment in dD((), and a piece that is
contained in the graph of a Lipschitz function defined on T. To see this we only need to

recall and compare the definitions of E(I) and V' (J).

. Tt follows from the stopping rule defining £ that M(I)/M(¢) > 2/ /LAj, whenever

1 € £. Comparing this estimate with Lemma 1 we find that the intervals I € £ satisfy
1] < (1 =1[¢])/s.

For I € £ and q € E(I), we have ¢/|q| € 161.

. The stopping rule for V together with Lemma 1 implies that any J € V satisfies |J| <

(1 —1[¢h)/8.

Let I € V and assume that ¢ € 0V (I) and |¢| < 1. Then by our choice of L > 4+4K, /A,
and by (2.1) we obtain that u(q) —u(¢) < —M; /4. We point out that this upper bound for
the difference u—u(¢) on IV (I)ND is comparable to the lower bound of that difference in
the entire domain W (¢). Indeed by Remark 1, for z € W(¢) we have u(z)—u(¢) > —M, /4.

W (() is the domain we will be working with, in this section. The following subset of OW ()

is important for the construction below. It contains the points that play a role in the Future.

(2.2)

F(¢) = {w e oW (¢)  I¢/I¢] — w] < 2(1 = [¢]) and 1 — |w| < (1 —[¢])/2}



It follows from Remark 3) and 5) that F'(¢) is connected. Moreover, by Beurling, we have the

following minorization of harmonic measure

W(F(C), W ((),¢) =1 — L7

The main result of this section is the following Proposition.

Proposition 4 There exists ¢ € F(() such that,

1) A|Vu(w)||dw| < CM,L, foryeT(¢q,L).
C Co
2) IFlal <1, then u(g) = u(¢) < M (5 = =7 ).

where C' > 1 is universal, and where ¢y, Ag > 0 are the constants appearing, in Bourgain’s

theorem resp. Pommerenke’s theorem.

PROOF. Let f: D — W(() be the Riemann map normalized such that f(0) = ¢. Recall that
F(¢) is connected and that w(F(¢),W(¢),() > 1— L2 Hence A = f~}(F(¢)) is an interval
such that m(T \ A) < L™2. By Remark 1 the pullback

9(w) = u(f(w)) = u(f(0)) + M,

is a positive harmonic function in . Applying Bourgain’s theorem gives ¢’ € A such that

g(e"®) < g(0) <1 + 001[/2> — ¢ /01 IV g(re')|dr.

As g(0) = M this is the same as

M,

(23) u(F(e)) ~u(F0)) < =55 = co [ [Vuu) ldul,

where 7 = f((0,¢€')). The second part of Bourgain’s theorem gives
[ IVg@)ldul < CML,  for v € 3(e, L),
v
With a change of variables we rewrite this line as follows,

(2.4) /f( | Vu(w)||dw| < CM,L, for v € 3 (¢, L).
Y



The admissible curves in (2.4) are f(v) with v € (', L). Below we will use estimates on
harmonic measure to show that the straight line segments in I'(¢, f(e'®), L) are also admissable

curves. In fact we will show that (2.4) implies,
(2.5) / Vu(w)||dw] < CMIL, for o € T(C, g, L).

Now we let ¢ = f(e'®). Note that we chose the interval A such that f(e*®) is contained
in F'(¢). By construction the set F(¢) splits canonically into three subsets carrying different
pieces of information: The subset that intersects T. The subset where u — u(¢) < —M;/4.
And the set of points z for which we know that somewhere in the Stolz cone centered at z the
Bloch constant was larger than M;/AgL. Accordingly we continue by distinguishing between

the following three cases:
a) |q| = 1.
b) |¢| < 1 and there exists I € V such that ¢ € 0V (I).

¢) lg| <1 and q € AL(C).

Note that these cases cover all possibilities for ¢ € F((). Treating different cases by different
means, we will now verify that ¢ = f(e'®) satisfies the conclusion of Proposition 4.

ad a) If ¢ = f(e'®) satisfies |¢| = 1 then we only have to show that
/ Vu(w)||dw| < CM,L, for o € T(C,q, L).

This however is just the estimate in (2.5).

ad b) By Remark 6 we have that u(q) — u(¢) < —M;/4. When we combine this estimate
with the variational estimate in (2.5) we obtain the assertions of Proposition 4. Note that in
case b) the resulting decay of u is much better than claimed or needed.

ad ¢) By Remark 4 there exists an interval I € &£, such that ¢/|q| € 161. Hence T'(I) is

contained in a Stolz cone with vertex ¢. As I € £ we have
M(I) > M,/LA,.

In W (¢), the geodesic o = f((0,¢')) passes through a fixed enlargement of T'(I). Moreover
7o = f((0,€')) is a C? curve with uniform constants in 7'(7). Hence by a simple normal families

argument,
M,
\Y dw| >
[ 1Vutwlldu] > Zrc

9




where C' > 0 is universal, and in particular independent of L. We insert the last estimate into

(2.3) and obtain

C Co >
col? CLAy)
We have dealt with all possible cases, and Proposition 4 is proven, provided that (2.4) implies

u(g) — u(¢) < M, <

(2.5). To show this implication we use the following lemma which is folklore.

We let I,J be adjacent intervals in T which have e'® as endpoint and m(I) = m(J) =
m(T)/2. Their images under the Riemann map f are A = f(I) respectively B = f(J).
Let v C W((). Using lower bounds for the harmonic measures of A and B we obtain useful

information about the location of f~1(7).

Lemma (Folklore) If for any z € v, w(A,W((),z) > 1/L and w(B,W((),z) > 1/L, then
f7Y(v) is contained in a Stolz cone of vertex €' and of opening angle 7 — 1/CL.

We can now show that (2.4) implies (2.5). We choose v € I'((, ¢, L), i.e., 7y is of the form

{s: lal < [s[ <[]} (0,2),

where ¢ satisfies |[t| = |q|, |t — ¢q| < 2L(1 — |¢q|). By elementary geometry and Beurling’s
minorization of harmonic measure we find ¢; € 7, whose hyperbolic distance to t is < LC),
and so that for each z € 4 = v N (¢,0) we have the estimates w(A, W ((),2) > n/L and
w(B,W((),z) > n/L, with an universal > 0. The above folk lemma and the Koebe distortion
theorem imply that f~'(y,) is a curve in Y_(e"*, CL). Hence by (2.4)

|Vu(w)||dw| < CM,; L.
71
Finally for 79 = v N (#1,t) we estimate
|Vu(w)||dw] < M(ty)dp(t,t,) < C M.
72

REMARK. We will use Proposition 4 to deduce Proposition 1. Therefore it is important that

the constant appearing in condition 2) of Proposition 4,

C Co
(2:6) <c0L2 B CLA0> ’

is negative and independent of M;. But for L large enough the expression in (2.6) is just a

small perturbation of —¢y/C LAy. Here our argument really needs the additional freedom gained
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by introducing the parameter L. It now follows that Proposition 4 implies Proposition 1 when
we choose L > 2C%Ag/c2 and C; = 2C Ay/cq. Note that such a choice is compatible with our

previous lower bound on L.

3 When Bloch estimates fail

In this section we prove Proposition 2. We recall that there exits a Fuchsian group G without
elliptic elemets so that C\ E is conformally equivalent to D/G. The universal covering map is
P = 7 om where 7 is the natural projection, and 7 is the conformal bijection between D/G and

C\ E. The density of the hyperbolic metric on 2 = C\ E is given by

(3.1) Na(P())|P(2)] = 1—;Izl2 ceD,

By the result of A.F Beardon and Ch. Pommerenke [B-P], the density Ay admits the following

geometric estimate,

1
3.2 A ~ C\ E
(3:2) a(vo) dist(vo, E)(B(ve) + 1)’ v €C\E,
where
B(ve) = inf{ log ||U0 _;ﬂ . |vg — a| = dist(vg, E) and a,b € E} )
a—

If for a given vy € C\ E the infimum in the definition of 3(v) is attained in a,b € E, then one

of the following cases holds. (We let K (a,r) denote the open disk with radius > 0 and center

a.)
P1: There exists B,n € Ry such that C\ £ D K(a,B)\ K(a,n), n < B!, b ¢ K(a, B) and
B(vg) ~ log |dist(ve, E')/B].
P2: There exists 7 > 0 such that Q@ > K(a,n7") \ K(a,n), a,b € K(a,n) and B(vy) ~

| log(dist(vo, E)/n)]-

We define these cases as giving rise to pictures; for example we will say that we see picture P1
at vy if P1 holds.

The following geometric lemma will be very useful when we study the decay of log|P’| along
radial line segments. We consider the following annuli centered at a € F,

Ay = {v € C: dist(vy, B) /2" < |a — v| < dist(vy, F)/2%}, for k € Ny.

11



We will only use these Ay when (3(vg) is large and in this case the annuli Ay are disjoint from
E when k£ < Cf(vg). We also remark that these annuli allow us to trace the changes of the
hyperbolic metric in Q = C\ E, as we approach the boundary of Q. In fact, by (3.2), the density
of the hyperbolic metric remains essentially constant on each of the Ay, and the corresponding

value can be computed from k and [(vg). The formulas are given in the proof below.

Lemma 2 Let s = dist(vg, E) and let v : [0,1] — K(a,s) NC\ E be a curve satisfying the

following conditions:
1. 4(0) = vy.
2. The linear measure of v N Ay is bounded by CdiamAy, k € N.
3. There exists ¢ < 1/2 so that if y(t) € Ax and t; >t then y(t1) € Ak,
4. 4> [ da(w)|dw| > 1/4.
Then |v(1) — a|/|vo — a| < C27F@)/C and B(v(1)) < CB(vy), where C > 1 is universal.

PrOOF. First we consider the case when we see the picture P1 at vg. There exists a smallest
n > 0 so that P1 holds. We denote it by ¢ > 0. Now we determine how (3(v) changes when
v moves through the annuli Ay. For v € Ay, we have dist(v, E) = |[v — a|] ~ vy — a|/2*. Let
ko € N be the first integer for which |vy — a|/2% < v/Be. One observes that 3(v) increases
as v moves through the first ky annuli, and after that ((v) decreases until it reaches ~ 0.
In fact, for v € Ay and k < ko we have 1 + B(v) ~ 1+ ((vy) + k. For k > ko we have
1+ B(v) ~ max{1, B(vy) + 2ko — k}. We let | € N be the smallest integer for which
v C Llj Ap.
k=1

The rest of the proof is used to show that [ is comparable to C'3(vp). We let v, = yN Ay, and we

need to consider only the case when ko < [. Then using hypothesis 2) we estimate as follows.

[ Ao - z [ o] ~

& |dv]
kz::O w dist(v, E)(1 4 B(vo) + k)
l |dv]

,;,;0 w dist(v, E)(1 4 B(vo) + 2ko — k)

ko 1 l 1

- kz::O B(vo) + k " ,2%0 B(vo) + 2ko — k
(B(vo) + ko)?

B(vo)(B(vo) — 1+ 2ko) |

log
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Next using that [ Aq(v)|dv| > 1/4 we obtain

B(vo)(B(vo) — 1 4 2ko)eM < (B(vo) + ko)?.

A simple calculation, using ko < [, gives [ > [(vy)/2. Hypothesis (3) gives the estimate

(1) —af
[7(0) — af

Combining this with 2-%/¢ < 2-8))/2C giyes the first conclusion of the lemma when we “see”

< 9l/C,

P1 at vy and ky < [. Finally we remark that the above line of inequalities can be reversed and

we obtain also

(B(vo)) + ko)?
[ ale)de 2 flog g S s |

Hence if [ Aq(v) < 4 then, by a simple calculation, | < C'3(vy). This gives the second conclusion

log

of Lemma 2. If we see P2 at vy then

1+ B(v) ~ max{L, B(vo) — k},

for all k£, and v € A,. Hence this case corresponds to kg = 0 in the above consideration, and
the above calculation can simply be repeated, setting ko = 0.

]
Proof of Proposition 2. We are given ¢ € D. The first part of the proof consists of

constructing the points w € D, v € D. The construction is based on the following estimate

which holds when M (q) > 1,

< inf du(g, 9(q)) < %-

The right hand side of (3.3) follows from Lemma 1 and Koebe’s distortion estimate by rescaling.

(3.3)

CM(q)

The left hand side is obtained from univalence criteria by rescaling. See [M, Proposition 1.3]
for an elementary univalence criterion that suffices here.

Now we select a group element g € G such that dp(q,g(q)) < CM(q)"'. As G does not
contain elliptic elements, there are either one or two fixed points of g on T. Each case requires
a different construction to obtain w,v.

We first treat the case where ¢ has two fixed points in T. Let (i, (s € T be the fixed points
of g, and let A be the hyperbolic geodesic connecting ¢; to (;. We let S(q) be the hypercycle
in D which contains (;, ¢, and ¢. Now we let K C D be the region which is bounded by the
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axis A of g and the interval I C T, m(I) < m(T)/2, whose endpoints are (i, (. We consider

the hypercycle

So = {s € K :sinh(dp(s, g(s))) = sinh(dp(q, 9(q)))M(q)/My}

and the ray R that connects 0 € D to the midpoint of I. Note that the hypercycle Sy is well
defined; it lies underneath the axis A, and also underneath S(¢). Depending on the position
of ¢ relative to A the hypercycle S(¢q) may be above or underneath the axis A. We point out
however that when we apply Proposition 2 the hypercycle S(q) will be above the axis A, and
the point ¢ we use will be close to the top of S(g). (See Lemma 3 below.) Now we define

(3.4) w=RNS(q), v=RNS.

We turn to the case when g € G has one fixed point (; € T. The first step is again the
construction of w € D, v € T. We let S(gq) be the horocycle through ¢ € D and (; € T. Without
loss of generality we may assume that 0 € D is not contained in the disk bounded by S(q).
Then we define

(3.5) w = S(¢q)N(0,(), v="_.

Again we point out that we will only apply this when ¢ is near the top of the horocycle.

The following properties of w, v are easily verified:

(3.6) C™' < M(w)/M(q) < C,

(3.7) if |v] < 1, then O~ < M(v)/M, < C,
(3.8) 1—[o]*/1 = [w[* < 27 M@,

(3.9) lu(g) — u(w)| < C +[log((1 — w[*)/(1 — [gf*))].

As S(q), Sy are levelsets for s — sinhdp(s, g(s)), (3.6) and (3.7) follow from (3.3). Condition
(3.8) is a consequence of elementary circle geometry. To verify (3.9) we exploit group invariance

of P. We choose m € Z so that for k = g™

(3.10) di(k(q),w) < CM(q).

14



This is possible by (3.3). As P = P o k we obtain k'(¢)P'(k(q)) = P'(q). Consequently
log|P'(q)| — log [P'(k(q))| = log [K'(q)],
and 1 — |w[*/2(1 —|q|*) < |K'(¢)] <1 — |w[*/1 — |q|*. By (3.10) we have
u(k(q)) — u(w)| < M(w)d(w, k(q)) < C.
Clearly, the last two estimates give (3.9):
u(w) — u(q)| < C + [log((1 — |[w]*)/(1 —|a*))].

So far we have verified conditions a) — d) of Proposition 2. The remaining condition e) follows
from our next proposition.
We let R be the radial line segment connecting w and v, that is, R = (w,v). When a point

moves along R towards the boundary of D we observe the following decrease of u = log |P’|:

Proposition 5 If 21,20 € R satisfy 1/32 < 1 — |z3]/1 — |z1| < 1/4, then u(ze) — u(z1) <
—M(z)/C + C, where C > 0 is universal.

PrOOF. By choice of R, the line segment ¢ +— 21 + t(29 — 21) minimizes the Ap—distance
between the hypercycles (respectively horocycles) S(z;) and S(z3). Therefore among all curves

connecting P(z;) and P(z9) the following,
vt Pz +t(20 — 21)),

has minimal length with respect to the hyperbolic metric on C\ E. And so 7 satisfies conditions
1) —4) of Lemma 2, with 7(0) = vy = P(21) and (1) = P(22). To verify condition 2 of Lemma

2 we first note that for each A, and z, 2’ € A;,

If condition 2 would fail then we could make a new curve with the same initial point and
same last point as 7, and such that the hyperperbolic length of this new curve is less than the
hyperbolic length of 7. The same argument proves also that condition 3 holds.

Applying Lemma 2 to our curve 7 gives the following estimates.

B(P(z2)) < CB(P(21)),
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and

la — P(2)|/]a — P(z)] < C27PE/C
Combining these estimates with (3.1) and (3.2) we obtain

[P'(z2)] _ Aa(P(21))(1 = |21 )
| P'(21)] Aa(P(22))(1 — |22[?)
a — P(2)| (B(P(22)) + 1)
~la=P(2)| (B(P(z1)) + 1)
< 9 BAPE)/C

We remark that by rescaling and normal families M (z;) < CB(P(21)); this completes the proof
of Proposition 5.

Finally we conclude the proof of Proposition 2: Conditions a) — d) of Proposition 2 follow
from (3.5) — (3.8). We will now verify condition e), using Proposition 5, Lemma 1, (3.9) and
(3.10).

Let A € I'(w,v, L) and choose wy,wy € A such that (1 — |wy|)/(1 — |ws|) > 4. As above we
denote R = (w,v). Let us first treat the case when |v| = 1. In that case I'(w, v, L) contains
only one element namely R, and applying Proposition 5 to A = R = (w, v) gives condition e)
of Proposition 2.

Next we consider the case when |v] < 1. This condition implies that our group element
g has two fixed points (1, € T. For i € {1,2} we let z; € R be the top of the hypercycle
containing w; and the fixed points (;, (; € T. Asin (3.6) we have M (w;)/C < M(z;) < M(w;)C.
Combining (3.9) and (3.10) we obtain |u(z;) — u(w;)| < CL. Applying Proposition 5 to zi, 2,
gives u(zy) —u(z1) < —M(z)/C + C. Summing up we obtain that

u(wq) — u(wy) < —M(wy)/Cy + CoL.

We will now link the Lipschitz domains of Section 2 to elements of the above construction.
Recall that we have isolated the following connected subset on the boundary of our Lipschitz

domain W ((),

F(Q) = {w € oW (Q) + [¢/I¢] = w] < 25(1 = [¢]) and 1 — w| < (1 — [¢])/2}.
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We recall also that for ¢ € D we started the proof of Proposition 2 by selecting a group element
g € G satistying dp(q, g(q)) < CM(q)~'. Then we defined S(q) to be the hypercycle containg
¢q and the fixed points (, (s of g, when g was hyperbolic. In the case of a parabolic g, S(q) was
the horocycle through ¢ that was tangent to T at the (sole) fixed point of g. In our next lemma
we will utilize again that W (() is the result of stopping time arguments, and we find that for

q € F(C) the top of S(q) is close to ¢, whenever M(q) is a large constant.

Lemma 3 Let g € F(C) , and assume that M(q) > M;/2°L. Let w € D be the top of S(q).

Then in D the hyperbolic distance between q and w s bounded by CyL.

PrOOF. We assume to the contrary that the lemma is false. Under this assumption we
will construct a long sequence of points w; € W(¢) so that M (wq) > M, /Ce2% and M (w;) >
2! M (wy). On the other hand the points w; € W () satisfy the stopping time condition M (w;) <
M, /LAy. This gives a contradiction when the sequence of points is long enough.

Now we assume that dp(q, w) > CL for arbitrary large C. We let Ry be the straight line
segment R N W (() where R is the straight line connecting w to v. We recall that 0,w and v
are points on the same radial ray. As dp(q, w) > CL, there exists 7 > 0 depending only on the
Lipschitz constants of W ((), such that the hyperbolic diameter of Ry is > 7CL. Therefore we
find points wy = w, wy, ..., w;, on Ry with 1 — |Jw;1[*/1 — Jw;|* < n and iy > nrCL. It follows
from [Be, Section 7.35] and an elementary calculation that the displacement function decreases

at a geometric rate on Ry. Hence
dp(wit1, g(wir1)) < ndp(wi, g(wi)), i <o
If moreover 1 > 0 is small enough, it follows from (3.3) that
(3.11) M (w;) > 2" M (wy), i < .
Finally, it follows from our hypothesis on M (g) and condition (a) of Proposition 2, that
(3.12) M (wp) > M, /Cy2%0",

On the other hand, in Section 2 the stopping time Lipschitz domain was constructed such that
for w; € W((), we have M(w;) < M;/LAy. This contradicts (3.11) and (3.12) for i, large

enough, and the assumption was that we can make iy as large as we please.
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4  Selecting good rays

In this section we first prove Proposition 3 and then Theorem 1. The inductive construction
of the points {sx} in Propoosition 3 is based on repeated application of Proposition 1 and 2.
These propositions can interact when the constants My, My, L are specified as follows. We recall
that we have imposed the lower bound L > 44 4K, /A, in Section 2 during the construction of
the domains W ((), and that later, in the remark following the proof of Proposition 4, we have

chosen L such that also L > 2C?Aq/c3. Now we let My > 1 be such that
(4.1) ~My/Cy + Cy < —Mp/2C5 < —1,

where Cy > 1 is the constant apearing in Proposition 2. Finally we take A/, large enough so

that M, /2L > 2M, and
(4.2) —M, /LC, + 4C,L < —M, /2LC}.

We will verify Proposition 3 with C3 = max{4-+4K,/Aq, 2C*A/ct} and M = 4C?C,L?. The
proof begins with the inductive construction of the sequence {s;}. Assuming, as we may that
for u = log |P’|, u(0) = 0, and |[Vu(0)| = 1 we take s = 0. We assume that sy, ..., s, have been
constructed such that the conclusion of Proposition 3 holds, and such that M(s,) < M, /2%,
Now we determine s, as follows.

We start by constructing the stopping time Lipschitz domain W (s,,) and apply Proposition
1, to obtain ¢ € F(s,) such that

(4.3) u(q) —u(s,) < —M;/C\L,
when |¢| < 1, and

(4.4) /7 Vu(z)||dz| < MiLCh,
for v € I'(sp,q, L). Now we consider three cases:

1. If |g| = 1 then we put s,,; = ¢ and we stop the construction.

2. If |¢| < 1 and if M(q) < M, /2°°F then we put s,,,1 = ¢. By (4.3) and (4.4) the induction

step is completed. We may continue with the construction of the next point.
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3. If || < 1 and M(q) > M, /2% then we apply Proposition 2 to ¢ € D and obtain w € D,
v € D for which the conclusion of Proposition 2 hold. We define s,; = v. In the next

paragraph we will verify that s, satisfies the conclusion of Proposition 3.

The assumption in the third case is that M(q) > M;/2°L. By Lemma 3 this implies that
dp(w,q) < CyL. We fix v € T'(sy, Sps1, L), and we let 0 = y N {s : |z,] < |s| < |g|} and
p="yN{s:|w| <|s| < |snt1]|}. Note that v = o Up. We estimate the difference u(s,1)—u(sy)

by breaking it into three pieces: Recalling that s, 1 = v and Proposition 2 (e) give

1
u(snn) = u(w) < —7 [ 1u(z)ldz).

Lemma 3 together with Proposition 2 (b) gives |u(w) — u(q)| < Cy + CyL < 2C,L, and (4.1) -
(4.4) imply
1
u(q) — u(sn) + 204L < _M/ IVu(z)||dz].

Summing up we have,

) — u(w) +u(w) — u(q) +u(q) — u(sn)

N
=
w
3
=

u(3n+1) - u(sn)

1
< —— ([ V@ + [ 19u()d)
M \Jo p
1
< i 7|Vu(z)||dz|
Finally we have to distinguish between the cases |v| = |s,41| = 1 and |v| = |sp41] < 1. If

|sp1] = 1 then we stop the construction, and Proposition 3 is true in that case. If |s,41] < 1
then by Proposition 2 (¢) we have M(s,;1) < M2 < M;/2%L and we may continue to
construct the next point. This completes the proof of Proposition 3.

We turn to the proof of Theorem 1. Let {s;} be the sequence of points given by Proposition
3. This sequence converges to a point in T; we denote its limit by €. Now we let R = (0, ')
be the ray connecting 0 to e’. We will show that uniformly on R the radial variation of u is of
the smallest possible order. More precisely we will verify that for any £ € R,

1
u() < —— 06 |Vu(z)||dz] + M M,

where M; has been chosen in (4.2) and M is the constant appearing in Proposition 3. We
decompose R = (0,¢?) as
R = U Vs
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where v, = RN {s € D : |sg| < |s| < |sks1]}. Note that by condition b) of Proposition 3 the
straight line segment -y, belongs to I'(sk, Sgt1, L). Next we choose an arbitrary point £ € R.
Let ko € N be such that £ € v;,. We will treat two cases depending on how sj,1; was obtained
during the proof of Proposition 3. In the first case si,.; was obtained by an application of
Proposition 1. As £ € 7, it follows from condition a) of Proposition 1 that,
u(€) = ulsko)| < [ |Vu(2)||dz| < C1LM,.
Vko
Summing a telescoping series we obtain from Proposition 3,

ko—1

u(sp,) — u(0) < — Z |Vu 2)||dz|.

We let p= RN {s:|s| <|sk|}. Now we estimate the difference u(£) — u(0) by adding the last

two inequalities.

u(@) —u(0) = u(€) —ulsk) + U(Sk) — u(0)

[ 1vu@ldsl - 5 [ 1Vute)a
Yo

1
< CyLM; — 7 Jo |Vu(z)||dz|

IN

In the second case si,41 was obtained by an application of Proposition 2. This means the
following: Applying Proposition 1 to s, gives ¢ € F(sy,) with M(q) > M;/2%%L; applying
Proposition 2 to ¢ gives w € D, v € D and Skot1 = Uy M (Sgy+1) < 2M.

We distinguish between the cases (1 — |w])/(1 —|£]) < 4 and (1 — |w])/(1 —|£]) > 4. In the
first case we estimate u(§) — u(w) < 4M(q) < M,. Combining condition b) of Proposition 2

with Lemma 3 and condition b) of Proposition 1 gives
w(w) — u(sg,) < —My/Cy + 4LC,.
Now we let p = RN {s:|s| < |sk|}, and using Proposition 3 we estimate as follows.
u(é) —u(0) = w(§) —u(w) +u(w) — u(sk,) + u(sk) — u(0)

1
——/|Vu(z)||dz| ~ M, /20, + M,
M Jp

1
< —— \Y dz| + M.
< 3 oo VU] + 2

Finally we consider the case where (1 — |w|)/(1 — |£]) > 4. By Proposition 2 (e),

1
u(§) = u(w) < === [ [Vu(2)l|dz],
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where 0 = RN {s: |w| < [s| <|&|}. Welet p= RN {s:|s| <|skl}, then (0,&) = o U p. Hence

using Proposition 2 (b), Lemma 3 and Proposition 3 we obtain the following estimate

w(€) —u(0) = u(§) —u(w) +u(w) — ulsk) + ulsk) — u(0)
< —%/{T|Vu(z)||dz|+204[/— —/|Vu )]|dz]

1
<~ |Vu( )||dz| + 2C, L.

This completes the proof of Theorem 1.
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