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ABsTRACT. We show a Bernstein theorem for minimal graphs of arbitrary dimen-
sion and codimension under a bound on the slope that improve previous results
and is independent of the dimension and codimension. The proof depends on the
regularity theory for the harmonic Gauss map and the geometry of Grassmann
manifolds.

1. INTRODUCTION

The celebrated theorem of Bernstein says that the only entire minimal graphs
in Euclidean 3—space are planes. More precisely, let z = f(x,y) be a smooth
function defined on all of R?, whose graph in R® is a minimal surface. Then f is
a linear function, and the graph is a plane.

The efforts to generalize Bernstein’s theorem to higher dimensions led to pro-
found developments in analysis and geometric measure theory. The final result in
a successive series of achievements by several mathematicians was the theorem of
J. Simons [S] that an entire mimimal graph has to be planar for dimension< 7,
while Bombieri, de Giorgi and Giusti [B-G-G] shortly afterwards produced a coun-
terexample to such an assertion in dimension 8 and higher. By way of contrast, J.
Moser [M] had earlier proved a Bernstein type result in arbitrary dimension under
the additional assumption that the slope of the graph is uniformly bounded.

All these results hold for hypersurfaces, i.e. minimal graphs of codimension 1.

For higher codimension, the situation becomes more complicated, and Lawson-
Osserman [L-O] had given explicit counterexamples to Bernstein type results in
higher codimension: for example they showed that the cone over a Hopf map is
an entire Lipschitz solution to the minimal surface system.

On the other hand, Hildebrandt-Jost-Widman [H-J-W] had obtained a Bern-
stein type result in arbitrary codimension under the assumption of a certain quan-
titative bound for the slope. Their method was to show that the Gauss map of
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2 J. JOST AND Y.L. XIN

such a minimal submanifold which was known to be a harmonic map into a Grass-
mannian has to be constant, if its range is contained in a sufficiently restricted set
of the Grassmannian. This restriction required the bound on the slope.

In fact, that result applies not only to minimal graphs but also to ones of parallel
mean curvature as the Gauss map continues to stay harmonic under that condition.
Actually, Chern [C] had shown that a hypersurface in Euclidean space which is
an entire graph of constant mean curvature necessarily is a minimal hypersurface.
Thus, by Simons’ theorem, it is a hyperplane for dimension< 7. Chern’s result was
generalized by Chen-Xin [C-X].

The proof of Hildebrandt-Jost-Widman derived Holder estimates for harmonic
maps with values in Riemannian manifolds with an upper bound for sectional
curvature and by a scaling argument then concluded a Liouville type theorem
for harmonic maps under assumptions including the above mentioned harmonic
Gauss maps. The Holder estimates needed a bound on the radius of the image,
and examples show that [H-J-W] had achieved the optimal bound in the general
framework for that paper. Nevertherless, when applied to the special case of
interest here, namely harmonic maps with values in Grassmannians, it turns out
that the bound for the slope reqired in [H-J-W] for their Bernstein type result
depends on the dimension and codimension of the minimal graphs. In the present
paper, we obtain such a Bernstein type result under a bound for the slope which
is better than the one in [H-J-W] and independent of dimension and codimension.

Theorem 1. Let 2t = fi(x1,--+,2y,), i = 1,--- ,m be smooth functions defined
everywhere in R™. Suppose their graph M = (z, f(x)) is a submanifold with parallel
mean curvature in R™T". Suppose that there exists a number B3y with

2, when m > 2,
Po < (1.1)
when m = 1;
such that
Ay < By forall z € R", (1.2)
where _ . .
Aj(x) = {det(Sap + ) fi, (2)f1, (@)} 2. (1.3)
Then fl,--- . f™ are linear functions on R™ representing an affine n—plane in
R™+™,

The case m = 1 of course is simply Moser’s result.

In the framework of geometric measure theory the Bernstein problem is trans-
fered to the rigidity problem of m—dimensional minimal submanifolds M in the
sphere S™*". Namely, it follows from the general work of Allard [A] on varifolds
that the tangent cone at infinity of such an m—dimensional submanifold of R™+n+!
is the cone over a minimal submanifold of S”™*™. J. Simons [S] proved that a com-
pact minimal submanifold of the sphere whose normal planes lie in a sufficiently
small neighborhood is a totally geodesic subsphere. Reilly [R] and Fischer-Colbrie
[FC] improved the previous work successively. Like [H-J-W], however, these results
require bounds that depend on dimension and codimension, and we are able here
to get a similar generalizations as above.
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Theorem 2. Let M be an m—dimensional compact or simple! Riemannian mani-
fold which is a minimal submanifold in S™1™. Suppose that there is a fized oriented
n—plane Py and a number vy,

. 3 if  min(m,n) > 2,
7 0 if min(m,n) = 1;

such that
<P7 P0> Z Yo

holds for all normal n—planes P of M in S™*™. Then M is contained in a totally
geodesic subsphere of S™T™.

As mensioned, the bounds in our results (2 in Thm. 1 and % in Thm. 2) are
sharper than the ones previously known. As the examples of Lawson-Osserman
show some such bound is necessary. However, these counterexamples are not
sharp for our bounds, and so one may ask whether our bounds are optimal. This
is probably not the case because the essential point in our argument is to construct
a strictly convex function on a sufficiently large region in a Grassmannian. The
question of finding the optimal bound - at least for the strategy pursued here - then
amounts to finding the largest such convex supporting region in a Grassmannian.
Geometric intuition suggests that such an optimal region may on one hand be
larger than the one constructed in our paper, but on the other hand by no means
as explicitely presentable as ours and possibly also nonunique in a general way. In
other words, the optimal bound will probably turn out to be some number that
may virtually be impossible to write down explicitely, and thus perhaps also be of
comparatively little significance.

Our general strategy is the same as in [H-J-W]. By using the Ruh-Vilms theorem
[R-V], we prove the harmonic Gauss map is constant under certain conditions. The
main refinement in this paper is a detailed study of geodesic convex sets in the
Grassmannian manifold G, ,,. We define a new specific geodesic convex set Bg
in Gy, », which is larger than the usual geodesic convex ball and interesting in its
own right. We expect further applications.

2. PRELIMINARIES

In this section we describe some basic notions and results on harmonic maps
and submanifols in the Euclidean space and the sphere which will be used in later
sections.

Let (M,g) and (IV,h) be Riemannian manifolds with metric tensors g and h,
respectively. Harmonic maps are described as critical points of the following energy
functional

B =3 [ e 2.1)

las defined below
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where e(f) stands for the energy density. The Euler-Lagrange equation of the
energy functional is

m(f) =0, (2.2)
where 7(f) is the tension field. In local coordinates
_OfPOfY
=g¥ - —h 2
() =20, (2.3

L OfOfT . 0

H() = (Al + 9975, 5 55

(2.4)

where I'5 denotes the Christoffel symbols of the target manifold N. Here and in
the sequel we use the summation convention. For more details on harmonic maps
consult [E-L]

A Riemannian manifold M is said to be simple, if it can be described by coor-
dinates x on R"™ with a metric

ds® = gijdz'da?, (2.5)
for which there exist positive numbers A and p such that
NEP? < gige'e? < plef? (2.6)

for all x and ¢ in R™. In other words, M is topologically R” with a metric for
which the associated Laplace operator is uniformly elliptic on R”.

Hildebrandt-Jost-Widman proved a Liouville-type theorem for harmonic maps
in [H-J-W]:

Theorem 2.1. Let f be a harmonic map from a simple or compact Riemannian
manifold M into a complete Riemannian manifold N, the sectional curvature of
which is bounded above by a constant k > 0. Denote by Br(Q) a geodesic ball in
N with radius R < ﬁ which does not meet the cut locus of its center Q. Assume

also that the range f(M) of the map f is contained in Br(Q). Then f is a constant
map.

By using the composition formula for the tension field, one easily verifies that
the composition of a harmonic map f : M — N with a convex function ¢ :
f(M) — R is a subharmonic function on M. The maximum principle then implies

Proposition 2.2. Let M be a compact manifold without boundary, f : M — N
a harmonic map with f(M) CV C N. Assume that there exists a strictly convex
function on V. Then f is a constant map.

Let¢ M — R™™ be an n-dimensional oriented submanifold in
FEuclidean space. For any point x € M, by parallel translation in the ambient Eu-
clidean space, the tangent space T, M is moved to the origin of R™*" to obtain an
n-subspace in R™*" namely, a point of the Grassmannian manifold v(z) € Gy, .
Thus, we define a generalized Gauss map v : M — G, 4,. E. Ruh and J. Vilms dis-
covered the relation between the property of the submanifold and the harmonicity
of its Gauss map in [R-V].
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Theorem 2.3. Let M be a submanifold in R™T™. Then the mean curvature vector
of M s parallel if and only if its Gauss map is a harmonic map.

Let M — S™*" <y R™*tn+l he an m-dimensional submanifold in the sphere.
For any = € M, by parallel translation in R™*t"*! the normal space NyM of
M in S™*" is moved to the origin of R™*"*1. We then obtain an n-subspace
in R™*"+1 Thus, the so-called normal Gauss map v : M — G, ;41 has been
defined. There is a natural isometry n between Gy, y,4+1 and Gyy41,, Which maps
any n-subspace into its orthogonal complementary (m + 1)-subspace. The map
n* = no~y maps any point x € M into an (m + 1)-subspace consisting of T, M and
the position vector of z.

On the other hand, to study properties of the submanifold M in the sphere we
may investigate the cone C'M generated by M. C'M is the image under the map
from M x [0,00) into R™*"*! defined by (z,t) — tx, where x € M, t € [0,00).
C'M has a singularity at ¢ = 0. To avoid the singularity we consider the truncated
cone C'M,, which is the image of M x [e,00) under the same map, where ¢ is any
positive number.

J. Simons showed in [S] that M is a minimal m-submanifold if and only if C'M,
is an (m + 1)-dimensional minimal cone. In fact, we have (see [X], Prop 3.2):

Proposition 2.4. CM, has parallel mean curvature in R™T"+1 if and only if M
is a minimal submanifold in S™T™.

From Theorem 2.3 and Proposition 2.4 it follows that

Proposition 2.5. M is a minimal m—dimensional submanifold in the sphere
S™+n if and only if its normal Gauss map v : M — Gy m+1 s a harmonic map.

3. GEOMETRY OF GRASSMANNIAN MANIFOLDS

Let N be a Riemannian manifold with curvature tensor R(,-).
Let v be a geodesic issueing from z¢ with v(0) = xg and (¢t) = =, where t is
the arc length parameter. Define a self-adjoint map

Ry :w — R(Y,w)?. (3.1)

Let v be a unit eigenvector of Ry ) with eigenvalue p and (v,¥(0)) = 0. Let v(t)
be the vector field obtained by parallel translation of v along «. In the case of N
being a locally symmetric space with nonnegative sectional curvature, v(t) is an
eigenvector of Ry with eigenvalue p > 0, namely

R(Y(t),v(t))7 = po(t).
Thus, ‘
J(t) = { \/—Hsm(\/ﬁt)v(t), when p >0
to(t), when p =0



6 J. JOST AND Y.L. XIN

is a Jacobi field along ~(¢) with J(0) = 0. On the other hand, the Hessian of
the distance function r from xy can be computed by those Jacobi fields. Now, we
assume vy is a geodesic without a conjugate point up to distance r from xzg. For
orthonormal vectors X,Y € T, B, (o) there exist unique Jacobi fields J; and
Js such that

Jl(O) == JQ(O) = 0, Jl(’/‘) = X, Jz(?”) = Y,

since there is no conjugate point of z( along v. We then have
Hess(r)(X,Y) = (Vx?Y,Y)

<VJ1;Y7 J2>|358
"d

dt

[l
o\o\o\

<VJ1’Y7 J2> dt

T

(<V’VVJ1;Y7 J2> + <VJ1;Y7 v’yJ2>)dt

(J17 )77 J2> <V7J1,V;YJ2>)dt

<
< dt <v J17 J2 <v")’v")"]1 + R(’)@ Jl);% J2>> dt
')’J17J2

<]o

=

Assume that ; and v;(t) are eigenvalues and orthonormal eigenvectors of R ).
Then

Ji(t) =

1
in(y/pt)v; (¢
N (Vhat)vi(t)
are n — 1 orthogonal Jacobi fields, where p; > 0.

Hess(r)(J;, J;) = (V4Ji, Jj)

~ (costru(r),

T ")

1
— sin(y/p;r) cos(y/pir)di;
VH; ’ ’

and

Hess () (vi(r), (1)) = Vi cot(v/ir)di; (3.2)
(In the case p; = 0, Hess(r)(v;(r),v;(r)) = £). On the other hand

Ric(%,4) = Y (R(¥, vi)¥: vi) Zuz

7

Let R™*™ be an (m + n)—dimensional Euclidean space. The set of all oriented
n—subspaces (called n—planes) constitutes the Grassmannian manifold G,, ,,,, which
is the irreducible symmetric space SO(m + n)/SO(m) x SO(n). Our discussion
of the geometry of G,, ,, will be based on the work of Wong [W]. References for
other contributions on the geometry of Grassmannian are listed in [H-J-W].
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Let P and @) be two points in Gy, »,. Wong defined the angles between P and
() as the critical values of the angle between a nonzero vector = in P and its

orthogonal projection z* in ) as x runs through P. Assume that ey, -- e, are
orthonormal vectors which span P, and fq,--- , f, for (). For a nonzero vector

x = Z Tala,
«
its orthogonal projection in () is
= Z o fa-
«
Thus, for any y in ) we have

(x —z*,y) =0.

Assume that
Aap = <ea7 fﬁ) .

Th = Z 0BT,
«

We then have

and

<Za xaeaaz,@ $Zfﬁ> Za,ﬁaa,@fﬂaxg

cost = =
YOI RVO DN+ RVO DI RVO D
Za7ﬁ77 A0 B0y3T 0T

\% Za xgé \/Za, B, AapflyBLaLy
\/ >, p AapTalp
V2a T

where A, = 27 Aayagy 18 symmetric in o and 3. It follows that the angles 0,
between P and () are

(3.3)

0, = cos™ (Ag), 0<60, < g

where A2 are the eigenvalues of the symmetric matrix (Aqyg)-

Let {eq,enti} be a local orthonormal frame field in R™*™, where i, j,--+ =
1,---ym; o, fBy---=1,---,n; a,b---=1,---,m+mn (say, n < m). Let
{Wa, wn+i} be its dual frame field so that the Euclidean metric is

9= Zwi +Zw721,+i'
« A
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The Levi-Civita connection forms wg, of R™™ are uniquely determined by the

equations
dwg = Wap N Wp,

4
Wap + Wpa = 0. (3 )

Now, we consider any point P € Gy, and a sufficiently close point (). The
canonical Riemannian metric on Gy, ,, can be defined by the sum of the squares
of the n angles between P and (), namely

ds* = Zwi i (3.5)

;From (3.4) and (3.5) it is easily seen that the curvature tensor of G, ,, is

Rui Bj vk 51 =0080~450ik051 + 00~y 0350:50k1
— 0080~50:10k; — 0a508~0;50k1

in a local orthonormal frame field {e,;}, which is dual to {w pyi}
Let v = xq4€qi and v = vgi€q . Then

(R(9,e85)7, v) = Zaiykvsi (R(€qi, €5) ey €51)
= Z0iTykVs1(0ap0~50ik0j1 + 0a~y0850i50k
— 0030~50i10kj — 00503~0i0k1)

= Z8iTaiVaj + TajTalV8l — 2 TRITajVal

(3.6)

By an action of SO(m) x SO(n)
Lai = )\aéaia

where Y A2 = 1. In fact, there exist an n x n orthogonal matrix U and an m x m
matrix U’, such that

A1 0
UXU' = 0 ;
0 An

where X = (z4;) is an n X m matrix. From (3.1) and (3.6) we have
R;YU = ()\a)\g(saiéﬁﬂ)aj + )\i(saj(saﬂ)m -2 Aa)\g(sajégﬂ)al)eﬁj
= (Ajusj + AobajVpa — 2 Xarpdajvap)ep;

()\%’U,Ba + X280 — 2 AaA3Vag)€Bas when j=a=1,---,n;
)‘%Uﬁseﬂsa when J :5:n+1,... , M.

For any n X m matrix V, there is an orthogonal decomposition

V =(V1,0)+ (V2,0) + (0, Vs),



BERNSTEIN TYPE THEOREMS FOR HIGHER CODIMENSION 9

where V7 is an n X n symmetric matrix, V5 is an n X n skew-symmetric matrix and
V3 is an n X (m — n) matrix. For vgy = vap
_ 2
Ryvpacsa = (Aa — Ag) " vpacpa-

For vgq = —vap
RyUga€ga = (Aa + Ag)*Vgatga-

In summary, R has eigenvalues:

A2 with multiplicity m —n

22 with multiplicity m —n
(Aa + Ag)? with multiplicity 1
(Aa — Ag)? with multiplicity 1

0 with multiplicity n —1

for each pair a and 8 with a # (3. From (3.2) it follows that the eigenvalues of the
Hessian of the distance function 7 from a fixed point at the direction X = (z4;) =
(Aadqi) are the same as the ones at X1 = (|]Ay|0qi). They are as follows.

A1 cot(Aqr) with multiplicity m — n
A €Ot (AnT) with multiplicity m — n
(Aa + Ag) cot(Ag + Ag)r with multiplicity 1 (3.7)
(Aa — Ag) cot(Aq — Ag)r with multiplicity 1
1

- with multiplicity n —1
where A\, > 0 without loss of generality.

Let Py be an oriented n-space in R™*". We represent it by n vectors e, which
are complemented by m vectors e,1;, such that {ey, e, ;} form an orthonormal
base of R™*™, Then we can span the n-planes P in a neighborhood U of P by n
vectors fq:

fa =eqt Zai€n+is

where (z4;) are the local coordinates of P in U.
Let (z4i) = (Aabai) be a unit tangent vector at Py. The geodesic from Py at
the direction (z4;) in U is (see [W])

tan()\lt) 0

(2ai(t)) = - 0 (3-8)
0 tan(A,t)
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where ¢ is the arc length parameter and 0 < ¢ < 53— with | Aa| = max(|A1], -, [An])-

Thus, a geodesic in G, ,, between two n—spaces is simply obtained by rotating
one into the other in Euclidean space, by rotating corresponding basis vectors.
We also see that in the case of codimension > 1, the above zero eigenvalues of the
curvature tensor are obtained for a pair of tangent vectors in the Grassmannian
that correspond to rotating two given orthogonal basis vectors of an n—plane
separately into two different mutually orthogonal directions orthogonal to that
n—plane. Take as an example the 2—plane spanned by e;, e in R*. One tangent
direction in Gz 4 would be to move e; into e3 and keep ey fixed, and the other
tangent direction would move ey into e4 and keep e; fixed. The largest possible
eigenvalue, namely 2 in case of codimension > 1 (e. g. for A\ = Ay = %,)\3 =
-+ = A, = 0), is realized if one takes two orthogonal directions, say ej, es, in
a given n—plane and two other such directions, say fi, fo orthogonal to that
n—plane, and the two tangent directions corresponding to rotating e; to fi, es
to fo and e; to fa, ey to —f1, respectively. This geometric picture is useful for
visualizing our subsequent constructions.

Now, let us define an open set Bg(Fy) in U C Gy, . In U we have the normal
coordinates around Py, and then the normal polar coordinates around Fy. Define

B¢ (Pp) in normal polar coordinates around P, as follows:

Bg(Po): {(X,t); X:(/\aéai), 0<t<txy = 2(|)\a’|+|/\ﬁ’|)}, (39)

where Ay and Mg are two eigenvalues with largest absolute values. ;jFrom (3.8)
we see that Bg(Fp) lies inside the cut locus of Py. We also know from (3.7) that
the square of the distance function 72 from P, is a strictly convex smooth function
in Bg(P).

Remark. The above definition of Bg(Py) is for the case of m > n > 1. If n =
1, G1,m is the usual sphere S™ and the defined set is the open hemisphere as
usual.

Let P = ((Aabai),t) and Q = ((Adai),t’) be two points in Bg(F). Then the
local expression of P in U is the n x m matrix (tan(Aqt)da;), similarly that of @
is (tan(ALt")dqi) - Consider a curve I' between P and @ defined by

(tan(Aat(1 — h) + A t'h)0i)

in U, there 0 < h <1 is the parameter for I'. We claim that I' is a geodesic.
Let P’ be the middle point defined by

Aol + A1
o (34557) )

in U. In R™™ the n—plane P is spanned by orthogonal vectors

fa = €q +tan(Aat)enta
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whose unit ones are .
fa = cos(Aat)eq + sin(Agt)enta-

Similarly, P’ is spanned by n vectors

z Aat + ALY Aot + AL
fl = cos %ea + sin “faem_a.
By using (3.3) we obtain the angles between P and P’ is 1At — ALt/| and their

distance is

AP, P') = % \/Z()\at _ L. (3.10)

Take any point P” between P and P’ on T’
P" = (tan(aat(1 — h) + ALt'h)dai) ,

where 0 < h < % By computation we know that

d(P,P") = h\/Z(Aat — AL t1)2 (3.11)

and

d(P",P') = (% —h) \/Z()\at — AL t)2. (3.12)

(3.10), (3.11) and (3.12) show that the restriction of I' to the segment between
P and P’ is the minimal geodesic. The same holds for the other segment of I'.
Hence, the entire curve I' is a geodesic between P and Q.

We claim that geodesic I' has the following properties:

(1) T € Bg(Fo);

(2) T' C Bg(P").

For any h € [0,1], I'(h) lies on a geodesic starting from Py in the direction
(5 (Aat(1 = h) + ALt'h)dqa;) , where A > 0 is the normalizer. By our construction
of Bg(P) the radius in this direction is

TA
T 9 (Mt(L — h) + Nt + |Aat(L — k) + At'h|)

where for notational simplicity we assume that the first and the second components
are the two with largest absolute values. As P and @ are in Bg(Py) and by the
conditions for ¢ and ¢/,

IA1t(1 = h) + Xjt'h| + [Aat(1 — h) + X5t R
< (Al + [A2))E(X = h) + (M| + [A5)t'A

([Ax] + [A2])m ([AL] + [A5 )7
< (1—h) + ~odl T 1227

2(|Aar + [Ag]) 2(|A% + A5 1)
S T

57
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SO
s> A,

which means I'(h) C Bg(P), and we confirmed the first claim.
Now, we move the origin of the coordinates from Py to P’. The n—plane P’ is
spanned by n orthonormal vectors

Aot + ALH Aot + AL
f& = COS (H—iaea + Sin Hiaen—i—a-
2 2
Define
Aot + ALY Aot + AL

and the remaining m — n vectors do not change. Thus, {f;, f,,;} forms an

orthonormal base of R™*". Each point I'(h) of the geodesic I' is an n—plane in
R™+" | It is spanned by

cos(Aat(1 — h) + Ad't'h)eq + sin(Agt(1 — h) + Ad't'h)entq-

By the above changed base, I'(h) is also spanned by

cos(hatly — ) = N (5 = W) o+ st — B) = Xof! (5 — 1) fir

which means that the geodesic I' in the coordinate neighborhood U around P’
can be described by

<tan()\at(% Sy )\’at’(% - h))(sa,-) |

Its tangent direction at P’ is
(AL — Aat)0qi) -

By a similar argument we obtain the second property, that is I' C Bg(P’).

These two properties of the geodesic I' mean that any minimal geodesic v from
P to Q lies in Bg(FPp) and has length less than 2¢x, where X is the unit tangent
vector of v at P. On the other hand, we already computed all Jacobi fields along
any geodesic in G, ,,, which means that any geodesic from P of length < 2¢x has
no conjugate points and that the squared distance function from P remains strictly
convex along this geodesic for length < ¢x. Thus, by a similar reasoning as Prop.
2.4.1 in [J] we conclude that Bg(Fp) shares all the properties of the usual convex
geodesic ball. In fact, the situation here is even simpler because, in a symmetric
space, by a result of Crittenden [Cr], the first cut point along a geodesic always
has to be a conjugate point. In summary, we have
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Theorem 3.1. In Bg(Py) the square of the distance function from its center Py
is a smooth strictly convex function. Furthermore, Bg(Py) is a convex set, namely
any two points in Bg(Py) can be joined in Bg(Py) by a unique geodesic arc. This
arc 1S the shortest connection between its end points and thus in particular does
not contain a pair of conjugate points.

Remark. In the Grassmannian manifold there is the usual convex geodesic ball
Br(Pp) of radius
R < {

JFrom (3.9) it is seen that Br(Py) C Ba(P).

when  min(m,n) > 1;

[\
<

IME]

when  min(m,n) = 1.

Let P(t) be any n—plane in U of Py which is spanned by

fa =eq t+ ZaiCn+is

where z,; is defined by (3.8). Let

fl = cos(A1t) f1, -+, fn = cos(Apt) fr-

Since |fq| = m, the vectors fq,--- , fn are orthonormal.

Therefore, we can define the inner product (Py, P) of n—planes Py = e1A---Aey,
and P= fi A--- A f, by

(Po, P) = det <<ea,fﬁ>> :
It follows that
cos(A1t) 0
(Py, P(t)) = det cos{Aat) ) _ ﬁ cos(ut).
0 | cos(Ant) -
Theorem 3.2.

maz{(Py, P); P € 0Bg} = L

7 (3.13)

Proof. Suppose now for notational simplicity that
AM>A > >0, >0, X422 =1

Let us maximize
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Let

F(A,---, HCOS< )\1+/\2>+u1—2,\2

where p is a Lagrange multiplier. Then

F\, =— Az sin ™A cos Az ﬁ cos 770\8
MU0+ A2 200+ A) 200+ Ae) 2T 200 + )
A2 cos ™A sin A2 ﬁ CoS 77)\5
2()\1 + A2)? 2(A1 + A2) 2(A1 + A2) s 2(A1 + A2)

- TA1 TAg . T

+

; 2 A1 +A2 P00+ 2) 200+ a) 200 + A

- T

COS ————— — 2u)\
s;é[s[:?) 2(A1 + X2)
_ 7T/\2 tan 7T/\1 f()\)—f— 7T/\2 tan 7T/\2 f()\)

2(A1 + Ag)? 2(A1 + X2) 2(A1 + Ag)? 2(A1 + A2)

7T/\t 7T/\t
+ t A) = 2.
X e )

At a critical point of f

2#/\1 _ 7T/\2 tan 7T/\1 + 7'(')\2 tan 7'(')\2
FOO 20 +22)2 T 200+ A2) 0 20+ A2)? T 2(A + )
n Y (3.14)
+ t
; 200 +22)2 200 + o)
and similarly,
2#)\2 7T/\1 7T/\1 7T/\1 7T/\2
= tan - tan
fO)  2(A 4+ A2)? 201+ A2)  2(A1 + Ag)? 2(A1+ A2)
n (3.15)
+ Z 7T/\t tan 7T/\t
— 2(A1 + A2)? 2(A1 + Aa)”
Adding both sides of (3.14) and (3.15) gives
2[1,()\1 + )\2) _ 71'()\1 - )\2) tan 7'(')\1 ()\1 - )\2) tan 7'(')\2
fA) 2(A1 + A2)? ()\1 + )\2) 2(A01+A2)?  2(A1+ Ag)
(3.16)
2> o
/\1 +/\2 2(/\1 +)\2)

If Ay < Ay, then (3.16) means
@ > 0.
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On the other hand, subtracting (3.15) from (3.14) gives

2M(A1_‘A2) ™ WAl ™ WAQ

FO T 200w a0+ | 20u 4 ) 20+ Ae)

(3.17)

If A2 < Ay, the left side of (3.17) is positive but its right side is negative which gives
a contradiction. Consequently, the critical points of f occur only when A; = As.
Now, from (3.16) we have

n

4 T A T A
= — tan —. 3.18
) 2 (3.18)

We also have

n

T ) 7"')\t 7"')‘a
Fy, =——— S cos — 21,
AT 00 + ) Wég:l o0 Ae) T2+ ag) KA

where t = 3,---,n. At a critical point (A1, -, A,) of f

n

T H si ™ cos ™ 21\ 0
—_—— in — = 0.
200+ 2) o200 e) 200+ A0

It follows that

QHAt s WAt
=Ty . 1
FO) oy Mo (3:19)

If there exists ¢ such that Ay > 0, then from (3.19) we have ;1 < 0 which contradicts
with (3.18). Consequently, the only critical point of f(A) occurs when

and

Q.E.D.
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4. PROOFS OF THE MAIN THEOREMS

Theorem 4.1. Let M be an n—dimensional simple Riemannian manifold which
is immersed in Euclidean space R™T™ with parallel mean curvature. Let v : M —
Grn,m be Gauss map. Suppose that there exists a fized oriented n—plane Py, and a
number a,
{ : when  min(m,n) > 2,
Qg >

when  min(m,n) = 1;

such that
<P, P0> Z (o)) (41)

holds for all point P € v(M) C Gy . Then M has to be an n—dimensional affine
linear subspace.

Proof. v : M — Gy, is harmonic by Thm 2.3. The point now is to show that
such a harmonic map is constant if its range is contained in a region Bg(Fp). In
the case where B (Fy) is replaced by a geodesiccally convex ball, this was shown
by an iteration argument in [H-J-W]. The properties of Bg(Fp) as established in
§3 are strong enough to make that iteration technique still applicable (for example,
a general version of that iteration technique that directly applies here has been
given in [G-J]).

Alternatively, at least in the case of minimal graphs, one uses Allard’s result [A]
mentioned in the introduction that the tangent cone at infinity of M is the cone
over a compact minimal submanifold M’ of the sphere. The Gauss map of M’
again is a harmonic map with values in a region Bg(P). Since Bg(FPp) supports
a strictly convex function by Thm 3.1, the composition of that Gauss map with
that function is a subharmonic function on M’ which then has to be constant as
M’ is compact, as in [FC].

Possibly, there is even a third method to reach the conclusion. Namely, it is quite
likely that Kendall’s result [K] can be generalized to show that for any @ € Bg(Fp),
there exists a strictly convex function on all of Bg(FP) with its minimum at Q. If
that can be shown, the Holder estimates and Liouville theorems for harmonic maps
with values in Bg(Py) can be shown by a considerably simplified version of the
method of [H-J-W], namely in a single step without the need to iterate. Although
this would yield the simplest proof, we refrain here from studying the technical
details as we have already described two other ways to reach the conclusion that
the Gauss map is constant.

Obviously, if the Gauss map is constant, the submanifold has to be affine linear.

Q.E.D.

We are now in a position to prove Theorem 1 and Theorem 2 stated in the
introduction.

Proof of Theorem 1

Since M = (x, f(x)) is a graph in R™*" defined by m fuctions, the induced
metric on M is
ds?® = gaﬁdmadmﬁ,
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where
oft of
ga,@ - 6aﬂ + Z pye Bazﬁ

It is obvious that the eigenvalues of the matrix (g.3) at each point are > 1. The
condition (1.2) implies that the eigenvalues of the matrix (ga.g) are < (2. The
condition (2.6) is satisfied and M is a simple Riemannian manifold.

Let {eq,enti} be the standard orthonormal base of R™*". Choose Py as an
n—plane spanned by e; A---Ae,. At each point in M its image n—plane P under
the Gauss map is spanned by

ofi
fa =é€q+ a?en—l—i-

It follows that

aft 3J”
n| — =d t «
and
Ap=|fi NN fal.
The n— plane P is also spanned by
Pa=2A;"fa,
furthermore,
|p1 ARERA pn| -
We then have
<P7 P0> - det(<€a,p5>)
B 1
0 Af
_A-1
= Af
which is > ,8 > 1 by (1.1) and (1.2). Thus Theorem 1 follows from Thorem 4.1.

Proof of Theorem 2

(From Proposition 2.5 the normal gauss map v : M — Gy, 41 is harmonic.
The condition (1.5) means that the image (M) under the normal Gauss map is
contained inside of Bg(FPy) C Gy, m+1- Theorem 2.1 and Theorem 3.1 imply that
v is constant. We thus complete the proof of Theorem 2.
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