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Abstract� We show a Bernstein theorem for minimal graphs of arbitrary dimen�
sion and codimension under a bound on the slope that improve previous results
and is independent of the dimension and codimension� The proof depends on the
regularity theory for the harmonic Gauss map and the geometry of Grassmann
manifolds�

�� Introduction

The celebrated theorem of Bernstein says that the only entire minimal graphs
in Euclidean ��space are planes� More precisely	 let z 
 f�x� y� be a smooth
function dened on all of R� 	 whose graph in R� is a minimal surface� Then f is
a linear function	 and the graph is a plane�

The e�orts to generalize Bernstein�s theorem to higher dimensions led to pro�
found developments in analysis and geometric measure theory� The nal result in
a successive series of achievements by several mathematicians was the theorem of
J� Simons �S� that an entire mimimal graph has to be planar for dimension� ��
while Bombieri	 de Giorgi and Giusti �B�G�G� shortly afterwards produced a coun�
terexample to such an assertion in dimension � and higher� By way of contrast	 J�
Moser �M� had earlier proved a Bernstein type result in arbitrary dimension under
the additional assumption that the slope of the graph is uniformly bounded�

All these results hold for hypersurfaces	 i�e� minimal graphs of codimension ��
For higher codimension	 the situation becomes more complicated	 and Lawson�

Osserman �L�O� had given explicit counterexamples to Bernstein type results in
higher codimension� for example they showed that the cone over a Hopf map is
an entire Lipschitz solution to the minimal surface system�

On the other hand	 Hildebrandt�Jost�Widman �H�J�W� had obtained a Bern�
stein type result in arbitrary codimension under the assumption of a certain quan�
titative bound for the slope� Their method was to show that the Gauss map of
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� J� JOST AND Y�L� XIN

such a minimal submanifold which was known to be a harmonic map into a Grass�
mannian has to be constant	 if its range is contained in a su�ciently restricted set
of the Grassmannian� This restriction required the bound on the slope�

In fact	 that result applies not only to minimal graphs but also to ones of parallel
mean curvature as the Gauss map continues to stay harmonic under that condition�
Actually	 Chern �C� had shown that a hypersurface in Euclidean space which is
an entire graph of constant mean curvature necessarily is a minimal hypersurface�
Thus	 by Simons� theorem	 it is a hyperplane for dimension� �� Chern�s result was
generalized by Chen�Xin �C�X��

The proof of Hildebrandt�Jost�Widman derived H�older estimates for harmonic
maps with values in Riemannian manifolds with an upper bound for sectional
curvature and by a scaling argument then concluded a Liouville type theorem
for harmonic maps under assumptions including the above mentioned harmonic
Gauss maps� The H�older estimates needed a bound on the radius of the image	
and examples show that �H�J�W� had achieved the optimal bound in the general
framework for that paper� Nevertherless	 when applied to the special case of
interest here	 namely harmonic maps with values in Grassmannians	 it turns out
that the bound for the slope reqired in �H�J�W� for their Bernstein type result
depends on the dimension and codimension of the minimal graphs� In the present
paper	 we obtain such a Bernstein type result under a bound for the slope which
is better than the one in �H�J�W� and independent of dimension and codimension�

Theorem �� Let zi 
 f i�x�� � � � � xn�� i 
 �� � � � �m be smooth functions de�ned

everywhere in Rn � Suppose their graphM 
 �x� f�x�� is a submanifold with parallel

mean curvature in Rm�n � Suppose that there exists a number �� with

�� �

�
�� when m � ��

� when m 
 ��
�����

such that

�f � �� for all x � R
n � �����

where

�f �x� 
 fdet���� �
X
i

f ix��x�f
i
x�
�x��g �

� � �����

Then f�� � � � � fm are linear functions on R
n representing an a�ne n�plane in

R
m�n �

The case m 
 � of course is simply Moser�s result�
In the framework of geometric measure theory the Bernstein problem is trans�

fered to the rigidity problem of m�dimensional minimal submanifolds M in the
sphere Sm�n� Namely	 it follows from the general work of Allard �A� on varifolds
that the tangent cone at innity of such anm�dimensional submanifold of Rm�n��

is the cone over a minimal submanifold of Sm�n� J� Simons �S� proved that a com�
pact minimal submanifold of the sphere whose normal planes lie in a su�ciently
small neighborhood is a totally geodesic subsphere� Reilly �R� and Fischer�Colbrie
�FC� improved the previous work successively� Like �H�J�W�	 however	 these results
require bounds that depend on dimension and codimension	 and we are able here
to get a similar generalizations as above�
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Theorem �� LetM be an m�dimensional compact or simple� Riemannian mani�

fold which is a minimal submanifold in Sm�n� Suppose that there is a �xed oriented
n�plane P� and a number ���

�� �

� �
� if min�m�n� � ��

� if min�m�n� 
 ��

such that

hP� P�i � ��

holds for all normal n�planes P of M in Sm�n� Then M is contained in a totally

geodesic subsphere of Sm�n�

As mensioned	 the bounds in our results �� in Thm� � and �
�
in Thm� �� are

sharper than the ones previously known� As the examples of Lawson�Osserman
show some such bound is necessary� However	 these counterexamples are not
sharp for our bounds	 and so one may ask whether our bounds are optimal� This
is probably not the case because the essential point in our argument is to construct
a strictly convex function on a su�ciently large region in a Grassmannian� The
question of nding the optimal bound � at least for the strategy pursued here � then
amounts to nding the largest such convex supporting region in a Grassmannian�
Geometric intuition suggests that such an optimal region may on one hand be
larger than the one constructed in our paper	 but on the other hand by no means
as explicitely presentable as ours and possibly also nonunique in a general way� In
other words	 the optimal bound will probably turn out to be some number that
may virtually be impossible to write down explicitely	 and thus perhaps also be of
comparatively little signicance�

Our general strategy is the same as in �H�J�W�� By using the Ruh�Vilms theorem
�R�V�	 we prove the harmonic Gauss map is constant under certain conditions� The
main renement in this paper is a detailed study of geodesic convex sets in the
Grassmannian manifold Gn�m� We dene a new specic geodesic convex set BG

in Gn�m which is larger than the usual geodesic convex ball and interesting in its
own right� We expect further applications�

�� Preliminaries

In this section we describe some basic notions and results on harmonic maps
and submanifols in the Euclidean space and the sphere which will be used in later
sections�

Let �M� g� and �N� h� be Riemannian manifolds with metric tensors g and h	
respectively� Harmonic maps are described as critical points of the following energy
functional

E�f� 

�

�

Z
M

e�f� � �� �����

�as de�ned below
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where e�f� stands for the energy density� The Euler�Lagrange equation of the
energy functional is

��f� 
 �� �����

where ��f� is the tension eld� In local coordinates

e�f� 
 gij
�f�

�xi
�f�

�xj
h�� � �����

��f� 
 ��Mf� � gij����
�f�

�xi
�f�

�xj
�
�

�y�
� �����

where ���� denotes the Christo�el symbols of the target manifold N� Here and in
the sequel we use the summation convention� For more details on harmonic maps
consult �E�L�

A Riemannian manifold M is said to be simple	 if it can be described by coor�
dinates x on Rn with a metric

ds� 
 gijdx
idxj � �����

for which there exist positive numbers 	 and 
 such that

	j�j� � gij�
i�j � 
j�j� �����

for all x and � in R
n � In other words	 M is topologically R

n with a metric for
which the associated Laplace operator is uniformly elliptic on Rn �

Hildebrandt�Jost�Widman proved a Liouville�type theorem for harmonic maps
in �H�J�W��

Theorem ���� Let f be a harmonic map from a simple or compact Riemannian

manifold M into a complete Riemannian manifold N� the sectional curvature of

which is bounded above by a constant � � �� Denote by BR�Q� a geodesic ball in

N with radius R � �
�
p
�
which does not meet the cut locus of its center Q� Assume

also that the range f�M� of the map f is contained in BR�Q�� Then f is a constant

map�

By using the composition formula for the tension eld	 one easily veries that
the composition of a harmonic map f � M � N with a convex function  �
f�M�� R is a subharmonic function on M� The maximum principle then implies

Proposition ���� Let M be a compact manifold without boundary� f � M � N
a harmonic map with f�M� � V � N� Assume that there exists a strictly convex

function on V � Then f is a constant map�

Let M � R
m�n be an n�dimensional oriented submanifold in

Euclidean space� For any point x �M� by parallel translation in the ambient Eu�
clidean space	 the tangent space TxM is moved to the origin of Rm�n to obtain an
n�subspace in Rm�n � namely	 a point of the Grassmannian manifold ��x� � Gn�m�
Thus	 we dene a generalized Gauss map � �M � Gn�m� E� Ruh and J� Vilms dis�
covered the relation between the property of the submanifold and the harmonicity
of its Gauss map in �R�V��
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Theorem ���� Let M be a submanifold in Rm�n � Then the mean curvature vector

of M is parallel if and only if its Gauss map is a harmonic map�

Let M � Sm�n �� R
m�n�� be an m�dimensional submanifold in the sphere�

For any x � M� by parallel translation in R
m�n�� � the normal space NxM of

M in Sm�n is moved to the origin of Rm�n�� � We then obtain an n�subspace
in R

m�n�� � Thus	 the so�called normal Gauss map � � M � Gn�m�� has been
dened� There is a natural isometry � between Gn�m�� and Gm���n which maps
any n�subspace into its orthogonal complementary �m � ���subspace� The map
�� 
 � 	� maps any point x �M into an �m����subspace consisting of TxM and
the position vector of x�

On the other hand	 to study properties of the submanifold M in the sphere we
may investigate the cone CM generated by M� CM is the image under the map
from M 
 � ��� � into Rm�n�� dened by �x� t� � tx� where x � M� t � � ��� ��
CM has a singularity at t 
 �� To avoid the singularity we consider the truncated
cone CM�� which is the image of M 
 � ��� � under the same map	 where � is any
positive number�

J� Simons showed in �S� that M is a minimalm�submanifold if and only if CM�

is an �m� ���dimensional minimal cone� In fact	 we have �see �X�	 Prop �����

Proposition ���� CM� has parallel mean curvature in Rm�n�� if and only if M
is a minimal submanifold in Sm�n�

From Theorem ��� and Proposition ��� it follows that

Proposition ���� M is a minimal m�dimensional submanifold in the sphere

Sm�n if and only if its normal Gauss map � �M � Gn�m�� is a harmonic map�

�� Geometry of Grassmannian Manifolds

Let N be a Riemannian manifold with curvature tensor R��� ���
Let � be a geodesic issueing from x� with ���� 
 x� and ��t� 
 x� where t is

the arc length parameter� Dene a self�adjoint map

R �� � w � R� ��� w� ��� �����

Let v be a unit eigenvector of R ����� with eigenvalue 
 and hv� �����i 
 �� Let v�t�
be the vector eld obtained by parallel translation of v along �� In the case of N
being a locally symmetric space with nonnegative sectional curvature	 v�t� is an
eigenvector of R ���t� with eigenvalue 
 � �� namely

R� ���t�� v�t�� �� 
 
v�t��

Thus	

J�t� 


�
�p
�
sin�

p

t�v�t�� when 
 � �

t v�t�� when 
 
 �
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is a Jacobi eld along ��t� with J��� 
 �� On the other hand	 the Hessian of
the distance function r from x� can be computed by those Jacobi elds� Now	 we
assume � is a geodesic without a conjugate point up to distance r from x�� For
orthonormal vectors X�Y � T��r�Br�x�� there exist unique Jacobi elds J� and
J� such that

J���� 
 J���� 
 �� J��r� 
 X� J��r� 
 Y�

since there is no conjugate point of x� along �� We then have

Hess�r��X�Y � 
 hrX ��� Y i

 hrJ� ��� J�ij��r�����




Z r

�

d

dt
hrJ� ��� J�i dt




Z r

�

�hr ��rJ� ��� J�i� hrJ� ���r ��J�i�dt




Z r

�

�hR�J�� ��� ��� J�i� hr ��J��r ��J�i�dt




Z r

�

�
d

dt
hr ��J�� J�i � hr ��r ��J� � R� ��� J�� ��� J�i

�
dt


 hr ��J�� J�i

Assume that 
i and vi�t� are eigenvalues and orthonormal eigenvectors of R ���t��
Then

Ji�t� 

�p

i

sin�
p

it�vi�t�

are n� � orthogonal Jacobi elds	 where 
i � ��

Hess�r��Ji� Jj� 
 hr ��Ji� Jji




�
cos�

p

ir�vi�r��

�p

j

sin�
p

jr�vj�r�

�



�p

j

sin�
p

jr� cos�

p

ir��ij

�

and
Hess�r��vi�r�� vj�r�� 


p

i cot�

p

ir��ij �����

�In the case 
i 
 ��Hess�r��vi�r�� vi�r�� 

�
r
�� On the other hand

Ric� ��� ��� 

X
i

hR� ��� vi� ��� vii 

X
i


i�

Let Rm�n be an �m� n��dimensional Euclidean space� The set of all oriented
n�subspaces �called n�planes� constitutes the Grassmannian manifoldGn�m	 which
is the irreducible symmetric space SO�m � n��SO�m� 
 SO�n�� Our discussion
of the geometry of Gn�m will be based on the work of Wong �W�� References for
other contributions on the geometry of Grassmannian are listed in �H�J�W��
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Let P and Q be two points in Gn�m� Wong dened the angles between P and
Q as the critical values of the angle between a nonzero vector x in P and its
orthogonal projection x� in Q as x runs through P� Assume that e�� � � � � en are
orthonormal vectors which span P� and f�� � � � � fn for Q� For a nonzero vector

x 

X
�

x�e��

its orthogonal projection in Q is

x� 

X
�

x��f��

Thus	 for any y in Q we have

hx� x�� yi 
 ��

Assume that
a�� 
 he�� f�i �

We then have
x�� 


X
�

a��x��

and

cos � 


DP
� x�e��

P
� x

�
�f�
E

pP
� x

�
�

qP
� x

�
�
�




P
�� � a��x�x

�
�pP

� x
�
�

qP
� x

�
�
�




P
�� �� � a��a��x�x�pP

� x
�
�

qP
�� �� � a��a��x�x�




qP
�� � A��x�x�pP

� x
�
�

�

�����

where A�� 

P

� a��a�� is symmetric in � and �� It follows that the angles ��
between P and Q are

�� 
 cos���	a�� � � �� � �

�
�

where 	�� are the eigenvalues of the symmetric matrix �A����
Let fe�� en�ig be a local orthonormal frame eld in R

m�n � where i� j� � � � 

�� � � � �m� �� �� � � � 
 �� � � � � n� a� b� � � � 
 �� � � � �m � n �say	 n � m�� Let
f��� �n�ig be its dual frame eld so that the Euclidean metric is

g 

X
�

��
� �

X
i

��
n�i�
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The Levi�Civita connection forms �ab of Rm�n are uniquely determined by the
equations

d�a 
 �ab � �b�

�ab � �ba 
 ��
�����

Now	 we consider any point P � Gn�m and a su�ciently close point Q� The
canonical Riemannian metric on Gn�m can be dened by the sum of the squares
of the n angles between P and Q� namely

ds� 

X
�� i

��
�n�i �����

�From ����� and ����� it is easily seen that the curvature tensor of Gn�m is

R�i �j �k �l 
�������ik�jl � �������ij�kl

� �������il�kj � �������ij�kl

in a local orthonormal frame eld fe� ig� which is dual to f��n�ig
Let �� 
 x�ie� i and v 
 v�ie� i� Then

hR� ��� e�j� ��� vi 
 x�ix�kv�l hR�e�i� e�j�e�k� e�li

 x�ix�kv�l��������ik�jl � �������ij�kl

� �������il�kj � �������ij�kl�


 x�ix�iv�j � x�jx�lv�l � �x�lx�jv�l

�����

By an action of SO�m�
 SO�n�

x�i 
 	���i�

where
P

� 	
�
� 
 �� In fact	 there exist an n
n orthogonal matrix U and an m
m

matrix U �	 such that

UXU � 


�
�	� �

� � � �
� 	n

�
A �

where X 
 �xai� is an n
m matrix� From ����� and ����� we have

R ��v 
 �	�	���i��iv�j � 	����j��lv�l � �	�	���j��lv�l�e�j


 �	��v�j � 	����jv�� � �	�	���jv���e�j




�
�	��v�� � 	��v�� � �	�	�v���e��� when j 
 � 
 �� � � � � n�
	��v�se�s� when j 
 s 
 n� �� � � � �m�

For any n
m matrix V 	 there is an orthogonal decomposition

V 
 �V�� �� � �V�� �� � ��� V���
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where V� is an n
n symmetric matrix	 V� is an n
n skew�symmetric matrix and
V� is an n
 �m� n� matrix� For v�� 
 v��

R ��v��e�� 
 �	� � 	��
�v��e���

For v�� 
 �v��
R ��v��e�� 
 �	� � 	��

�v��e���

In summary	 R �� has eigenvalues�

	�� with multiplicitym� n

���
���

	�n with multiplicitym� n

�	� � 	��
� with multiplicity �

�	� � 	��
� with multiplicity �

� with multiplicity n� �

for each pair � and � with � �
 �� From ����� it follows that the eigenvalues of the
Hessian of the distance function r from a xed point at the direction X 
 �x�i� 

�	���i� are the same as the ones at X� 
 �j	�j��i�� They are as follows�

	� cot�	�r� with multiplicitym� n

���
���

	n cot�	nr� with multiplicitym� n

�	� � 	�� cot�	� � 	��r with multiplicity �

�	� � 	�� cot�	� � 	��r with multiplicity �

�

r
with multiplicity n� �

�����

where 	� � � without loss of generality�
Let P� be an oriented n�space in Rm�n � We represent it by n vectors e�� which

are complemented by m vectors en�i	 such that fe�� en�ig form an orthonormal
base of Rm�n � Then we can span the n�planes P in a neighborhood U of P� by n
vectors f��

f� 
 e� � z�ien�i�

where �z�i� are the local coordinates of P in U�
Let �x�i� 
 �	���i� be a unit tangent vector at P�� The geodesic from P� at

the direction �x�i� in U is �see �W��

�z�i�t�� 


�
B�
tan�	�t� �

� � � �
� tan�	nt�

�
CA �����
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where t is the arc length parameter and � � t � �
�j	�j with j	�j 
 max�j	�j� � � � � j	nj��

Thus	 a geodesic in Gn�m between two n�spaces is simply obtained by rotating
one into the other in Euclidean space	 by rotating corresponding basis vectors�
We also see that in the case of codimension � �� the above zero eigenvalues of the
curvature tensor are obtained for a pair of tangent vectors in the Grassmannian
that correspond to rotating two given orthogonal basis vectors of an n�plane
separately into two di�erent mutually orthogonal directions orthogonal to that
n�plane� Take as an example the ��plane spanned by e�� e� in R� � One tangent
direction in G��� would be to move e� into e� and keep e� xed	 and the other
tangent direction would move e� into e� and keep e� xed� The largest possible
eigenvalue	 namely � in case of codimension � � �e� g� for 	� 
 	� 
 �p

�
� 	� 


� � � 
 	n 
 ��	 is realized if one takes two orthogonal directions	 say e�� e�� in
a given n�plane and two other such directions	 say f�� f� orthogonal to that
n�plane	 and the two tangent directions corresponding to rotating e� to f�� e�
to f� and e� to f�� e� to �f�	 respectively� This geometric picture is useful for
visualizing our subsequent constructions�

Now	 let us dene an open set BG�P�� in U � Gn�m� In U we have the normal
coordinates around P�� and then the normal polar coordinates around P�� Dene
BG�P�� in normal polar coordinates around P� as follows�

BG�P�� 


�
�X� t�� X 
 �	���i�� � � t � tX 


�

��j	�� j� j	�� j�
	
� �����

where 	�� and 	�� are two eigenvalues with largest absolute values� �From �����
we see that BG�P�� lies inside the cut locus of P�� We also know from ����� that
the square of the distance function r� from P� is a strictly convex smooth function
in BG�P���

Remark� The above denition of BG�P�� is for the case of m � n � �� If n 

�� G��m is the usual sphere Sm and the dened set is the open hemisphere as
usual�

Let P 
 ��	���i�� t� and Q 
 ��	����i�� t
�� be two points in BG�P��� Then the

local expression of P in U is the n
m matrix �tan�	�t���i�� similarly that of Q
is �tan�	��t

����i� � Consider a curve � between P and Q dened by

�tan�	�t��� h� � 	��t
�h���i�

in U� there � � h � � is the parameter for �� We claim that � is a geodesic�
Let P � be the middle point dened by

�
tan

�
	�t� 	��t

�

�

�
��i

�

in U� In Rm�n the n�plane P is spanned by orthogonal vectors

f� 
 e� � tan�	�t�en��
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whose unit ones are
�f� 
 cos�	�t�e� � sin�	�t�en���

Similarly	 P � is spanned by n vectors

�f �� 
 cos
	�t� 	��t

�

�
e� � sin

	�t� 	��t
�

�
en���

By using ����� we obtain the angles between P and P � is �
� j	�t� 	��t

�j and their
distance is

d�P� P �� 

�

�

sX
�

�	�t� 	��t���� ������

Take any point P �� between P and P � on �

P �� 
 �tan���t��� h� � 	��t
�h���i� �

where � � h � �
� � By computation we know that

d�P� P ��� 
 h

sX
�

�	�t� 	��t��� ������

and

d�P ��� P �� 
 �
�

�
� h�

sX
�

�	�t� 	��t���� ������

������	 ������ and ������ show that the restriction of � to the segment between
P and P � is the minimal geodesic� The same holds for the other segment of ��
Hence	 the entire curve � is a geodesic between P and Q�

We claim that geodesic � has the following properties�

��� � � BG�P���
��� � � BG�P

���
For any h � ��� ��� ��h� lies on a geodesic starting from P� in the direction


�
A
�	�t��� h� � 	��t

�h���i
�
� where A � � is the normalizer� By our construction

of BG�P�� the radius in this direction is

s 

�A

� �j	�t��� h� � 	��t�hj� j	�t��� h� � 	��t�hj�
�

where for notational simplicity we assume that the rst and the second components
are the two with largest absolute values� As P and Q are in BG�P�� and by the
conditions for t and t��

j	�t��� h� � 	��t
�hj� j	�t��� h� � 	��t

�hj
� �j	�j� j	�j�t��� h� � �j	��j� j	��j�t�h

�
�j	�j� j	�j��
��j	�� � j	�� j���� h� �

�j	��j� j	��j��
��j	��� � j	��� j�h

� �

�
�
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so

s � A�

which means ��h� � BG�P��� and we conrmed the rst claim�

Now	 we move the origin of the coordinates from P� to P �� The n�plane P � is
spanned by n orthonormal vectors

f �� 
 cos
	�t� 	��t

�

�
e� � sin

	�t� 	��t
�

�
en���

Dene

f �n�� 
 � sin
	�t� 	��t

�

�
e� � cos

	�t� 	��t
�

�
en��

and the remaining m � n vectors do not change� Thus	 ff ��� f �n�ig forms an
orthonormal base of Rm�n � Each point ��h� of the geodesic � is an n�plane in
R
m�n � It is spanned by

cos�	�t��� h� � 	��t�h�e� � sin�	�t��� h� � 	��t�h�en���

By the above changed base	 ��h� is also spanned by

cos�	�t�
�

�
� h�� 	��t

��
�

�
� h��f �� � sin�	�t�

�

�
� h�� 	��t

��
�

�
� h��f �n��

which means that the geodesic � in the coordinate neighborhood U
� around P �

can be described by

�
tan�	�t�

�

�
� h�� 	��t

��
�

�
� h����i

�
�

Its tangent direction at P � is

��	��t
� � 	�t���i� �

By a similar argument we obtain the second property	 that is � � BG�P
���

These two properties of the geodesic � mean that any minimal geodesic � from
P to Q lies in BG�P�� and has length less than �tX � where X is the unit tangent
vector of � at P� On the other hand	 we already computed all Jacobi elds along
any geodesic in Gn�m� which means that any geodesic from P of length � �tX has
no conjugate points and that the squared distance function from P remains strictly
convex along this geodesic for length � tX � Thus	 by a similar reasoning as Prop�
����� in �J� we conclude that BG�P�� shares all the properties of the usual convex
geodesic ball� In fact	 the situation here is even simpler because	 in a symmetric
space	 by a result of Crittenden �Cr�	 the rst cut point along a geodesic always
has to be a conjugate point� In summary	 we have
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Theorem ���� In BG�P�� the square of the distance function from its center P�

is a smooth strictly convex function� Furthermore� BG�P�� is a convex set� namely

any two points in BG�P�� can be joined in BG�P�� by a unique geodesic arc� This

arc is the shortest connection between its end points and thus in particular does

not contain a pair of conjugate points�

Remark� In the Grassmannian manifold there is the usual convex geodesic ball
BR�P�� of radius

R �

�
�

�
p
�

when min�m�n� � ��

�
� when min�m�n� 
 ��

�From ����� it is seen that BR�P�� � BG�P���

Let P �t� be any n�plane in U of P� which is spanned by

f� 
 e� � z�ien�i�

where z�i is dened by ������ Let

�f� 
 cos�	�t�f�� � � � � �fn 
 cos�	nt�fn�

Since jf�j 
 �
cos�	�t�

� the vectors �f�� � � � � �fn are orthonormal�

Therefore	 we can dene the inner product hP�� P i of n�planes P� 
 e��� � ��en
and P 
 �f� � � � � � �fn by

hP�� P i 
 det
�D

e�� �f�
E

�

It follows that

hP�� P �t�i 
 det

�
BB�
cos�	�t� �

cos�	�t�
� � �

� cos�	nt�

�
CCA 


nY
�	�

cos�	�t��

Theorem ����

maxfhP�� P i � P � �BGg 
 �

�
� ������

Proof� Suppose now for notational simplicity that

	� � 	� � � � � � 	n � �� 	�� � � � �� 	�n 
 ��

Let us maximize

f�	�� � � � � 	n� 

nY

�	�

cos

�
�	�

��	� � 	��

�
�
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Let

F �	�� � � � � 	n� 
� 

nY

�	�

cos

�
�	�

��	� � 	��

�
� 
���

nX
�	�

	����

where 
 is a Lagrange multiplier� Then

F	� 
� �	�
��	� � 	���

sin
�	�

��	� � 	��
cos

�	�
��	� � 	��

nY
s	�

cos
�	s

��	� � 	��

�
�	�

��	� � 	���
cos

�	�
��	� � 	��

sin
�	�

��	� � 	��

nY
s	�

cos
�	s

��	� � 	��

�
nX
t	�

�	t
��	� � 	���

cos
�	�

��	� � 	��
cos

�	�
��	� � 	��

sin
�	t

��	� � 	��

nY
s�	t�s	�

cos
�	s

��	� � 	��
� �
	�


� �	�
��	� � 	���

tan
�	�

��	� � 	��
f�	� �

�	�
��	� � 	���

tan
�	�

��	� � 	��
f�	�

�
nX
t	�

�	t
��	� � 	���

tan
�	t

��	� � 	��
f�	�� �
	��

At a critical point of f

�
	�
f�	�


 � �	�
��	� � 	���

tan
�	�

��	� � 	��
�

�	�
��	� � 	���

tan
�	�

��	� � 	��

�
nX
t	�

�	t
��	� � 	���

tan
�	t

��	� � 	��

������

and similarly	

�
	�
f�	�



�	�

��	� � 	���
tan

�	�
��	� � 	��

� �	�
��	� � 	���

tan
�	�

��	� � 	��

�
nX
t	�

�	t
��	� � 	���

tan
�	t

��	� � 	��
�

������

Adding both sides of ������ and ������ gives

�
�	� � 	��

f�	�



��	� � 	��

��	� � 	���
tan

�	�
��	� � 	��

� ��	� � 	��

��	� � 	���
tan

�	�
��	� � 	��

�
nX
t	�

�	t
�	� � 	���

tan
�	t

��	� � 	��
�

������

If 	� � 	�	 then ������ means

 � ��
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On the other hand	 subtracting ������ from ������ gives

�
�	� � 	��

f�	�

 � �

��	� � 	��
tan

�	�
��	� � 	��

�
�

��	� � 	��
tan

�	�
��	� � 	��

� ������

If 	� � 	�� the left side of ������ is positive but its right side is negative which gives
a contradiction� Consequently	 the critical points of f occur only when 	� 
 	��
Now	 from ������ we have

�
	�
f�	�



nX
t	�

�	t
�	��

tan
�	t
�	�

� ������

We also have

F	t 
 � �

��	� � 	��

nY
��	t��	�

sin
�	t

��	� � 	��
cos

�	�
��	� � 	��

� �
	t�

where t 
 �� � � � � n� At a critical point �	�� � � � � 	n� of f

� �

��	� � 	��

nY
��	t��	�

sin
�	t

��	� � 	��
cos

�	�
��	� � 	��

� �
	t 
 ��

It follows that
�
	t
f�	�


 � �

�	�
tan

�	t
�	�

� ������

If there exists t such that 	t � � 	 then from ������ we have 
 � � which contradicts
with ������� Consequently	 the only critical point of f�	� occurs when

	� 
 	� 


p
�

�
� 	� 
 � � � 
 	n 
 ��

and

f�	�� � � � � 	n� 

nY

�	�

cos

�
�	�

��	� � 	��

�
� �

�
�

Q�E�D�
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�� Proofs of the Main Theorems

Theorem ���� Let M be an n�dimensional simple Riemannian manifold which

is immersed in Euclidean space Rm�n with parallel mean curvature� Let � �M �
Gn�m be Gauss map� Suppose that there exists a �xed oriented n�plane P�� and a

number ���

�� �

� �
� when min�m�n� � ��

� when min�m�n� 
 ��

such that

hP� P�i � �� �����

holds for all point P � ��M� � Gn�m� Then M has to be an n�dimensional a�ne

linear subspace�

Proof� � � M � Gn�m is harmonic by Thm ���� The point now is to show that
such a harmonic map is constant if its range is contained in a region BG�P��� In
the case where BG�P�� is replaced by a geodesiccally convex ball	 this was shown
by an iteration argument in �H�J�W�� The properties of BG�P�� as established in
x� are strong enough to make that iteration technique still applicable �for example	
a general version of that iteration technique that directly applies here has been
given in �G�J���

Alternatively	 at least in the case of minimal graphs	 one uses Allard�s result �A�
mentioned in the introduction that the tangent cone at innity of M is the cone
over a compact minimal submanifold M � of the sphere� The Gauss map of M �

again is a harmonic map with values in a region BG�P��� Since BG�P�� supports
a strictly convex function by Thm ���	 the composition of that Gauss map with
that function is a subharmonic function on M � which then has to be constant as
M � is compact	 as in �FC��

Possibly	 there is even a third method to reach the conclusion� Namely	 it is quite
likely that Kendall�s result �K� can be generalized to show that for anyQ � BG�P���
there exists a strictly convex function on all of BG�P�� with its minimum at Q� If
that can be shown	 the H�older estimates and Liouville theorems for harmonic maps
with values in BG�P�� can be shown by a considerably simplied version of the
method of �H�J�W�	 namely in a single step without the need to iterate� Although
this would yield the simplest proof	 we refrain here from studying the technical
details as we have already described two other ways to reach the conclusion that
the Gauss map is constant�

Obviously	 if the Gauss map is constant	 the submanifold has to be a�ne linear�
Q�E�D�

We are now in a position to prove Theorem � and Theorem � stated in the
introduction�

Proof of Theorem �

Since M 
 �x� f�x�� is a graph in R
m�n dened by m fuctions	 the induced

metric on M is
ds� 
 g��dx

�dx��
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where

g�� 
 ��� �
X
i

�f i

�x�
�f i

�x�
�

It is obvious that the eigenvalues of the matrix �g��� at each point are � �� The
condition ����� implies that the eigenvalues of the matrix �g��� are � ��� � The
condition ����� is satised and M is a simple Riemannian manifold�

Let fe�� en�ig be the standard orthonormal base of Rm�n � Choose P� as an
n�plane spanned by e� � � � � � en� At each point in M its image n�plane P under
the Gauss map is spanned by

f� 
 e� �
�f i

�x�
en�i�

It follows that

jf� � � � � � fnj� 
 det���� �
X
i

�f i

�x�
�f i

�x�
�

and

�f 
 jf� � � � � � fnj�

The n� plane P is also spanned by

p� 
 �
� �

n

f f��

furthermore	

jp� � � � � � pnj 
 ��

We then have
hP� P�i 
 det�he�� p�i�




�
BB�
�
� �

n

f �

� � �

� �
� �

n

f

�
CCA


 ���
f

which is � �
��

� �
� by ����� and ������ Thus Theorem � follows from Thorem ����

Proof of Theorem �

�From Proposition ��� the normal gauss map � � M � Gn�m�� is harmonic�
The condition ����� means that the image ��M� under the normal Gauss map is
contained inside of BG�P�� � Gn�m��� Theorem ��� and Theorem ��� imply that
� is constant� We thus complete the proof of Theorem ��
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