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1 Introduction and examples

In this paper we discuss a general approach to construct solutions for a large
class of nonlinear first and second order partial differential equations. The
method makes strong use of work by Gromov (who substantially generalized
earlier results of Nash and Kuiper) and is especially suitable for nonconvex
problems where standard compactness arguments fail. One application concerns
the (unexpected) existence of solutions in mathematical models of solid-solid
phase transformations (see Example ¢) below). Another application is the recent
resolution of the regularity question for weak solutions to the Euler-Lagrange
equations of multiple integrals.

Theorem 1.1 There exists a smooth, strongly elliptic 2 X 2 system
—dive(Dv) =0, v:R — R? (1.1)
that admits
(i) nontrivial Lipschitz solutions with compact support;
(ii) Lipschitz solutions that are nowhere C'.

Moreover o can be chosen such that (1.1) is the Euler-Lagrange equation of a
variational integral [ f(Dv)dz, where f is smooth and uniformly quasiconvex
in the sense of Morrey.

The existence of irregular solutions of the Euler-Lagrange equations (1.1) is
in sharp contrast with the (partial) regularity theory for minimizers of quasi-
convex integrals ([Ev 86], [AF 87], [GM 86|, [FH 85]).
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This raises the question which structure conditions on o are needed to en-
sure a good regularity theory for quasilinear systems. (Tartar has raised this
issue in connection with the closely related question of compactness and sta-
bility of solutions, see e.g. [Ta 79], p. 160.) For a scalar equation the De
Giorgi-Moser-Nash Theorem shows that ellipticity is the natural condition. For
systems, there is a large literature for monotone o (see [Gi 83] for a summary,
further references and a sketch of the history) and many results can be extended
to so-called quasimonotone o ([Fu 87], [Ha 95], [Zh 88]), but these conditions
are too restrictive for applications e.g. to nonlinear elasticity. Similar issues
arise for problems in nondivergence form as recent counterexamples by Nadi-
rashvili show ([Na 98]). In the theory of harmonic maps there are also striking
differences between minimizers, weak solutions of the Euler-Lagrange equations
and so-called stationary harmonic maps which in addition satisfy a form of
the Euler-Lagrange equations obtained by variation of the independent variable
([Mo 48], [SU 82], [He 91], [Ev 91], [Be 93], [Ri 95]; see [He 97], [Si 96] for recent
overviews).

We remark in passing that our counterexamples to regularity are quite dif-
ferent from the famous examples of De Giorgi [DG 68], Giusti-Miranda [GM 68]
Bombieri-De Giorgi-Giusti [BDG 69] and many subsequent works including [HLN 96].
The latter are based on finding equations that admit certain point singularities
like x/|z| (or certain cones), while our approach uses the fact that the equation
is compatible with certain large oscillations of Du (small oscillations must be
smooth by ellipticity). The construction of counterexamples is thus reduced
to certain algebraic calculations in the space of matrices (see Section 4 below).
Our point of view here is strongly influenced by the work of Tartar [Ta 79],
[Ta 83], [Ta 98] and by the result [Sv 95] that there exists a 6 x 2 system that
admits a smooth periodic solution (and arises as the Euler-Lagrange equation
of a strictly polyconvex variational integral).

Before we return to the case of 2 x 2 systems let us review the general setting
and some illustrative examples. Given a subset of the m x n matrices M™*"
a (bounded) domain 2 C R" and a map ug : 2 = R™ we seek to find Lipschitz
maps v : 2 — R™ that satisfy

Du(z) € K forae. z€q, (1.2)
w up on Of. (1.3)

Generalizations to problems of the form F'(z,u(x), Du(z)) = 0 a.e., to maps
between manifolds and to higher order derivatives are possible. In order to avoid
technicalities as much as possible we focus on (1.2) and (1.3) in the following.
This setting already includes a number of interesting examples.

Example a) (scalar u, Hamilton-Jacobi equations) Let m = 1. It follows from
Theorem 2.4 below that (1.2), (1.3) has a solution if ug is C* (or piecewise C*
and continuous) and

Dug € int convK.

For affine ug the condition Dug € convK is clearly necessary. On the other
hand, the examples K = {a,b} or K = {(£1,£1)} show that the condition
Dugy € tonvK is in general not sufficient, even if ug is affine. As a special case



consider a convex, coercive function f : R* — R. Then the Hamilton-Jacobi
equation

f(Du) =0 (1.4)
has a solution which satisfies the boundary condition (1.3) provided that
f(Duo) <0

In this case there is also a good theory of viscosity solutions of (1.4) (see [Kr 75],
[CL 83]). In general, Theorem 2.4 below yields existence of solutions in many
cases where no viscosity solution exists, but the solutions have much weaker
properties (no uniqueness, no comparison principle), see [CDGG 99] for further
discussion.

b) (Isometries) If K = SO(n) then Liouville’s theorem shows that Du is con-
stant on each component of €2 (see [Re 68] and [BI 82], or [Ki 88] for the simpler
Lipschitz case). On the other hand if K = O(n) or

K=0(n,m)={FeM™": FIF = idg.}
then (1.2), (1.3) admits a solution if ug is a ‘short’ map, i.e.
Dug € int convK = {F € M™ " : \,,,..(FTF) < 1},

see [Gr 86], Chapter 2.4.11, p. 216, [CP 95], [CP 97]. In fact for m > n one can
obtain C! solutions [Gr 86], Chapter 2.4.9, Thm. (A), p. 203.

c) (Two-well problem) In the study of phase transitions in crystals ([BJ 87],
[BJ 92], [Bh 92], [CK 88]; see [Mu 98] for a recent survey) the set

K = SO(2)A( JS0(2)B c M**?,

with A, B symmetric, positive definite, detA = detB = 1 arises. Theorem 3.2.
below shows that solutions exist if ug € C1*(for 0 < a < 1) and

Dug € int convK N {det = 1}.

d) (m x 2 elliptic systems) Let o : M™*2 — M™*2 be a C* map and consider
the second order system

—dive(Dv) =0 inQ, (1.5)
ie.

2
- Zaaam(m) =0, fori=1,...m.

a=1

If Q is simply connected then (1.5) can be expressed as

0 -1
o(Dv)J = Dw, J_<1 0),



and if we let u = <5}>, then (1.5) can be rewritten as

F

Du€ K, K:{(G

) € M*™*?: g(F)J = G} ,
and thus can be recast into the present framework.

e) (Four-point configuration). The following example played an important
role in clarifying different convexity notions in the calculus of variations and was
discovered independently (in different contexts) by several authors ([AH 86],
[CT 93], [Ta 93]; for a related example see [MN 91]). It will be crucial in the
construction of nontrivial solutions to 2 x 2 elliptic systems. Let (see Figure 1
in section 4)

1 0 3 0
K:{A17A2,A3,A4}, —A1:A3: (O 3)7 _A2:A4: (O _1)

One easily checks that all solutions of Du € K are trivial. Corollary 4.1 below
shows that there is a large number of nontrivial maps whose gradient stays in
an arbitrarily small neighbourhood of K.

2 Convex integration

The first striking results on solutions of relations like (1.2) appeared in the fun-
damental work of Nash [Na 54] and Kuiper [Ku 55] on isometric immersions.
Specifically, Kuiper showed that for any £ > 0 there exist an isometric C' im-
mersion v : S? — R® that maps S? in a ball of radius ¢, while a classical
theorem of Hilbert states that C? isometric immersions are rigid motions (see
Borisov [Bo 65] for rigidity and non-rigidity in C*®). Extending these ideas
Gromov [Gr 73, Gr 86] developed a general method, called ‘convex integration’
to treat (1.2) and much more general partial differential relations (Spring’s re-
cent book [Sp 98] gives a detailed exposition). The main emphasis in [Gr 86]
is on the construction of C! solutions. In the context of equidimensional iso-
metric immersions Gromov also studies the Lipschitz case in detail and later
states a general result for Lipschitz solutions, see Chapter 2.4.11, p. 218. The
setting is that of jet bundles and thus the result covers in particular systems
of the form F(z,u(x),...,D™u(z)) = 0 a.e. in Q subject to DWu = v(® on
00,0<I<m-—1.

A short self-contained proof for the special case (1.2), (1.3) appeared in
[MS 96]. A slightly different approach based on Baire’s theorem was pursued
by Dacorogna and Marcellini [DM 97], [DM 98a], [DM 98b], following work of
Cellina [Ce 80] as well as De Blasi and Pianigiani [DP 82, DP 91] for ordinary
differential equation and differential inclusions. As we shall see Gromov’s setting
(or that of Dacorogna and Marcellini) suffices to discuss Examples a) and b),
while for ¢)—e) additional ideas are needed.

The basic idea of convex integration is that nontrivial solutions of (1.2), (1.3)
exist if Dug takes values in (the interior of) a suitable convex hull, called the
P-convex hull. For sets K C M™*"™ the notion of P-convexity reduces to what
is called lamination convexity in [MS 96] ([MP 98] use the term set-theoretic
rank-1 convexity). A set E C M™*" is lamination convex if for all matrices
A, B € E that satisfy rk(B—A) = 1, the whole segment [A, B] is contained in E.



The lamination convex hull E' is the smallest lamination convex set containing
E. The relevance of rank-1 matrices stems from the fact that they arise exactly
as gradients of maps  — u(z - n) which only depends on one variable. These
maps (and slight modifications thereof; see Lemma 2.2 below) are the basic
building blocks in Gromov’s construction. In the scalar case m = 1 lamination
convexity of course reduces to ordinary convexity.

The construction of solutions now proceeds in two steps. First one considers
open sets U C M™*"  and this case is easily reduced to an open neighbourhood
of two matrices A, B with rk(B — A) = 1. Secondly one passes to general sets
K by approximating them from the inside by open sets contained in K%. In
the following we say that a map u :  C R* — R™ is piecewise linear if it is
continuous, if there exist finitely or countably many disjoint sets {2; whose union
has full measure such that u, is affine and if Du is (essentially) bounded.

Lemma 2.1 Suppose that U C M™*"™ is open and bounded and that ug : Q —
R™ is piecewise linear and satisfies

Dug € U’ a.e. (2.1)
Then there ezists, for any 6 > 0, a piecewise linear u such that

DueU ae, u=mwugond, (2.2)
sup |u —ug| < 9.

For the proof it clearly suffices to consider the case ug(z) = Fx. One uses
the fact that U’ can be defined by successive addition of rank-1 segments:

Ule = U U® | where U9 = U,
k=0
Ukt = g® U {[A,B]: A,B e Urk(B - A) =1}.

By induction over k the proof of Lemma 2.1 is easily reduced to the following
special case (see [MS 96]).

Lemma 2.2 Suppose that k(B — A) =1, 4.e. B— A =a®mn, and let F =
A + (1 = N)B. If U is an open neighbourhood of {A, B} then there ezists a
piecewise linear u such that

DueU ae., u=Fx on 09, (2.4)
sup |u(z) — Fz| < 6. (2.5)

To construct u, assume without loss of generality F' = 0,1 = e,, and consider
the set M = (—1,1)" ! xg(—\,1—)), the one-dimensional map v(z) = ah(z,),
where h'(z,) = 1 — A for z,, < 0, h'(z,) = —A for z,, > 0,h(0) = eA(1 —
A). Then Dv € {A,B} and h > 0 in M. The function u(z) = ag(z), with
g(x) =h(z)—¢ Z;le |z;| has the desired properties on the diamond-shaped set
M = M n{g > 0}. For general sets @ C R one can use Vitali’s theorem to
exhaust Q2 by disjoint scaled copies of M. Choosing the scaled copies sufficiently
small one obtains (2.5).

This finishes the argument for open sets U. For general sets K one needs an
suitable approximation by open sets.



Definition 2.3 (Gromov) A sequence of open sets Uy C M™*™ is an in-
approzimation of a set E C M™*" if

(i) the U; are uniformly bounded;
(ii) Ui C U ;
(iii) U; — E in the following sense: if F; € U; and F; — F then F € E.

Example For m = 1 the shells U; = {z : 1 — 272 < |z] < 1} are an in-
approximation of ™1,

Theorem 2.4 ([Gr 86, p. 218; [MS 96]) Suppose that {U;} is an in-approz-
imation of K C M™ "™ and that up : Q@ — R™ is C* (or piecewise C') and
satisfies

Dug € Uy a.e.
Then there exists u € W1 (Q; R™) such that
Du € K a.e., u = ug ondfd

For the proof one uses Lemma 2.1 to inductively construct approximations
uD with Du® € U;. The key point is to assure that the Du(?) converge strongly.
At first glance it is surprising that this can be achieved since the construction
in Lemma 2.1 yields solutions with highly oscillatory gradients. Nonetheless
by a judicious choice of the C° error § in Lemma 2.1 one can ensure that
the oscillations added in each iteration step are essentially independent of the
previous ones and only effect a set of small measure. This construction, which is
reminiscent of the construction of continuous, nowhere differentiable functions
is one of the key ideas of convex integration (in [DM 97] it is replaced by an
elegant, but slightly less flexible, Baire category argument). Specifically, one
choses €; < % and §; inductively such that ||p., * Du; — Du;||,r < 277 and
sup |u; — uip1| < i1 = €;0;, where p. = ¢ "p(2) is the usual mollifier. Then
Ui = Uoo in C° and Du; — Duo, in Lt since ||pe, * (Du; — Duoo)||pr = ||Dpe; *
(u; — uoo)||zr < % — 0; see [MS 96] for the details.

3 Constraints and sets without rank-1 connections

The theory explained so far applies to Examples a) and b) but not to c) - e).
As regards c), the constraint det F = 1 is stable under lamination convexity
since F' +— det F is affine in rank-1 directions. Hence the set K in c) does
not admit an in-approximation by open sets. The set K in e) contains no
rank-1 connections and hence K'* = K and similarly U!¢ contains only points
near K for small neighbourhoods U of K. As regards d), Ball [Ba 80] showed
that for strongly elliptic systems that arise as Euler-Lagrange equations (i.e.
o= Df,f: M™" — R) again K = K. It turns out, however, that the
previous results can be extended to a slightly larger hull than K'¢, namely the
rank-1 convex hull K¢ (called the functional rank-1 convex hull in [MP 98])
and that this hull can be nontrivial in Examples d) and e).



We say that a function f : E — R is rank-one convex on a set E if it is
convex on each rank-one line t = F + ta ® n. For a compact set K we define
the rank-one convex hull relative to E by

Kol = {F €M™ f(F) < i}l(ff, Vf:E — R rank-1 convex},

i.e. K"%F consists of those points that cannot be separated from K by rank-1
convex functions. For an open set U the set UF is defined as the union of
all K"¢F where K C U is compact (some authors alternatively define the hull

of an open set as T"“" but the above definition is more convenient and in line
with the usual convex hull). If E = M™*"™ we simply write K¢ and U"¢. The
main result is the following variant of Lemma 2.1. Given an r x r minor M
(r > 2) and a real number t # 0 we let

T ={FeM™™": M(F)=t}.

Lemma 3.1 (i) Let U C M™*™ be open, let F € U™ and let € > 0. Then
there exists a piecewise linear map u : @ — R™ that satisfies

Du € U ae., u(x)=Fz ond,
meas {Du ¢ U} < emeas ().

(ii) If U is relatively open in ¥ and F € U™** then u can be chosen such that
in addition Du € U™* C ¥ a.e.

By a simple iteration one obtains the counterpart of Lemma 2.1 with U'¢
replaced by U"¢ (or U"*¥ if a constraint is imposed). The proof of part(i) uses
three facts. First, for a compact set K, the rank-1 convex hull K¢ consists of
the barycentres of a certain class M"¢(K) (‘laminates’) of probability measures
supported on K. Precisely, a probability measure belongs to M"™(K) if and
only if (v, f) > f({v,id)) for all rank-1 convex f. Secondly, we use a result of
Pedregal [Pe 93] that laminates can be approximated (in the weakx topology
of measures) by simpler measures, the so-called laminates of finite order, that
are supported on U" where U is a (small) neighbourhood of K. The class
L(U7T°) of laminates of finite order is defined inductively as follows: all Dirac
masses 0 with F' € U" belong to L(U™). If Zle Aidp, belongs to L(UT)
and if F, = pA+ (1 —w)B, A,B € U, 1k(B—A) =1, p € (0,1), then
ST NiGE + Akpda + M (1 — )85 belongs to £(U™). Third, we inductively
use Lemma 2.2 to associate to each v € L(U") a map u : @ — R™ such that
Du € U™ and |meas {Du = F;} — \; meas Q| < 2~ %c. Then u has the desired
properties.

To treat the case with constraint one first has to extend Pedregal’s result to
this situation. Secondly one has to prove a version of Lemma 2.2 which includes
the constraint Du € ¥ (one can relax (2.4); to the conditions Du € U™ and
meas {Du ¢ U} < €.) To this end one first obtains a C* approximation by
smoothing and considering a flow of a suitable (divergence-free) vectorfield.
Then one constructs a piecewise linear approximation using, among other facts,
a result of Dacorogna and Moser [DM 90] on the solvability of det Du = f in
C* 2 gpaces.



By iteration and the same approximation argument as in the proof of The-
orem 2.4 one finally obtains the following result. We say that {U;} is an rc-in-
approximation of K if the conditions in Definition 2.3 hold with U!¢ replaced
by U/¢.

Theorem 3.2 (i) Suppose that K € M™*"™ admits an rc-in-approzimation by
open sets U;. Suppose that ug € C1(;R™) (or ug piecewise C') and

Dug € Ulrc
Then there exists a map u that satisfies
Due K a.e., u=ug on .

(1i) If K C ¥ and ug € C**(Q;R™) then the same assertion holds if the U; are
only relatively open in ¥. If m = n = r then the condition ug € CH*(;R™)
suffices.

Remark. If K is open (or relatively open in ¥) one can take the trivial
in-approximation U; = K.

4 Applications

Example a) Lamination convexity reduces to ordinary convexity, and an in-
approximation with U; D int conv K is given by U; = {F € conv K :
0 < dist(F,K) < 27%2diam K}. Hence the assertions in Section 1 follow
from Theorem 2.4.

Example b) One easily checks that
K'“=K"™ =conv K = {F € M™"™ : Ao (FTF) < 1}.
It follows that
Ui={FeM™™:1-2""2 < X\, (F'F) <1}
provides an in-approximation with U; = int conv K, and Theorem 2.4 applies.
Example c) Let ¥ = {F € M?>*?: det F = 1}. By a result of Sverdk [Sv 93a]
K'“=K"™ =%nconv K.

Thus U; = ¥ N {F € int conv K : 0 < dist(F, K) < 27*"?diam K } provides an
in-approximation (relative to X) with U; D ¥ Nint conv K.

Example e) Let

10 10
J1:—J3:<0 1), ng—J4:<0 1).

Then K'* = K but
K" = [-1,1PUUi, i, Aita]

(see Figure 1).
As an immediate consequence of Theorem 3.2 we obtain:



*F 20 A
3
A, J 1 Jy
i
1 3 Fiy
J4 J3 A4

A

Figure 1: The set {41, A3, A3, A4} is lamination convex but the rank-one convex
hull contains the shaded square and the line segments [J;, A;1+1].

Corollary 4.1 Let U D K be open, and suppose that F' € U™ D K"™. Then
there exist u : Q) — R? such that

Du €U a.e., u=Fz on .
As regards Example d) we recall the result mentioned in the introduction.
Theorem 4.2 ([MS 98b]) There exists a smooth strongly elliptic 2 x 2 system
—dive(Dv) =0, v:R* - R? (4.1)
that admats
(i) montrivial Lipschitz solutions with compact support;

(ii) Lipschitz solutions that are nowhere C'.

Moreover o can be chosen such that (4.1) is the Euler-Lagrange equation of a
variational integral [ f(Dv)dx, where f is smooth and uniformly quasiconvex
in the sense of Morrey.

Sketch of proof. Our interest lies mainly in the variational case but the main
idea can already be seen in the simpler non-variational situation. The key idea
is to embed the four-point configuration in Figure 1 in the set

K = {(g) :F,G e M**? o(F)J = G} :



This turns out to be surprisingly simple. Consider first the restriction of K to
diagonal matrices and let

o11(Fi1, Fp2) = Fi — g(Fa),
o22(F11, Fz) = Fyo — h(F11).

Strong ellipticity on diagonal matrices reduces to the conditions

(90'11 80'22

>e>0,
8F11 =€ 8F22

>c>0,

and is clearly satisfied. Moreover g and h can be chosen such that the set
{011 = 092 = 0} includes the points A;, Ay, As, A4 in Figure 1 and (0,0). If
we extend o to nondiagonal matrices by

o12 = kF1a, o091 = kF5

then ¢ is elliptic for sufficiently large &, and a careful analysis shows that gener-
ically K¢ contains a neighbourhood U of 0 € M**?, and K admits an rc-in-
approximation {U;} with U; =U.

Let € be a smooth and bounded domain in R". By Theorem 3.2 there exists
a solution

Du e K ae., u=0on 9ofN.
Writing u = (:;) we obtain
—dive(Dv) = 0 inQ,
v = 0 ondM.
Since Dw = o(Dw).J, the trace theorem yields
o(Dv)n =0 on 09Q.

Now extend v by zero to R". Since ¢(0) = 0 the map v is a solution of (4.1)
with compact support. Regarding (ii) one can use (i) and scaling to construct
solutions that can only be regular on a set of arbitrarily small measure. To
obtain the full strength of (ii) one has to slightly modify the construction in the
proof of Theorem 2.4.

5 Some open problems

A necessary condition for the solvability of
Du e K ae. in Q, wu(z)=Fz on 00

is that F' belongs to the so-called quasiconvex hull K% of K which in general
is bigger than the rank-1 convex hull K" (see [Sv 95] or [Mu 98] for definitions
and further references). This raises the following questions

e Does Theorem 3.2 hold if one replaces U/ by Uf° in the definition of
in-approximation?
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e Can one compute (or estimate) K9 for the set K in Example d)?
e Can one find manageable conditions on ¢ that guarantee K¢ = K7

Even checking whether K" = K is in general not obvious. The following
Theorem gives a recent example.

Theorem 5.1 ([MS 98c]) Let f(F) =detF, for F € M**%, and let o(F) =
Df(F)=det Fcof F. Then the set

c-{(g) -

satisfies K™ = K.
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