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Abstract

We study all possible weak limits of a minimizing sequence, for p-energy functionals,
consisting of continuous maps between Riemannian manifolds subject to a Dirichlet
boundary condition or a homotopy condition. We show that if p is not an integer,
then any such weak limit is a strong limit and, in particular, a stationary p-harmonic
map which is C® continuous away from a closed subset of the Hausdorff dimension
<n—[p] — 1. If p is an integer, then any such weak limit is a weakly p-harmonic map
along with a (n — p)-rectifiable Radon measure j. Moreover, the limiting map is C1®
continuous away from a closed subset ¥ = spt p U S with H" P(S) = 0. Finally, we

discussed the possible varifolds type theory for Sobolev mappings.

1 Introduction

We start with the classical mapping problem. Let M be a smooth, compact Riemannian
manifold with smooth boundary M, and let N be a smooth, compact Riemannian manifold
without boundary. Suppose g, 0M — N is a Lipschitz continuous map, and 1 < p < n,

n = dim M, we consider the variational problem:

(1.1) min B, (u) = min/ \VulPdx
M



among maps u : M — N such that u‘aM: qg.

The first natural question one has to address is whether or not the following set,
(1.2) ng’p(]\/[,N)E{u:M%N,uaM:gand Vue LP(M)},
is not empty. For this we have:

Theorem [HL]. If N is [p — 1]-connected, then W, ?(M,N) # @. In fact,

inf{/ VulPdz : u e W,P(M, N)}
(1.3) M

<c(p,N) inf{/ |Vu|Pde : v € ng’p(M,]RK)} .
M

Here we assume that N is isometrically embedded in RX | and c(p, N) is a constant depending
only on N and p. In particular, if g is a trace of a WYP(M,RE) map on OM , with g(OM) C
N, then ng”’(M, N) # @.

In general, B. White [W] showed that W, »(M, N) # @ if and only if g has continuous
extension on M UM where M"! is a [p]-dimensional skeleton of M. However, the estimate
(1.3) may not be valid in this general situation.

If under some topological conditions that the space C’;’(M , V), continuous maps from M
into N with trace g on 0M, is not empty, then one is interested in the following mapping

spaces:

H;?(M,N) = the strong closure of Cy(M,N) in W, (M, N),

H;P(M,N) = the weak closure of C{(M, N) in W,*(M, N).
Obviously one has
(1.4) H;?(M,N) C Hy*(M,N) C W;*(M,N).

We also define R)?(M, N) to be the subset of W, ?(M,N) consisting of all such maps u
that are smooth away from a (n — [p] — 1)-dimensional skeleton of M. It follows from the
proof of [HL, §6] that R.?(M,N) is dense in W,»(M, N) in the strong topology. Later
Bethuel [B] showed that R,?(M, N) is always dense in W *(M, N) without the assumption



of the [p — 1] simply connectedness of N. On the other hand, we have the following so called

“Gap-phenomena”.
Theorem [HL2]. There are smooth maps g from S? = 0B into S? of degree zero such that
min{ \Vul*(z)dz : u € W;’Z(BP’,SZ)}
B3

- inf{/ Vul*(z) do - v e H? (B, 8%) ] = g} '
BB3

This gap-phenomena implies, in particular, that H;*(B*,S?) € W,*(B*,S?). On the other
hand, it is relatively easy to show H,*(B*,S?) = W *(B*,S?) (cf. [BBC]).
Some more general gap-phenomena were established in [GMS2]. The most remarkable

result in this direction is probably the following theorem of Bethuel:

Theorem [B]. C9(M,N) is dense in Wy P(M,N) with respect to the strong topology on
W, P(M, N) if and only if 7, (N) = 0.

As a consequence, one can deduce that from p-energy functional that no gap-phenomena
for an arbitrary boundary map g € C°(0M, N) if and only if 7 (N) = 0.

This leads to the following long standing problem (cf. [HL2]):

Open Problem 1.

Is inf{/ VulPda :uw e HP(M,N),ul,,,= 9}
M
achieved?

Similar questions were also posed by Schoen-Uhlenbeck, Schoen-Yau before the work
[HL2] for maps in Homotopy classes. Indeed, in the case 0M = @, it was shown in [SU2]
that any map f € WP(M, N) induces f# : H*(N, R) — H*(M, R), for any 0 < k < [p—1],
a homomorphism between cohomology classes. We also note that Burstall [Bu] proved
Wh2(M, N) maps induce conjugate classes of homomorphisms of (M) — m(N), and
Schoen-Yau [SY] showed, one can define conjugate classes of homomorphisms of m,,_; (M) —

Tn_1(N) for W (M, N) maps. In [W], White established the following results.

Theorem [W].



if p 18 not an integer
(i) Let d = ) Ip g Then each f € HLP(M,N) has well-

(p—1) if p is an integer
defined d-homotopy type which is preserved under weak convergence;
(ii) if d = [p — 1], then each £ € WYP(M, N) has a well-defined d-homotopy type and it is

preserved under weak convergence of maps;

(1ii) Each map f € HXP (M, N) has a well-defined [p]-homotopy type that is preserved under

the strong convergence of maps.

Very recently, Duzaar-Kuwert [DK] improved the statement (i) of the above theorem by
introducing the suitable notion of p-homotopy classes of maps and the weak limit sets for
maps in HP(M, N) when p is an integer.

These results also indicate the delicate difficulties of the open problem aforementioned.
Indeed there is very little progress being made toward the solution of this open problem in
general.

For the special case of maps from B? into S?, Bethuel-Brezis-Coron [BBC] introduced

first the so-called relaxed energy:
(1.5) F(u) = E(u) + 87 L(u),
where E(u) = [, |Vul?(z) du,

L(u) ! sup { . D(u) - Vodx —

Ak g3k, |vel<1

D(u) -ngda} :
o3

D(u) is the dual vector of the 2-form u*w, w is the area-form(?) on S? (cf. [BBC] for a

geometric interpretation of L(u)). They proved the following
Theorem [BBC].

(i) 1(0) — L(w)| < Coll V= Vol oo (I Vallzimn + [V ollzzco),
for all u, v € W;*(B?,§?);

(ii) inf{E(u) : w € H*(B*,S%),ul|,,,= g} = inf{F(u) : u € W} *(B,S%)}.

Moreover, L(u) =0 <= u € H*(B*,S?%);



(1ii) F(-) is sequentially lower-semicontinuous with respect to the weak convergence of maps

in W12(B,S?).

In particular the infimum of F is achieved.

It is also noted in [BBC] that F(-) minimizers are in general different from absolute

energy minimizers. The result of [BBC] leads to the following:
Open Problem II. Are F-minimizers continuous?

In [HLP] it is showed that the answer to the above problem II is “No” for general maps
in the restricted axially symmetric class. Indeed, it was proven that when F'(-) is restricted
to the axially symmetric maps from B* with S?, the minimizers of F(-) may have isolated
degree zero singularities. One does not know if this result remains true for F'(-) minimizers
among all maps in W,»*(B*, S?).

In a series of very general works, Giaquinta-Modica-Soucek studied the so-called Carte-
sian currents. As an application, they deduced the above result of [BBC]. Moreover, they
showed F-minimizers are smooth away from a closed rectifiable set of finite H' measure (see
[GMS] for the details). It seems that these arguments in [GMS] works only when the target
or the domain manifold is 2-dimensional. We should also remark that to characterize whose
maps in HP(M, N) is also an interesting and difficult question, see [B2], [BCDH].

Now we can describe the main results of the present paper.

Theorem 1. Suppose the space of continuous maps from M into N with trace g, CJ(M, N),
is not empty. Then any energy minimizing sequence {v;}, v; € C(M, N) of E(-) contains
a subsequence converging weakly to a harmonic map u, M — N, which is smooth away a
closed subset ¥ of M of finite H" %-measure. Moreover X is rectifiable, and the pair (u,v)
1s stationary for the energy. Where v is the corresponding defect measure with spt v C X.

If, in addition, mo(N) = 0, then v = 0, and u is absolutely energy minimizing.

Remark. The above theorem can be viewed as a generalization of the aforementioned
results of [BBC] and [GMS]. The defect measure is defined in the next section, and so is
the stationarity of the pair (u,v). In the case v = 0, one has the strong convergence of the

minimizing sequences to the limiting minimizers.



With the same proof as that for Theorem 1, one can deduce the following results for p

equals an integer.

Theorem 1'.  Suppose Cj(M,N) # @, then any minimizing sequence for E,(-) over the
space Cg(]\/[, N) contains a subsequence converging weakly to a p-harmonic map u (here
p is an integer) which is CY* smooth away from a closed subset ¥ of M of finite (n —
p)-dimensional Hausdorff measure. Moreover, X is H" P-rectifiable and the pair (v,u) is
stationary for E,(-). If, in addition, m,(N) = 0, then v = 0, and u is an absolute E,(-)
minimizing map.

We also have a homotopy version with the identical proof as previous two theorems.

Theorem 1”. Suppose OM = & and g : M — N is a map in CJ(M,N). Then any
minimizing sequence of E,(-) in the space C°(M,N) with the same homotopy class as g
contains a weakly converging subsequence such that the weak limit u along with the defect

measure v have the following properties:

(a) u is C4*, p harmonic map away from a closed H" P-rectifiable set ¥ C M with
H"P(X) < oo

(b) sptv C X and u has the same (p — 1)-homotopy type as g;

c¢) if, in addition, 7,(N) =0, then v =0 and u is an absolute E,(-) minimizer which has
(c) if, > Tp ; p
the same p-homotopy type as g. Moreover u is Cb* away from a closed subset of M of

Hausdorff dimension <n —p— 1.
Next we consider the case p is not an integer. We have somewhat stronger statements.

Theorem 2. Under the same assumption as in Theorem 1. Let U, be a weak limit of a
minimizing sequence for Ey(-) over C9(M, N) with p # integer . Then U, € H;*(M,N)
and hence U, achieves the value inf {Ep(v) cv € HY?(M, N), ,U‘(?M: g}. In particular, U, 1s
stationary for E,(-). Moreover, U, is CH* away from a closed subset of Hausdorff dimension

<n-[p]-1.



Remark. (a) If for some k € {2,3,... ,n— 1} that p < k, and k — p sufficiently small, then
the singular set has Hausdorfl dimension < n — [p] — 2. This follows from the global energy
bound and analysis in [HLW].

(b) Note that there is no defect measure in the case p is not an integer. Indeed such
minimizing maps U, obtained in Theorem 2 above form a compact family in W?(M, N)
whenever their energies remain bounded.

(¢) The regularity of limiting maps obtained in both Theorem 1 and Theorem 2 was an
open issue in previous works [B] and [W].

When 0M = @, we have also the following.

Theorem 2'. Let g: M — N be a continuous map between compact Riemannian manifolds
without boundary. Let [g] C C°(M, N) be the set of all maps homotopy to g. Then for any
minimizing sequence of maps in [g] for the p-energy E,(-), for some noninteger p € (1,n),
there is a strong converging subsequence such that the limiting map U, is a stationary p-
harmonic map. The map U, is CH* away from a closed subset ¥ with Hausdorff dimension

< n—[p] — 1. Moreover, U, has the same [p]-homotopy type as g.

We have also made preliminary analysis on the defect measure v arises in various situa-
tions stated above. They are sum of integral multiplicity rectifiable Radon measures.
For the behavior of minimizing sequence near the smooth boundary dM on which they

take the smooth boundary value g : 9M — N, we have the following statements.

Theorem 3. For anyp € (1,n), and p # integer, (p > n is trivial by the Sobolev embedding
theorem), let {U;} C Cg(M, N) be a Ey(-) minimizing sequence such that U; weakly converge
to U, along with a defect measure v. Then U, is regular near OM and v = 0.

Here we say U, is regular near OM if there is a neighborhood O of OM in M such that
U, € CH(O\ M) N C*O0).

Finally we like to state two consequences of our results.

Corollary 1. Let g : O0B* — S? be a smooth map and let Hopf-invariant of g, H(g), be zero.
Then, the inf{E,(u) : u € C¢(B*,S?)} is achieved by a map U, € H}*(B*,S?) for 3 <p < 4.

Moreover U, is a stationary p-harmonic map which is C* inside B*, C*—up to 0B*, away



from a finitely many points inside B, say {x;,7 =1,...,N}. Moreover the Hopf invariants
H(U, ‘ 0B, (z;)) =0, for j=1,...,N and for all sufficiently small r > 0.

Corollary 2. Let g : OB® — S?* be a smooth degree zero map. Then the inf{E,(u) :
u € C(B*,S?)} is achieved by a map U, € H}*(B*,S?), for 2 < p < 3. Moreover, U, is
stationary p-harmonic map which is C+* in B®, C*—up to boundary 0B?, away from a finite
many points xj, j = 1,...,k, inside B*. Moreover, deg (U,,dB,(x;)) = 0 for all j and all
sufficiently small r > 0.

Most of results presented here were announced in [L] with sketched proofs.

The present paper is written as follows, In Section 2, we establish the partial regularity of
the weak limiting maps. To do so, we have to generalize the Schoen-Uhlenbeck construction
for absolute energy minimizing maps to our situation of minimizing energy among continuous
maps (see Lemma 2.4 below). This was done by special methods for the case that the domain
manifold is two or three dimensional, and then by an inductive argument for the case of
dimensions > 4. This key Lemma 2.4 leads to the so-called small energy regularity Theorem
2.3.

Section 3 of the paper is devoted to the study of defect measures. The first important
step is Theorem 3.1 which leads to the fact that defect measures are supported in a closed
subset of suitable Hausdorff dimension, and that the corresponding Hausdorff measures are
also finite. Then we show that these defect measures are rectifiable (c¢f. Theorem 3.5). To
do so we will need the key lemmas, Lemma 3.6 and Lemma 3.8. These two lemmas will be
proved in Section 4 of the paper. Then we show in various cases that such defect measures
may be vanish. If that is the case, various compactness results follow.

In Section 4, we introduced the so-called generalized varifolds. The general varifold type
theory for mappings will be the subject of a forthcoming work. Here we show an energy
minimizing sequence leads to a stationary generalized varifold. Then we use results in Section
3 to show such varifold can be nicely decomposed into two parts. One part is given by the
weak limiting map, the other part is given by the defect measure. We show the latter is a
classical integral rectifiable varifold. In some case there are integral multiplicity currents.

Several remarks concerning the boundary regularity are discussed in the final Section 5. We



should present complete proofs of Theorem 1, Theorem 2 and Theorem 3. The proofs of
Theorem 1’, Theorem 1” as well as Theorem 2’ are very similar and we shall thus omit them
beside a few remarks.

The research is partially supported by an NSF Grant DMS # 9706862. Part of the work
is completed while the author was visiting the Max-Planck Institute of Mathematics and
Sciences at Leipzig. The author wishes to thank Professor J. Jost for the invitation and the

warm hospitality.

2 Partial Regularity of the Limiting Maps

Let {u;} be a minimizing sequence for E(-) over Cy(M, N). Consider a sequence of Radon
measure on M:

pi = |Vu|*de, i=1,2....

We may assume, by taking a subsequence if necessary, that u; — u in ng(]\/[, N) weakly,
and p; — p as Radon measures. By Fatou’s theorem, we may write u = |Vu|? dx + v, here
v > 0is also a Radon measure. We will call it the defect measure associated with the weakly

converging subsequence.
Lemma 2.1. The weak limit u is a weakly harmonic map in W;*(M, N).

Proof. For the simplicity, we assume that N Is isometrically embedded in RX. Let ¢ €
CH(M,RE), and let ¢t € R be sufficiently small. Consider u;(t) = 7y (u; + 1), here my is
the nearest point projection of a neighborhood of N in R¥ onto N, then u,(t) € C9(M, N).
Thus

lim E(u,(t)) > lim E(u;) = /M Vulde + v(M).

On the other hand, a direct computation shows
M

where O;(|t|?) is a quantity bounded by C|t|?, for a constant C' depending only on N, ¢ and
the uniform energy bound on u;’s. Therefore, th Vu- (D
pin(u)) Vipdz + O(t*) > 0, for all sufficiently small # € R. In other words, u € W, (M, N)

is a weakly harmonic map. O



Next is the usual energy monotonicity property.

Lemma 2.2. Fora € M, 0 <r < d, = disty(a,0M), the function “(ﬁc(;”) is monotone

nondecreasing in r, here n = dim M.

For simplicity we shall assume M is an n-dimension domain in R”. The modifications

for general M are standard.

Proof. For almost all p, p+ 6 € (0,d,), one has

Bl 1B Ly, [ V2
5 6 ? Bg.t,.p(a)\BP(a)

p+o
hm/ / |Vu;|* do dr
0By (a)

1

5

1 P —2

—hm/ <n / |Vl |” dy) dr.
6 T B.(a)

Here u] is the homogeneous degree zero extension of u; on 0B, (a).

On the other hand, we may replace ul, for each r € [p, p+ d], by a map u; which is equal

to uj on By(a) \ Bij;i(a) and, which is also continuous on B, (a). Indeed, we simply let
1
u;(z) = ui (z), for = < |z| < r, and
i
1
u;(z) = w;(irz), for |z| < -.
i

Since {u;} is an energy minimizing sequence, we have, for almost all r € (p, p+9), p(B,(a)) <

Therefore we obtain

2 (B (a)) dr.

r

1 ["n
I Byiote) ~ (B> 5 [

ST

Let & — o™, we conclude that % is a monotone nondecreasing function of r. O

The main result of this section is the following:

Theorem 2.3. There is an ¢y = €y(n, M, N) > 0 such that if % < €, By(a) C M,

then u is smooth inside B, y(a).

The key point of the proof of the above theorem is the following Schoen-Uhlenbeck type
lemma (cf. [SU, §4]).

10



Lemma 2.4. For any 0 € (0, 1), one has that

1(B,(a)) _ , 1t (Ba(a)) Sy @y Iu — )" du
=2 <0 (2r)n—2 +C(0) (2r)m

whenever “((2%;(,“2)) < €1, for a sufficiently small ¢, > 0.

Here and later on, we will use u to denote the average of u over the ball of integration.
Thus, @ = fp,,(e) v in the Lemma 2.4.

Let us assume, for a moment, that Lemma 2.4 is true, and proceed our proof of Theorem
2.3. By a scaling and a translation, we shall assume ¢ = 0, r = 1 in the statement of
Theorem 2.3. Thus p(B1(0)) < €. As in [HL] we show first that
1(B,(0))

Tn—2

(2.1) < Coeer®, for some constant Cy, o > 0,

and for all r € (0,1/2).

As usual, it reduces to show the following discrete version of the decay estimate.

u(Byy(0) _ 1

(2.2) if u(B1(0)) < €y, then - < o
0y 2

1(B1),

for some 6y € (0,1/4).

Suppose, to the contrary, that the conclusion (2.2) is not valid. That is, such 6, does
not exist no matter how small ¢y is. Then there would be a sequence of Radon measures of
the form j1; = |Vu|? dz + 14, such that each p; is a weak limit of |Vu!|?dx, j = 1,2,..., for
some continuous energy minimizing sequence {u!}, j =1,2,..., and such that 1;(B;(0)) =
e = 07, 05" p1i(Bo, (0)) > 3 pi(B1(0)).

We consider normalized sequence of Radon measures 7i;, i = 1,2, ..., such that 7z;(A) =

1i(A) \ 1i(B1(0)), for Borel sets A C B;. We also consider the blow-up sequence v = “=%,
U; = B, (0yvi- Then vf = v in WH*(By) weakly, f5,0)v =0, fBl(O) |Vol? de < 1.

Since each v; is a weakly harmonic map, as in [HL], it is easy to deduce Av = 0 in
D'(B4(0).
Let ¢y, ky be two positive integers to be chosen later. We apply Lemma 2.4 repeatedly,
ko times to obtain
0371, (Bay) < 090 i, (Byesy) 200
(2.3) ko—1

b)Y 0 fa,

k=0

* —% |2
v; — U7 dy.

11



Here gy = 2~ (kotbo) - = 2k 9—lo,

We assume kg is larger than ¢y so that

(2.4) gko 2fo(n=2)

A~ =

Hence the first term on the right-hand side is less than 1/4.

Next, since vf — v in W?(By) weakly, one may assume v} — v in L?(By) strongly. Thus

(25) oo —mPay = fu, o= vy, 251 oc,

for each k = 0,1,...,kq. Since v is harmonic and fBl |Vou|?dz < 1, we have
1

(2.6) ][Brk|v —vl*dy < Cyri < 5 forall k=0,1,... ko

whenever ¢, = {y(n) is chosen suitably large.

Therefore, for all i large, one has, from (2.3)-(2.6) that
1
(27) B (Ba) < 4 OB 2"

Now we assume /¢, suitably large that the right-hand side of (2.7) is less that 1/3 to
obtain a contradiction. This proves (2.2) and hence also (2.1).

Next, by the monotonicity Lemma 2.2, we see that if 1(B;(0)) is sufficiently small, then
42 1i(Byja(z)) < 4772 u(By(0)) is also small, for all € By/3(0). We thus can apply above
arguments to the ball By 4(x) with center at = to obtain (as (2.1)) that

(2.8) (B (z)) <G

g (n) ey r®

for all 0 < 7 < 5, © € By3(0).
Since p = |Vul*dx + v, we first conclude, from Morrey’s Lemma, that u is uniformly
Holder continuous in By/3(0). Since u is also weakly harmonic, then the usual arguments

imply that u is also smooth in By/3(0). This proves Theorem 2.3.

Remark 2.5. After proving the smoothness of u, we can go back to Lemma 2.4 to obtain,

after dividing by r?, that

M) < a0 1+ C0) [ gl

12



for all r € (0,1/4), a € By3(0).

Using iterations similar to (2.3), we obtain
k-1
(B2 k 1 —2j —|2
W_ 240] 2]()2 ]|'U/—U/| dy
]:
B
(40)]6 llu( 11/2( )),
()"
Since |u—1| < Cy277 on By-;(a), note here @ = fp,_, u, we thus have

f1(By-+(a)
9—kn

forall £=1,2,....

< C(0,n), for all a € By/3(0) and k£ =2,3,... .

In other words p is absolutely continuous with respect to the Lebesgue measure on By/3(0).
In other words v = f(x)dx for some f € L>(By3(0)) on By3(0). Later in the paper, we
shall show v = 0 inside By/3(0).

Here we have shown that

(2.9) It @"2(, 2) = lim X5-0)

TLLO T’n72
then @" %(p, z) = 0.

Now we modify arguments in [SU, §4] to prove Lemma 2.4. We shall use the exact same

S €o,

notations as in [SU, §4] for convenience. Let u* be a point in RF,
Watw) = [ Ju—P e, E(w) = [ [Vuds
B, Bo
C"=B"!x[~0,0], 0 > 0.
We first have a version of Lemma 4.1 of [SU] for n > 4.

Lemma 2.6. Let u € C°(0C™, N) N WH2(0C™, N) be given such that u(x,—o) = uy(x),
u(x,0) = ug(x) for x € B with u'(x) = v*(x) = u(z,t) = u’(z) for (z,t) € S"?x[—0,0],
Sn=2 = 9B" 1. Suppose n > 4, then there is an extension us € C°(C", N) with us = u on
(5772 x [—0,0]) U (B*! x [0]) and s = uy on (B*'\ Bf™') x [o] such that

E(ﬂ(s) S CO’(EU(Ul) + EO-(UQ) + O'E(UO)) + (5,
W (us) < Co(Wy(uy) + Wo(uz) + 0 W(u)) + 6
0<0 <o (6 can be arbitrary small) and that

E;(us(-,—0)) < Ey(uy) + 0.

13



Proof. Suppose u has a continuous extension @ from C7? into N. Then we may simply
take w; = u; on B” ! in the above lemma, and follow the proof of [SU, Lemma 4.1]. The
homogeneous degree zero extension is essentially allowed in our construction as in the proof
of the monotonicity Lemma 2.2. The conclusion of Lemma 2.6 follows. Suppose u has
no continuous extension from C7 into N, then u must represent a nontrivial homotopy
class a € m, 1(N). Since n > 4, n — 1 > 3, the homotopy class a™ € 7, ;(IN) can be
represented by maps from S"~! into N of arbitrary small energy, (cf. [W]), and has their
support contained in an arbitrary small ball, Bs, C S™ 1. Indeed, we may first modify u,
on the ball Bgl_l to obtain a new map 4; such that w; = const on the ball Bgl_l, and
@iy = uy on OBy ~'. Moreover E, (i) ~ E,(uy). Next, we view dC? as S"~! (after a suitable
bi-Lipschitz map f : 0C? — S™ ! and so that f(B""');) become a ball Bs in S"'. Then
o~ ! is simply represented by the inversion of the map @, o f~! along 0Bs in S™ !. Denote
the resulting map by ;. We then let u; : B(’;_l — N be such that us = @; on B*~\ Bgl_l,
us = g o f. Then us represents a trivial homotopy class of continuous map from 9C?” into
N. We thus can apply again the arguments in [SU, Lemma 4.1] and our proof of Lemma

2.2 to obtain a continuous extension with desired property. We note that one may assume

E,(fiy 0 f) < &, otherwise we simply do an additional rescaling of @y o f on By ' O
Lemma 2.7. Ifu e C°(S", N)NWH3(S" N) for n =1,2, and if E(u) W (u) < 6%, E(u) <
01, for a number 6, = 0,(N), then there ezists

u € C'(B™!, N) with ﬂ‘aB"“: u and

Eo(@) < CL(E(u) W(u))?, W,(T@) < Cro W (u).
Proof. For n = 1, this lemma is exactly Lemma 4.2 of [SU]. For n = 2, as usual, we
take 0 = 1. Let v be the harmonic (vector-valued) function from B? into R (here N is

isometrically embedded in RE) such that v‘52: u. It is obvious that H'/2-estimate implies

that Fy(v) < (E(u) W(u))'/? < §,. Since §; is small, we shall conclude that
lo(x) — v(0)| < C(n,d) \/d; whenever |z| < 1 -,

forad € (0,1/2). Note that v(0) = fg2u. Since E(u) < &;, we obtain that dist *(v(0), N) <
fs2lu —v(0)]? < Cy E(u) < Cydy. Next, for r < 1 and close to 1, § € S?, we let ay,,(0) =
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F Buiior (0) U here By (0) is the ball in §* centered at § with radius m(1—1r), m is a large

number to be chosen below.

(2.10) Then  |v(r,0) — ap,,(6)]
< [ P00~ )1u(0) = 0, (0) a0

scN/ P(r,0 — ) dé
SQ\Bm(lfr)(e)

—I—C’(m) me(l—r)(e) |U — am,r(0)| d¢

Here P is the Poisson kernel, C'y is a constant depending only on N.

Now we choose m suitably large so that the first term on the right hand side of (2.10) is
small. The second term on the right hand side of (2.10) is bounded by ¢(m) {5, ,_ @t —
amr(0)* dp < C(m) Cy 6y which for any fixed m, can be made small if §; is sufficiently small.

Suppose the nearest point projection from Nys, = 2§p-neighborhood of N in R onto N
is smooth, for some d¢(/N) > 0. For this given dy, we may find §; > 0 and r < 1 such that

dist (v(z), N) < dg whenever |z| > 1. Note dist (an,,(6), N) is also small.

Now by taking d; further small if needed, we have C(n,1 —r1)d; < . In other words,

dist (v(z), N) < &y whenever E(u) < d;.

Letu(x) = my v(x), here 7y is the nearest point projection from Nys, onto N. Then all
conclusions of Lemma 2.7 follows exactly as in Lemma 4.2 of [SUJ.

The proofs of Lemma 4.3 and Lemma 4.4 of [SU] can be easily carried over here also.
Except in the statements of these lemmas, all map involved are also continuous. To do so
in the Lemma 4.4, the maps ¥ and v’ have to be slightly modified (for n > 4 case) as in
the proof of Lemma 2.6 in order to guarantee that such continuous maps v exist. All the
estimates remain valid when arbitrary small given error ¢ as in Lemma 2.6. Finally, to make
all statements consistent, we add one additional assumption in the statement of Lemma 4.3
of [SU] that E(u) < 6% €? (see the proof of Lemma 2.7 for the case n = 3). This assumption
can be easily verified in the inductive proof of Lemma 4.3 and Lemma 4.4 of [SU]. We
leave these details for the cautious readers. Later in the study of defect measures, a more
effective construction which is relatively simpler than constructions in [SU, §4] will also be

introduced. Thus we completed the proof of Lemma 2.4. O
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3 Rectifiability of Defect Measures

As in the previous section, we let u; : B} — N be an energy minimizing sequence among
maps in W'2(B, N) N C%(B}, N) such that p; = |Vu;|*dz — p = |Vul*dz + v as Radon
measures. Here u; — u in WH?(B?, N) and v > 0 is also a Radon measure. The main result

of the previous section is that

(3.1) if u(BY') < €o, then u is smooth inside By,.
The first important result of this section is the following:
Theorem 3.1. If u(BY) < €9, then v = 0 in By,

Though we should give a proof of the above theorem for all n > 2 cases, we would like

to present a direct proof for the case n = 2.

Proof of Theorem 3.1, n = 2 case. First we observe the following facts for n = 2 case. Sup-
pose v : S' — N be map with E(u) < €, then Morrey’s Theorem says that @ is in
C>(B?, N)NC*(B2,N) for some a > 0. Here T is an energy minimizer on B2 with @ = u on
S!. Suppose, instead of a single map u, we have a sequence {u;} with the same property as
wie. [y [Vuil® < €. Let {7} be a corresponding sequence of minimizers with @; = u; on
S!. Suppose u; — u weakly in W?(B2 N). Then u; — u strongly in W?(B2 N). Indeed,
it is well-known that @; — @ strongly in W,.? (cf. [SU, §4]). Let o € (0,1/2), and let v; be
the linear harmonic extension of u; from 9(B? \ B%_,)into B? \ B;_,. Then it is easy to see
E(v;,B?\ B}_,) — E(v,B?\ B?_,). Here v; — v in W"?(B? \ B?_,). Moreover, v is the
harmonic extension of 7 from 9(B? \ Bi ,) into B? \ B . Therefore, E(v, B¢\ B ,) = 0
as 0 — 0. On the other hand, the images of v; are in a small neighborhood of N, so after

nearest point projection 7wy onto N, we see

E(UHB% \ B%—O’) < E(ﬂ_N Ui7B% \ B%—O’)

<CE(v;,B}\B}_,) > CE®w,B\B?_,) —0aso—0.

Since p(Bi) < €9, we may find a p € (3, 1) and infinitely many i’s such that [, ,, |[Vu;|* < 3eq,
p

for these i’s. This is a consequence of the Fabini’s Theorem (see [SL]). We let u! be such
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that uf = u; on B} \ B, uf = u; on B3, here @; is an energy minimizing map with ; = u;
on 0B,

It is obvious that {u}} form a new minimizing sequence in CO(B_%, N) with uf = u; on
OB?. Moreover, |Vu!|*dz — |Vu*[*dz + v* with v* = v on B; \ B, and v* = 0 on B, by
above arguments. Note also that v* = v on By \ B, and E(u*) < E(u) as u* = u on 0B,
and u* is also energy minimizing (an easy consequence of the strong convergence) statement

above), we obtain ¥ = 0 on B,. This proved Theorem 3.1 for the case n = 2. O

Proof of Theorem 3.1, for n > 3. We first prove the n = 3 case. It is the important first
inductive step.

First we pick up p € (1/2,2/3) such that faBg |Vu;|? < 8¢ for infinitely many ¢’s.

Since |Vu;[*dz = p; — p = |Vul*dz + v in B; as Radon measures, to show v = 0 in
By s, it suffices to show E(u;, B)) < E(u, Bj) + 6 for any ¢ > 0 and all sufficiently large 7s.

To do so, we use the fact that u; is a minimizing sequence in C°(B}, N). We shall
construct a new sequence {#;} in C°(By, N) such that @; = u; on B} \ B} and such that
;= on B),_, for a very small positive e and E(a;, B, \ B),_,) < C(e) < 4.

Since lim ;oo B (15, BY) > lim; o0 E(ug, BS) we obtain E(u;, B,) < E(u,Bj) + C(e) for
all sufficiently large ¢, and that will be what we wanted.

We already proved in the previous section that u is smooth inside By/3, say [[ul|c1a <

C/é5. We first consider linear harmonic extension v; on B} \ B;’(l_e) such that v; = u on

3

5,1 =1,2,.... We observe that v;is uniformly smooth away from

BZ’(H) and v = u; on 0B
outside boundary and v; — v strongly in W*(B; \ B}, _,), here v is the linear harmonic
extension of u on (B} \ B, _,),). In particular, the image of v stays inside a very small
neighborhood of N in RE. Thus, for all sufficiently large i, the images of v;(z) stay in a
very small neighborhood of N in R¥ so long as |z| < (1 —¢;) p, here 0 < ¢; < €, ¢, — 07 as
1 — 00.

On the other hand, v; can be represented as a Poisson integral of boundary values u on
0B,(1_¢ (here € < 0 small but fixed) and u; on 0B,. Since faB,, |Vu;|? < 8¢ is very small, by
then proof of Lemma 2.7 in the previous section, we get the images of v;(z), for p(1 — ) <

|z| < p, for some 0 < A < ¢, stay inside a very small neighborhood of N. In other words,

vi(BJ\B}, ) € Ni, — 0o neighborhood of N in R¥ on which 7 (the nearest point projection
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into IV is smooth). We let 4; = my - v; on By \ By,_,. Then @, is in C°(B}\ B}, )
Finally, E(v, B\ By, ) < E(u, B;\ B),_)) < C ¢y ¢ = C(e). This completes the proof of
the n = 3 case. U

To prove the theorem for the case n > 4, it suffices to construct u; as in the proof for the

case n = 3. That is the following:

Lemma 3.2. Letu € C'(B}, N) with |Vu|ci(p,) < €. Let {u;} € C°(BY, N)NW"*(B}, N)
such that u; — w in WY%(By, N) weakly as i — oo, and that faB? |Vui|* < €, fori =
1,2,... . Then, for any € € (0,3), there is a sequence t; € C°(B \ BY_,,N) defined on
B\ BY_, such that u; = u on OB} ), 4; = w; on OBy. Moreover, E(u;, BY \ Bi_,) <

C(n,N,e) — 0 as € = 0 uniformly in i whenever 0 < ¢y < €y(n, N).

Proof. By induction, we have already shown the conclusion of Lemma 3.2 when n = 2 and
n = 3. Suppose Lemma 3.2 is true for n < k, for some k£ > 3. Then we consider the case
n=k+1>4. First, we can divide S¥ into 2 disjoint subdomain €2; j = 1,2 such that each
spherical shell, j = 1,2, S; = {(r,0) e R : 1 —e <r <1, 0 € Q; <S*} is bi-Lipschitz to
equivalent to C' = [1 — ¢, 1] x BF. Moreover, by the Fubini’s Theorem, we can arrange such
(2; that faﬂj |Vu|? < C(n)e, j=1,2.

We should simply construct a suitable extension on C' (after composition with suitable
bi-Lipschitz maps from ; into C).

By induction, we can find an extension u; on [1 — €, 1] x OBF such that uw; € C°([1 —
€,1] x OBY, N) with @; = uw on [1 — €] x dBY and @; = u; on [1] x BY such that E(u;) <
C(k,N,e) — 0 as € — 0" uniformly in € whenever ¢ is suitably small.

Next, we simply let @; on C' to be the homogeneous degree zero extension of @; on
[1—€,1]xOB¥ won [1—¢] x BF and u; on [1] x BF. Such homogeneous degree zero extension
can be approximate by maps in C°(C,N) in the strong W?(C, N) topology (with the
same Dirichlet boundary conditions) whenever the boundary value of @; represents a trivial
homotopy class of 7, (N). If such boundary value of @; represents a nontrivial homotopy
class of m;(N), then we modify %, in a neighborhood of 1(2 — €) x {po} for some py € OB}

as in the proof of Lemma 2.6 such that the modified maps has the same stated properties as
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u;. Moreover the resulting maps will give a topological trivial class and so the homogeneous
degree zero extension will be allowed. In order to make this process as whole to be possible,
one should do the following. We view the whole spherical shell as one piece with topological
trivial boundary value. Then subdivide into 2 pieces after inductive step of extensions then
modify the extension maps near one point will make both 2 pieces have boundary values in
trivial topological class.

In any event, we need to estimate the energy of resulting map ;. The part from the ho-
mogeneous extension of u; is by induction has energy smaller than C'(k, N, €). The part from
the homogeneous extension of u is obviously small as |Vu| < €. The part from the homoge-
neous extension of u; can be calculated directly and can be estimated by C'(n) e¥=2 fB{g V|2

k—2

Here €*~“ is a natural scaling factor. Since k£ > 3, this last quantity is again bounded by

C(n) € €9, This completes the proof of Lemma 3.2, and hence also Theorem 3.1. O

Remark 3.3. Similar statement as Lemma 3.2 was established by Luckhaus [Lu] under weak
assumptions on u. It is a key ingredient in his proof of weak limits of energy-minimizing
maps are also energy minimizing. However, his construction yields a comparison map which
may not be continuous in general.

Let us describe a few consequence of Theorem 2.3 and Theorem 3.1. Define
S={reM:@"*(u,x) > 0}.

Corollary 3.4. For allx € %, one has @"%(v,z) > €, for some ¢y > 0. Hence ¥ is closed
in M, and H"2(3) < u(M)/eq. Moreover, v = @" *(u, ) H" ?|e.

Proof. We have already shown that if @" 2(v,z) < €, then @" ?(u,z) = 0. Thus the
first statement follows. By a usual covering argument, one then deduces that H"%(X) <
(M) \ €g < oo. Since @" 2(u, ) is upper semi-continuous in x (which is an easy con-
sequence of the monotonicity Lemma 2.2), X is also closed. Finally, for H" ?-a.e. x € M,
lim, o0 7""%2 fBT(m) |Vul? dy = 0, by a theorem of Federer and Ziemer, we obtain @" 2(u, z) =
@ "?(v,x) for H" 2-a.e. x € M. Since v = 0 away from X, and since Lemma 2.2

implies v is absolutely continuous with respect to H" 2-measure, we conclude that v =

®"*(p, r) H" 2| X m
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Similar to [L2], we have the following:
Theorem 3.5. ¥ is a H" 2-rectifiable set. That is v is a H" 2-rectifiable measure.

The proof of this theorem is very similar to the proof of the rectifiability of defect measures
arise in the weak limits of stationary harmonic maps (cf. [L2]). It follows from the following

three lemmas.

Lemma 3.6. For v-a.e. x € X, and any given & > 0, there is a 6, > 0 such that, if

0 < r <, then there is a (n — 2)-dimension plane V, passes through x with property that

v(B,(x) — V')

T

+
e <e€(r)—0, as r—0".

Here V) is the §-neighborhood of V, in R™.

Lemma 3.7. Suppose E C X is purely unrectifiable, then H"*(Py(E)) = 0 for any (n—2)-

dimensional plane V in R"=2. Here Py denotes the orthonormal projection onto V in R".

Lemma 3.8. For H" ?-a.e. v € E (E any H" ?-measurable subset of 3), one has

lim sup sup /H"72(PV(E N BT(.’E)) \Tniz = |B?72| > 0.
r—0 VeG|[(n,n—2)

The property stated in the Lemma 3.6 is called the weak-tangent plane property. When-
ever H" 2-measurable set E satisfies the weak-tangent property, then the conclusion of
Lemma 3.7 is valid as shown in [L2].

The proofs of Lemma 3.6 and Lemma 3.7 are similar to that in [L2] with some necessary
modifications given in section 4 below. These give us motivations to develop a general varifold
type theory for Sobolev mappings that will be discussed also in section 4. Therefore, we shall
postpone the proofs of Lemma 3.6 and Lemma 3.8 in section 4.

To end this section, we discuss cases p # 2.

Suppose p is an integer, p > 2. Then all the results as well as their proofs can be easily
carried over with some obvious modifications. The modifications for the proof of Lemma
2.4 are somewhat not obvious. The case when dim M < p + 1 can be done exactly as that

for Lemma 2.7. The inductive proof of Lemma 2.4 where dim M > p + 2 uses the same
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observation as in Lemma 2.6 and arguments in [HL]. The derivation of Theorem 2.3 from
Lemma 2.4 can be found also in [HL] for any p > 1.

For the proof of Theorem 3.1, the case dim M < p is again trivially carried over (as for
n = 2 case). The case dim M = p + 1 should be handled exactly as our proof of the n = 3
case. Note that linear harmonic extensions satisfies all desired inequalities for p-energy up
to a constant ¢(n,p). Finally the inductive proof of Lemma 3.2 works when dim M > p + 2.
When p is an integer, p > 2, and if 7,(N) = 0 then, by a theorem of Bethuel [B], we know
smooth maps are dense in WhP(M, N) with the strong topology. Thus minimizing p-energy
among C°(M,N) N W?(M, N) maps is the same as minimizing p-energy over all space
WHP(M, N). In particular, the defect measures, v = 0 in this situation.

Finally, let us discuss the case p is not an integer and 1 < p < n = dim M. Again, the
proof of Theorem 3.1 and Theorem 2.3 are very similar and we should simply omit here.

However we have the following additional conclusion concerning the defect measure v.

Theorem 3.9. Suppose 1 < p < n = dim M, and p is not an integer. Suppose {u;} is a
p-energy minimizing sequence in C°(BY, N) such that u; — u weakly in W'?(BY N) and
that p; = |VuiPex — v = |VulPdx + v as Radon measures in BY. Then v = 0 in B}. In

particular, u; — u strongly in WP (B, N).

Proof. Via the monotonicity Lemma 3.2, % is a monotone nondecreasing function of r,

1(Br(x))

whenever B, (x) C B;. In particular, @" ?(u, r) = lim, o+ = =7 exists and, as a function

of z it is upper semi-continuous. Theorem 2.3 and Theorem 3.1 imply that if % < €,
then u is C'* (for some o > 0, cf. [HL]) in B,/» and v = 0 on B, 5. Moreover monotonicity
lemma implies v is absolutely continuous with respect to the (n — p)-dimensional Hausdorff
measure, H" P. As before, we let ¥ = {z € By : @" ?(u, ) > 0}. Then @" P (u, z) > € for
every x € 3. ¥ is closed in By with H"?(X) < u(Bj)/€ey. Moreover v = @" P(u, x) H" P| 2.

To prove such v = 0, we follow the idea of J. Marstrand (see [P]). In fact, it follows from
the Marstrand’s Theorem. But for the sake of completeness, we sketch a relatively simpler
proof here.

Since @" P (u, x), x € ¥ is a Borel-measurable (as easy fact to check), it is approximate

continuous H" P-a.e. on X.. We let zy € X be such that @™ ?(u, z) is approximate continuous
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at o as a function on 3. Here we note that @" ?(u, x) = @™ ?(v, z), for H" P-ae. x € X,
by a theorem of Federer and Ziemer. We thus assume also that at xg, @ " ?(u,x0) =
@ " P(v,z0). Let {\;} | 0 be a sequence of numbers, we consider a sequence of Radon
measures v;, v;(A) = %, for all Borel subset A C R", such that =y + \; A C B;.
Since v;(B,(0)) — p" P (;D“*p(y, xo), we may assume v; — 1 as Radon measure on R”
when i — oo (by taking subsequences if needed). 7 is called a tangent measure of v at

xo. It is obvious n(B,(0)) = p" P @ "P(v,x,), we want to show for any = < spt 7,

n(B,(x)) = @" (v, z0) p"P. Indeed, for z € spt n, p > 0 is such that

0(B,(x)) = lim vi(B,(x)) = lim “Prelfo £ Ai2))

i—00 i—00 /\?—p

We first estimate n(B,(x)) from above.

V(Bxip(to +Aix)) _ oy v(Bs(To + AiT))
)\?*P >p 671712

for any § > 0 fixed (since \; — 0 and since Lemma 2.2)

< PPV (Bs iz (T0)) \ "7

As i — oo the right hand side of the last inequality tends to p" 7 v(Bs(xy)) \ 6" P. Since

d > 0 is arbitrary and @" P (v, xy) = lims_,o+ %, we obtain

n(By(x)) < @" P(v,x0) p" 7.

To estimate 7(B,(x)) from below we use the fact that @" 7 (v, z) is H" P-approximate
continuous and has definite positive lower bound. Note also @" ?(v, x) has an upper bound

for all x near xy. Therefore, inside the ball By, (,+«)(%0), the set, for any small positive e,

B. = {y eXn B/\,'(p—l—\a:\)(mo) : @nfp(% y) < @71712(1/7 .I‘o) - 6}7

satisfies v(B.) < 0; eo(Ni(p + |z]))"P.

Here §; — 0.
Since x € spt 1, there is a sequence x; € spt v;, x; — x. That isy; = xo+ A\ x; € spt v.

Then U(Bp(fL‘)) > hmi—)oo Vi(Bp—e(fL'i)) = llmz M

n—p
Ai
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Since v(B.) = 0;(1) A}7?, 0;(1) — 0 as i — oo, we must be able to find a point J, € spt v
yi ¢ B€> |yz - yl| < )\Z €, @nip(ya yz) > @nfp(y, 1‘0) — €. Hence
v(Brip-0¥i))  (Brip-20(i)
AP - AP
> (p=2)" " @" (v, 7;) = (p—26)" P[@" P (v, 20) — €]

since € < 0 is arbitrary, we obtain for any p > 0 that n(B,(x)) > p"? @"?(v, zy), whenever

T € sptn. ]
To complete the proof of Theorem 3.9 we just need the following:

Lemma 3.10. Let n > 0 be a Radon measure on R" such that n(B,(x)) = p*, for all

x € sptn and p > 0. Here a is a nonnegative real number. Then « is an integer.

Proof. Given an a > 0, let n be the smallest positive integer such that R” supports a Radon
measure 7 with the property that n(B,(x)) = p® for all x € spt 1 and p > 0.

If support (n) = R”, then n would be a rotation and translation in variant measure on
R", hence it is a constant multiple of the Lebesgue measure. In particular &« = n and we are
done.

If spt (n) # R*. Let xy ¢ spt (n) and let Bgr(xy) be the largest open ball such that

spt (1) N Br(z¢) = @. Then there must be a point, say 0 € spt (7) N Br(xg). Let u be a
tangent measure of 1 at 0. Then we obtain a Radon measure p has the same property as n
(by argument earlier). Moreover we may assume spt (u) is contained in a closed half space,
say R—:t Note R" is the blow-up of Br(zg) at 0.

Now we define b = fB?(Q) xdu(x). Suppose b, = 0, then spt (u) C {z € R* : x,, = 0},
that will contradicts to the fact that R" is the smallest (n is the smallest) Euclidean space
which can support such Radon measures. Thus b, 75 0.

Let y € spt puand y near 0, then we have fB{l( —|z—y|?) an 2 du(x)
by the property of u(B,(y)) = u(B,(0)) = r*, for all » > 0. This 1dent1ty leads to

Lo 2 vt = | o du(e) +

B} (y)NB}(0 T(y)nB"—1(0)

Lo @ = [ ey duto
BT (0\BY (y By (y)\BT(0)

=O(lyl*) as y—0"

+
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In other word, Z «y = O(ly]*) for all y € spt p and y near 0. Let A be a tangent measure
of u at 0, then spt (A) will be contained in a a hyperplane orthogonal to ; - A has the same
stated property as p, i.e., as 7. Thus we again obtain a contradict ion as R" is the smallest
Euclidean space which can support such Radon measures. The only possibility is therefore

a=n. ]

Theorem 3.9 has several interesting consequences. First the map u given in the statement
of Theorem 3.9 is a p-energy stationary map, i.e., for any smooth diffeomorphisms ¢; : B; —
By with ¢; = id near 0B, —0 <t <, > 0, and ¢g = ¢d on By, one has % Ep(u(t))‘tzoz 0.
Hereu(t)(x) = u o ¢y(x). Indeed, u(t) is the strong limit of u;(t) = u; o ¢y in WP(By, N)
with u;(t) = w; on B;. Since {u;} is a minimizing sequence in W'?(B;, N) N C°(By, N),
one has lim; o E,(u;(t)) > lim;_,o E,(u;) = E,(u). By strong convergence of u; to u, one

has

E,(u(t)) > Ep(u), for te (—d,9).

The stationary follows.

The second consequence is that such maps v as in the statement of Theorem 3.9 with a
given E,(+) energy bound automatically compact in W,-?(B,, N). Indeed, suppose {v;} be
a sequence of such map, with E,(v;, B;) < C, i =1,2,..., proof of Theorem 3.9 given (up
to a subsequence) v; — v strongly in W'(By, N). This compactness combine with usual
dimension reduction argument (cf. [HL]) gives the conclusions of Theorem 2 and Theorem
2’ described in the introduction. In particular, the Hausdorff dimension of the sing (u), for

u given in Theorem 3.9, is not larger than n — [p] — 1.

4 Generalized Varifolds and Defect Measures

The theory of varifolds were motivated by the study of certain “weakly converging” surfaces.
e.g., the study of a weakly converging sequence of minimal surfaces. It is a well-known
fact a weakly converging sequence of stationary integral currents may have a limit which is
not a stationary current. However, a weakly limit of stationary varifolds is [A] and also a

stationary varifold. For the general theory of varifolds and related subjects we refer to [SL].
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Here we introduce the following definitions.

Definition 4.1. A generalized k-varifold in an open set Q0 of R" is a nonnegative Radon
measure V in 0 X Ag,. This class of varifolds will be denoted by V;*(S?). Here Ay, = {A:
A is a symmetric n X n matriz such that trace (A) =k, —nl, < A< IT}.

The mass pyv of a V€ Vi¥(Q) is w4V (the projection of V on Q), where m : Qx Ag,, — €2
is the projection. Thus py(B) = V(B x Ay,,) for every Borel subset B of €.

Definition 4.2. The first variation, denote by 6V of a V € V*(Q), is simply a distribution
on €1, such that

(4.1) /QA A:VY(x)dV(x,A):—/ Y(2) -0V (z).

Q

Here A: VY (z) = tr (A-VY(2)), Y € C(Q,R").

Remark 4.3. The classically defined varifolds (cf. [SL], [A]) is a subclass of V;*(€2). There
are Radon measures V on Q x A, with spt V' C Q x GL(k,n). Here GL(k,n) = {A €
A, A = A}, ie., any element A € GL(k,n) corresponding to an orthogonal projection of

R™ onto a k-dimensional plane.

Example 4.4. Let u € W'?(Q,N), and let V,, = 04,(5) - |Vu(z)|>dz. Here 04,y is the

Dirac measure on A,_s, centered at

(I Vu(z) ® Vu(z)
" V()

AU(IL‘) - < In—2 0

whenever Vu(z) # 0

whenever Vu(z) = 0.

Vu(z) ® Vu(z) is a n X n matrix such that its (¢, 7)™ component is given by u,, o u,;. Then
V, is an element in V*_,(€). Moreover, the first variation of V', §V, in this case is given by
div [|[Vu(z)|? I, — 2 Vu(z) ® Vu(z)] in the sense of distribution. Suppose u is also weakly
harmonic, then it is easy to see that V, is a stationary generalized varifold in V,* ,(), i.e.,
0V =0 in the sense of distribution, if and only if, u is a stationary harmonic map.

The following result is recently proved by Ambrosio and Soner.
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Theorem [?]. Let V € V;*(2), and suppose that 6V is a Radon measure on ). Suppose
that

(4.2) @ (pv,x) >0 for py —ae x€Q,

for some o > 0. Here @7, (pv, ) = lim g ”V( @) Let {Vi}eeq be the slicings of V' by the
projection map m: QX Ag, — Q, and let A(x) = fAk AdV,(A). Then

(a) if o < k+2, then A(z) >0 py-a.e. v € Q;

if a < k+1, then A(z) € ,n) py-a.e. x € ), hence U = da) v 1S a classica
(b) if k+1, then A(z) € GL(k,n) u Q, h OA(z) 1t ! !
varifold;

(¢c) if a =k, then v is a rectifiable varifold, i.e., uz = py is supported on a H*-rectifiable

set.

Remark 4.5. Let {u;} be a sequence of stationary harmonic maps from  into N such that
u; — u in WH(Q, N), weakly and |Vu;(z)|? dv — p = |Vu(z)[* dz + v as Radon measures,
as i — oo. Then V,,, — V weakly in V¥ ,(Q). Moreover V is also a stationary generalized
varifold.

If w = constant, then [L2] shows the assumptions for the case (c) of the above Theorem
[?] are valid. Thus one may apply Allard’s Theorem (cf. [A]) to deduce that spt py = spt v
is H" 2-rectifiable. However in [L2] we show that spt (v) is H" 2-rectifiable even when w is
not a constant map. The conclusion of Theorem [L] along with the arguments in [L2] do not

imply the following proposition. We note one may apply [?] to any tangent measures of v.

Proposition 4.6. Let {u;} be a sequence of stationary harmonic maps from Q into N such
that u; — u weakly in WH2(Q, N) and |Vu|? dz — |Vu|?> dx+v. Then v is a H" %-rectifiable

measure, and for any Y € C§(2, R"), one has
/VY L | Vu(a))* I, — 2 Vu(z) @ Vu(z)] do +

(4.3)
/ VY (2) : A(x) dv(z) = 0
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Here A(x) can be viewed as Tx(z), the tangent plane of ¥ = spt v at x. (cf. also Theorem
3 of [GMS]). Note that the monotonicity Lemma 2.2. follows also from (4.3) as in [GMS].

Now we consider an energy minimizing sequence {u;} € C°(Q, N)NW2(Q2, N) such that
u; — u weakly in Wh2(Q, N) and |Vu;|? dv — p = |Vul*dz + v.

Lemma 4.7. The sequence of generalized varifolds {V,,,} associated with such energy min-
imizing sequence {u;}, u; € C°(Q, N) N W2(Q, N), has the following property V,, — V in
V* ,(Q), and V is stationary. In other words, div [|[Vu;|* — 2 Vu; ® Vu;] — 0 in the sense
of distribution in D'(2).

Proof. Let Y(z) € C}(Q,R"), and consider a family of C'-diffeomorphisms of , ¢;(x)

|t| < § < 1. Here ¢y(x) = v+t Y (x). Since {u;} is an energy minimizing sequence, then
lim; o E(u;(t)) > E(u) + ().

Here u;(t) = u; o ¢; *(x), thus u;(t) = u; on Q. We calculate explicitly E(u;(t)):

(4.4 Bui(t) = | |Vusta) D67 (@) der( D7)

since Du; D ¢, '(¢;) = Dug(1 —t VY +0O(t?)), and det Do, = 1+t div Y +O(t?), as t — 0,

we have
(4.5) E(ui(t)) = /Q |V, |? dx +t/Q DY : [|Vu;]* = 2Vu; ® Vu;| dz + O(?).
We thus conclude for any ¢ € (—d,d) small,
(4.6) lim; o0 {t/QDY :[Vu|* = 2V @ V] dz + O(8%) | > 0.
In particular, we must have
/QVY : [|Vui|2 —2Vu; ® Vui} dr — 0 as i — oo,
for any YV € Cj(Q,R"). O

We shall now prove Lemma 3.6 and Lemma 3.8. This will lead to the fact v is a H"2-
rectifiable measure. Moreover, the formula (4.3) is valid for V' in Lemma 4.7. As before, we

may apply Theorem [?] to any tangent measures of the defect measure at v-a.e. x € spt v.
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Proof of Lemma 3.6. As in [L2], we have for v-a.e. x € ¥ = spt v, and for all 7, 0 < r < ry,

for some 7, > 0, there are (n — 2) points z; ... ,x,_2 € B,(x) such that

(a) |z1| > Cyr, dist (z;,V;—1) > Cyr, for j=2,... ,n—2, here Cy = Cy(n) >0,

and V; = span {z; —x,... ,x; — z};
(b) @"2(v,2;) > @" 2(v,x) —€(r), for j=1,...n— 2, e(r) = 0" as r — 0%;

(c) @" %(v,y) < @" %(v,7) + €(r), for v-a.e. y € B.(x) N spt X,
R* " v(Bgr(z)) < @"*(v,z) + €(r), for all 0 < R < mr m large;

(@) 2 / [l @y < ).

These statements follows from the geometric lemma of [L2], Federer-Ziemer’s Theorem
and some elementary properties of @" %(v, -).
Next, we look at, for sequence {ry}, 0 < 1 < ry, 1, | 0, a sequence of scaled measures

{p} which is obtained from p by a scaling i with the center at x. That is uy = m # p,

here n;, : R* — R, n,(y) = L (y — x). Then, each yy is obtained (as p) from an energy

Tk

minimizing sequence {ug;}°;, i.e. |Vug;|*dy — py as i — oo. Here uy;(y) = ui(z + 74 y).
Note pup = ny # v + |Vug|? dy, with u(y) = u(z + 1y y).
We observe from the proof of Lemma 2.2 that

W p(Ba(r) _ p(B,()) 1

2
- > lim; 0 /
Rn72 Tn72 - Br\B, (2) pn72

0
dy.

"

k_
ri—T
)

We apply (4.7) to the monotonicity Lemma 2.2 for p’s with centers of balls at

Tk

j—1,...,n—2. Using facts (a), (b), (c), (d) above, one can easily obtain, as in [L2], that

2

O :
Uhsi dy<e —0 as k—o00

dy;

(4.8) /Bom(m

forall i<i(k), and j=1,...,n—2.

On the other hand, Lemma 4.7 implies that
(4.9) div [|Vugl® (y) — 2Vug,i(y) ® Vug(y)] — 0

in the sense of distribution, as i — oo.
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We decompose R* as R"? x R*, R* 2 x {0} = {y € R* : yp,_1 = yo = 0}. Let
A(Yn—1,Yn) € 080(3%0/2) and let C(y1, ... ,Yn_1) € C{{O(Bgo_/i(O)). Then we calculate
0
(4.10) o Vil (y) @(Yn—1,Yn) C(yr — a1, -+ Yn—2 — an2) dy
aj BCO/2 (0)
for j=1,2,... ,n—2. Using (4.8) and (4.9) we obtain the quantity in (4.10) is bounded by
C (2, ) € uniformly as i — oo.
In other words, for j =1,2,... ,n — 2, one has
0
s | eecdm
a; By, (0)

Next we let & — oo, then ¢, — 0T, thus the Radon measures 7, = fB%(o) D (Yn—1,Yn) Atk (*s Yn—1, Yn)

(4.11) < 0(ep).

has a weak limit 1, a Radon measure on ngz(o) (by taking subsequences if needed) such
that 7 is a constant multiple of the Lebesgue measure.
In other words , if g is the weak limit of u; then the slicings of gz by the projection
7 :R" — R"? x (0) is independent of the yr € BZO_/ZZ(O) Due to the lower density bounds
of /i we must have 1 = Zj\il ¢j Op,;, for pi,...p, € B%(W(O) and ¢; > €. (cf. also [L2]).
Since p is also a tangent measure of y at x, we must have M = 1 and p; = 0. This

verifies the conclusion of Lemma 3.6. O

Proof of Lemma 8.8. For H" 2?-a.e. ¥ € E C X, we have, by the weak tangent plane property
Lemma 3.6, that an (n—2) dimension plane V' (r, z) depending on z and also r, for 0 < r < r,

such that

By(z) = V°
il (x)rn_‘; (r, z)) <e(r)—0, as r— 0",

for any given ¢ > 0.

In particular (as can be easily seen also from the proof of Lemma 3.6) that any tangent
measure of  of v at x is of form n = @" ' (v,2) H"2 LV for Some (n — 2)-dimensional
plane V in R*. Let r, — 0 be such that v, — 1 as k — 0o. Here vx(A) = % Without
loss of the generality, we may also assume the (n — 2)-dimensional plane V' here is simply

R*2 x {0}, z =0and let 7 : R* — R" 2 x {0} be the orthogonal projection. We then need

to show
H" 2(r(EN B, (0
(4.12) (m — () — |BI" 2|, as k — oo.
Tk
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Without loss of the generality (that is also true for H" %-a.e. x € F) that

H'"%(S/EN B,, (x))

n—2
Tk

(4.13) — 0.

since 7 = ¢ H" 2 LR"? x {0}, we have n (B} %(0) x B3(0) \ B(0)) = 0, for any § > 0.

Let u;; be an energy minimizing sequence in C°(B5~2(0) x B2(0), N) N WL2(BI~2(0) x
B2(0), N) such that |Vu; |*dy — vg + |Vug|* dy as i — oo (as Radon measures). Note that
|Vug|? dy — 0 as k — oo by our assumption at point .

Since the lower H" 2 density bounds on v; (uniform in k& by Theorem 2.3 and Theorem
3.1), we have
(4.14) lim lim |Vuyl*dy =0, forany &> 0.

BT B0 B30\ B} (0)

Moreover, by a diagonal sequence, we may find an energy minimizing sequence vy (as u; )
such that |Vug|? dy — n as Radon measures. By the proofs of Theorem 3.1, and Lemma 3.2,
we can easily modify such vy, to form a new energy minimizing sequence C° (B}~? x BZ(0))
such that 7, = constant on By 2(0) x (B2(0)\ B2(0)) and that |Vu,|?dy — 7, for a given
§ > 0. Moreover, U, = vz on By ?(0)x BZ(0). We claim, for all ¢ € B} %(0), the map v (-, q) :
B2(0) — N represents a nontrivial homotopy class « of m3(N). Moreover, @" *(v,z) =
inf{E(u) : u € W"*(S% N) and u represents the homotopy class of a}.

Indeed, if « is trivial, then T (-q), for all ¢ € By %(0), is homotopy to a constant map,
say the boundary value of ¥(-, ¢) on dB3(0). Note since v (+,¢) = constant on B2(0)\ B2(0),

we may think v (-, ¢) is a map from S? into N. Then we let v} be such that

vj = constant on By *(0) x (B3(0) \ B;(0))

vy = constant on B}~7 x B3(0)

vy = on By %(0) x 0B3(0).

Moreover v; € CO(BY2(0) x B2(0)). On the region (B3 ~2(0) \ By~7) x B2(0) we construct
a suitable extension of v, on dBY~2 x B2(0) and v} on the rest of boundaries which is a
constant.

For n = 3, it is trivial ones imply use the homogeneous degree zero extension of the

boundary data on 9C}§ = [2—4, 2] x BZ(0). Such extension is allowed as in our proof of Lemma
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2.2. and various other places) because the boundary data is homotopically trivial map from
S? — N. The extended map has energy < C'6. Thus E(v}) < 2C ¢ and (B ~2(0) x B2(0)) <
C§. Since § > 0 is arbitrary we obtain a contradiction as @" (v, x) > €.

For n > 4, one basically follows the inductive arguments as in proofs of Lemma 3.2 and
Lemma 2.4. For example, when n = 4, one first choose a suitable § — net on 0By ™2, i.e.
a set of points {py,... P} such that |p; — pj| = 6, i # j. Then we first do extension on
[2—6,2]p; x B#(0) as in n =3 case, for i = 1,... ,m.

Then we start to work first on 4-dimensional cube with boundary given by C; = @ x[2—
§,2] x B2(0). If boundary data has trivial topology then we simply do homogeneous zero de-
gree extension to define a map on C}, otherwise we modify the boundary value on [2—4, 2] ph X
B2(0) slightly to have this topological condition but does not have to change any energy es-
timates as in the proof of Lemma 2.6. Then we keep doing till we reach the last cube C,,_;.
We claim the final cube C}, ; has to have boundary value in the trivial topological class.
The reason is that the union of all these maps become a map from By~ %(0)\ By_#(0) x B(0)
into N which has the boundary value in the trivial topological class. And thus we complete
the construction of v} for the case n = 4 with E(v}) < Cmé* < cé.

For n > 5 one uses the fact for n — 1. One again first bisect (By *(0) \ By~7(0)) x B(0)
into two cubes, extend the map to two (n — 1) dimensional cubes of form Q7 * x B2(0),

272 x B2(0). Then look at two n-dimensional cubes that decompose By ~2(0) \ BY=2(0)) x
B2(0), say Cy and C,. We have the two possibility again . If the boundary value on 9C}
has the trivial topological class (then the same is true for 0C,), then since both C; and
Cy are bi-Lipschitz equivalent to By ~2(0) \ BY=2(0) x B2(0), we simply do a homogeneous
zero degree extension with respect to their centers. The result energy will be again C'¢ (see
the proof of Lemma 3.2). If the boundary value on 0C| is non-trivial topologically then we
modify as in the proof of Lemma 3.2 (see also proof of n = 4 case above). The conclusion
again follows.

This completes the proof of the claim that vx(-,7) : B3(0) — N represents a non-trivial
homotopy class a € my(N). It is then easy to see that as a map from B3(0) — N, Uy (-, €)
has to have energy > ¢ for some ¢; > 0. Note domain dimension is exactly 2.

Note that {v;} can be taken to be {ux),} for any suitably large i(k). Thus, by above
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arguments we see, for all sufficiently large ¢ (say ¢ > i(k)) one has u; (-, ¢) as a map from

B3(0) into N has energy > €. Since [y o [Vurl*dy — 0 as k — oo, we have
2

2
x B2

spt v, N {q} x B2(0) # @, for all ¢ € By ?(0) \ By. Here By, is a subset of By %(0) such
that L""%(By,) — 0, as k — oco. The latter statement follows from the weak- L' estimate for

|Vug|* and the fact that [yn g o [Vuk|*dz — 0, as k — oc.
2

2
x B2

In other words, we have shown that H"~2(7(SNB,, (7)) \r}~* = H"2(x( spt vxNB;)) —

L"=%(B}%(0)). Since HTECAERB @), ) as k — 0o we have the conclusion of Lemma
Tk

3.8. U

Remark 4.8. Similar proofs for results in this section works also for p-energy minimizing

case when p > 2 is an integer. We leave these to readers.

5 Further Remarks

When p # integer and p > 1. Then the boundary regularity theorem such as Theorem 3
follows easily from the fact that the defect measure v = 0 (see Theorem 3.9 in Section 3).
Indeed, Theorem 3.9, shows that ¥ = 0 inside M. Then we use constructions in [HL] and

the proof of Lemma 2.2 to show the following;:

Lemma 5.1. Suppose OM and g : OM — N are of C?-class, then there are two positive

constant rq and Cy depending only on OM, g and N such that, for 0 < r < rg, the function

0" [up(Q2r (z)+Co 1]
rn—p

is monotone nondecreasing. Here Q,(x) = M N B,(x), v € OM, p, =
|Vuy|? dx + v,. Here v, is the defect measure which (by Theorem 3.9) has to be supported in
oM.

Using this monotonicity lemma we follow the same to the proof of Theorem 3.9 to show
vp = 0 also on OM. We leave this detail to the reader.

Since the defect measure v = 0 when p # integer, we have not only the strong conver-
gence of a minimizing sequence {u;} € W,*(M,N) N CJ(M,N) to u,, but also that such
up’s (with ¢ in a compact c¢'-class) form a compact subset of W;-*(M, N).

Next as in [HL], we deduce from the proof of Lemma 2.4 that
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Lemma 5.2. For 0 <r <y, v € 0M,

P () g 18 (2))

rn—p = (2r)n—p

+ 0(9) fQQT(I) |up — ﬂp|p dy + CO T,

As before u, = fq,,(z)up dy, whenever “{%g@’ < €o(p, N, M).

Corollary 5.3. If % < €9, for some €, then u € C+*(Q, (), N)NC?(Q,(x), N). Here
x € OM.

To show the complete boundary regularity, we do exactly the same deformation as in
[HL] to show any tangent map of u, at a boundary point has to be a constant. Then using
the fact that the convergence of scaled sequence to the tangent map of w, at a boundary
point is also strong,, the small energy assumption is then valid everywhere on dM. This
proves Theorem 3, stated in the Introduction.

Now we describe a few example to illustrate main results presented so far.

Example 5.4 Consider in the Euclidean space R = R! x R® a tour M = S! x S? which
is obtained by rotating 0B} (a) C {0} x R® around R'-axis, Here a = (2,0,0) € R®, with
induced metric from R*.

Let g : M — S? be the map defined by ¢(6,) =« for (0,v) € S! x S%

Consider an energy minimizing sequence {u;} from M into N = S? (standard S?) such
that {u;} = [g], i.e., u; homotopy to g, for each 7, and u; € C°(M, N).

Then |V pu;)? de — 87 H*'|T'. Here I' is the minimal geodesic in M which is homologous

to 9, = S' x {p}, for any p € S%

Example 5.5 Consider in the Euclidean space R = R' x R?, a solid tour M = S' x B#(a),
a = (2,0) € R?, with induced metric. Let g : OM — S? be a constant map. Suppose
u, : M — S? be such a map that u, = g on M and that when u(p,-) : B¥(a) — S?, for any

p € S, viewed as a map from S? into S? is of degree 1.

u; € C°(M,S?) with each u;

Consider an energy minimizing sequence {u;}, ul‘ o= 0

homotopy to u, (relative homotopy). Then |V u;|? de — 87 H!|T. Here I is the minimal
geodesic on S' x B%(a) which is homologous to S' x {p}. p € dB%(a).
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Example 5.6 on Q = B (0) x [-1,1], here B{"(0) is a half ball in R?2. One may find
an energy minimizing sequence {u;}, u; € C°(€,S?) such that u; = constant on {(z1, z2) :
|z1] <1, 23 =0} x [—1,1], and such that |Vu;|? dz — 87 H!' [Ty, Ty = {0} x [-1,1], 0 € R?.
To end this paper, we would like to make a few remarks concerning further structures of
the defect measure v. For simplicity we discuss again the p = 2 case, i.e., the usual energy
case.
;From the proof of Lemma 3.8 in Section 4, we noted that for H"?-a.e. © € spt (v),

@" %(v,x) is given by
inf[E(u) : u € WH(S% N), [u] = a, € m(N)]

for some nontrivial class «, € m(N). Here [u] is the homotopy class represented by u.

.From a recent work of Duzaar-Kuwert, we see that

14

® @"*(v.x) =Y E(¢;).

j=1
Here each ¢; : S* — N is a smooth harmonic map which is an energy minimizing map from
S? into N within the topological class [¢;]. Moreover, these [¢;]’s is simply a decomposition
of a, € m(N) (cf. [DK]) for the details). We define a homotopy class a € m(N) to be
irreducible if o can be represented by a smooth harmonic map u,, from S? into N, which
minimizes energy in its homotopy class, and if F(u,) cannot be written as ® above with
each ¢; : S? — N has the stated properties, and with ¢ > 2.

It is easy to show that
inf{E(u) :u € W"(S% N), [u] #0}>e >0.

Then by a simple induction, any ¢ : S* — N minimizing energy in the class [¢] can be
decomposed into [¢,]’s, for j = 1,...,¢ (for some finite ¢ depending only on E(¢) and €;)
such that each [¢,] is irreducible. (cf. ‘citeDK).
Next, we look at the set
A={ E(¢): ¢ is an energy minimizing map
from S? into N among the class [¢],

and [¢] is irreducible } .
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Then we claim A is discrete in R, .

Indeed, if ¢ : S — N energy minimizing among class [¢] with [¢] irreducible, then
|]lc2 < C(E(¢)). Suppose not, we would find a sequence [¢;] of such maps with E(¢,) < C
and ||[V;||r~ — oo as j — oo. (Note ||¢;llcr < C(k). [||[V;llz= + 1] is a well-known fact,
for every k > 1).

By the result of [DK], we would have ¢; — ¢ in W'?(S% N) weakly, here ¢ : S* - N
is a smooth harmonic map (cf. [SaU]). But ¢; - ¢ strongly in W2(S? N), otherwise,
IV ;|| = would be bounded. Hence we would be able to decompose [¢,] as in [DK] and that
contradicts to the fact [¢,] is irreducible.

Now, for any E, > 0, the set A N (0, E,] is finite. Indeed, if [E;]32, be such that
E; € AN[0,E,]. Let [¢;] be a corresponding energy minimizing maps from S? into N such
that E(¢;) = E; and each [¢;] is irreducible. Then ||¢;||c2 < C(E,). By taking subsequence
if needed, we may assume ¢; — ¢ in C*norm. It is obvious ¢ is a harmonic map from S?
into N with E(¢) < lim ;E(¢;). Moreover, [¢;] = [¢] for sufficiently large j. Then it is clear
that E(¢,;) = E; are all equal, by definition, for large j’s.

We note that there may be infinitely many such energy minimizing maps ¢ that E(¢) is
a fixed number in A. However, if NV is, in addition, analytic, then it is also easy to show that
any F, € A there are only finitely many connected components of such energy minimizing

maps ¢ with F(¢) = E,. That leads us to the following:

Conjecture 5.7 Let N be a real analytic, compact Riemannian manifold. Then the energy
spectrum

A ={E(u)|u:S*— N is a harmonic map }

18 a discrete set.
. _ _ ‘
To summarize, we have shown that for H" 2-a.e. z € sptv, @" *(v,z) = Zj:1 E;
with E; € A. Since @"?(v, ) is also bounded by the global energy, we have, therefore, the

following:

Theorem 5.8 The defect measure is the total measure py of an integral rectifiable varifold
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V' in the sense that
v =@ (v, ) H2S

=> 0, H?|%.
j=1

Here X;’s are subsets of ¥ (H" %-measurable) and 0; = Zﬁle O;0, for some 0, € A, and
g=1...,m.

We further remark that when N = S? topologically, then, topological classes simply
identified by the degrees of maps from S into N. According to plus sign or minus sign, we
can even give an orientation of set ¥. In other words, in this case, v simply comes from pr
for an integral rectifiable current 7'. A special case of this last fact is in fact shown in [GMS]
when n = 3.

Further properties of v will be discussed in a forthcoming work.
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