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Abstract

We study all possible weak limits of a minimizing sequence� for p�energy functionals�

consisting of continuous maps between Riemannian manifolds subject to a Dirichlet

boundary condition or a homotopy condition� We show that if p is not an integer�

then any such weak limit is a strong limit and� in particular� a stationary p�harmonic

map which is C ��� continuous away from a closed subset of the Hausdor� dimension

� n� �p�� �� If p is an integer� then any such weak limit is a weakly p�harmonic map

along with a �n� p��recti	able Radon measure �� Moreover� the limiting map is C
���

continuous away from a closed subset 
 � spt � � S with Hn�p�S� � �� Finally� we

discussed the possible varifolds type theory for Sobolev mappings�

� Introduction

We start with the classical mapping problem� Let M be a smooth� compact Riemannian

manifold with smooth boundary �M � and let N be a smooth� compact Riemannian manifold

without boundary� Suppose g� �M � N is a Lipschitz continuous map� and � � p � n�

n � dim M � we consider the variational problem�

minEp�u� � min

Z
M

jrujpdx�����

�



among maps u � M � N such that u
��
�M

� g�

The �rst natural question one has to address is whether or not the following set�

W ��p
g �M�N� � �

u � M � N� u
��
�M

� g and ru � Lp�M�
�
������

is not empty� For this we have�

Theorem �HL�� If N is 	p� �
�connected� then W ��p
g �M�N� �� �� In fact�

inf

�Z
M

jrujpdx � u � W ��p
g �M�N�

�

� c�p�N� inf

�Z
M

jrujpdx � v � W ��p
g �M�RK �

�
�

�����

Here we assume that N is isometrically embedded in RK � and c�p�N� is a constant depending

only on N and p� In particular� if g is a trace of a W ��p�M�RK � map on �M � with g��M� �
N � then W ��p

g �M�N� �� ��

In general� B� White 	W
 showed that W ��p
g �M�N� �� � if and only if g has continuous

extension on �M�M �p�� whereM �p� is a 	p
�dimensional skeleton ofM � However� the estimate

����� may not be valid in this general situation�

If under some topological conditions that the space Co
g�M�N�� continuous maps from M

into N with trace g on �M � is not empty� then one is interested in the following mapping

spaces�

H��p
s �M�N� � the strong closure of Co

g �M�N� in W ��p
g �M�N��

H��p
s �M�N� � the weak closure of Co

g�M�N� in W ��p
g �M�N��

Obviously one has

H��p
s �M�N� � H��p

w �M�N� � W ��p
g �M�N�����
�

We also de�ne R��p
g �M�N� to be the subset of W ��p

g �M�N� consisting of all such maps u

that are smooth away from a �n � 	p
 � ���dimensional skeleton of M � It follows from the

proof of 	HL� x�
 that R��p
g �M�N� is dense in W ��p

g �M�N� in the strong topology� Later

Bethuel 	B
 showed that R��p
g �M�N� is always dense in W ��p

g �M�N� without the assumption

�



of the 	p� �
 simply connectedness of N � On the other hand� we have the following so called

�Gap�phenomena��

Theorem �HL��� There are smooth maps g from S� � �B � into S� of degree zero such that

min

�Z
B�

jruj��x� dx � u � W ���
g �B � �S��

�

� inf

�Z
BB�

jruj��x� dx � v � H���
s

�
B � �S�

�
� v
��
�B�

� g

�
�

This gap�phenomena implies� in particular� that H���
s �B � �S�� � W ���

g �B � �S��� On the other

hand� it is relatively easy to show H���
w �B � �S�� � W ���

g �B � �S�� �cf� 	BBC
��

Some more general gap�phenomena were established in 	GMS�
� The most remarkable

result in this direction is probably the following theorem of Bethuel�

Theorem �B�� Co
g�M�N� is dense in W ��p

g �M�N� with respect to the strong topology on

W ��p
g �M�N� if and only if ��p��N� � ��

As a consequence� one can deduce that from p�energy functional that no gap�phenomena

for an arbitrary boundary map g � Co��M�N� if and only if ��p��N� � ��

This leads to the following long standing problem �cf� 	HL�
��

Open Problem I�

Is inf

�Z
M

jrujpdx � u � H��p
s �M�N�� u

��
�M

� g

�

achieved�

Similar questions were also posed by Schoen�Uhlenbeck� Schoen�Yau before the work

	HL�
 for maps in Homotopy classes� Indeed� in the case �M � �� it was shown in 	SU�


that any map f � W ��p�M�N� induces f� � Hk�N�R�� Hk�M�R�� for any � � k � 	p� �
�

a homomorphism between cohomology classes� We also note that Burstall 	Bu
 proved

W ����M�N� maps induce conjugate classes of homomorphisms of ���M� � ���N�� and

Schoen�Yau 	SY
 showed� one can de�ne conjugate classes of homomorphisms of �n���M��
�n���N� for W ��n�M�N� maps� In 	W
� White established the following results�

Theorem �W��

�



�i� Let d �

��
	 	p
 if p is not an integer

�p� �� if p is an integer
Then each f � H��p

W �M�N� has well�

de�ned d�homotopy type which is preserved under weak convergence�

�ii� if d � 	p� �
� then each
R� � W ��p�M�N� has a well�de�ned d�homotopy type and it is

preserved under weak convergence of maps�

�iii� Each map f � H��p
s �M�N� has a well�de�ned 	p
�homotopy type that is preserved under

the strong convergence of maps�

Very recently� Duzaar�Kuwert 	DK
 improved the statement �i� of the above theorem by

introducing the suitable notion of p�homotopy classes of maps and the weak limit sets for

maps in H��p
w �M�N� when p is an integer�

These results also indicate the delicate di�culties of the open problem aforementioned�

Indeed there is very little progress being made toward the solution of this open problem in

general�

For the special case of maps from B � into S�� Bethuel�Brezis�Coron 	BBC
 introduced

�rst the so�called relaxed energy�

F �u� � E�u� � �� L�u�������

where E�u� �
R
B� jruj��x� dx�

L�u� �
�


k
sup

��R��R�jr�j��

�Z
B�

D�u� 	 r� dx�
Z
�B�

D�u� 	 n�d�
�
�

D�u� is the dual vector of the ��form u��� � is the area�form��� on S� �cf� 	BBC
 for a

geometric interpretation of L�u��� They proved the following

Theorem �BBC��

�i� jL�u�� L�u�j � C�kru�rvkL��B�	�krukL��B�	 � krvkL��B�	��

for all u� v � W ���
g �B��S���

�ii� inffE�u� � u � H���
s �B � �S��� u

��
�B�

� gg � inffF �u� � u � W ���
g �B � �S��g�

Moreover� L�u� � �
� u � H���
s �B � �S���






�iii� F �	� is sequentially lower�semicontinuous with respect to the weak convergence of maps

in W ���
g �B � �S���

In particular the in�mum of F is achieved�

It is also noted in 	BBC
 that F �	� minimizers are in general di�erent from absolute

energy minimizers� The result of 	BBC
 leads to the following�

Open Problem II� Are F �minimizers continuous�

In 	HLP
 it is showed that the answer to the above problem II is �No� for general maps

in the restricted axially symmetric class� Indeed� it was proven that when F �	� is restricted
to the axially symmetric maps from B � with S�� the minimizers of F �	� may have isolated

degree zero singularities� One does not know if this result remains true for F �	� minimizers

among all maps in W ���
g �B � �S���

In a series of very general works� Giaquinta�Modica�Sou�cek studied the so�called Carte�

sian currents� As an application� they deduced the above result of 	BBC
� Moreover� they

showed F �minimizers are smooth away from a closed recti�able set of �nite H� measure �see

	GMS
 for the details�� It seems that these arguments in 	GMS
 works only when the target

or the domain manifold is ��dimensional� We should also remark that to characterize whose

maps in H��p
s �M�N� is also an interesting and di�cult question� see 	B�
� 	BCDH
�

Now we can describe the main results of the present paper�

Theorem �� Suppose the space of continuous maps from M into N with trace g� Co
g �M�N��

is not empty� Then any energy minimizing sequence fvig� vi � Co
g�M�N� of E�	� contains

a subsequence converging weakly to a harmonic map u� M � N � which is smooth away a

closed subset � of M of �nite Hn���measure� Moreover � is recti�able� and the pair �u� ��

is stationary for the energy� Where � is the corresponding defect measure with spt � � ��

If� in addition� ���N� � �� then � � �� and u is absolutely energy minimizing�

Remark� The above theorem can be viewed as a generalization of the aforementioned

results of 	BBC
 and 	GMS
� The defect measure is de�ned in the next section� and so is

the stationarity of the pair �u� ��� In the case � � �� one has the strong convergence of the

minimizing sequences to the limiting minimizers�

�



With the same proof as that for Theorem �� one can deduce the following results for p

equals an integer�

Theorem ��� Suppose Co
g�M�N� �� �� then any minimizing sequence for Ep�	� over the

space Co
g�M�N� contains a subsequence converging weakly to a p�harmonic map u �here

p is an integer� which is C ��� smooth away from a closed subset � of M of �nite �n �
p��dimensional Hausdor� measure� Moreover� � is Hn�p�recti�able and the pair ��� u� is

stationary for Ep�	�� If� in addition� �p�N� � �� then � � �� and u is an absolute Ep�	�
minimizing map�

We also have a homotopy version with the identical proof as previous two theorems�

Theorem ���� Suppose �M � � and g � M � N is a map in Co
g�M�N�� Then any

minimizing sequence of Ep�	� in the space Co�M�N� with the same homotopy class as g

contains a weakly converging subsequence such that the weak limit u along with the defect

measure � have the following properties�

�a� u is C ��� � p harmonic map away from a closed Hn�p�recti�able set � � M with

Hn�p��� ���

�b� spt � � � and u has the same �p� ���homotopy type as g�

�c� if� in addition� �p�N� � �� then � � � and u is an absolute Ep�	� minimizer which has

the same p�homotopy type as g� Moreover u is C ��� away from a closed subset of M of

Hausdor� dimension � n� p� ��

Next we consider the case p is not an integer� We have somewhat stronger statements�

Theorem �� Under the same assumption as in Theorem 	� Let Up be a weak limit of a

minimizing sequence for Ep�	� over Co
g �M�N� with p �� integer � Then Up � H��p

s �M�N�

and hence Up achieves the value inf
�
Ep�v� � v � H��p

s �M�N�� v
��
�M

� g
�
� In particular� Up is

stationary for Ep�	�� Moreover� Up is C
��� away from a closed subset of Hausdor� dimension

� n� 	p
� ��

�



Remark� �a� If for some k � f�� �� � � � � n� �g that p � k� and k� p su�ciently small� then

the singular set has Hausdor� dimension � n� 	p
� �� This follows from the global energy

bound and analysis in 	HLW
�

�b� Note that there is no defect measure in the case p is not an integer� Indeed such

minimizing maps Up obtained in Theorem � above form a compact family in W ��p�M�N�

whenever their energies remain bounded�

�c� The regularity of limiting maps obtained in both Theorem � and Theorem � was an

open issue in previous works 	B
 and 	W
�

When �M � �� we have also the following�

Theorem ��� Let g � M � N be a continuous map between compact Riemannian manifolds

without boundary� Let 	g
 � Co�M�N� be the set of all maps homotopy to g� Then for any

minimizing sequence of maps in 	g
 for the p�energy Ep�	�� for some noninteger p � ��� n��

there is a strong converging subsequence such that the limiting map Up is a stationary p�

harmonic map� The map Up is C
��� away from a closed subset � with Hausdor� dimension

� n� 	p
� �� Moreover� Up has the same 	p
�homotopy type as g�

We have also made preliminary analysis on the defect measure � arises in various situa�

tions stated above� They are sum of integral multiplicity recti�able Radon measures�

For the behavior of minimizing sequence near the smooth boundary �M on which they

take the smooth boundary value g � �M � N � we have the following statements�

Theorem �� For any p � ��� n�� and p �� integer� �p 	 n is trivial by the Sobolev embedding

theorem�� let fUig � Co
g�M�N� be a Ep�	� minimizing sequence such that Ui weakly converge

to Up along with a defect measure �� Then Up is regular near �M and � � ��

Here we say Up is regular near �M if there is a neighborhood O of �M in M such that

Up � C����O nM� 
 C��O��

Finally we like to state two consequences of our results�

Corollary �� Let g � �B 
 � S� be a smooth map and let Hopf�invariant of g� H�g�� be zero�

Then the inffEp�u� � u � Co
g �B


 �S��g is achieved by a map Up � H��p
s �B 
 �S�� for � � p � 
�

Moreover Up is a stationary p�harmonic map which is C ��� inside B 
 � C �
up to �B 
 � away

�



from a �nitely many points inside B 
 � say fxj� j � �� � � � � Ng� Moreover the Hopf invariants

H�Up

�� �Br�xj�� � �� for j � �� � � � � N and for all su�ciently small r 	 ��

Corollary �� Let g � �B� � S� be a smooth degree zero map� Then the inffEp�u� �

u � Co
g�B

� �S��g is achieved by a map Up � H��p
s �B � �S��� for � � p � �� Moreover� Up is

stationary p�harmonic map which is C ��� in B � � C �
up to boundary �B�� away from a �nite

many points xj� j � �� � � � � k� inside B � � Moreover� deg �Up� �Br�xj�� � � for all j and all

su�ciently small r 	 ��

Most of results presented here were announced in 	L
 with sketched proofs�

The present paper is written as follows� In Section �� we establish the partial regularity of

the weak limiting maps� To do so� we have to generalize the Schoen�Uhlenbeck construction

for absolute energy minimizingmaps to our situation of minimizing energy among continuous

maps �see Lemma ��
 below�� This was done by special methods for the case that the domain

manifold is two or three dimensional� and then by an inductive argument for the case of

dimensions � 
� This key Lemma ��
 leads to the so�called small energy regularity Theorem

����

Section � of the paper is devoted to the study of defect measures� The �rst important

step is Theorem ��� which leads to the fact that defect measures are supported in a closed

subset of suitable Hausdor� dimension� and that the corresponding Hausdor� measures are

also �nite� Then we show that these defect measures are recti�able �cf� Theorem ����� To

do so we will need the key lemmas� Lemma ��� and Lemma ���� These two lemmas will be

proved in Section 
 of the paper� Then we show in various cases that such defect measures

may be vanish� If that is the case� various compactness results follow�

In Section 
� we introduced the so�called generalized varifolds� The general varifold type

theory for mappings will be the subject of a forthcoming work� Here we show an energy

minimizing sequence leads to a stationary generalized varifold� Then we use results in Section

� to show such varifold can be nicely decomposed into two parts� One part is given by the

weak limiting map� the other part is given by the defect measure� We show the latter is a

classical integral recti�able varifold� In some case there are integral multiplicity currents�

Several remarks concerning the boundary regularity are discussed in the �nal Section �� We

�



should present complete proofs of Theorem �� Theorem � and Theorem �� The proofs of

Theorem ��� Theorem ��� as well as Theorem �� are very similar and we shall thus omit them

beside a few remarks�

The research is partially supported by an NSF Grant DMS � �������� Part of the work

is completed while the author was visiting the Max�Planck Institute of Mathematics and

Sciences at Leipzig� The author wishes to thank Professor J� Jost for the invitation and the

warm hospitality�

� Partial Regularity of the Limiting Maps

Let fuig be a minimizing sequence for E�	� over Co
g�M�N�� Consider a sequence of Radon

measure on M �


i � jruij� dx� i � �� � � � � �

We may assume� by taking a subsequence if necessary� that ui � u in W ���
g �M�N� weakly�

and 
i � 
 as Radon measures� By Fatou�s theorem� we may write 
 � jruj� dx � �� here

� � � is also a Radon measure� We will call it the defect measure associated with the weakly

converging subsequence�

Lemma ���� The weak limit u is a weakly harmonic map in W ���
g �M�N��

Proof� For the simplicity� we assume that N Is isometrically embedded in RK � Let � �
C�
��M�RK �� and let t � R be su�ciently small� Consider ui�t� � �N �ui � t��� here �N is

the nearest point projection of a neighborhood of N in RK onto N � then ui�t� � Co
g�M�N��

Thus

lim
i��

E�ui�t�� � lim
i��

E�ui� �

Z
M

jruj�dx� ��M��

On the other hand� a direct computation shows

E�ui�t�� � E�ui� � t

Z
M

rui 	D�n�ui�r� dx�Oi�jtj�j�

where Oi�jtj�� is a quantity bounded by Cjtj�� for a constant C depending only on N � � and

the uniform energy bound on ui�s� Therefore� t
R
M
ru 	 �D

piN�u��r� dx �O�t�� � �� for all su�ciently small t � R� In other words� u � W ���
g �M�N�

is a weakly harmonic map�

�



Next is the usual energy monotonicity property�

Lemma ���� For a � M � � � r � da � distM�a� �M�� the function ��Br�a		
rn��

is monotone

nondecreasing in r� here n � dim M �

For simplicity we shall assume M is an n�dimension domain in Rn � The modi�cations

for general M are standard�

Proof� For almost all 
� 
 � � � ��� da�� one has


�B����a��� 
�B��a��

�
�

�

�
lim
i

Z
B����a	nB��a	

jruij� dx

�
�

�
lim
i

Z ���

�

Z
�Br�a	

jruij� d� dr

��

�
lim i

Z ���

�



n� �

r

Z
Br�a	

jruri j� dy
�
dr�

Here uri is the homogeneous degree zero extension of ui on �Br�a��

On the other hand� we may replace uri � for each r � 	
� 
� �
� by a map ui which is equal

to uri on Br�a� nB��i�a� and� which is also continuous on Br�a�� Indeed� we simply let

ui�x� � uri �x�� for
�

i
� jxj � r� and

ui�x� � ui�irx�� for jxj � �

i
�

Since fuig is an energy minimizing sequence� we have� for almost all r � �
� 
���� 
�Br�a�� �
lim iE�ui� � lim iE�uri ��

Therefore we obtain

�

�
	
 �B����a��� 
 �B��a��
 � �

�

Z ���

�

n� �

r

 �Br�a�� dr�

Let � � o�� we conclude that ��Br�a		
rn��

is a monotone nondecreasing function of r�

The main result of this section is the following�

Theorem ���� There is an �� � ���n�M�N� 	 � such that if ��Br�a		
rn��

� ��� Br�a� � M �

then u is smooth inside Br���a��

The key point of the proof of the above theorem is the following Schoen�Uhlenbeck type

lemma �cf� 	SU� x

��

��



Lemma ���� For any � � ��� �
��
�� one has that


 �Br�a��

rn��
� �


 �B�r�a��

��r�n��
� C���

R
B�r�a	

ju� uj� dx
��r�n

whenever ��B�r�a		
��r	n��

� ��� for a su�ciently small �� 	 ��

Here and later on� we will use u to denote the average of u over the ball of integration�

Thus� u �
R�B�r�a	 u in the Lemma ��
�

Let us assume� for a moment� that Lemma ��
 is true� and proceed our proof of Theorem

���� By a scaling and a translation� we shall assume a � �� r � � in the statement of

Theorem ���� Thus 
�B����� � ��� As in 	HL
 we show �rst that


�Br����

rn��
� C� �� r

�� for some constant C�� � 	 �������

and for all r � ��� �����

As usual� it reduces to show the following discrete version of the decay estimate�

if 
�B����� � ��� then

�B������

�n���

� �

�

�B��������

for some �� � ��� ��
��

Suppose� to the contrary� that the conclusion ����� is not valid� That is� such �� does

not exist no matter how small �� is� Then there would be a sequence of Radon measures of

the form 
i � jrvij� dx� �i� such that each 
i is a weak limit of jruji j� dx� j � �� �� � � � � for

some continuous energy minimizing sequence fujig� j � �� �� � � � � and such that 
i�B����� �

��i � ��� ���n� 
i�B������ � �
�

i�B������

We consider normalized sequence of Radon measures 
i� i � �� �� � � � � such that 
i�A� �


i�A� n 
i�B������ for Borel sets A � B�� We also consider the blow�up sequence v�i �
vi�vi
	i

�

vi �
R�B���	vi� Then v�i � v in W ����B�� weakly�

R�B���	v � ��
R
B���	

jrvj� dx � ��

Since each vi is a weakly harmonic map� as in 	HL
� it is easy to deduce �v � � in

D��B�����

Let ��� k� be two positive integers to be chosen later� We apply Lemma ��
 repeatedly�

k� times to obtain

���n� 
i �B��� � �k� 
i �B���� � �

��n��	

� C���
k���X
k
�

�k
Z
�Brk

jv�i � v�i j� dy�
�����

��



Here �� � ���k��
�	� rk � ��k ��
��

We assume k� is larger than �� so that

�k� �
��n��	 �
�



����
�

Hence the �rst term on the right�hand side is less than ��
�

Next� since v�i � v inW ����B�� weakly� one may assume v�i � v in L��B�� strongly� ThusZ
�Brk

jv�i � v�i j� dy �
Z
�Brk

jv � vj� dy� as ���������

for each k � �� �� � � � � k�� Since v is harmonic and
R
B�
jrvj� dx � �� we haveZ

�Brk
jv � vj� dy � C� r

�
k �

�

�
rk� for all k � �� �� � � � � k������

whenever �� � ���n� is chosen suitably large�

Therefore� for all i large� one has� from ����� ����� that

���n� 
i�B��� �
�



� C���� �

�
�������

Now we assume �� suitably large that the right�hand side of ����� is less that ��� to

obtain a contradiction� This proves ����� and hence also ������

Next� by the monotonicity Lemma ���� we see that if 
�B����� is su�ciently small� then


n�� 
�B��
�x�� � 
n�� 
�B����� is also small� for all x � B������� We thus can apply above

arguments to the ball B��
�x� with center at x to obtain �as ������ that


�Br�x��

rn��
� C��n� �� r

������

for all � � r � �
�
� x � B�������

Since 
 � jruj� dx � �� we �rst conclude� from Morrey�s Lemma� that u is uniformly

H!older continuous in B������� Since u is also weakly harmonic� then the usual arguments

imply that u is also smooth in B������� This proves Theorem ����

Remark ���� After proving the smoothness of u� we can go back to Lemma ��
 to obtain�

after dividing by r�� that


�Br�a��

rn
� 
�


�B�r�a�

��r�n
� C���

Z
�B�r�a	

�

r�
ju� uj� dx�

��



for all r � ��� ��
�� a � B�������

Using iterations similar to ������ we obtain


�B��k�a��

��kn
� C���

k��X
j
�

�
��j��
Z
�B

��j �a�
���jju� uj� dy

�
��k��

�B����a���

�
�

�n � for all k � �� �� � � � �

Since ju� uj � C� �
�j on B��j �a�� note here u �

R�B
��j �a�

u� we thus have


�B��k�a�

��kn
� C��� n�� for all a � B������ and k � �� �� � � � �

In other words 
 is absolutely continuous with respect to the Lebesgue measure on B�������

In other words � � f�x� dx for some f � L��B������� on B������� Later in the paper� we

shall show � � � inside B�������

Here we have shown that

If �H n���
� x� � lim
r��


�Br�x��

rn��
� ��������

then �H n���
� x� � ��

Now we modify arguments in 	SU� x

 to prove Lemma ��
� We shall use the exact same

notations as in 	SU� x

 for convenience� Let u� be a point in Rk �

W��u� �

Z
B�

ju� u�j� dx� E��u� �

Z
B�

jruj� dx�

Cn
� � Bn��

� � 	��� �
� � 	 ��

We �rst have a version of Lemma 
�� of 	SU
 for n � 
�

Lemma ���� Let u � C���Cn
� � N� 
 W �����Cn

� � N� be given such that u�x���� � u��x��

u�x� �� � u��x� for x � Bn��
� with u��x� � u��x� � u�x� t� � u��x� for �x� t� � Sn��

� �	��� �
�
Sn��
� � �Bn��

� � Suppose n � 
� then there is an extension u� � C��Cn
� � N� with u� � u on

�Sn��
� � 	��� �
� � �Bn��

� � 	�
� and u� � u� on �Bn��
� nBn��

� �� 	�
 such that

E�u�� � C ��E��u�� � E��u�� � � E�u��� � ��

W �u�� � C ��W��u�� �W��u�� � �W �u��� � �

� � � � � �� can be arbitrary small� and that

E��u��	����� � E��u�� � ��

��



Proof� Suppose u has a continuous extension "u from Cn
� into N � Then we may simply

take u� � u� on Bn��
� in the above lemma� and follow the proof of 	SU� Lemma 
��
� The

homogeneous degree zero extension is essentially allowed in our construction as in the proof

of the monotonicity Lemma ���� The conclusion of Lemma ��� follows� Suppose u has

no continuous extension from Cn
� into N � then u must represent a nontrivial homotopy

class � � �n���N�� Since n � 
� n � � � �� the homotopy class ��� � �n���N� can be

represented by maps from Sn�� into N of arbitrary small energy� �cf� 	W
�� and has their

support contained in an arbitrary small ball� B��� � Sn��� Indeed� we may �rst modify u�

on the ball Bn��
� to obtain a new map "u� such that "u� � const on the ball Bn��

� � and

"u� � u� on �Bn��
� � Moreover E��"u�� � E��u��� Next� we view �Cn

� as Sn�� �after a suitable

bi�Lipschitz map f � �Cn
� � Sn�� and so that f�Bn����� become a ball B� in Sn��� Then

��� is simply represented by the inversion of the map "u� � f�� along �B� in Sn��� Denote

the resulting map by "u�� We then let u� � B
n��
� � N be such that u� � "u� on Bn��

� n Bn��
� �

u� � "u� � f � Then u� represents a trivial homotopy class of continuous map from �Cn
� into

N � We thus can apply again the arguments in 	SU� Lemma 
��
 and our proof of Lemma

��� to obtain a continuous extension with desired property� We note that one may assume

E��"u� � f� � �� otherwise we simply do an additional rescaling of "u� � f on Bn��
� �

Lemma ��	� If u � C��Sn
� � N� 
W ����Sn

� � N� for n � �� �� and if E�u�W �u� � ���� E�u� �
��� for a number �� � ���N�� then there exists

u � C��Bn��
� � N� with u

��
�Bn��

�
� u and

E��u� � C��E�u�W �u������ W��u� � C� �W �u��

Proof� For n � �� this lemma is exactly Lemma 
�� of 	SU
� For n � �� as usual� we

take � � �� Let v be the harmonic �vector�valued� function from B�
� into RK �here N is

isometrically embedded in RK � such that v
��
S�
� u� It is obvious that H����estimate implies

that E��v� � �E�u�W �u����� � ��� Since �� is small� we shall conclude that

jv�x�� v���j � C�n� ��
p
�� whenever jxj � �� ��

for a � � ��� ����� Note that v��� �
R�S�u� Since E�u� � ��� we obtain that dist ��v���� N� �R�S�ju� v���j� � C�E�u� � C� ��� Next� for r � � and close to �� � � S�� we let am�r��� �

�




R�Bm���r���	u� here Bm���r	��� is the ball in S
� centered at � with radius m��� r�� m is a large

number to be chosen below�

Then jv�r� ��� am�r���j������

�
Z
S�

P�r� � � �� ju���� am�r���j d�

� CN

Z
S�nBm���r���	

P�r� � � �� d�

�C�m�

Z
�Bm���r���	ju� am�r���j d��

Here P is the Poisson kernel� CN is a constant depending only on N �

Now we choose m suitably large so that the �rst term on the right hand side of ������ is

small� The second term on the right hand side of ������ is bounded by c�m�
R�Bm���r���	ju�

am�r���j� d� � C�m�C� �� which for any �xed m� can be made small if �� is su�ciently small�

Suppose the nearest point projection from N��� � ����neighborhood of N in RK onto N

is smooth� for some ���N� 	 �� For this given ��� we may �nd �� 	 � and r� � � such that

dist �v�x�� N� � �� whenever jxj � r�� Note dist �am�r���� N� is also small�

Now by taking �� further small if needed� we have C�n� �� r�� �� � ��� In other words�

dist �v�x�� N� � �� whenever E�u� � ���

Letu�x� � �N v�x�� here �N is the nearest point projection from N��� onto N � Then all

conclusions of Lemma ��� follows exactly as in Lemma 
�� of 	SU
�

The proofs of Lemma 
�� and Lemma 
�
 of 	SU
 can be easily carried over here also�

Except in the statements of these lemmas� all map involved are also continuous� To do so

in the Lemma 
�
� the maps v and v� have to be slightly modi�ed �for n � 
 case� as in

the proof of Lemma ��� in order to guarantee that such continuous maps v exist� All the

estimates remain valid when arbitrary small given error � as in Lemma ���� Finally� to make

all statements consistent� we add one additional assumption in the statement of Lemma 
��

of 	SU
 that E�u� � �� �q �see the proof of Lemma ��� for the case n � ��� This assumption

can be easily veri�ed in the inductive proof of Lemma 
�� and Lemma 
�
 of 	SU
� We

leave these details for the cautious readers� Later in the study of defect measures� a more

e�ective construction which is relatively simpler than constructions in 	SU� x

 will also be

introduced� Thus we completed the proof of Lemma ��
�

��



� Recti�ability of Defect Measures

As in the previous section� we let ui � B
n
� � N be an energy minimizing sequence among

maps in W ����Bn
� � N� 
 C��Bn

� � N� such that 
i � jruij� dx � 
 � jruj� dx � � as Radon

measures� Here ui � u in W ����Bn
� � N� and � � � is also a Radon measure� The main result

of the previous section is that

if 
�Bn
� � � ��� then u is smooth inside Bn

���������

The �rst important result of this section is the following�

Theorem ���� If 
�Bn
� � � ��� then � � � in Bn

����

Though we should give a proof of the above theorem for all n � � cases� we would like

to present a direct proof for the case n � ��

Proof of Theorem ��	� n � � case� First we observe the following facts for n � � case� Sup�

pose u � S� � N be map with E�u� � ��� then Morrey�s Theorem says that u is in

C��B�
� � N�
C��B�

� � N� for some � 	 �� Here u is an energy minimizer on B�
� with u � u on

S�� Suppose� instead of a single map u� we have a sequence fuig with the same property as

u i�e�
R
�B�

jruij� � ��� Let fuig be a corresponding sequence of minimizers with ui � ui on

S�� Suppose ui � u weakly in W ����B�
� � N�� Then ui � u strongly in W ����B�

� � N�� Indeed�

it is well�known that ui � u strongly in W ���
loc �cf� 	SU� x

�� Let � � ��� ����� and let vi be

the linear harmonic extension of ui from ��B�
� nB�

����into B
�
� nB���� Then it is easy to see

E�vi� B
�
� n B�

���� � E�v� B�
� n B�

����� Here vi � v in W ����B�
� n B�

����� Moreover� v is the

harmonic extension of u from ��B�
� nB�

���� into B
�
� nB�

���� Therefore� E�v� B�
� nB�

����� �

as � � �� On the other hand� the images of vi are in a small neighborhood of N � so after

nearest point projection �N onto N � we see

E�ui� B
�
� nB�

���� � E��N vi� B
�
� nB�

����

� C E�vi� B
�
� nB�

����� C E�v� B�
� nB�

����� � as � � ��

Since 
�B�� � ��� we may �nd a 
 � ��
�
� �� and in�nitely many i�s such that

R
�B�

�
jruij� � ����

for these i�s� This is a consequence of the Fabini�s Theorem �see 	SL
�� We let u�i be such

��



that u�i � ui on B�
� n B�

� � u
�
i � ui on B�

� � here ui is an energy minimizing map with ui � ui

on �B�
� �

It is obvious that fu�ig form a new minimizing sequence in C��B�
� � N� with u�i � ui on

�B�
� � Moreover� jru�i j� dx � jru�j� dx � �� with �� � � on B� n B� and �� � � on B� by

above arguments� Note also that u� � u on B� n B� and E�u�� � E�u� as u� � u on �B�

and u� is also energy minimizing �an easy consequence of the strong convergence� statement

above�� we obtain � � � on B�� This proved Theorem ��� for the case n � ��

Proof of Theorem ��	� for n � �� We �rst prove the n � � case� It is the important �rst

inductive step�

First we pick up 
 � ����� ���� such that
R
�B�

�
jruij� � ��� for in�nitely many i�s�

Since jruij� dx � 
i � 
 � jruj� dx � � in B� as Radon measures� to show � � � in

B���� it su�ces to show E�ui� B
�
�� � E�u�B�

�� � � for any � 	 � and all su�ciently large i�s�

To do so� we use the fact that ui is a minimizing sequence in C��B�
� � N�� We shall

construct a new sequence f"uig in C��B�� N� such that "ui � ui on B�
� n B�

� and such that

"ui � u on B�
����		� for a very small positive � and E�"ui� B

�
� nB�

����		� � C��� � ��

Since lim i��E�"ui� B
�
�� � limi��E�ui� B

�
�� we obtain E�ui� B�� � E�u�B�

�� � C��� for

all su�ciently large i� and that will be what we wanted�

We already proved in the previous section that u is smooth inside B���� say kukC��� �
C
p
��� We �rst consider linear harmonic extension vi on B�

� n B�
����		 such that vi � u on

B�
����		 and v � ui on �B�

� � i � �� �� � � � � We observe that viis uniformly smooth away from

outside boundary and vi � v strongly in W ����B�
� n B�

����		�� here v is the linear harmonic

extension of u on ��B�
� n B�

���		 ��� In particular� the image of v stays inside a very small

neighborhood of N in RK � Thus� for all su�ciently large i� the images of vi�x� stay in a

very small neighborhood of N in RK so long as jxj � ��� �i� 
� here � � �i � �� �i � �� as

i���

On the other hand� vi can be represented as a Poisson integral of boundary values u on

�B����		 �here � � � small but �xed� and ui on �B�� Since
R
�B�

jruij� � ��� is very small� by

then proof of Lemma ��� in the previous section� we get the images of vi�x�� for 
��� �� �
jxj � 
� for some � � � � �� stay inside a very small neighborhood of N � In other words�

vi�B
�
�nB�

����		� � N��  �� neighborhood ofN in RK on which �N �the nearest point projection

��



into N is smooth�� We let "ui � �N 	 vi on B�
� n B�

����		� Then "ui is in C��B�
� nB�

����		��

Moreover� E�"ui� B
�
� n B�

����		� � CN E�vi� B
�
� n B�

����		� � CN E�v� B�
� n B�

����		� as i � ��

Finally� E�v� B�
� nB�

����		� � E�u�B�
� nB�

����		� � C �� � � C���� This completes the proof of

the n � � case�

To prove the theorem for the case n � 
� it su�ces to construct "ui as in the proof for the

case n � �� That is the following�

Lemma ���� Let u � C��Bn
� � N� with jrujC��B�	 � ��� Let fuig � C��Bn

� � N�
W ����Bn
� � N�

such that ui � u in W ����B�� N� weakly as i � �� and that
R
�Bn

�
jruij� � ��� for i �

�� �� � � � � Then� for any � � ��� �
�
�� there is a sequence "ui � C��Bn

� n Bn
��	� N� de�ned on

Bn
� n Bn

��	 such that "ui � u on �Bn
��		� "ui � ui on �Bn

� � Moreover� E�"ui� B
n
� n Bn

��	� �
C�n�N� ��� � as �� � uniformly in i whenever � � �� � ���n�N��

Proof� By induction� we have already shown the conclusion of Lemma ��� when n � � and

n � �� Suppose Lemma ��� is true for n � k� for some k � �� Then we consider the case

n � k � � � 
� First� we can divide Sk into � disjoint subdomain #j j � �� � such that each

spherical shell� j � �� �� Sj � f�r� �� � Rk�� � �� � � r � �� � � #j � Skg is bi�Lipschitz to

equivalent to C � 	�� �� �
� Bk
� � Moreover� by the Fubini�s Theorem� we can arrange such

#j that
R
��j

jruij� � C�n� ��� j � �� � �

We should simply construct a suitable extension on C �after composition with suitable

bi�Lipschitz maps from #j into C��

By induction� we can �nd an extension ui on 	� � �� �
 � �Bk
� such that ui � C��	� �

�� �
 � �Bk
� � N� with ui � u on 	� � �
 � �Bk

� and "ui � ui on 	�
 � �Bk
� such that E�"ui� �

C�k�N� ��� � as �� �� uniformly in � whenever �� is suitably small�

Next� we simply let "ui on C to be the homogeneous degree zero extension of "ui on

	���� �
��Bk
� � u on 	���
�Bk

� and ui on 	�
�Bk
� � Such homogeneous degree zero extension

can be approximate by maps in C��C�N� in the strong W ����C�N� topology �with the

same Dirichlet boundary conditions� whenever the boundary value of "ui represents a trivial

homotopy class of �k�N�� If such boundary value of "ui represents a nontrivial homotopy

class of �k�N�� then we modify ui in a neighborhood of �
�
��� �� � fp�g for some p� � �Bk

�

as in the proof of Lemma ��� such that the modi�ed maps has the same stated properties as

��



ui� Moreover the resulting maps will give a topological trivial class and so the homogeneous

degree zero extension will be allowed� In order to make this process as whole to be possible�

one should do the following� We view the whole spherical shell as one piece with topological

trivial boundary value� Then subdivide into � pieces after inductive step of extensions then

modify the extension maps near one point will make both � pieces have boundary values in

trivial topological class�

In any event� we need to estimate the energy of resulting map "ui� The part from the ho�

mogeneous extension of ui is by induction has energy smaller than C�k�N� ��� The part from

the homogeneous extension of u is obviously small as jruj � ��� The part from the homoge�

neous extension of ui can be calculated directly and can be estimated by C�n� �k��
R
Bk
�
jruij��

Here �k�� is a natural scaling factor� Since k � �� this last quantity is again bounded by

C�n� � ��� This completes the proof of Lemma ���� and hence also Theorem ����

Remark ���� Similar statement as Lemma ��� was established by Luckhaus 	Lu
 under weak

assumptions on u� It is a key ingredient in his proof of weak limits of energy�minimizing

maps are also energy minimizing� However� his construction yields a comparison map which

may not be continuous in general�

Let us describe a few consequence of Theorem ��� and Theorem ���� De�ne

� � fx � M ��H n���
� x� 	 �g�

Corollary ���� For all x � �� one has �H n����� x� � ��� for some �� 	 �� Hence � is closed

in M � and Hn����� � 
�M����� Moreover� � ��H n���
� 	�Hn��b��

Proof� We have already shown that if �H n����� x� � ��� then �H n���
� x� � �� Thus the

�rst statement follows� By a usual covering argument� one then deduces that Hn����� �

�M� n �� � �� Since �H n���
� x� is upper semi�continuous in x �which is an easy con�

sequence of the monotonicity Lemma ����� � is also closed� Finally� for Hn���a�e� x � M �

limr��
�

rn��

R
Br�x	

jruj� dy � �� by a theorem of Federer and Ziemer� we obtain�H n���
� x� �

�H n����� x� for Hn���a�e� x � M � Since � � � away from �� and since Lemma ���

implies � is absolutely continuous with respect to Hn���measure� we conclude that � �

�H n���
� x� Hn��b��

��



Similar to 	L�
� we have the following�

Theorem ���� � is a Hn���recti�able set� That is � is a Hn���recti�able measure�

The proof of this theorem is very similar to the proof of the recti�ability of defect measures

arise in the weak limits of stationary harmonic maps �cf� 	L�
�� It follows from the following

three lemmas�

Lemma ���� For ��a�e� x � �� and any given � 	 �� there is a �x 	 � such that� if

� � r � �x� then there is a �n� ���dimension plane Vr passes through x with property that

��Br�x�� V �
r �

rn��
� ��r�� �� as r� ���

Here V �
r is the ��neighborhood of Vr in R

n�

Lemma ��	� Suppose E � � is purely unrecti�able� then Hn���PV �E�� � � for any �n����

dimensional plane V in Rn�� � Here PV denotes the orthonormal projection onto V in Rn �

Lemma ��
� For Hn���a�e� x � E �E any Hn���measurable subset of ��� one has

lim sup
r��

sup
V �Gb�n�n��	

Hn���PV �E 
 Br�x�� n rn�� � jBn��
� j 	 ��

The property stated in the Lemma ��� is called the weak�tangent plane property� When�

ever Hn���measurable set E satis�es the weak�tangent property� then the conclusion of

Lemma ��� is valid as shown in 	L�
�

The proofs of Lemma ��� and Lemma ��� are similar to that in 	L�
 with some necessary

modi�cations given in section 
 below� These give us motivations to develop a general varifold

type theory for Sobolev mappings that will be discussed also in section 
� Therefore� we shall

postpone the proofs of Lemma ��� and Lemma ��� in section 
�

To end this section� we discuss cases p �� ��

Suppose p is an integer� p � �� Then all the results as well as their proofs can be easily

carried over with some obvious modi�cations� The modi�cations for the proof of Lemma

��
 are somewhat not obvious� The case when dimM � p � � can be done exactly as that

for Lemma ���� The inductive proof of Lemma ��
 where dimM � p � � uses the same

��



observation as in Lemma ��� and arguments in 	HL
� The derivation of Theorem ��� from

Lemma ��
 can be found also in 	HL
 for any p 	 ��

For the proof of Theorem ���� the case dimM � p is again trivially carried over �as for

n � � case�� The case dimM � p � � should be handled exactly as our proof of the n � �

case� Note that linear harmonic extensions satis�es all desired inequalities for p�energy up

to a constant c�n� p�� Finally the inductive proof of Lemma ��� works when dimM � p� ��

When p is an integer� p � �� and if �p�N� � � then� by a theorem of Bethuel 	B
� we know

smooth maps are dense in W ��p�M�N� with the strong topology� Thus minimizing p�energy

among C��M�N� 
 W ��p�M�N� maps is the same as minimizing p�energy over all space

W ��p�M�N�� In particular� the defect measures� � � � in this situation�

Finally� let us discuss the case p is not an integer and � � p � n � dimM � Again� the

proof of Theorem ��� and Theorem ��� are very similar and we should simply omit here�

However we have the following additional conclusion concerning the defect measure ��

Theorem ���� Suppose � � p � n � dimM � and p is not an integer� Suppose fuig is a

p�energy minimizing sequence in C��Bn
� � N� such that ui � u weakly in W ��p�Bn

� � N� and

that 
i � jruijp ex � u � jrujp dx � � as Radon measures in Bn
� � Then � � � in Bn

� � In

particular� ui � u strongly in W ��p
loc �B

n
� � N��

Proof� Via the monotonicity Lemma ���� ��Br�x		
rn�p

is a monotone nondecreasing function of r�

whenever Br�x� � B�� In particular��H n�p�
� x� � limr���
��Br�x		
rn�p

exists and� as a function

of x it is upper semi�continuous� Theorem ��� and Theorem ��� imply that if ��Br�x		
rn�p

� ���

then u is C��� �for some � 	 �� cf� 	HL
� in Br�� and � � � on Br��� Moreover monotonicity

lemma implies � is absolutely continuous with respect to the �n� p��dimensional Hausdor�

measure� Hn�p� As before� we let � � fx � B� ��H n�p�
� x� 	 �g� Then �H n�p�
� x� � �� for

every x � �� � is closed in B� with Hn�p��� � 
�B������ Moreover � ��H n�p�
� x�Hn�pb��
To prove such � � �� we follow the idea of J� Marstrand �see 	P
�� In fact� it follows from

the Marstrand�s Theorem� But for the sake of completeness� we sketch a relatively simpler

proof here�

Since �H n�p�
� x�� x � � is a Borel�measurable �as easy fact to check�� it is approximate

continuousHn�p�a�e� on �� We let x� � � be such that�H n�p�
� x� is approximate continuous

��



at x� as a function on �� Here we note that �H n�p�
� x� ��H n�p��� x�� for Hn�p�a�e� x � ��

by a theorem of Federer and Ziemer� We thus assume also that at x�� �H n�p�
� x�� �

�H n�p��� x��� Let f�ig � � be a sequence of numbers� we consider a sequence of Radon

measures �i� �i�A� � ��x��
i A	


n�pi

� for all Borel subset A � Rn � such that x� � �iA � B��

Since �i�B����� � 
n�p �H n�p��� x��� we may assume �i � � as Radon measure on Rn

when i � � �by taking subsequences if needed�� � is called a tangent measure of � at

x�� It is obvious ��B����� � 
n�p �H n�p��� xo�� we want to show for any x � spt ��

��B��x�� ��H n�p��� x�� 

n�p� Indeed� for x � spt �� 
 	 � is such that

��B��x�� � lim
i��

�i�B��x�� � lim
i��

��B
i��x� � �i x��

�n�pi

�

We �rst estimate ��B��x�� from above�

��B
i ��x� � �i x��

�n�pi

� 
n�p
��B��x� � �i x��

�n�p

for any � 	 � �xed �since �i � � and since Lemma ����

� 
n�p ��B��
ijxj�x��� n �n�p�

As i � � the right hand side of the last inequality tends to 
n�p ��B��x��� n �n�p� Since

� 	 � is arbitrary and �H n�p��� x�� � lim����
��B� �x�		

�n�p
� we obtain

��B��x�� � �H n�p��� x�� 

n�p�

To estimate ��B��x�� from below we use the fact that �H n�p��� x� is Hn�p�approximate

continuous and has de�nite positive lower bound� Note also�H n�p��� x� has an upper bound

for all x near x�� Therefore� inside the ball B
i���jxj	�x��� the set� for any small positive ��

B	 � fy � � 
 B
i���jxj	�x�� ��H n�p��� y� � �H n�p��� x��� �g�
satis�es ��B	� � �i ����i�
� jxj��n�p�

Here �i � ���

Since x � spt �� there is a sequence xi � spt �i� xi � x� That is yi � x���i xi � spt ��

Then ��B��x�� � limi�� �i�B��	�xi�� � limi
��B�i�����

�yi		


n�pi

�

��



Since ��B	� � oi��� �
n�p
i � oi���� � as i��� we must be able to �nd a point yi � spt �

yi �� B	� jyi � yij � �i �� �H n�p��� yi� � �H n�p��� x��� �� Hence

��B
i���		�yi��

�n�pi

� ��B
i����		�yi��

�n�pi

� �
� ���n�p�H n�p��� yi� � �
� ���n�p	�H n�p��� x��� �


since � � � is arbitrary� we obtain for any 
 	 � that ��B��x�� � 
n�p �H n�p��� x��� whenever

x � spt ��

To complete the proof of Theorem ��� we just need the following�

Lemma ����� Let � � � be a Radon measure on Rn such that ��B��x�� � 
�� for all

x � spt � and 
 	 �� Here � is a nonnegative real number� Then � is an integer�

Proof� Given an � � �� let n be the smallest positive integer such that Rn supports a Radon

measure � with the property that ��B��x�� � 
� for all x � spt � and 
 	 ��

If support ��� � Rn � then � would be a rotation and translation in variant measure on

Rn � hence it is a constant multiple of the Lebesgue measure� In particular � � n and we are

done�

If spt ��� �� Rn � Let x� �� spt ��� and let BR�x�� be the largest open ball such that

spt ��� 
 BR�x�� � �� Then there must be a point� say � � spt ��� 
 BR�x��� Let 
 be a

tangent measure of � at �� Then we obtain a Radon measure 
 has the same property as �

�by argument earlier�� Moreover we may assume spt �
� is contained in a closed half space�

say Rn
�� Note R

n is the blow�up of BR�x�� at ��

Now we de�ne
�

b �
R
Bn
� ��	

x d 
�x�� Suppose bn � �� then spt �
� � fx � Rn � xn � �g�
that will contradicts to the fact that Rn is the smallest �n is the smallest� Euclidean space

which can support such Radon measures� Thus bn �� ��

Let y � spt 
 and y near �� then we have
R
Bn
� �y	

����jx�yj�� d
�x� � R
Bn
� ��	

���jxj�� d
�x�
by the property of 
�Br�y�� � 
�Br���� � r�� for all r 	 �� This identity leads toZ

Bn
� �y		B

n
� ��	

�x 	 y d
�x� �
Z
Bn
� �y		B

n����	

jyj� d
�x� �

�

Z
Bn
� ��	nB

n
� �y	

��� jxj�� d
�x��
Z
Bn
� �y	nB

n
� ��	

��� jx� yj�� d
�x�

� O�jyj�� as y � ���

��



In other word�
�

b 	y � O�jyj�� for all y � spt 
 and y near �� Let � be a tangent measure

of 
 at �� then spt ��� will be contained in a a hyperplane orthogonal to
�

b 	 � has the same

stated property as 
� i�e�� as �� Thus we again obtain a contradict ion as Rn is the smallest

Euclidean space which can support such Radon measures� The only possibility is therefore

� � n�

Theorem ��� has several interesting consequences� First the map u given in the statement

of Theorem ��� is a p�energy stationary map� i�e�� for any smooth di�eomorphisms �t � B� �
B� with �t � id near �B�� �� � t � �� � 	 �� and �� � id on B�� one has

d
dt
Ep�u�t��

��
t
�

� ��

Hereu�t��x� � u � �t�x�� Indeed� u�t� is the strong limit of ui�t� � ui � �t in W ��p�B�� N�

with ui�t� � ui on �B�� Since fuig is a minimizing sequence in W ��p�B�� N� 
 C��B�� N��

one has limi��Ep�ui�t�� � limi��Ep�ui� � Ep�u�� By strong convergence of ui to u� one

has

Ep�u�t�� � Ep�u�� for t � ���� ���

The stationary follows�

The second consequence is that such maps u as in the statement of Theorem ��� with a

given Ep�	� energy bound automatically compact in W ��p
loc �B�� N�� Indeed� suppose fvig be

a sequence of such map� with Ep�vi� Bi� � C� i � �� �� � � � � proof of Theorem ��� given �up

to a subsequence� vi � v strongly in W ��p�B�� N�� This compactness combine with usual

dimension reduction argument �cf� 	HL
� gives the conclusions of Theorem � and Theorem

�� described in the introduction� In particular� the Hausdor� dimension of the sing �u�� for

u given in Theorem ���� is not larger than n� 	p
� ��

� Generalized Varifolds and Defect Measures

The theory of varifolds were motivated by the study of certain �weakly converging� surfaces�

e�g�� the study of a weakly converging sequence of minimal surfaces� It is a well�known

fact a weakly converging sequence of stationary integral currents may have a limit which is

not a stationary current� However� a weakly limit of stationary varifolds is 	A
 and also a

stationary varifold� For the general theory of varifolds and related subjects we refer to 	SL
�

�




Here we introduce the following de�nitions�

De
nition ���� A generalized k�varifold in an open set # of Rn is a nonnegative Radon

measure V in #� Ak�n� This class of varifolds will be denoted by V �
k �#�� Here Ak�n � fA �

A is a symmetric n� n matrix such that trace �A� � k� �n In � A � Ig�
The mass 
V of a V � V �

k �#� is ��V �the projection of V on #�� where � � #�Ak�n � #

is the projection� Thus 
V �B� � V �B � Ak�n� for every Borel subset B of #�

De
nition ���� The �rst variation� denote by �V of a V � V �
k �#�� is simply a distribution

on #� such that Z
�
Ak�n

A � rY �x� d V �x�A� � �
Z
�

Y �x� 	 � V �x���
���

Here A � rY �x� � tr �A 	 rY �x��� Y � C�
� �#�Rn��

Remark ���� The classically de�ned varifolds �cf� 	SL
� 	A
� is a subclass of V �
k �#�� There

are Radon measures V on # � Ak�n with spt V � # � GL�k� n�� Here GL�k� n� � fA �
Ak�n� A

� � Ag� i�e�� any element A � GL�k� n� corresponding to an orthogonal projection of

Rn onto a k�dimensional plane�

Example ���� Let u � W ����#� N�� and let Vu � �Au�x	 	 jru�x�j� dx� Here �Au�x	 is the

Dirac measure on An���n centered at

Au�x� �

�������
�����	

In��
ru�x��ru�x�

jru�x�j� whenever ru�x� �� �

B�In�� �

� �

�
CA whenever ru�x� � ��

ru�x��ru�x� is a n�n matrix such that its �i� j�th component is given by uxi � uxj � Then
Vu is an element in V �

n���#�� Moreover� the �rst variation of V � �V � in this case is given by

div 	jru�x�j� In � �ru�x��ru�x�
 in the sense of distribution� Suppose u is also weakly

harmonic� then it is easy to see that Vu is a stationary generalized varifold in V �
n���#�� i�e��

� V � � in the sense of distribution� if and only if� u is a stationary harmonic map�

The following result is recently proved by Ambrosio and Soner�

��



Theorem ���� Let V � V �
k �#�� and suppose that � V is a Radon measure on #� Suppose

that

�H �
��
V � x� 	 � for 
V � a�e� x � #��
���

for some � 	 �� Here �H �
��
V � x� � lim r��

�V �Br�x		
r�

� Let fVxgx�� be the slicings of V by the

projection map � � #� Ak�n � #� and let $A�x� �
R
Ak�n

AdVx�A�� Then

�a� if � � k � �� then $A�x� � � 
V �a�e� x � #�

�b� if � � k � �� then $A�x� � GL�k� n� 
V �a�e� x � #� hence ev � �A�x	 
V is a classical

varifold�

�c� if � � k� then ev is a recti�able varifold� i�e�� 

ev � 
V is supported on a Hk�recti�able

set�

Remark ���� Let fuig be a sequence of stationary harmonic maps from # into N such that

ui � u in W ����#� N�� weakly and jrui�x�j� dx � 
 � jru�x�j� dx � � as Radon measures�

as i � �� Then Vui � V weakly in V �
n���#�� Moreover V is also a stationary generalized

varifold�

If u � constant� then 	L�
 shows the assumptions for the case �c� of the above Theorem

	�
 are valid� Thus one may apply Allard�s Theorem �cf� 	A
� to deduce that spt 
V � spt �

is Hn���recti�able� However in 	L�
 we show that spt ��� is Hn���recti�able even when u is

not a constant map� The conclusion of Theorem 	L
 along with the arguments in 	L�
 do not

imply the following proposition� We note one may apply 	�
 to any tangent measures of ��

Proposition ���� Let fuig be a sequence of stationary harmonic maps from # into N such

that ui � u weakly in W ����#� N� and jruij� dx � jruj� dx��� Then � is a Hn���recti�able

measure� and for any Y � C�
��#�R

n�� one hasZ
�

rY �x� �
��ru�x�j� In � �ru�x��ru�x�� dx�

�

Z
�

rY �x� � $A�x� d��x� � �

�
���

��



Here $A�x� can be viewed as T��x�� the tangent plane of � � spt � at x� �cf� also Theorem

� of 
GMS��� Note that the monotonicity Lemma ���� follows also from �
��� as in 
GMS��

Now we consider an energy minimizing sequence fuig � C��#� N�
W ����#� N� such that

ui � u weakly in W ����#� N� and jruij� dx � 
 � jruj� dx� ��

Lemma ��	� The sequence of generalized varifolds fVuig associated with such energy min�

imizing sequence fuig� ui � C��#� N� 
W ����#� N�� has the following property Vui � V in

V �
n���#�� and V is stationary� In other words� div 	jruij� � �rui �rui
� � in the sense

of distribution in D��#��

Proof� Let Y �x� � C�
��#�R

n�� and consider a family of C��di�eomorphisms of #� �t�x�

jtj � � � �� Here �t�x� � x� t Y �x�� Since fuig is an energy minimizing sequence� then

lim i��E�ui�t�� � E�u� � ��#��

Here ui�t� � ui � ���t �x�� thus ui�t� � ui on �#� We calculate explicitly E�ui�t���

E�ui�t�� �

Z
�

��rui�x�D���t ��t�x��
��� det�D���t � dx��
�
�

since Dui D���t ��t� � Dui��� trY �O�t���� and detD�t � �� t div Y �O�t��� as t� ��

we have

E�ui�t�� �

Z
�

jruij� dx � t

Z
�

DY �
�jruij� � �rui �rui

�
dx�O�t����
���

We thus conclude for any t � ���� �� small�

lim i��

�
t

Z
�

DY �
�ruij� � �rui �rui

�
dx�O�t��

�
� ���
���

In particular� we must haveZ
�

rY �
�jruij� � �rui �rui

�
dx� � as i���

for any Y � C�
� �#�R

n��

We shall now prove Lemma ��� and Lemma ���� This will lead to the fact � is a Hn���

recti�able measure� Moreover� the formula �
��� is valid for V in Lemma 
��� As before� we

may apply Theorem 	�
 to any tangent measures of the defect measure at ��a�e� x � spt ��

��



Proof of Lemma ���� As in 	L�
� we have for ��a�e� x � � � spt �� and for all r� � � r � rx�

for some rx 	 �� there are �n� �� points x� � � � � xn�� � Br�x� such that

�a� jx�j � C� r� dist �xj� Vj��� � C� r� for j � �� � � � � n� �� here C� � C��n� 	 ��

and Vj � span fx� � x� � � � � xj � xg%

�b� �H n����� xj� � �H n����� x�� ��r�� for j � �� � � � n� �� ��r�� �� as r � ��%

�c� �H n����� y� � �H n����� x� � ��r�� for ��a�e� y � Br�x� 
 spt ��

R��n ��BR�x�� � �H n����� x� � ��r�� for all � � R � mr m large%

�d� r��n
Z
Br�x	

jruj� �y� dy � ��r��

These statements follows from the geometric lemma of 	L�
� Federer�Ziemer�s Theorem

and some elementary properties of �H n����� 	��
Next� we look at� for sequence frkg� � � rk � rx� rk � �� a sequence of scaled measures

f
kg which is obtained from 
 by a scaling �
rk

with the center at x� That is 
k � �k�
�

here �k � Rn � Rn � �k�y� � �
rk
�y � x�� Then� each 
k is obtained �as 
� from an energy

minimizing sequence fuk�ig�i
�� i�e� jruk�ij� dy � 
k as i � �� Here uk�i�y� � ui�x � rk y��

Note 
k � �k � � � jrukj� dy� with uk�y� � u�x� rk y��

We observe from the proof of Lemma ��� that


�BR�x��

Rn��
� 
�Br�x��

rn��
� lim i��

Z
BRnBr�x	

�


n��

���� ��
 ui

����� dy��
���

We apply �
��� to the monotonicity Lemma ��� for 
k�s with centers of balls at
xkj�x

rk
�

j � �� � � � � n� �� Using facts �a�� �b�� �c�� �d� above� one can easily obtain� as in 	L�
� that

Z
BC���

��	

�����uk�i� yj

����� dy � �k � � as k��

for all i � i�k�� and j � �� � � � � n� ��

�
���

On the other hand� Lemma 
�� implies that

div
�jruk�ij� �y�� �ruk�i�y��ruk�i�y�

�� ��
���

in the sense of distribution� as i���

��



We decompose Rn as Rn�� � R� � Rn�� � f�g � fy � Rn � yn�� � yn � �g� Let

��yn��� yn� � C�
� �B�

C���
� and let ��y�� � � � � yn��� � C�

� �Bn��
C���

����� Then we calculate

�

�aj

Z
BC���

��	

jruk�ij��y���yn��� yn� ��y� � a�� � � � � yn�� � an��� dy�
����

for j � �� �� � � � � n� �� Using �
��� and �
��� we obtain the quantity in �
���� is bounded by

C��� �� �k uniformly as i���

In other words� for j � �� �� � � � � n� �� one has����� ��aj
Z
BC���

��	

� 	 � d
k
����� � ���k���
����

Next we let k ��� then �k � ��� thus the Radon measures �k �
R
B�
���	

��yn��� yn� d
k�	� yn��� yn�
has a weak limit �� a Radon measure on Bn��

C���
��� �by taking subsequences if needed� such

that � is a constant multiple of the Lebesgue measure�

In other words � if e
 is the weak limit of 
k then the slicings of e
 by the projection

� � Rn � Rn�� � ��� is independent of the yT � Bn��
C���

���� Due to the lower density bounds

of e
 we must have e
 �
PM

j
� cj �pj � for p�� � � � pn � B�
C���

��� and cj � ��� �cf� also 	L�
��

Since e
 is also a tangent measure of 
 at x� we must have M � � and pj � �� This

veri�es the conclusion of Lemma ����

Proof of Lemma ���� ForHn���a�e� x � E � �� we have� by the weak tangent plane property

Lemma ���� that an �n��� dimension plane V �r� x� depending on x and also r� for � � r � rx

such that
��Br�x�� V ��r� x��

rn��
� ��r�� �� as r� ���

for any given � 	 ��

In particular �as can be easily seen also from the proof of Lemma ���� that any tangent

measure of � of � at x is of form � � �H n����� x�Hn�� LV for Some �n � ���dimensional

plane V in Rn � Let rk � � be such that �k � � as k ��� Here �k�A� �
��x��ka	

rn��k

� Without

loss of the generality� we may also assume the �n � ���dimensional plane V here is simply

Rn�� �f�g� x � � and let � � Rn � Rn�� �f�g be the orthogonal projection� We then need

to show

Hn�����E 
 Brk�����

rn��k

� jBn��
� j� as k ����
����

��



Without loss of the generality �that is also true for Hn���a�e� x � E� that

Hn�����E 
 Brk�x��

rn��k

� ���
����

since � � cHn�� LRn�� � f�g� we have �
�
Bn��
� ����B�

���� nB�
� ���

�
� �� for any � 	 ��

Let ui�k be an energy minimizing sequence in C��Bn��
� ����B�

����� N� 
W ����Bn��
� ����

B�
����� N� such that jrui�kj� dy � �k � jrukj� dy as i�� �as Radon measures�� Note that

jrukj� dy � � as k �� by our assumption at point x�

Since the lower Hn�� density bounds on �k �uniform in k by Theorem ��� and Theorem

����� we have

lim
k

lim
i

Z
Bn��
� ��	
�B�

� ��	nB
�
� ��		

jruk�ij� dy � �� for any � 	 ���
��
�

Moreover� by a diagonal sequence� we may �nd an energy minimizing sequence vk �as ui�k�

such that jrukj� dy � � as Radon measures� By the proofs of Theorem ���� and Lemma ����

we can easily modify such vk to form a new energy minimizing sequence C�
�
Bn��
� � B�

����
�

such that evk � constant on Bn��
� ���� �B�

���� nB�
� ���� and that jrevkj� dy � �� for a given

� 	 �� Moreover� evk � vk onB
n��
� ����B�

� ���� We claim� for all q � Bn��
� ���� the map evk�	� q� �

B�
���� � N represents a nontrivial homotopy class � of ���N�� Moreover� �H n����� x� �

inffE�u� � u � W ����S�� N� and u represents the homotopy class of �g�
Indeed� if � is trivial� then evk�	q�� for all q � Bn��

� ���� is homotopy to a constant map�

say the boundary value of ev�	� q� on �B�
����� Note since evk�	� q� � constant on B�

����nB�
� ����

we may think evk�	� q� is a map from S� into N � Then we let v�k be such that

v�k � constant on Bn��
� ���� �B�

���� nB�
� ���

�
v�k � constant on Bn��

��� � B�
����

v�k � on Bn��
� ���� �B�

�����

Moreover v�k � C��Bn��
� ����B�

������ On the region �Bn��
� ��� nBn��

��� �� B�
� ��� we construct

a suitable extension of vk on �Bn��
� � B�

� ��� and v�k on the rest of boundaries which is a

constant�

For n � �� it is trivial ones imply use the homogeneous degree zero extension of the

boundary data on �C�
� � 	���� �
�B�

� ���� Such extension is allowed as in our proof of Lemma

��



���� and various other places� because the boundary data is homotopically trivial map from

S�� N � The extended map has energy � C �� Thus E�v�k� � �C � and ��Bn��
� ����B�

����� �
C �� Since � 	 � is arbitrary we obtain a contradiction as �H n����� x� � ���

For n � 
� one basically follows the inductive arguments as in proofs of Lemma ��� and

Lemma ��
� For example� when n � 
� one �rst choose a suitable �  net on �Bn��
� � i�e�

a set of points f�p�� � � � � �pmg such that j�pi � �pjj � �� i �� j� Then we �rst do extension on

	�� �� �
 �pi �B�
� ��� as in n � � case� for i � �� � � � � m�

Then we start to work �rst on 
�dimensional cube with boundary given by C� �
z���
p� p��	��

�� �
�B�
� ���� If boundary data has trivial topology then we simply do homogeneous zero de�

gree extension to de�ne a map on C�� otherwise we modify the boundary value on 	���� �
 �p��
B�
� ��� slightly to have this topological condition but does not have to change any energy es�

timates as in the proof of Lemma ���� Then we keep doing till we reach the last cube Cm���

We claim the �nal cube Cm�� has to have boundary value in the trivial topological class�

The reason is that the union of all these maps become a map from Bn��
� ���nBn��

��� ����B�
� ���

into N which has the boundary value in the trivial topological class� And thus we complete

the construction of v�k for the case n � 
 with E�v�k� � Cm�� � c ��

For n � � one uses the fact for n� �� One again �rst bisect �Bn��
� ��� nBn��

��� �����B�
� ���

into two cubes� extend the map to two �n � �� dimensional cubes of form Qn��
� � B�

� ����

Qn��
� �B�

� ���� Then look at two n�dimensional cubes that decompose Bn��
� ��� nBn��

��� �����
B�
� ���� say C� and C�� We have the two possibility again � If the boundary value on �C�

has the trivial topological class �then the same is true for �C��� then since both C� and

C� are bi�Lipschitz equivalent to Bn��
� ��� n Bn��

��� ��� � B�
� ���� we simply do a homogeneous

zero degree extension with respect to their centers� The result energy will be again C � �see

the proof of Lemma ����� If the boundary value on �C� is non�trivial topologically then we

modify as in the proof of Lemma ��� �see also proof of n � 
 case above�� The conclusion

again follows�

This completes the proof of the claim that evk�	� �� � B�
����� N represents a non�trivial

homotopy class � � ���N�� It is then easy to see that as a map from B�
���� � N � evk�	� ��

has to have energy � �� for some �� 	 �� Note domain dimension is exactly ��

Note that fvkg can be taken to be fui�k	�kg for any suitably large i�k�� Thus� by above

��



arguments we see� for all su�ciently large i �say i � i�k�� one has ui�k�	� q� as a map from

B�
���� into N has energy � ��� Since

R
Bn��
� ��	
B�

� ��	
jrukj� dy � � as k � �� we have

spt �k 
 fqg � B�
���� �� �� for all q � Bn��

� ��� n Bk� Here Bk is a subset of Bn��
� ��� such

that Ln���Bk�� �� as k ��� The latter statement follows from the weak� L� estimate for

jrukj� and the fact that
R
Bn��
� ��	
B�

� ��	
jrukj� dx� �� as k ���

In other words� we have shown thatHn������
Brk�x���nrn��k � Hn����� spt �k
B����
Ln���Bn��

� ����� Since
Hn����nE		Brk

�x		

rn��k

� � as k � � we have the conclusion of Lemma

����

Remark ��
� Similar proofs for results in this section works also for p�energy minimizing

case when p � � is an integer� We leave these to readers�

� Further Remarks

When p �� integer and p 	 �� Then the boundary regularity theorem such as Theorem �

follows easily from the fact that the defect measure � � � �see Theorem ��� in Section ���

Indeed� Theorem ���� shows that � � � inside M � Then we use constructions in 	HL
 and

the proof of Lemma ��� to show the following�

Lemma ���� Suppose �M and g � �M � N are of C��class� then there are two positive

constant r� and C� depending only on �M � g and N such that� for � � r � r�� the function

ec�r ��p��r�x	�C� rn�
rn�p

is monotone nondecreasing� Here #r�x� � M 
 Br�x�� x � �M � 
p �

jrupj� dx� �p� Here �p is the defect measure which �by Theorem ���� has to be supported in

�M �

Using this monotonicity lemma we follow the same to the proof of Theorem ��� to show

�p � � also on �M � We leave this detail to the reader�

Since the defect measure � � � when p �� integer� we have not only the strong conver�

gence of a minimizing sequence fuig � W ��p
g �M�N� 
 C�

g �M�N� to up� but also that such

up�s �with g in a compact c��class� form a compact subset of W ��p
g �M�N��

Next as in 	HL
� we deduce from the proof of Lemma ��
 that

��



Lemma ���� For � � r � r���� x � �M �


�#r�x��

rn�p
� �


�#�r�x��

��r�n�p
� C���

Z
���r�x	jup � upjp dy � C� r�

As before up �
R���r�x	up dy� whenever

����r�x		
��r	n�p

� ���p�N�M��

Corollary ���� If ���r�x		
rn�p

� ��� for some ��� then u � C����#r�x�� N�
C��#r�x�� N�� Here

x � �M �

To show the complete boundary regularity� we do exactly the same deformation as in

	HL
 to show any tangent map of up at a boundary point has to be a constant� Then using

the fact that the convergence of scaled sequence to the tangent map of up at a boundary

point is also strong�� the small energy assumption is then valid everywhere on �M � This

proves Theorem �� stated in the Introduction�

Now we describe a few example to illustrate main results presented so far�

Example ��� Consider in the Euclidean space R
 � R� � R� a tour M � S�� S� which
is obtained by rotating �B�

��a� � f�g � R� around R� �axis� Here a � ��� �� �� � R� � with

induced metric from R
 �

Let g � M � S� be the map de�ned by g��� �� � � for ��� �� � S�� S��
Consider an energy minimizing sequence fuig from M into N � S� �standard S�� such

that fuig � 	g
� i�e�� ui homotopy to g� for each i� and ui � C��M�N��

Then jrMuij� dx � ��H�b&� Here & is the minimal geodesic in M which is homologous

to �p � S�� fpg� for any p � S��

Example ��� Consider in the Euclidean space R� � R� �R� � a solid tour M � S��B�
��a��

a � ��� �� � R� � with induced metric� Let g � �M � S� be a constant map� Suppose

uo � M � S� be such a map that uo � g on �M and that when u�p� 	� � B�
��a�� S�� for any

p � S�� viewed as a map from S� into S� is of degree ��

Consider an energy minimizing sequence fuig� ui
��
�M

� g� ui � C��M�S�� with each ui

homotopy to uo �relative homotopy�� Then jrMuij� dx � ��H�b&� Here & is the minimal

geodesic on S�� �B�
��a� which is homologous to S�� fpg� p � �B�

��a��

��



Example ��� on # � B�
� ��� � 	��� �
� here B�

� ��� is a half ball in R� � One may �nd

an energy minimizing sequence fuig� ui � C��#�S�� such that ui � constant on f�x�� x�� �
jx�j � �� x� � �g� 	��� �
� and such that jruij� dx � ��H�b&�� &� � f�g� 	��� �
� � � R� �

To end this paper� we would like to make a few remarks concerning further structures of

the defect measure �� For simplicity we discuss again the p � � case� i�e�� the usual energy

case�

'From the proof of Lemma ��� in Section 
� we noted that for Hn���a�e� x � spt ����

�H n����� x� is given by

inf	E�u� � u � W ����S�� N�� 	u
 � �x � ���N�


for some nontrivial class �x � ���N�� Here 	u
 is the homotopy class represented by u�

'From a recent work of Duzaar�Kuwert� we see that

�H n����� x� �

X

j
�

E��j���

Here each �j � S
�� N is a smooth harmonic map which is an energy minimizing map from

S� into N within the topological class 	�j
� Moreover� these 	�j
�s is simply a decomposition

of �x � ���N� �cf� 	DK
� for the details�� We de�ne a homotopy class � � ���N� to be

irreducible if � can be represented by a smooth harmonic map u�� from S� into N � which

minimizes energy in its homotopy class� and if E�u�� cannot be written as � above with

each �j � S
�� N has the stated properties� and with � � ��

It is easy to show that

inffE�u� � u � W ����S�� N�� 	u
 �� �g � �� 	 ��

Then by a simple induction� any � � S� � N minimizing energy in the class 	�
 can be

decomposed into 	�j
�s� for j � �� � � � � � �for some �nite � depending only on E��� and ���

such that each 	�j
 is irreducible� �cf� (citeDK��

Next� we look at the set

) � f E��� � � is an energy minimizing map

from S� into N among the class 	�
�

and 	�
 is irreducible g �

�




Then we claim ) is discrete in R��

Indeed� if � � S� � N energy minimizing among class 	�
 with 	�
 irreducible� then

k�kC� � C�E����� Suppose not� we would �nd a sequence 	�j
 of such maps with E��j� � C�

and kr�jkL� �� as j ��� �Note k�jkCk � C�k�� 	kr�jkL� � �
 is a well�known fact�

for every k � ���

By the result of 	DK
� we would have �j � � in W ����S�� N� weakly� here � � S� � N

is a smooth harmonic map �cf� 	SaU
�� But �j � � strongly in W ����S�� N�� otherwise�

kr�jkL� would be bounded� Hence we would be able to decompose 	�j
 as in 	DK
 and that

contradicts to the fact 	�j
 is irreducible�

Now� for any Eo 	 �� the set ) 
 ��� Eo
 is �nite� Indeed� if 	Ej

�
j
� be such that

Ej � ) 
 	�� Eo
� Let 	�j
 be a corresponding energy minimizing maps from S� into N such

that E��j� � Ej and each 	�j
 is irreducible� Then k�jkC� � C�Eo�� By taking subsequence

if needed� we may assume �j � � in C����norm� It is obvious � is a harmonic map from S�

into N with E��� � lim jE��j�� Moreover� 	�j
 � 	�
 for su�ciently large j� Then it is clear

that E��j� � Ej are all equal� by de�nition� for large j�s�

We note that there may be in�nitely many such energy minimizing maps � that E��� is

a �xed number in )� However� if N is� in addition� analytic� then it is also easy to show that

any Eo � ) there are only �nitely many connected components of such energy minimizing

maps � with E��� � Eo� That leads us to the following�

Conjecture ��	 Let N be a real analytic� compact Riemannian manifold� Then the energy

spectrum

) � fE�u�ju � S�� N is a harmonic map g

is a discrete set�

To summarize� we have shown that for Hn���a�e� x � spt �� �H n����� x� �
P


j
�Ej

with Ej � )� Since �H n����� x� is also bounded by the global energy� we have� therefore� the

following�

Theorem ��
 The defect measure is the total measure 
V of an integral recti�able varifold

��



V in the sense that

� � �H n����� 	� Hn��b�

�
mX
j
�

�j Hn��b�j �

Here �j�s are subsets of � �Hn���measurable� and �j �
P
j



� �j 
� for some �j 
 � )� and

j � �� � � � � m�

We further remark that when N � S� topologically� then� topological classes simply

identi�ed by the degrees of maps from S� into N � According to plus sign or minus sign� we

can even give an orientation of set �� In other words� in this case� � simply comes from 
T

for an integral recti�able current T � A special case of this last fact is in fact shown in 	GMS


when n � ��

Further properties of � will be discussed in a forthcoming work�

��
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