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RELAXATION OF SOME MULTI-WELL PROBLEMS

KAUSHIK BHATTACHARYA AND GEORG DOLZMANN

ABSTRACT. Mathematical models of phase transitions in solids lead to the
variational problem, minimize [, W (Du)daz where W has a multi-well struc-
ture: W = 0 on a multi-well set K and W > 0 otherwise. We study this
problem in two dimensions in the case of equal determinant, i.e., for K =
SO(2)U1 U...USO(2)Uy or K = O(2)U1 U...UO(2)Uy for Uy,..., Uy € M2*2
with det U; = ¢, in three dimensions when the matrices U; are essentially two-
dimensional and also for K = SO(3)U1 U...USO(3)Uy for Uy, ..., U € MB*3
with (ad]j U,L-TU¢)33 = 62 which arises in the study of thin films. Here U;
denotes the (3 x 2)-matrix formed with the first two columns of U;. We char-
acterize generalized convex hulls, including the quasiconvex hull, of these sets,
prove existence of minimizers and identify conditions for the uniqueness of the
minimizing Young measure. Finally, we use the characterization of the quasi-
convex hull to propose ‘approximate relaxed energies’, quasiconvex functions
which vanish on the quasiconvex hull of K and grow quadratically away from
it.

1. INTRODUCTION

Mathematical models for phase transitions in solids lead to the following varia-
tional problem (see [BJ1], [BJ3]): Minimize

(1.1) I(u):/QW(Du)dm,

where u : 0 C R® — R" is the deformation of an elastic body which occupies in
an ideal unstressed configuration the domain Q. We assume that the stored energy
density W is nonnegative and that the level set K = {/W = 0} is not empty. The
principle of material frame indifference and symmetry properties of the underlying
material imply further structure of K. For many materials of interest, K has a
multi-well structure,

k
K = Jsom)u;.
i=1

As a consequence, W fails to be quasiconvex and therefore the existence of min-
imizers cannot be obtained from the direct method in the calculus of variations
based on sequential lower semicontinuity of the integral. However, the behaviour of
the minimization problem is closely related to quasiconvex hull K¢ of the set K:
if we minimize I on all Sobolev functions which coincide with the affine mapping
u(z) = Fz on 0f), then the infimum of I is zero if and only if F' belongs to the
quasiconvex hull K€ of K (see e.g. [S]).
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2 KAUSHIK BHATTACHARYA AND GEORG DOLZMANN

In this paper we characterize generalized convex hulls for multi-well problems
in two and three dimensions in the case of equal determinant. More precisely, we
prove the following results (see Section 2 for the notation used below):

Theorem 1.1. Let U = {Uy,...,Ux} C M2y2 where the matrices U; are positive
definite and satisfy det U; = 6 > 0.
i) Let K = SO(2)U; U...USO(2)Uy. Then K?) = K¢ = K¢ = K9¢ = K¢,
Further, if

{U,....U,} ={U; eU : Uie|* > m£x|Ujé|2 for some € € S'},
j#i

then there exists a set £, = {e1,...,e,} C S such that any of these hulls is
given by

{F:detF =6, |Fel* < _max Ujes?,i=1,...,n}.
j=1l,...n

i) Let K = O(2)U; U...UO(2)Ug. Then K©®) = K¢ = K™ = K¢ = K?° and
any of these hulls is given by

{F e M?*? : |det F| < 6, |Fe|* < max |Use|* Ve € S*}.
P "

A similar result holds for the three dimensional case if the wells are essentially
two dimensional.

Theorem 1.2. Let U = {Uy,...,Ux} C MES3 where the matrices U; are positive
definite and satisfy detU; = § > 0. Assume that there exists p > 0 and v € S?
such that Uy = pv for i = 1,...,k. Let K = SO(3)U; U...USO(3)U;. Then

K® = Klc = k"¢ = K¢ = KP°. Further, if
{U,....U,} ={U; eU : Uie|* > m£x|Ujé|2 for some & € S*},
JF

then there exists a set £, = {ey,...,e,} C S? such that any of these hulls is given
by
{F: det F =6, FTFv = p?v, |Fe;? < max \Uje:l?, i = 1,...,n}.
j=l...n

Applications in the recently developed theory of thin films [LR, BhJ] motivate
to consider the following set K:

Theorem 1.3. Assume that U; € Mg;%, i =1,...,k, are positive definite with
adjys U2 = 6% > 0 and that {ey, ez, e3} is the standard orthonormal basis in R3.

Let K = SO(3)U, U...USO(3)U, where
SO3)U; = {QU; = (QUier, QUies) : Q € SO(3)} € MP*2.
Then KB = K¢ = K¢ = K¢ = K?¢ and any of these hulls is given by
{FeM>*?: det(FTF) < 8% |Fe|* < max |Use|* Ve € S'}.

We use this characterization to propose ‘approximate relaxed energies’ which
may be useful for numerical computations. Minimizing sequences and minimizers
of I develop complex oscillatory patterns and this makes numerical computations
challenging. Computing with the relaxed energy I# ( which is obtained from I by
replacing W with its quasiconvex envelope) is attractive. Many of the numerical
difficulties do not arise, the infima coincide, the minimizing sequences of I converge
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to the minimizers of I#, and recently Ball, Kirchheim and Kristensen [BKK] have
shown that under suitable growth hypotheses even the stresses associated with the
minimizing sequences of I converge to those associated with the minimizers of I#.
Unfortunately, the quasiconvex envelope of W is unknown. However, the practical
interest lies in the behavior of the quasiconvex envelope near the set K9¢. We use the
characterization of this set to propose functions W which are quasiconvex, vanish
on K¢ and grow quadratically away from K?¢. In [BD] we adapt the construction
to fit measured elastic moduli for various materials.
We illustrate our results with two examples:

i) The two-well problem, which corresponds to an orthorhombic to monoclinic
transformation and also arises under suitable assumptions in cubic to tetrag-
onal or orthorhombic transformation, is described in Examples 3.4 and 4.4
(Example 3.4 recovers the results of Ball and James [BJ3]).

ii) The four-well problem which corresponds to a tetragonal to monoclinic trans-
formation and also arises under suitable assumptions in some cubic to mon-
oclinic transformations, is described in Examples 3.7, 4.5 7.3 and 8.3.

Miiller and Sverak [MS1], [MS2] recently showed based on Gromov’s idea of
convex integration that there exist even Lipschitz continuous minimizers of I if
F belongs to the interior of the rank-one convex hull of K and if K admits an
‘in—approximation’ (see Section 6 below for the precise statement); Dacarogna and
Marcellini [DM1, DM2] have obtained similar existence results using the Baire’s
theorem. We show that the sets K9¢ in Theorems 1.1 and 1.3, but not in Theorem
1.2, admit such in—-approximations.

The basic ideas behind the main results are simple, though the details are rather
laborious. Two identifications play a crucial role. First, K and consequently the
quasiconvex hull K% is invariant under (multiplication from the left by elements
of) SO(2), O(2), and SO(3), respectively. So we can look at the image KJ°¢ of
K¢ in the space of 2 x 2 positive semidefinite symmetric matrices under the map
F — FTF. In other words, we identify the set

K ={CeM%2 : detC >0,vVC e K"}

SYm

with K. Second, we identify the space M of symmetric 2 x 2 matrices with
R? using components {C1y, Caa, \/5012}. We use the /2 in the third component
to preserve inner products. Positive semidefinite symmetric matrices correspond to

the (affine) half cone
(12) {C . 011022 — 0122 Z 0, 011 Z 0, 022 Z 0}

We now give a brief, non-technical discussion of our results. Under the as-
sumptions in Theorem 1.1 4) it follows from the minors relation or the weak
continuity of the minors that for any F' € K9 and e € S, detFF = § and
|Fel? < max;=1,..  |U;e|*. Therefore, K C A where

A={CeMy> : detC =6, (e,Ce) < max |Uie|* Ve € S'}.
=1;...,

We now show the converse, A C K. In order to do so, let us look at this set A

in some detail. Clearly the set of all positive definite, symmetric matrices with

det C' = 42 describes a manifold (hyperboloid), while (e, Ce) = a defines a plane in

R3. Thus A is a subset of this manifold restricted by suitables planes (see Figure

1). Let us elaborate. Figure 2 shows schematically the surface of the hyperboloid.
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\V2Chp

FIGURE 1. The quasiconvez hull K¢ for the four-well problem de-
scribed in Ezample 3.7 with SO(2)-invariant wells.

For any direction e € S! and « € R, the interesection of the hyperboloid with the
plane (e, Ce) = a is a (quadratic) curve I'(e, &) which divides the hyperboloid into
two parts (see lower left of Figure 2). Start with @ > max;—; . |U;e|? and move
the curve (by changing «) till it first touches any of the matrices U?. The set A is
the set that is enclosed by similar curves for all e € S*. It turns out that if there
are k matrices, only k curves are needed to define the boundary of A (of course
this requires a hypothesis that prevents one of the matrices U? to lie within the set
A defined using the others; otherwise there may be less than k curves). These k
curves have the property that they pass through two points U? and Uj2. Further,
they are rank-one directions in the following sense: we can find a,n € R? such that
any C on this curve can be expressed as

C=U;+taan)T(Ui+ta®n), teR

Therefore, we can obtain any point C on the segment of this curve between U?
and Uf by rank-one lamination and thus 0.4 C K¢. Now pick any point D in the
interior of A. There is a rank-one curve passing through D which always lies on
the hyperboloid and extends off to infinity in both directions. Therefore, it must
intersect A at two points, and we can obtain D through the lamination of these
points. We thus conclude that A C KZ¢.

The result and proof of Theorem 1.2 are similar; we use the minors relations to
prove one inclusion and lift the constructions above to three dimensions to prove
the other.

Let us now turn to part i) of Theorem 1.1 where K consists of k& copies of O(2).
The fundamental difference between this and the former case can be seen in the
special case k = 1. While K for K = SO(2) is trivial, i.e. K% = SO(2) or
Ki¢ ={I}, K for K = O(2) consists of the set of all short maps:

K®={F:0<\M(F'F) < M(FTF) <1}
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(e,Ce)>al -

T TI(e,a) = {Cie.Cey =}

FIGURE 2. The details of the quasiconvex hull KI¢ for the four-
well problem described in Example 3.7 with SO(2)-invariant wells.

where A;, A2 are the eigenvalues so that
Kgc = {C : 011022 — 0122 Z 0, (Cll — 1)(022 — 1) — 0122 Z 0}

The set KZ¢ is shown in Figure 3 and is obtained as the intersection of two back-to-
back cones given by the two inequalities above, one with apex C' = 0 and another
with apex C = I. This is due to the fact that O(2) consists of two copies of SO(2)
which have remarkably many rank-one connections: any @ € O(2) \ SO(2) is rank-
one connected to the identity matrix I. For k > 1, the set K¢ is obtained by
combining Figures 1 and 3, i.e., by composing the matrices in 4 with short maps.
This set is shown in Figure 4, and the boundary consists of A, the cone det C' = 0
with apex at C' = 0, the planes (e, Ce) = max;=1,... 1 |U;e* and portions of cones
with apexes at UZ,...U?. The proof is very similar to that of Theorem 1.1 7): we
use the minors relation to find bounds on K?¢ and use lamination to show that these
bounds are indeed optimal. Finally note that unlike part i) where it is sufficient to
use only a finite number of directions e to define the set K9¢, in part i) we need all
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V2C,,
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F1GURE 3. The quasiconvex hull K2¢ for K = O(2).
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FIGURE 4. The quasiconvez hull K¢ for the four-well problem de-
scribed in Ezample 4.5 with O(2)-invariant wells.

directions e € S'. A finite subset corresponds to the planar parts of the boundary
of K¢ while the rest defines the cones with apexes at U?.

The set K9 when K consists of k copies of SO(3)U;, is described in Theorem
1.3, and is identical to the case when K consists of k copies of O(2).
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The paper is organized as follows. Section 2 collects preliminaries and basic
lemmas which are used in the subsequent sections. We suggest that a reader omit
it on first reading coming back to it as and when necessary. Theorems 1.1-1.3
will be proven and illustrated with examples in Sections 3-5. Section 6 discusses
existence of minimizers while we present in Section 7 uniqueness and non-uniqueness
results for microstructures associated with minimizing sequences for the variational
problem (1.1). In Section 8 we finally construct approximate relaxed energies.

2. PRELIMINARIES

The generalized convex hulls we are concerned with in this paper are defined as
sublevel sets of functions with the corresponding convexity properties. Recall that
a function f : M2*? — (—o0, 00] is said to be convex if

(2.1) FOAA + (1= N)B) < Af(A) + (1 — N)f(B) VA, BeM>2 Xe (0,1);

it is said to be rank-one convezif (2.1) holds for all A, B € M?*? with rank(A—B) =
1. Rank-one convexity is a necessary condition for quasiconvexity, the fundamental
notion of convexity in the calculus of variations. A function f is quasiconvez if

| iweppdez [ fB)s Vo e WER(BO,1:E)
B(0,1) B(0,1)

(whenever the integral on the left hand side exists). A sufficient condition for
quasiconvexity is polyconvezity, i.e., there exists a convex function g : R> — R such

that f(F) = g(F,det F). We now define for a given compact set K C M?*? its
rank-one conver hull K™ by

K™ ={FeM>*?: f(F) < i}l(ff for all f : M?*? — R rank-one convex }.
The quasiconver hull K9° the polyconvexr hull KP¢ and the convexr hull K¢ are de-

fined analogously. Finally we define the lamination convex hull K'¢ in the following
way (see [MS1]): Let K(© = K and define

KW = {AA+ (1-MNB: A,Be K9 rank(A—B)=1,A€ (0,1)J UK,
Then

K'e = [j K.
=0

It follows that
(2.2) Kl c K™ C K% C KP* C K¢
(see, e.g., [D], [S]).

We now introduce some notation that we frequently use. Given distinct matrices
Up,...,Up € M2X2  we let

sym?

)

U={U,...,U}.
We note that if detU; = § > 0 for i = 1,..., k then according to the polar decom-
position theorem,
U; ¢ |Jso@u;
1#]
for j =1,...,k so that the SO(2) wells are disjoint. We often use
(2.3) my(e) = max{|Ue|*: U € U}.
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We denote by e* the unique unit vector orthogonal to e € S* with det(e,et) = 1.
We collect in the next two lemmas well-known facts which will be useful through-
out the paper.

Lemma 2.1. Assume that Cy, Cy € M2X2 are positive semidefinite, C; = FlTFl,

sym
Cy = FI'Fy. Let e € S'. Then the following four statements are equivalent:
i) there exist Q € SO(2) and a € R? such that QF, — Fy =a®et;

ii) we have |Fie|® = |Fye|?;

iii) there exists a v € R? such that C1 = Co +v®et + et @v;

iv) det(Cy; — C3) <0.
Moreover, the vector a in statement i) and the vector v in statement iii) are related
byv=Ffa+ %|a|2eJ-. Finally, if det F} = det F5, then a = aFse with o € R.

Proof: i) = ii) : Assume that QF, = Fy + a ® e*. Then
C, = (Ff+et®@a)(Fa+a®et)
= o+ Flawet+et @ Fla+ |afet ®@et
and i) follows immediately. . .
1) = 1) : Let C = Cy —C5. Assume first that rank(C') = 1. Since C' is symmetric,
there exists a v € R? such that ¢ = v®v. By assumption (e, Ce) = (v,e)* = 0 and

thus we obtain 4ii) with v []et. )
Consider now the case rank(C) = 2. Since the eigenvalues \; of C satisty

A1 (C) = min {v,Cv) < 0 < max (v, Cv) = A2 (0),
veES?T vES?T

there exist ay, as € R\ {0} and orthonormal vectors vy, ve € R? such that

Cc = a§v2®v2—afv1®v1
1
= 5{(042’[}2 — 0411)1) ® (0421)2 + 0411)1) + (0621)2 + Oél’l}l) [024] (OLQ’UQ — 0411)1)}.

ve with
2 .

Clearly (e,v1) # 0 and (e,v2) # 0 (indeed, if (e,v;) = 0, then vy =
— « 2
v € {£1} and eCe = a2 # 0, a contradiction). This implies (e, v5)* = (e, v1)
2
since {vy, vo} is an orthonormal basis of R? we infer

<e,v1)(

(6 DX%1 + 0411}2)
Qa

e = (e,v1)v1 + (e,v2) v2 =

and

e,
GJ_ = ( 1> (:FOqu + 0621)2).
a2

This proves iii) with v = vy + ayv;.
i4i) = 1) : This is obvious.
i1) = i) : By assumption |Fie|? = |Fye|? and we may choose ) € SO(2) such that
QFie = Fye or (QF) — Fy)e = 0. Thus QF; — F5> = a ® n is a matrix of rank one
and from (QF; — Fy)e = (n,e)a = 0 we deduce that we may choose n = e*.
ii) < 4v) : This is also obvious from above (the characterization of C).

The relation between a in statement i) and v in statement #3) follows by direct
calculation. Finally, if det F; = det Fy, then i) implies det F; = (det Fy)(1 +

(Fy ta,et)) and thus a must be parallel to Fye. O
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Lemma 2.2. If C1, Cy € M2, C = F{'Fy and C; = F§'F, are positive definite
with det C; = det Cs, then there e:mst rotations Q; € SO(2) and vectors a;, n; € R?,
i =1, 2, such that n, and ny are not parallel and Q;F, — F5 = a; ® n;. Moreover,

(AQ1F1 + (1 = N)E2)ny |2 < |Finy|? for X € (0,1).

Proof: Denote by A1 < Ay and uy < po the eigenvalues of C; and Cs. Since by
hypothesis det Cy = det Cy, or Ay Ay = pyp2, we may assume that Ay < py and
t2 < Ao, or

min (w, Ciw) < min (w,Cow) and max (w, Crw) > max (w, Cow).
weSs! weS? weSs! weS!

Therefore, we can deduce from the continuity of the mappings w +— (w,Crw) and
w +— (w, Cow) that there exists a wy such that (wl, Ciw;) = (wy, Czwl) By Lemma
2.1 there exist wy € R? such that C; = Cy + wl ® ’U)g + wy ® w1 . The existence
of the rank-one connections now follows with n; = wi- and ny = wa/|ws| from the
equivalence i) < iii) in Lemma 2.1. The vectors wi- and ws and consequently
ny and n are not parallel since det C; = det(Cg + ’wa‘ @ wit) = (det Cy)(1 +
Y{wi, C5twi)) # det Cy in view of (w,Cy w) > py' > 0. The existence of the
rank-one connections follows now with n; = w1 and no = ws from the equivalence
i) < iii) in Lemma 2.1.
To prove the inequality, note that

2
|Fing |* = |QiFins |* = |[Fang |* + 2(n1,na ) (Fany , a1) + |aa[* ((n1,n5)) "
By Lemma 2.1, |Fyny|? = |Fyny |? so that

5
2<nlan2 )(anz 7a1> + |a1| (<n17n2L>) =0.
Note that (ni,ny) # 0 since n; and ny are not parallel. Therefore, « = —3 < 0
where a = 2(n1,ny )(Fany,a1) and B = |a1|*(ny,ny). Finally a calculatlon shows
that
IAQ1F + (1 = N E)ny|? < |Finy|? <= da+ X8 =A1-)Na<0,
and we obtain the assertion of the lemma. (]

Our characterization of the image of the generalized convex hulls in the three
dimensional affine space of symmetric matrices uses the following property of the
intersection of the surface {C' : C positive definite, det C = §?} with the two di-

mensional hyperplanes ((C11,Caz,v2C12), (€2, €3,V 2e1e2)) =
Lemma 2.3. Assume thate € S' and v, 6 € R, § > 0. Then the set
D(e;7?) = {FTF : (det F)? = 6°, |Fe|> =v*} CR?

is either empty or a smooth one-dimensional manifold which can be parametrized
by t = FLF, with F; = F(I +te®et) for any F € T'(e;7).
Proof: Let E = {FTF : det F # 0} C R® and define ® : E — R? by
X11X22 — X122 — (52
P(X) = . . . .
(X) < e?X11 + e3 X0 + 2165 X120 — 2
It is easy to see that rank D® = 2 on E and thus ®!(0) is a smooth one-dimensional
manifold contained in E. Assume that ['(e;y) # () and let Fl Fy € T'(e;7y). Any

FTF € T(e;) satisfies | Fe|? = |Fye|? and thus there exists by Lemma 2.1 an « € R
such that F' = Fy(I + ce ® e*). This proves the assertion of the lemma. O
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The next lemmas will be important ingredients for the characterization of the
boundaries of the generalized convex hulls. Recall that my, has been defined in
(2.3).

Lemma 2.4. Suppose F' € M?*? satisfies

i) |[Fel*> < myl(e) for all e € S*,

i) there exist € € S* and i € {1,...,k} such that |Fé|* = |Uie|* > my (.3 (€).
Then there exists an o € R such that FTF = U? — o?¢+ ® é-. Moreover, if
det F =6, then F = QU; for some Q € SO(2).

Proof: In view of Lemma 2.1 there exists a v € R? such that FTF = U? + v ®
e +ét ®@u. Let eg = (14 6?)"'/2(é 4 #&t). By assumption we may choose & > 0
small enough such that

mu\{Ui}(eg) < |F69|2 < |UZ'69|2 for |9| <e.

Thus
0
eg, (V@ EL + et @v)es) = (v,eg) (€L, €9) = ———(v,e5) < 0.
< 0 ( ) 9> ( 9>< 9> \/H——GZ< 9) >
We conclude V1 + 62 §{v, eg) = 6(&,v)+6%(é+,v) < 0 and this implies v = yé+ with
7 <0. Thus FTF = U? — a?&+ @ 4. If det F = 6, then 6% = §2(1 — o?|U;T&4?)
and therefore @ = 0. This implies the assertion of the lemma. O

Lemma 2.5. Suppose there exists e € S' and 2 < n < k such that
|Ure|* = ... = |Une|* = my(e) > max{|Ue|* : i =n+1,...,k}.
Set eg = (1462)"1/2(e+80et). Then there exist p,q € {1,...,n}, p #q and 6y > 0
such that the following three statements hold:
i) my(eg) = |Upeg|® > my\{u,} (eq) for =6y < 6 < 0;
i) my(eg) = |Ugea|® > mypqu,3(eq) for 0 <8 < 6;
iii) for alli € {1,...,n} we have

U; € (SO(2)U, uSO(2)U,)™ .

Proof: Tt follows from the continuity of the mappings e — |U;e|? that there exists
a #p > 0 such that
my(eg) = max |Ujeg|* > max |Ujeg|> for |6] < bp.
1=1,...,n i=n+1 k

By Lemma 2.3 (with F' = U;) there exist t; € R, i = 1,...,n, such that
U2 =U} +t(Ule®et + et @ Ule) + t1|Ulef’et @ e*.

Relabeling the matrices if necessary, we may assume that t; = 0 and ¢; > 0 for
1=2,...,n. Thus

6t; 62
V1+62 1+ 62
The conclusions ) and ) follow with t, = ¢t; = 0 and ¢, = max;=2 . nt; (where
we choose 0 sufficiently small).

To prove #) we may assume that p = 1,7 = 2 and ¢ = 3 (note that t; = 0 < t2 <
t3 by construction of p and ¢). Let C(t) = G(t)TG(t) with G(t) = U, (I +te®e™).
Then C(0) = ULUy, C(t1) = UL Us, and C(ts) = UL Us. Let V; be the square root

Uies|? = [Uyeg|? + 2 Ure|? + (2ti(e™, Ue) + ;|Urel*).
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of C;. By the polar decomposition theorem there exist Q;, R; € SO(2),i=1,2,3

such that Q;V; = G(¢;) and Q;V; = R;U;. Let A = i—i Then

t3 — 12
3

and therefore (1 — A\)RY R U, + ARY R3U3 = Us,. O

t
(1= NG(t) + \G(ts) = Uy + t—2U1 (I 4 tre ® e*) = G(ts)
3

Lemma 2.6. Assume that U; € U and that there exists é € S such that
Uie]* = mu (&) > myp (u:3(€)-
Then there exists U; €U, i # j, and e € S* such that |Use|* = |Uje|*> = my/(e).

Proof: Suppose the conclusion was wrong. Since |Use|* = |Ui(—e)|* we may
assume that all vectors e € S* are given by e = e(p) = (cos p,sin ) with ¢ €
[0,7). In particular the map ¢ — |U;e()]? is a continuous, periodic map on [0, 7 ].
By assumption either |Use(p)* > mynqu3(e(p)) or [Use(p)* < munquy(e(p)).
Since the latter case is excluded by assumption, we conclude that the former holds.
Choose any Uy € U, Uy # U;. By Lemma 2.2 there exists t € R, & € S' and
Q € SO(2) such that QU; — Uy = tUre ® e+ and |U;e|? = |Uge|®> < my(€). This
violates our hypothesis and we deduce that there exists at least one e € S' and
Uj ceu, Uj 7é U; such that |Ul‘€|2 = |Uvj€|2 = mu(e). O

Lemma 2.7. Assume that U;, U; € U, i # j, and that there exists ¢ > 0 and
e1 = (cosp1,sin ;) with o1 € [0,7) such that
i) |Uiei|* = [Ujer|* = my(e1),
it) mu(e(p)) = [Uie(p)|* > mu vy (e(9)) for o1 < <1 +e,
i) mu(el)) = [Use(@)F > mungu,y(e(9) for o1 — € < o < 1.
Then there exists Uy, €U, m # i, and es € S' not parallel to ey such that

|Uiea|? = |Unez)? = my(es).

Proof: Define

¢2 =max {¢ > ¢1 : [Uie(p)* = mu(e(y)) on [p1,¢]}
and let g2 = @2 mod m. By i), 92 > ¢1 and by i) we conclude @y # ¢1. It
follows that there exists d > 0 such that

mu(e(9)) > |Ui(e())]” for 2 < ¢ <2 +0.

The continuity of the mappings ¢ + |Ug(e())|? implies the assertion of the lemma.

O

3. THE QUASICONVEX HULL OF SO(2)U; U...USO(2)Ug

In this section we prove part i) in Theorem 1.1 and Theorem 1.2.
We first prove the following version of Theorem 1.1, which uses an infinite number
of inequalities to define K%°.

Proposition 3.1. Assume that {Uy,..., Uy} C 1\4125;7,2I with U; positive definite and

detU; = 6 > 0. Let K = SO(2)U; U...USO(2)Uy. Then K® = K¢ = K¢ =
K¢ = KP¢ and any of these hulls is given by

{F:detF =3¢, |Fel” < _max |Uje|* Ve € S'}.
j=1,...,n
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We split the proof of this proposition into a series of lemmas. Let
(3.1) A={F e M**?: det F = §, |Fe|> < my(e) Ve € S*}.

We will show that K?* ¢ A Cc K®). This proves the theorem since by (2.2)
K'e C K?e,

Lemma 3.2. Suppose that the assumptions of Theorem 1.1 hold and that A is
defined by (3.1). Then K?° C A.

Proof: We construct a polyconvex function ® which vanishes on A and is positive
elsewhere. Let t; = max{t,0} and define for v € S* the function g, : M>*? — R
by

g0(X) = (IXv]” = mu(v)) .

Clearly g is convex since it is the composition of a convex, nondecreasing function
and a convex function.The supremum of convex functions is convex and therefore

®(X) = (det X — 6)% + sup g,(X)
veSt
is the desired function. O

The reverse inclusion A C K®) requires some preparation. Let
(32) B={F:detF =6, |Fe|* <my(e)Vee€ S*, Fé: |Fé|* =my(é)}.

As a first step we show in the next lemma that B C K. Given Uj;, U;, according
to Lemma 2.2 there exists a € SO(2) and a, e € R? such that QU; —U; = a®et.
Let

Lij(e;|Uiel”) = {(U; + Aa®e)"(U; + \a®e) : A€ [0,1]} C R?
denote the arc connecting U/ U; and U;'U; on the curve I'(e;|Usel?).

Lemma 3.3. Assume that k> 2. Let F € B and C = FTF.

i) There exist e € S*, Up, U, € U, p # q, such that |Uyel* = |Usel* = my/(e)
and C € Ty, ,(e;my(e)). Moreover, we may choose p and q in such a way
that there exist €p; €q € S such that my(é,) = |Upép|* > mynqu,y(€p) and
my (€g) = |quq|2 > mU\{Uq}(eq)-

i) We have B C KO,

Proof: By definition of B there exists at least one e € S* such that |Fe|> = my(e).
If there exists an e such that my(e) = |Fel*> = |Uiel* > myqu,3(e) for some
i € 1,...,n, then it follows from Lemma 2.4 that F = QU; with @ € SO(2)
and thus i) follows from Lemma 2.6 and Lemma 2.5. Therefore, we may assume
(relabeling the matrices if necessary) that there exists 2 < n < k such that

|Fe|> = |Ure|* = ... = |Une|> = my(e) > max {|Use|* : i=n+1,...,k}.
Let p, ¢ € {1,...,n}, p # ¢ be the indices with the properties stated in Lemma 2.5.
By Lemma 2.1, there exist € SO(2),a € R\ {0} such that QU,—U, = aUye®e™ .

Note that a > 0: Indeed, by expansion and Lemma 2.5 with ey = (1 +62)"'/2(e +
fet) we obtain

U,eol? = |Upeo|? + Upel? + O(62) < [Upeq|? VO € (8o, 0)

20 |
1+ 62
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and this proves the asserted inequality. By Lemma 2.3, F' = Q(Up + salye ® et)
for some @ € SO(2), s € R, so that

20as

|F’€9|2 = |Up€9|2 + 14_—02|Uv1,)€|2 + 0(62)

Since F' € B we have |Feg|? < my/(eg) = |Upeg|? for —8y < 6 < 0, and we conclude
that s > 0. Similarly, |Feg|* < |U,eg|? for 0 < 6 < 6y and therefore

20as |
1+62

and we conclude that s < 1. This proves 4). Finally i) follows from the observation
that

{FeM>?2: det F =6, F'F € T 4(e;mu(e))} C (SO2)U, UsO2)U,)"
using the definition of 5. O

We are now in a position to prove part i) in Proposition 3.1.

Proof of Proposition 3.1: In view of Lemma 3.2 it remains to show that A C
K® c K'. By Lemma 3.3 we have B C K) ¢ K(). Assume now that F' € A\B.
Fix any e € S! and let F; = F(I +te ® e') and

C(t) = FIF, = FTF + t(FTFe® et + e* @ FTFe) + t*|Fe|?e*t @ et

20
|Upeo|® + Upel? + O(6?) < |Upeq|® + 1+—92|Upe|2 + 0(6?)

Since Fe # 0 we conclude |C(t)|* — oo for t — +oo and therefore
tT = sup{t>0: |Fse|* <my(e)Ve e S, Vs €[0,t]},
t~ = inf{t <0: |Fse|* <my(e)Ve € S*, Vs €[0,]}

are well-defined and —oo <t~ < 0 < t* < co. By construction F? F is contained
in the arc connecting C* and C~ on the curve I'(e;|Fe|?). Let V* be the square
root of C*. Then F € (SO(2)VT USO(2)V )M and since V¥ € B ¢ KM we
conclude A ¢ K. This proves the proposition. O

The quasiconvex hull of two martensitic wells in two dimensions with equal
determinant § > 0 was first obtained by Ball and James [BJ3]. We recover their
result as a special case in Proposition 3.1.

Example 3.4. (The two-well problem) Assume that detU; = detUs = § > 0,
SO(2)U; # SO(2)Us, and let K = SO(2)Uy U SO(2)Us. Then there ezist two
vectors ey, es such that

K ={F e M?? : det F = §, |Fe;|* < max{|Ure;|*, |Use;|*}, i = 1,2}.

It is easy to see that for k¥ = 2 there exist exactly two rank-one connections
between the wells SO(2)U; and SO(2)Us, i.e. there exist Q; € SO(2) and a;, e; € R?
such that Q;U; — Uy = a; ® 614'. Let U = {Ul, Ug} and

A={F e M**?: det F = 4§, |Fe;|* <myle;), i = 1,2}.

We have to show that F € A implies |Fe|? < my(e) for all e € S'. Assume
the contrary. Then there exists an e € S' such that |Fel*> > my(e). Assume
first that |Fej|?> = my(e;) (the case that this equality holds for e, is similar).
There exist tg € R and Ql S 80(2) such that F' — Q1U1 = tleUlel (9 €f‘. Let
F(t) = QiU; + tQ Ure; ® e1. By assumption there exist t» € R and Q2 € SO(2)
such that F(ts) = Q2Us. Since g(t) = |F(t)ea|? > 0 is a quadratic function with
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\V2Ci

C+Cy+2Cy,
= OLZ+ Bz

2
CCx - C122 =o’p

\ Cy1+ Cop- 2Cpo= 02+ B

FIGURE 5. The set (SO(2)U; U SO(2)Us)% for the diagonal ma-
trices Uy = diag(a, 8) and Uy = diag(8, a).

g(0) = g(t2) > g(to) we conclude ty < to < 0 or 0 < ty < t. This shows that
F=XQ1U; + (1 — X\)Q2U> with Q1, Q2 € SO(2) and X € [0,1]. Thus

my(e) < |Fel* < ANUrel* + (1 — \)|Use|* < my(e),
and we conclude |Fe|? = my(e), a contradiction. Thus we may assume that |Fe;| <
my(e;) for i =1, 2. Let F; = F +tFe ® e*. Then det F; = § and
|Frei|® = |Fe; + t{e;, e ) Fel?.

Since e; and ey are linearly independent, (e;,et) # 0 for at least one of the two
indices and we may choose s > 0 such that |Fye;|? = my(e1) and |Fsez|* < my(ez)
(or vice versa). Clearly Fy € A and it follows as above that |Fse|?> = |Fe|? = my/(e),
a contradiction. See Figure 5 for a sketch of the set where U; and U, are diagonal.
Conversely, any set K on the hyperboloid {X = F'F : detF = ¢} which is
bounded by two arcs of the form above can be described by

K ={FTF: F € (SO(2)U; N SO(2)U>)*}.

O

We now turn to the proof of part i) of Theorem 1.1 which says that the general-
ized convex hulls are always described by a finite number of vectors as in Example
3.4. The next rather technical lemmas are the main ingredient in the proof. Let

U= {Ui eEU: |Uié|2 > mu\{Ui}(é) for some € € Sl}.
Relabeling the matrices if necessary we may assume that

U={U,...,Us}.
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Lemma 3.5. Let U and U be defined as above. Then

( L_kj SO(2)U,-)qC = ( L_nj SO(Z)Ui)qC

Proof: In view of Proposition 3.1 we only have to show that |Use|* < my;(e) for
all e € St. It suffices to show this for U;,. Assume that there exists an e € S such
that |Uge|* > my(e). Relabeling the matrices (if necessary) we may assume that
there exists an £ € {n+1,...,k} such that |Use|> > |Upe|* > my(e) fori=¢,... k
and |Use|* < |Upe|® for i = n+1,...,04+ 1. If k = £ then |[Ukel* > myp (0,3
contradicting Uy € U \ U. We obtain the same contradiction if there exists an
i € {{,...,k} such that |Use|* > max{|Uje|*,j = £,...,k, j # i}. Thus we may
assume (relabeling again the matrices, if necessary) that Uy,..., U, € U\ U satisfy

|U[6|2 =...= |Uk6|2 > m{U17---7U171}(e)

with ¢ < k. In this situation it follows from Lemma 2.5 4) that there exists a
pe{l,...,k} and an ey € S* such that

|Up60|2 > my\ (v, (es),

contradicting the assumption U, € U \ U. This proves the assertion of the Lemma.
O

Lemma 3.6. Assume that n > 2. The set U has the following properties:

i) Ife € S and U;, U; € U, i # j, such that |Use|* = |Uje|> = my(e), then
|Ue|* < my(e) for all €€ {1,...,n}\ {i, j}.

i) For all U; € U there exist exactly two matrices U;,, Uy, € U, i & {iy,ia} and
ezactly two non parallel vectors e1, e; € S such that |Use;|* = |Uye;* =
my(ej) for j=1,2, and T;;, (ej;mu(e;)) C {FTF: F € B}.

i) Assume that T¢(eg;mu(ee)) = T, 5, (s my(er)), £ =1, 2, are two of the arcs
constructed in ii) and let 12;5 =T\ {UlU;,, U]?;Ujl}. Then 1'0‘1 N 122 = 0.

w) For each F € B there exist U;, U; € U,i#j, and e € S* such that |Use|® =
|Uje|? = |Fe|?> = my(e) and FTF € T; j(e;myu(e)) C {GTG : G € B}.

Proof: We first prove ), #i) and év) and then ). }

i) Assume that there are three distinct matrices U;, U;, U, € U such that |Use|* =
|Uje|> = |Ure]* = my(e). By Lemma 2.5 there exists 8 € {i, j, £, } and Qq, Q+ €
SO(2), A € (0,1) such that Us = AQaUs + (1 -A)Q, U, where {a, 8, v} = {3, 4, I}.
Since Ug € U there exists € € S* such that |Ugé|* = my(€) > myp(u,3(€). Then

(@) = [Ugel? < AUl + (1= VU2 < mu(@)
and therefore |Uyé|> = |U,€|> = my(€). This contradicts the assumption and we
conclude Uz ¢ U.

i#) Assume that FTF € 121 N f‘g. By construction there exist @Q;, Q; € SO(2)
and A € (0, 1) such that AQ;U;, + (1 — N\)Q;U;, = F. By assumption

my(e1) = [Fer|? < MU er|” + (1 = N)|Ujyex]* < my(er)
and thus

Ui er|” = |Ujer] = Uy er]* = [Ujen|* = my(en).
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If {i1, 41} # {i2, 2}, this contradicts i) and we obtain the assertion.
Otherwise we conclude by Lemma 2.2 that e; and ey are not parallel and that
there exist a1, as € R2, Q1, Q2 € SO(2) such that

QUi —Uj =a; @ ey, Q2U; —Uj = az ® ey,

where we write U; and U; instead of U;, and Uj,. Let F\ = U; + Aa; ® ef-. In
order to show that the arcs I'; j(e1,my(e1)) and I'; j(ea, my(e2)) do not intersect,
it suffices to show that |Fyes|? < my(e2) for A € (0,1). For A = 1 we obtain

QuUiea]” = |Ujea]” + 2(et, e2)(Ujez, a1) + (et e2)*[ar]* = 0
and thus by assumption
2(et, e2)(Uje, a1) + (ei", e2)*|ar|* = 0.

Therefore a = 2(e,ea)(Ujea,a1) < 0 and B = (e, e9)’|ar])?> > 0 (note that
(ef,es) # 0 since e; and ey are not parallel). Since |Fyez|? < my(es) if and
only if A + A28 = A(1 — A)a < 0, we obtain the assertion.

iv) This follows from Lemma 3.3.

ii) This is easy for n = 2 since there are exactly two rank-one connections
between the wells. Thus we may assume that n > 3. Fix U;. By Lemma 2.6
combined with Lemma 2.5 there exists at least one e; € S* and U; € U,i# j,such
that |Uze1)? = |Uje1|> = my(e1). In view of Step 1 we obtain |Uger|? < my(er)
for ¢ ¢ {i,j} and it follows from Lemma 2.5 that the assumptions i) and i) in
Lemma 2.7 are satisfied for some € > 0. We conclude that there exist at least two
linearly independent vectors ey, e; € S* such that |Usei|* = |Ujer]* = my(e1) and
[Uiea|? = |Usea|? = my(ea) with Uj, Uy € U and £ # i.

Assume now that |Uye;]? = |Use;|* = my(e;) for j = 1,2,3, where no two of
the vectors e; are parallel and ¢ & {i1,42,i3}. If i1 = iy = i3, then it is easy to see
that U; = QU;, with Q € SO(2), violating the general assumptions on /. Thus we
may assume that i; # is. If i1 # io = i3 then we define V = {U,,, U;} and

A={F eM”*?: det F =4, |Fe;|* <my(e;;), j =2,3}.

It follows from ¢) that U;; € A and we conclude with the same arguments as in
Example 3.4 that

Ui, € (SO(2)U; USO(2)Us, )™ .

By definition of ¢ there exists an é € S* such that |U;,é|* = my(é) > mu\u;, (€).
However, by Example 3.4,

mu(é) = |Ui1é|2 S max{|Uié|2, |U,25|2} S mu(é)

This is a contradiction. Finally assume that i; # 4, for j # £. The curves
[(ej;|Usej]?) are the boundary of the regions |Use;|> > my(e;) and |Use;* <
my(e;) and using the ideas in the proof of i) we see that they intersect only at
U;. Thus each of these regions consists of just one connected component. Con-
sider now the curve I'(e;;my(e1)). Then U;, and U;, must lie in the connected
component {C' = FTF : detC = 6% |Fei1|*> < my(er)}. Assume that the an-
gle between the curves I'(e;;my(e1)) and T'(ea; my(e2)) is smaller than the angle
between I'(e1;my(e1)) and T'(ez;my(e3)). Since |User|* = |Usea|* = my(e2) we
conclude |U;, e2)? < my(e2) and thus |Ujeal®> > my(e2), a contradiction. This
proves assertion #) of the lemma. O
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With this information at hand we can prove part i) in Theorem 1.1.

Proof of part i) of Theorem 1.1: Consider the graph G = G(N, &) where N = U
is the set of nodes and & is the set of edges which contains an edge connecting
U; and U; if and only if there exists an arc I'; j(e;;; m(e;;)) with the properties in
Lemma 3.6. Thus there is a one-to-one correspondence of arcs in B and edges in
€ and it follows from Lemma 3.6 that G is a graph of degree two (i.e. each node
is contained in exactly two edges). It is easy to see that G must consist of disjoint
cycles. By Lemma 3.6 the arcs I';; corresponding to the edges in the cycles do not
intersect and therefore each of these cycles can be interpreted as a closed curve on
the hyperboloid {det C = §%} C R®. It is easy to see that the set A is connected
and therefore G must consist of a single cycle. It follows that £ contains exactly n
edges. Let &, be the set of normals e;; which define to arcs I';; corresponding to
the edges in £. By Lemma 3.6, B is the union of these arcs and therefore K9¢ is
defined by k inequalities. This proves the assertion of the theorem. O

Example 3.7. (The four-well problem) Assume that a,b,c >0, a > b, ab—c* > 0
and define

a c¢ b ¢ a —c b —c¢
v=(ep)e=(n)w=(5% 7 )u=(L7)
Letu = {Ul, Ug, Ug, U4} Then

K9 ={F e M*? : det F = §, |Fe|> < my(e)Ve € &4}

(D)5 (D ()

See Figures 1 and 2 for a sketch of the set K4¢ = {FTF : F € K%} and the
rank-one connections defining the boundaries on the manifold {det C' = (det U;)*}.
O

where

We finally prove Theorem 1.2.
Proof of Theorem 1.2: Let

A={FeM**®: detF =0, FTFv = p*v, |Fe|> < max |Uie|* Ve € S?}.
=1;...,
We first show that KP¢ C A by constructing a polyconvex function ® which vanishes

on A and is positive elsewhere. This generalizes the construction in [BJ4] for the
two-well problem. For v € S? let g, : M®*3 — R be defined by

gv(X) = (IXv]* = my(v))

and let
. 52
P®(X) = (det X — 6)* + sup g,(X) + (|Fv|* — ,u2)+ + (| cof Fv|* — E)

veSs? +

We have to show that ®(X) = 0 implies F? Fv = p?v. Since cof F = (det F)F~ 71
it follows from ®(X) = 0 that
|Fol? < p?

and
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Then
|(%F)(v — W F'F )| = |%FU )

1
= E|Fv|2 + 2 |F~ TP —2<0,

and since det F = § > 0 we conclude v — p? F~*F~Ty = 0. This implies the
assertion.

We now show that A C K. We will reduce the necessary constructions to the
two-dimensional situation in Theorem 1.1. Let F' € A. By the polar decomposition
theorem we have F' = RUy with R € SO(3) and Uy symmetric and positive definite.
Since FTFv = U2v = p?v we conclude Upv = pv. Thus the matrices U;, i =
0,...,k, have 1 as common eigenvalue with corresponding eigenvector v. Choose
an orthonormal basis {v;,v2,v3 = v} and let @ be the rotation with columns v;.

Then
Trr A _ Ui 0
ave=(5 0.
with U; € M2<2, det U; = 6/p. Let U = {U1,...,Ux}. Now define 7 : R* — R? by
#(u) = (u1,u2) and 73 : R* — R by 73(u) = ugz for u € R*. For e € S? we have
|Fel* = |RUel* = |QTU6QQ"el* = [Uo#(Q"e)]* + 1°|m3(Q"€)|*

< myle) = max Uiz (QTe)|> + p?|m3(QTe) .

If we choose e such that #(QTe) € S* then we obtain
[Upe|* < my(e) Vee St
It follows from Theorem 1.1 that
Uy € (SO2)T U ---uSo@)0x) .

Since K is invariant under multiplication with elements in SO(3) from the left and
since rank(A—B) = 1if and only if rank(Q(A—B)Q™) = 1 if follows that F € K?).

Finally, the reduction from an infinite to a finite number of inequalities in the
definition of the hulls follows as in the proof of part i) of Theorem 1.1. O

4. THE QUASICONVEX HULL OF O(2)U; U...U O(2)Uj

In this section we prove part i) of Theorem 1.1. We split the proof into a series
of lemmas. As before let Y = {U,...,U;} and

(4.1) A={F e M**?: |det F| < 6, |Fe|* < my(e) Ve € S*}.

We will show that K?* ¢ A c K®). This proves the theorem since by (2.2)
K'e ¢ KP¢. We prove first the inclusion K¢ C A by constructing a polyconvex
function which vanishes exactly on A4 and is positive elsewhere.

Lemma 4.1. Suppose the assumptions of Theorem 1.1 hold and A is defined by
(4.1). Then KP° C A.

Proof: The proof is similar to Lemma 3.2. Let

B(X) = (| det X| - 84 + sup g, (X).
ves?t
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Since t > (Jt| — 0)+ is a convex function, ® is a polyconvex function that vanishes
on A and is positive elsewhere. The assertion follows now from the definition of the
polyconvex hull. O

The inclusion A € K®) requires some more work. We prove first two auxiliary
results.

Lemma 4.2. If F,G € M?*? satisfy
FITF =G'G - aGTex G"e
for some a € [0,1] and some e € S*, then
Fe02a)W".
Proof: Since a € [0, 1], there exists A € [0,1] such that a = 4A(1 — A) so that
FTF=GTG —4\1-NGTe® GTe = (G —2X0e 2 GTe)T(G — 2Xe ® GTe).

Therefore, |Fv)? = |(G — 2Xe ® GTe)v|? for all v € S and we conclude that there
exists () € O(2) such that
F=Q(G -2 e®GTe).
If we define @ = I — 2e ® e € O(2), then
F=QM\QG+(1-XNG) and QG -G = —2e®GTe,
and this proves the lemma. O

For the statement of the next lemma it is useful to introduce some notation: Let

(42) B = {F:|detF|<§, |Fe|* <my(e)Ve€ Sy, Té: |Fé|* =my(é)},
(43)B, = BN{F:detF =a} for ae€][-4,10].
44)A, = ANn{F :detF =a} for ae€[-4,0].

Lemma 4.3. Assume that F' € B with |det F| < 6. Then one of the following
alternatives holds:

i) There exists a unique (up to the sign) e € S' such that |Fe|> = |Use* >
mynqu,3(€) and FT'F = Ul'U; — aet @ et, where o € (0, U Tet|~2]. Equiv-
alently,

FT'F =Ul'U;, —aUlée @ UTé with é = U, Tet /U Tet| € St
and & = o|U; Tet|? € (0,1].

i) There exists a unique (up to the sign) e € S' and a G € By such that (rela-
beling the matrices if necessary) |Fe|* = |Ge|* = |Ure|* = -+ = |Upe|* >
my\{Uy,...,.u, 3 (€) with n > 2. Moreover, FTF = GTG — aet ® et with
a € (0,|GTet|72] or, equivalently,

FTF=G"G -aG"ew GTe with ¢ =G Tet /|G Tet| € St
and & = a|G=Tel? € (0,1].

Proof: By definition of B there exists at least one e € S* such that |Fe|? = my(e).
Assume first that there exist e € S! and U; € U such that my(e) = |Fel*> =
|Uie|?> > maxyp g,y for some i € 1,..., k. It follows from Lemma 2.4 that FTF =
U? —aet ®et for some a > 0. Since 0 < (det F)? = (det U;)?(1—a|U; Tet|?) < 62
we conclude that a € (0,|U;Te’|=2]. The uniqueness of e follows now from a > 0
and |Fé|> = |U;é|? — a(é,et)?. This proves i).
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Assume now that there exists (relabeling the matrices if necessary) n € {2,...,k}
such that

|Uie]* = ... = |Upel® = my(e) > MY\ {Uy,....U, 3 (€)-
By Lemma 2.5 we find p, ¢ € {1,...,n}, p # g, such that

a) my(ey) = |Up€9|2 > mu\{Up}(eg) for -0y < 6 <0,
b) my(eq) = |Uqegl® > myp\qu,3(es) for 0 <6 < 6o,

where ey = vV1+ 0271(6 + @et). According to Lemma 2.1, there exist a,b € R?
with

FTF=Ul+a®e" +e"®a, FIF=Ul+b@e" +e @b
It follows from a) above that
|[Fegl* = |Upeo|” + 20((a, e) + 0{a,e™)) < muleq) = [Upeo|”

for all § € (—6y,0). We conclude {a,e) > 0. Choosing 6 € (0,6y) and observing b)
we deduce that (b,e) < 0. Therefore there exists A € [0,1],¢ € R such that

Aa+ (1= \)b=te*

(we allow ¢t = 0 if @ and b are linearly dependent; in this case we have det(FTF) =
§2). We now define for u € [0,1]

Cru = MuUZ + (1= wFTF) + (1= \)(uU? + (1 - p)FTF)
= FTF —2tpet @ et.
By construction
det Cy o = det FTF < 6%,

and a simple calculation shows that

detCry1 = det(AU, + (1= MNU;)
= AdetU? + (1 —A)det U7 — A(1 — A) det(U; —U7)
> &

since det(Ug - qu) < 0 according to Lemma 2.1. Therefore, there exists fi such
that

det C)\7ﬁ = 52.

By construction (e, C) ze) = m(e) and moreover (v,Cy zv) < m(v) for all v € S*
since C} j is a convex combination of three matrices which satisfy these inequalities.
Therefore, we conclude that there exists G € Bs such that GTG = C), ; and

FTF =GTG + 2tjiet @ .
In particular, |Ge> = |Fel? = my(e). Let é = G~Tet. Finally notice that
det FTF < 62 implies that 2tji < 0 and this proves the uniqueness of e. O
Proof of part i) in Theorem 1.1: In view of Lemma 4.1 it remains to show that
Ac K@, By Lemma 3.3
Bs C (SO()U, U...uS0R2)U) " ¢ KO,

and since B_5; = QB; for any Q € O(2) \ SO(2), we conclude that Bis; ¢ K1),
Combining this with Lemma 4.3 and Lemma 4.2, it follows that B ¢ K. Now,
for any F € B,, a € [-4,4] \ {0} we use the arguments in the proof of part
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i) in Theorem 1.1 to construct two rank-one connected matrices on the manifold
{det X = a} such that F' is contained in the rank-one segment connecting these two
matrices. Thus A C K®). Finally, consider any F' € Ay. Clearly, F = Q(fe ® ¢)
for some Q € O(2), 3 € R and e € S! and by definition
|Fv|? = B%(e,v)” < my(v) Yve St
By continuity there exists 42 > 42 such that G = ve® e € B C K. Therefore,
2 2
FT'F = GTG — aGTe @ GTe with a = 2 ,Y_f € [0,1] and consequently F €

(0(2)G)M ¢ K® by Lemma 4.2. This implies the assertion of the theorem. [

Example 4.4. (The two-well problem) Assume that U = {Uy, Uz} where Uy, Us €
M2*2 with det Uy = det Uz = § > 0 and that O(2)U; # O(2)Us. Let K = O(2)U; U
O(2)U;. Then
K% ={FeM*?: |det F| <6, |Fe|* < my(e) Ve € S*}.
The set K4¢ = {F1F : F € K%} is shown in Figure 6 (which is bounded by the

half cone {det C' > 0} and one sheet of the hyperboloid {det C' = §*}) and the half
spaces

{CeM2 : tr(Cle®e)) <myle)}, e€sS'.

The flat parts in the boundary of the set shown in Figure 6 corresponds to the two
directions e;, i = 1,2, with |Uie;|> = |Uze;|* = my(e;), while the intersection of
the half spaces for the other normals generate the two half cones centered at Ul U;
and U] Us,. In particular, there exists no finite subset of S' which describes K¢,
in contrary to the case of two SO(2) invariant wells in Example 3.4 O

Example 4.5. (The four-well problem) Assume that a,b,c >0, a > b, ab—c? > 0
and define

a c¢ b ¢ a —c b —c¢
v=(ty) (o) e-(5 3 ) =L )

LetU = {Ul, Ug, Ug, U4} and

Then
K% ={FeM>? : detF =4, |Fe|* <my(e)Ve € S'}.

The set K9¢ = {FTF : F € K%} is shown in Figure 4. The four flat parts in
the boundary correspond now to the four rank-one connections shown in Figure 1
which defined the boundary of the quasiconvex hull of the corresponding set with
SO(2) invariant wells. O

5. THE QUASICONVEX HULL OF SO(3)U; U...USO(3)Uy

In this section we prove Theorem 1.3. We begin with an equivalent description of
the set SO(3)F. Let L = {F € MP*2 : Fy; = F3, = 0} and define 7y, : M2*2 — [
by

Gi11 G2
WL(G) = Ga1 Ga
0 0
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FIGURE 6. The set (O(2)U; UO(2)Usy)i¢ for the diagonal matrices
U, = diag(a,b) and Uy = diag(b,a). This is also equal to the set
(SO(3)U; USO(3)Us)%¢ for the diagonal matrices U, = diag(a, b, ¢)
and Uy = diag(b, a, ¢).

Recall that F' = (Fey, Fes) € MP*2 for F € M3*3,
Lemma 5.1. Let F € M?*®. We have SO3)F = SO3)r.(G) where G is the
square root of FTEF € M?*2,

Proof: Choose a rotation Qg that maps the two-dimensional affine subspace
spaned by the first two columns of F' to the subspace {se; + tes, s,t € R}. Then
QoF = 7 (G) for some matrix G € M?*2. Replacing Qo by (=1 + 2e; ® e1)Qo
or by (—I + 2e3 ® e2)Qo if necessary, we may assume that G is positive definite.
Finally premultiplying Qo by a suitable rotation of the two-dimensional space {se; +
tes, s,t € R} we may assume that QoF = 7(G) with G positive definite and
symmetric. By construction

QI (QF)=FTF =G"G = G*

and thus G is the square root ofA FTE. The assertion of the lemma follows now
easily since SO(3)F' = SO(3)(Qo F). O

Let U = {U1,...,U} and define

my(e) = max{|Use|*: i=1,...,k} foree S’
Proof of Theorem 1.3: Let
A={F e M*?: det(F'F) < 6, |Fel* <my(e)Ve € S*}.
We first show that K¢ C A. A short calculation shows that for all F € M3*2
det(F' F) = adji,(F) + adjis(F) + adj3;(F),

where adj;;(F') denotes the (2 x 2)-subdeterminant formed with the i-th and the
j-th row of F. Thus

h(F) = (det(FTF) - %),
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is a polyconvex function on M?*2. Let
gv(F) = (|Fv|* —my(v))
then

(F) = h(F) + sup, 9v(F)

is a polyconvex function which is zero on A and positive for all F' ¢ A. This proves
the inclusion K?¢ C A. Thus it remains to show that A C K.
By Lemma 5.1 we may choose @; € SO(3) and G; € M2*? positive definite such

sym
that QZU, = ’/TL(GZ'). Since
adjss (U] Ui) = adjss ((QiU:)" (QiUi)) = (det Gy)* = &

we conclude det G; = ¢ fori =1, ..., k. Moreover, if we define for e € S! the vector
€ € R by € = (e, e2,0), then

|Usel® = |Usél” = |QiUié|* = |Glel®
and therefore
(5.1) max{|Gie|” : i =1,...,k} = my(e).
Let

A= {F = Qr(G) e P2 : Q €S0(3), G € (0(2)G1 U ... U O(2)Gk)qc}.

We claim that A = A. Indeed, let F = Q7 (G) € A. Then det(}j'TF) =det(@)? <
6% and |Fe|® = |Ge|* < my(e) by (5.1) and Theorem 1.1. Thus A C A. Conversely,
let F € A and choose @ € SO(3) sucht that Q1 F = 7(G). Then det(GTG) =
det(FTF) < 6% and |Ge|*> = |Fe|? < my(e). This proves A = A and it remains to
show that A C K. For Q € SO(2) we define

Q1 Q12 0
Q=1 Qu Qx 0 |, Q™ =(—-IT+2e2®e)QT €SO(3).
0 0 1

By definition of K,
Q*Q:U; € K
and thus
7, (0(2)G;) e K fori=1,...,n.

Since K is invariant under multiplication by SO(3) from the left, we conclude
A=A C K and the assertion of the theorem follows. O

6. EXISTENCE OF MINIMIZERS

In this section we address the question whether there exist minimizers of the
variational problem (1.1). This was an open problem for a long time, but recently
fairly general positive results have been obtained in [DM1], [DM2] based on Baire’s
Theorem and in [MS1], [MS2] based on Gromov’s idea of convex integration. Fol-
lowing Gromov [G] and Miiller and Sverdk [MS1], we define an in-approximation
of a given set K in the following way:

Definition 6.1. Let K C M™*" . A sequence of open sets V; C M™*" 4s called an
in—approzimation of K if the following three conditions are satisfied:
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i) VicC Vilﬁl;
ii) the sets V; are uniformly bounded;
iii) if a sequence F; € V; converges to F' € M™*" as i — oo, then F € K.

In this definition, we replace open sets with relatively open sets, if the set K is
a relatively open set with respect to the constraint that one of the minors is fixed
(see [MS2]). For example, in case i) of Theorem 1.1, the set K and its generalized
convex hulls are contained in the smooth manifold {det X = §}.

We will rely on the following existence result:

Theorem 6.2 ([MS1],[MS2]). Suppose that K C M™*"™ admits an in—approzima-
tion by (relatively) open sets V; in the sense of Definition 6.1. Let v € C*(2; R™)
and assume that Dv(x) € Vy for x € Q. Then there exists a u € W1 (Q; R™) such
that u =v on 02 and Du € K a.e.

In view of this result, it remains to construct in—approximations for the sets
under consideration in this paper. For the case of two wells (with equal or different
determinant), this has been done in [MS1], [MS2]. We follow their ideas in our
multi-well setting.

An important ingredient in the construction of the in—approximation is the char-
acterization of the (relative) interior of the generalized convex hulls. Throughout
this section we will assume the following hypotheses:

(H1) U = {Uy,...,Ux}, k > 2, and the matrices U; € M’ﬁyﬁfl are positive definite
with det U; =6 > 0.
(H2) for all U; € U there exists a vector e € S* such that [Use|* > myp qu;3 (€)

(see Lemma 3.5 for a justification of (H2)).

Lemma 6.3. Assume (H1) and (H2) and let K = SO(2)Uy U...USO(2)Uy. Then
the relative interior of K'° is given by

(6.1) relint(K'¢) = {F € K'°: |Fe| < my(e) Ve € S'}.
Proof: Let A denote the right hand side in (6.1) and define
B={FecK'“:3ecS": |Fe|>=myle)}.

Clearly K!' = AUB. If F € A, then there exists by compactness of S* a § > 0
such that |Fe|?> < my(e) — 4 for all e € S'. By continuity of the maps F ~ |Fe|?
it follows that F' € relint K'°. Conversely, assume that F' € B with [Fe|? = my(e),
e€ S'. Let Fy = F(I +te*t ®e). Then det F; = det F = § and

2 _ 2 Ly 4 2L 2
t - ’ -
|Fie|* = |Fe|” + 2t(Fe,Fe~) + t°|Fe |

If e is an eigenvector of FTF, then F; ¢ K'* for all t # 0 and thus F' does not belong
to the relative interior of K'¢. Otherwise we conclude F; ¢ K'¢ for t = s(Fe, Fe')
with 0 < s < sg and sg small enough. This proves the assertion of the lemma. O

Lemma 6.4. Assume (H1) and (H2). Then there exist for all matrices U; € U
matrices Ui(j) € relint(K'®) such that Ui(j) — U; as j — oo fori = 1,...,k.

Moreover, for each compact set E C relint(K') there exists a jo € N such that

k c
©2) e (Uso@u?) . iz
i=1
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Proof: We first construct for U; € U a sequence of matrices Ui(j) € relint(K'©)

such that Ui(j) — U; as 7 = 00. By Lemma 3.6 there exist exactly two matrices
Ui+1 and vectors e;+1 € S', e; 1 not parallel to e;, 1, such that

[Uieix1]® = |Uszr (eix1)]* = mu(eis)-

Thus there exist Q;+1 € SO(2), a;+1 € R? such that

Ui — Qiz1Uiz1 = aix1 ® €j3,4.
Now let

1= (1 —e)Ui +eQix1Uixa.
By Lemma 6.2 there exists Q. € SO(2), b € R*, m € S! such that

Q-Vi, —Viei=bom.
We claim that
WM = AQ Vi, + (1= \Vi, €relint K for e € (0,1), A € (0,1).

By construction, Wi)"s € K'¢ and therefore it suffices by Lemma 6.3 to show that

|WHel? < my(e) Vee S
This is immediate in the case U;_1 # U;y1, since

my(e) = [WMel> < (1 —&)|Use]? + Ae|Uiyrel? + (1 — Ne|Ui—rel* < my(e)
implies |U;e|? = |U;x1e|* = my(e), contradicting i) in Lemma 3.6.
Assume now that U;_; = U;y1. In this case we have by convexity
my(e) = W %el” < AV el + (1= N[V ref* < mule),
and we conclude that
(6.3) | i11€|2 = my(e).
Consequently, e = e;_1 or e = e;11. We may assume that the latter holds. But
then by Lemma 2.2 |VZ  e;01|> < my(eit1) for e € (0,1), and this contradicts
(6.3). Thus WZ?"E € relint(K!¢). Now define for example Ul-(j) = Wz.l/j71/j. Then
U9 € relint(K') and UY — U; as j — oo.
Finally the inclusion (6.2) follows from Lemma 6.3 since by continuity there

exists for all € > 0 a jo > 0 such that

|mu(e) — m{Ul(j)7...7U}5j)}(€)| <e, Vj>jo,VeeS"
O

After these preparations we are in a position to prove our first existence result.

Theorem 6.5. Suppose that W : M?*2 — R, W > 0, that K = {W~1(0)} =
SO(2)Uy U...USO(2)Uy, and that the matrices U; satisfy (H1) and (H2). Assume
thatv € C1(Q; R™) is such that {Dv(x) : x € Q} is contained in a compact subset of
relint(K'®). Then there exists a minimizer u of the variational problem: Minimize

I(w) :/QW(Dw)dx

in the class {w € WL (Q;R™) : w =wv on 0Q}. In particular, I(u) = 0.
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Proof: In view of Theorem 6.2 it remains to construct an in—approximation of
K with relatively open sets V; such that {Dv(z) : z € Q} C V].

The existence of an in-approximation will be a consequence of Lemma 6.3 and
Lemma 6.4. Choose V; CC relint K¢ such that {Dv(z) : z € Q} CC V4. Let 6; > 0

be given. By Lemma 6.4 we may choose Uz.(l) € relint K¢ such that |UZ.(1) —U;| <6
and

Vic (080(2)@.(1))[0.

i=1
Let £ = dist ({SO(Q)Ul(j) U...uso@uiy, dconv(K)) and define
Vo = {F: det F = 6, dist(F,S02)U" U...USO@)UWM) < %}.

Then V; C (V) and dist(F, K) < 2§; for all F' € V5. Proceeding inductively
with &; replaced by 2775;, we obtain an in-approximation of K. This proves the
theorem. O

We do not expect similar existence results in three dimensions when the wells
are essentially two dimensional, since it is not possible to lift the two dimensional
construction in such a manner that they satisfy three dimensional boundary con-
dition.

Remark 6.6. Let K = SO(3)Uy U...USO(3)Uy where {Uy,..., Ui} C M2X3 with

SYym
U; positive definite, detU; = § > 0 and assume that there exists u > 0 and v € S>
such that Ujv = po fori=1,... k. Assume that Q is a unit cube with sides parallel
to the orthonormal basis {e1, es,v}. Then, given any F € K¢\ K,

I(w) = /Q W (Dw)dx

has no minimizer in the class {w € WH°(;R™) : w = Fx on 0Q}.

We prove this by contradition. Let y be a minimizer. Notice that inf I = 0 since
F € K. Therefore, I(y) = 0 and consequently, Vy € K a.e. z €  and hence

(V)L(Vy)v =p*v  and  detVy =46 ae. z€Q.

It follows then, by Theorem 3.1. of Ball and James [BJ2], that y is a plane strain
deformation, i.e.,

Y1(z1,72)
y() =Q | ya2(z1,22)
w3
in an orthonormal basis parallel to {e;, es,v}. Comparing with the boundary condi-
tion on the surface 3 = 0, we conclude that y = Fz on Q. Thus I(y) = [Q|W(F) >
0, contradicting the assumption that y is a minimizer. O

Now we turn to the case K = O(2)U;U...UO(2)Uy. We first prove the analogues
of Lemma 6.3 and Lemma 6.4 in this situation.

Lemma 6.7. Suppose that (H1) and (H2) hold and let K = O(2)U; U...UO(2)Uy.
Then the interior of K' is given by

(6.4) int K'“={F e K': |detF| <6 and |Fe|> < my(e) Ve € S'}.
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Proof: Let A denote the right hand side in (6.4) and define
B={FcK'":|detF|=0or3eeS":|Fe|*=myle)}.
By continuity, it is easy to see that A C int K. Since K'¢ = AU B is suffices to
show that no point in B is an interior point of K'°. Assume first that | det F/| = 4.
Let F. = F(I +e’e ®e) with e € S'. Then |F — F.| = €%|Fe| and |det F.| =
(1+€?)|det F|. Thus F. — F as ¢ \, 0, but F. ¢ K'® for any € > 0. Therefore F
cannot be an interior point of K'°. Assume now that |det F| < § and that there
exists an e € S' such that |Fe|> = my(e). It follows from Lemmas 4.2 and 4.3 that
there exists a G € By with |Fe|? = |Ge|? and @ € SO(2), € € S, A > 0 such that
F = Q(G-2xxGTe)
~ 2X
= G__“
Q( |G Tel|2

Let F. = F+c2QGe®e. Then |F — F.| = €2|Ge|? and |F.e|* = |QGe +£2QGe|? =
(1 +e%)my(e). Thus F. ¢ K'* for € # 0 and hence F is not an interior point of
K'¢. This proves the lemma. O

G Tet eL).

Lemma 6.8. Assume that (H1) and (H2) hold. Then there exist matrices Ui(j) €

int K'¢ such that Ui(j) —U; asj — oo, fori =1,...,n. Moreover, for each compact
set E CC int K'° there ezists a ko € N with

k C
(65) pc(Jo@u?)", iz
i=1

Proof: Let Ui(j ) be the sequence of matrices constructed in Lemma 6.4, and let
Ui(j) = ﬁi(j) (I —é;je®e) with e € S*. By compactness of S* and continuity we
may choose §; ; > 0 such that |UZ-(j)e|2 < my(e) for all e € S'. Then det Ui(j) =
det Ui(j) (1—-6;,;) and Ui(j) — Uj if we choose for example 0 < 6; j < % The inclusion

(6.5) follows as in Lemma 6.4. O

Theorem 6.9. Suppose that W : M?*2 — R, W > 0, that K = {W~1(0)} =
0(2)UU...UO(2)Uy and that (H1) and (H2) hold. Assume that v € C*(Q;R?) is
such that {Dv(x) : = € Q} is contained in a compact subset of int K'°. Then there
exists a minimizer u of the variational problem: Minimize

I(w) :/QW(Dw)dac

in the class {w € WH*°(Q;R?) : w = v on 0Q}. In particular, I(u) = 0.

Proof: The proof is analogous to the proof of Theorem 6.5. Choose V; CC int K¢
such that {Dv(z) : € Q} CC V;. By Lemma 6.8 there exist for 6; > 0 matrices

Ui(l) € int K'¢ such that |U; — Ui(1)| < 07 and
— k 1 lc
ViC (U 02)U! >) .
i=1

Let &, = dist (02U U---Uu 02UV, 0K'¢) and define
Vo = {F: dist(F,02UY U---Uu0@2)UWY) < %}.
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Then V; C (V3)% and dist(F, K) < 26; for all F' € V,. Proceeding iteratively we
obtain the required in—approximation. This proves the theorem. O
Finally we prove an existence result for the SO(3) invariant wells. This requires
first a modification of (H1) and (H2). We will assume
(H1') U = {Uy,...,Us}, k > 2, and the matrices U; € MZx% are positive definite
with adj;3(UL'U;) = 6% > 0.
(H2') Let Q; € SO(3) and G; € M?*? be the matrices constructed in Lemma 5.1
with 71, (G;) = Q.;U; and let G = {G1,...,Gr}. Then there exists for all
G;i € G an e € S' such that |Giel> > mg\ (¢} (€).

Lemma 6.10. Assume that (H1') and (H2') hold. Let K = SO(3)U; U...U
SO(3)Uy. Then

(6.6) int K'* = {F € M**? : det(FTF) < 6%, |Fe|* <my(e)Vee S'}.
Proof: Let A denote the right hand side in (6.6) and define
B={F € K'*:det(F'F) =6 or Je € S* : |Fe|* = my(e)}.

Then K' = AU B and by continuity it is easy to see that A C int K'*. Conversely,
assume that F' € B. Since F is not an interior point of K¢ if and only if QF is
not an interior point for some @ € SO(3), we may assume that F' = 7wy (G) with
G € (0(2)G1 U...UO(2)Gp)' and det(GTG) = 6% or |Ge|? = my;(e) (see the proof
of Lemma 5.1). We conclude as in the proof of Lemma 6.7 that G is not an interior
point of (0(2)G; U...U O(2)G)* and this implies the assertion of the lemma. O

Lemma 6.11. Assume that (H1') and (H2') hold. Let K = SO(3)U; U ... U
SO(3)Uy. Then there exist positive definite matrices Ui(j) € M3 such that Tji(j) €

int K'° and Ui(j) — U; as j — 0o. Moreover, for each compact set E CC int K'¢
there exists a jo € N with

k
pc(Uso@u?)", iz
i=1

Proof: We may assume that U; = 71 (G;) with G; as in Lemma 5.1. Let ng) be
the sequence of matrices constructed in Lemma 6.8. Then 77 (G;) € int K'° and by
Lemma 6.10 the matrices

Gz(‘,kl)l Gz(‘,kl)Q Ui713

(9 — k k
Uit = G§72)1 GE72)2 Uiz2s
0 Uis3
have the properties stated in the lemma if we choose j big enough since the set of
positive definite matrices is open. O

Theorem 6.12. Suppose that W : MP*2 — R, W > 0, that K = {W~1(0)} =
SO(3)U; ---SO(3)U,, and that (H1') and (H2') hold. Assume that v € C*(Q; R?)
is such that {Dv(z) : © € Q} is contained in a compact subset of int K'°. Then
there exists a minimizer u of the variational problem: Minimize

I(w) :/QW(Dw)dac

in the class {w € WL (Q;R?®) : w =v on 0Q}. In particular, I(u) = 0.
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Proof: This is analogous to the proof of Theorem 6.9. O

7. UNIQUENESS AND NON-UNIQUENESS OF MICROSTRUCTURES

As discussed in the introduction, the direct method in the calculus of variations
based on weak lower semicontinuity cannot be applied to obtain existence for the
variational problem (1.1). Minimizing sequences typically develop finer and finer
oscillations (microstructures) and converge only weakly but not strongly. However,
under suitable coercivity and growth assumptions on W (subsequences of) the
deformation gradients {Duy} of minimizing sequences generate a gradient Young
measure which captures the essential statistics of the oscillations in {Duy} (see
for example [T],[B],[KP]). It is a natural question to ask whether the oscillations
in the minimizing sequences are unique in the sense that the generated gradient
Young measures are unique. In this section we prove that this is only true for some
exceptional cases where the measure p is of the form u = Ad4 + (1 — \)op for A,
B € K with rank(4 — B) = 1. For F € K¢ we define

M(F) = {p: pis gradient Young measure with supp pu C K, (u,id) = F'}.

In order to prove our non-uniqueness results we will use a special subset of all
gradient Young measures, the so-called laminates (see for example [P]). Assume
that FF = AA + (1 — A\)B with rank(A — B) = 1 and A € (0,1). Then p =
Ada+(1—=XN)dp € M(F). This process of splitting matrices in convex combinations
along rank-one lines can be iterated: if B = pC + (1 — p) D with rank(C' — D) =1
and p € (0,1), then g = Ada + (1= X)(udc + (1 — p)dp) € M(F). In particular we
will use the following result which follows from [BJ3]:

Proposition 7.1. Assume that Uy and Uy are symmetric and positive definite
with det Uy = detUy = § > 0. If F € (SO(2)U; USO(2)Us)% satisfies |Fe|> <
myu,,v.y(e) for all e € S1, then M(F) contains at least two laminates supported
on three matrices.

We first consider the case of SO(2) invariant wells. Let & = {Uy,...,Ux} and
assume that the hypotheses (H1) and (H2) defined in Section 6 hold. Recall the
set B defined in (3.2). The following proposition shows that the Young measure is
unique if and only if FTF lies on the boundary of K¢ relative to the hyperboloid
det C = 2.

Proposition 7.2. Let K = SO(2)U; U...USO(2)U, and F € K9°.

i) If F € B, i.e. if there exist an e € S* and U;, U; € U, i # j, such that
|Fel> = Uil = |Uje|* > mynqu,,u;3(e), then M(F) contains a unique ele-
ment. Indeed, there exist unique Q;, Q; € SO(2) and X € [0,1] such that

M(F) = {A(SQiUi + (1 - A)éQjUj}'

ii) If F € B, i.e. if |Fe| < my(e) for all e € S*, then M(F) contains more than
one element.

Proof: Assume that p € M(F) and let p = A1 + ... + A, where p; is a
probability measure supported on SO(2)U; and A; € [0,1] with Ay + ...+ Ap = 1.
By Jensen’s inequality

k
FeP S0 [ JAcPdu),
j=1 supp p;
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The assumptions in i) imply that A\, = 0 for £ ¢ {4, j} and thus supp x C SO(2)U; U
SO(2)U;. Moreover,

[ aePauta) - pef = [ (P = a)ePduta) =0

supp p
and therefore y = Ag,u; + (1 — A)dg,;u; where Q; and @; are the uniquely defined
rotations with Q;Use = Q;Uje = Fe. Since U; # Uj it follows that A is uniquely
defined and this implies i).

To prove ii) we consider F(t,v) = F(I +tv®v*). Then det F(t,v) = det F and
there exist t+ > 0 > ¢~ such that F(t*,v) € B. We may assume that F(t*,v) ¢ K.
By Lemma 3.3 there exist U;, U; € U such that F(t*,v) € (SO(2)U;USO(2)U;)% . It
follows from Example 3.4 that F(t,v) € (SO(2)U;USO(2)U;) fort € (tT —e,tT), e
small enough, with |[F(t*,0)|* < myy, v,3(e) for all e € S'. Let Fy = F(to,v) with
to € (tt —e,t"). Then there exists A € [0,1] such that F = AFy + (1 = A\ F(t™,v)
and Fy — F(t~,v) = av ® v+, a € R. The assertion follows now from Proposition
7.1 since M(Fp) contains at least two laminates. O

Example 7.3. (The four-well problem) Consider the four well problem described
in Example 3.7. Let

(1) me(4): = (). w-(0)

Then M(F) contains a unique element if and only if F = QU (I + ae; ® ), or
F =QUs(I+aes®ey), or F = QUy(I + ez ® ey ), or F = QUs(I + aes ® ex)
for some Q@ € SO(2) and for some a € R. These correspond to the boundary
arcs shown in dark in Figure 2. In particular note that F' corresponding to some
rank-one laminates have more than one element in M(F), as for example F =
QUL(I +aes ®ex), or F = QUa(I + aez @ ex), or F = QUy(I + ce; @ i), or
F = QU3(I + cey ® ef) which correspond to the dashed arcs shown in Figure 2.

Very similar results hold in three dimensions when the wells are essentially two
dimensional. Let U; satisfy the conditions of Theorem 1.2.

Proposition 7.4. Let K = SO(3)U; U...USO(3)U}, and F € K9°.
i) If F € B, i.e. if there exist an e € S? satisfying (e,v) = 0 and U;, U; € U,
i # j, such that |Fe|* = |Ue|* = |Ujel> > myp qu;,u,3(€), then M(F) contains
a unique element. Indeed, there exist unique Q;, Q; € SO(3) and A € [0,1]
such that
M(F) = {A(SQiUi + (1 - A)éQjUj}'
ii) If F € B, i.e. if |Fe| < my(e) for all e € S? satisfying {e,v) = 0, then M(F)
contains more than one element.
Proof: The proof follows that of Proposition 7.2 aided by the observation that
F € K satisfies (Fe, Fv) = 0 for all e € S? such that {e,v) = 0. O

We now turn to the O(2) invariant wells. Let & = {Uy, ..., U} and assume that
the hypotheses (H1) and (H2) defined in Section 6 hold. Recall the set B defined
in (4.2). The following proposition shows that the Young measure is unique if and
only if FTF lies on either the cones with apex U2 or on the intersection of the flat
boundary parts with the hyperboloid det C' = §% in K.

Proposition 7.5. Let K = O(2)U; U...UO(2)U}, and F € K9°.
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i) If there exists an e € S* such that |Fe|* = |Use|* > myqu,y, then M(F)
contains a unique element. Indeed, there exist unique A € [0,1] and Q* €
0(2) with det Q* = £1 such that

M(F) = {)\6Q+Ui + (1 - A)(SQ*UZ}

ii) If there exists an e € S* such that |Fel* = |Use|* = |Ujel* > myqu,,u,3(€),
i # j, then there exist unique Q?E,Q;t € O(2) satisfying Q?EU,-e = Q;'EUje =
Fe,det QF = +1,det Q7 = =1 such that

M(F) = {p= X dqry, + A dgru, + A7 0gtu, + 4 90; v,
MN[0, 1M + A7 + AT+ =1,
(AF+A1)6 — (A7 +A7)d = det F,
(AF + A7) (Use, Uie™) + ()\j_ + A7) (Uje, Ujet) = (Fe, Fe-)}.

Therefore, the set M(F) contains a unique element if det FF = +6 or if
(Uie,Uiet) = (Fe,Fet) or if (Uje,Ujet) = (Fe, Fel). Otherwise M(F)
consists of a one-parameter family of measures.

iii) If |Fe|* < my(e) for all e € S* then M(F) contains more than one element.

Proof: 1) It follows as in the proof of i) in Proposition 7.2 that supp u C O(2)U;
and that

[ 1@ = e =o.

Since there are exactly two elements Q € O(2) which satisfy Q*U;e = Fe (one
rotation and one reflection) the assertion follows.
ii) We note that there exist exactly four elements Qii, Q;t € O(2) which satisty

(7.1) QFfUse = Q;'EUje = Fe.
Set
M = {n= X dgry, + A 0g-y, + A Oy, + A7 0g-u;
A AT €[0,1LAT + A7 + AT + 47 =1,
AT +2A0)6 = (A7 +X)6 = det F,
A+ A ) (Use, Uge) + ()\J+ + )\;)(Uje,UjeJ‘) = (Fe, Fel)}.

Now assume that p € M(F). Then, it follows as in the proof of i) in Proposition
7.2 that

=X gy, + N Og-y, + /\j(SQ;UJ_ + X 0g-u,
AL AT €[0, 1A + A7 + AT+ =1

Further, the requirement (u,id) = F implies that

(7.2) (AT QFU+ A QUi+ A QU + A, QUj) et = Fe™.
Note that
—77=T,L —77=T,L
+ _ QaUa € ®QaUa € — i
Qa - (I_Q |U07T€J‘|2 Qa: a=1,7,
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and hence, we conclude that
AT +200)Q; Uie™ + (AT +X,)Q; Ujet

207 —rroL 227 7L L
_|U.*T;L|2Qi Uie™ = U Tel]? Q;Uje~ =Fe™.
i J

We take the inner product of this equation with Fle, recall (7.1) and obtain
AF + M) Use, Uge™) + (/\j' + A7) (Uje, Ujet) = (Fe, Fe*).
We obtain the final condition,
AT +X0)6 = (A7 +A7)6 =det F,

by taking the cross-product (a A b = a1bs — asb; for a,b € R?) of (7.2) with Fe,
recalling (7.1) and noting that for any A € M?*2, det A = (A4e) A (Aet). We have
proved that u € M or M(F) C M.

To prove the converse inclusions, let p € M. We note that (7.1) implies that
there exist a, b, c € R? such that

QiU —QiUi=a®e", QiU —QjU;=b®e",

(LQ-S-U. + LQ_U) -
AT AT AT

<LQ*UJ + LQ-‘UJ) =c®et.
AF a7 AT+

This implies that u is a gradient Young measure (in fact as a laminate of rank two).
It remains to be shown that (u,id) = F. In view of (7.1), we only have to show
(7.2). However, this readily follows from the last two conditions in the definition of
M and the calculations above since for any u # 0, v, w € R?

(u,v) = (u,w) and uAv=uAw < v=uw.

iii) The construction in the proof of Proposition 7.2 implies non-uniqueness for
the case det F' = § and also for det ¥ = —4 (by premultiplying every matrix in
the construction by J = diag(—1,1)). Consider next the case det F = 0. We
may assume that F' = av ® v with a > 0. Since by assumption |Fe|? < my(e)
for all e € S' there exists a @ > «a such that av ® v € B. Let A = a/a. Then
F = (1 - )\)0+ AF and since there is more than one laminate with center of mass
equal to zero the assertion follows. Consider finally the case 0 < |det F| < 4.
We may assume that 0 < detFF = v < 4. Choose any G € B;s of the form
G = AQU; + (1 — \)U; with A € (0,1), Q € SO(2) and QU; — U; = a® et. Let
Gy =G -2tée®GTé with é = G Tel /|G Tet|. Since det Gy = det G(1 — 2t) there
exists a t € (0, %) such that G = G7 satisfies det G = . By Lemma 2.2, there exists
R € SO(2),a,b € R? such that F = RG +a®b. Let F, = RG + aa ® b; clearly,
there exist ag > 1 such that F,, € B, and F,, # RG. Therefore we can obtain
F by laminating G and F,,; the result follows since proof of ii) shows that M(G)
contains more than one laminate. (]

We finally turn to the case of the thin-film wells. Let &4 = {Ui,...,Ux} and
assume that the hypotheses (H1') and (H2') defined in Section 6 hold. The result
says that the Young measure is unique if and only if FTF lies on the intersection
of the flat boundary regions with the hyperboloid det C = % in K2°. Notice that
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unlike the case of the O(2) invariant wells there is no uniqueness in the cones since
we can make new constructions which use the third dimension.

Proposition 7.6. Let K = SO(3)U; U...USO(3)Uy, and F € K. Then M(F)
contains a unique element if and only if det(FTF) = 6 and there exists an e € S*
such that |Fel® = |Use|* = |Uje* > my, (g, p.y(€), 1 # J.

Proof: Consider first the case det(FTF) = ¢% and assume that there exists an
e € S' such that |Fe|? = |Use|* = |Ujel* > My (0,0, (€), © # j. We can adopt the
proof of Proposition 7.2 to establish that the Young measure is unique.

Now consider F' such that there exists an e € S! such that |Fe|? = |Use|* >
LTNUAT We show that M(F') contains more than one element. We may assume
that Fe = Use or F = U;(I — 2\v ® v) where u = (ey, 3,0), v = (—eg,e;,0) and
{u,v,w} is an orthonormal basis in R?. In this basis we have

. a b a (1-2\)b
U= ¢ d and F=| ¢ (1-2)\c
0 0 0 0
Let
1 0 0
R(,i = 0 cosf Fsinh

0 =£sinf cosd
Note that RE € SO(3) and that

A~

0 0
RjU, —R,U; = (Rf —R,)U; =2sin6 | 0 0
c d

is rank-one. Therefore, we can laminate Rg'f]i with Ry U; in the proportion 1/2 to
obtain a Young measure with center of mass

1 a bcosf
E(Rg'-i—Ra_)Ui: ¢ dcosf
0 0

which is equal to F for an appropriate choice of 6. For this same F' we can follow
the proof of Proposition 7.5 i) to obtain a laminate of QT U;,Q_U; where Q* =
diag(1, £1, 1) in the proportion A\. Thus we have constructed two distinct laminates

in M(F).
Finally, for all other cases, we can lift the constructions in the proof of Proposi-
tion 7.5 to prove non-uniqueness. O

8. APPROXIMATE RELAXED ENERGY

The relaxation of the variational problem (1.1) is obtained by replacing W with
its lower quasiconvex envelope

W = sup{® : & < W, ® quasiconvex}.
It follows from the invariance of W that

WI(F) = W(QF)
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e®¢;

FIGURE 7. The quasiconvex hull and the space V*.

for all @ € SO(2), O(2) and SO(3), respectively. Thus there exists W4 : M2 — R
such that

Wa(F) = W (FTF);

the function W% vanishes on K¢ and grows away from it. We are interested in
calculating this function, but this is extremely difficult. However, the practical
interest in this function lies near the set K2°. Therefore, we construct a function
W : Miyxn% — R, which we call the approximate relazed energy, with the following
three properties:

(P1) The function F — W(FTF) is quasiconvex.

(P2) The function W vanishes on K9¢ and hence the function F — W(FTF)
vanishes on K%°.

(P3) The function W grows quadratically away from K4°.

We note that W needs to grow quadratically in C = FTF away from K2 in order
that the ‘linearlized elastic moduli’ are positive.

Our approximate relaxed energies are modifications of the functions ® con-
structed in Lemmas 3.2, 4.1 and in the proof of Theorem 1.3. Recall that (H1)
and (H2) have been defined in Section 6.

Remark 8.1. Suppose K = SO(2)U; U...USO(2)Uy for U; € ME)2 that satisfy
(H1) and (H2), and that a,a; > 0. Then the function
k

(8.1) W(C) = h(det C) + Zai((eia Cei) —my(e:)}

i=1
has the properties (P1), (P2) and (P3). Here & ={e1,..., ey} is the set of special
directions according to Theorem 1.1, t2 = (max{t,0})? is the square of the positive
part of t and h : Rt — R is a convex function which satisfies

h(6%) = h'(6*) =0, R"(*)=a >0 and h(t) — oo ast— 0 or co.

The convexity of k and ()2 implies that the function F — W (FT F) is polycon-
vex and hence (P1) holds; (P2) follows from the characterization of K% in Theorem
1.1. We now turn to (P3). Recall the identification of symmetric matrices with R?.
In this space, the set KJ¢ is a simply connected region in a two-dimensional man-
ifold (det C = 6%) whose boundaries are made up of k curves (the intersection of
the manifold with the planes (e;, Ce;) = my(e;)). First pick any point Cp in the
interior of K4¢. It follows from the properties of h that W grows quadratically away
from Cy in the direction perpendicular to the manifold at Cy. Now pick any point
Cp on any of the boundary curves. Let V be the tangent (or velocity vector) to
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the curve at Cy (see Figure 7) and consider the plane perpendicular to V' (Figure
7 right). Since

4 det(Cy +tD) = (cof Cy, D)
dt t=0

the normal to the manifold at Cy is in the direction cof Cy. Similarly, the normal
to the plane is in the direction (e; ® e;). Both lie on the plane V* as shown in the
figure, and they are not parallel (cof Cy has rank two while (e; ® ;) has rank one).
Now, h grows quadratically in the directions + cof Cy while a;((e;, Ce;) —my(e;))%
grows quadratically in the direction (e; ® e;). Consequently, in the plane V4, W
grows quadratically in every direction away from 7' which is tangent to K2¢; in
fact, given any €,60p > 0 there exists «g such that

W(C) > ao|C — Gy VC e V*: st |C—Col < e,angle(C — Cy,T) > bp.

Note that for given 6; and € the constant «g depends only on Cy and e; ® e; and this
smoothly. Further, the estimate is also true even if Cy is chosen at the intersection
of two curves (i.e., if Cy = U?); in fact, such points are obtained as the interesection
of two planes (e;,,Ce;;) = my(e;,) and (es,, Ce;,) = my(es,) with the manifold
and we may use either e;, or e;, to establish it. Therefore, given any 6y, > 0 we
can choose o independent of the position Cy on boundary of KJ¢ in the above
estimate. O

Remark 8.2. Suppose K = O(2)U, U...U O(2)Uy for U; € MZ)2 that satisfy
(H1), (H2) or that K = SO(3)U1 U...USO3)Uy for U; € M3*3 that satisfy (HI'),
(H? ). Then the function

(8.2) W(C) = (detC —6°)% + gé%}f((e’ Ce) —my (€))%

has the properties (P1), (P2) and (P3).

This is quite similar to the discussion above. O

Unfortunately, the formula (8.2) above is unsatisfactory since it is not explicit.
However, it is possible to make it explicit for specific examples.

Example 8.3. (The four-well problem) Consider the four well problem described
in Example 4.5. Given any C € M?;,%, let
C—U2 Ci1—Co>0&C12 >0,
C—-Ui Ci1—Cy<0&C12 >0,
C—-U; Ci—Cypn<0&C»<0,
C—U:)? 011—02220&012S0.
Then W defined in (8.2) can be explicitly written as
W(C) = (detC — 6?2

(8.3)

D =

2 (C11 — C22)(D11 — Da2) > 0
+ (AD))3 and D12C12 > 0,
maxcce, ((e, De))d  otherwise,

D11 + Dy, Dii + Dy )\ .
/\(D):< 11"; 22>+\/< 11"; 22) + D2,

where
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and

We note that

max ((e, Ce) —my(e))? = <maX ({e,Ce) — mu(e))>

ecS1
and hence our task is to calculate

masx (e, Ce) = mu(e))

Let e = {cos#,sin 8} and
f(@) = (e,Ce) —my(e).

It is sufficient to look at this function for 6 € [0,7) since our original function is
invariant under e — —e. Our task is now to calculate max f for 6 € [0, 7).
But first, we have to calculate my(e) = maxi—1,.. 4 (e,U7e). For any A € M2x2,

(e, Ae) = Aj1 cos® § + 2A15 cos@sin @ + Ay sin? 6,

and it is easy to conclude that

(e,Ufe) 0 ¢€l0,7],

_ _ ) (e Use) 0€(f, 5],
(8.4) my(e) = zfrrll,ax, e, U22€> (e, U}e) 0 e [%, %Tﬂ'],
(e;Ufe) 6 €[,

since a > b,c > 0 by assumption.

We now claim that (e, Ce) and f(6) achieve their maximum in the same “quarter
interval” [0,7/4], [x/4,7/2], [7/2,3w/4] or [3w/4,7]. This is easily verified by
contradiction. Let us consider the case Cay > Ci1,Ch2 > 0; then (e, Ce) achieves
its maximum in [7/4,7/2]. First assume that f(6) achieves its maximum for 6 €
[37/4,7]. Let ¢ = 0 — /2 so that ¢ € [7/4,7/2]. Then a simple calculation using
(8.4) shows that

f(@) = f(8) = (Coy — C11)(cos® 6 — sin? §) — 4C15 cosfsinf > 0

which contradicts the assumption that f achieves its maximum at 6. Similarly,
we can show that f(#) cannot achieve its maximum for 6§ € [0,7/4] or for 6 €
[7/2,37/4] by checking with ¢ = 7/2 — 6 and ¢ = 7 — 0 respectively. We can
similarly treat the other cases.

Thus, the maximum of f is equal to the maximum of (e, De) (for D defined
above) for  restricted to the quarter interval in which (e, C'e) achieves its maximum.
Now, if the angle corresponding to the eigenvector of the maximal eigenvalue of
D lies in this interval, then the maximum of (e, De) and that of f is equal to the
maximum eigenvalue of D. This is the first possibility in (8.3). If the corresponding
angle lies outside this interval, then the maximum of f is equal to the higher of the
values of (e, De) at the two boundaries of the interval. This is the other possibility
of (8.3). O
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