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1 Introduction

It is well-known that Positive Mass Theorem has a fundamental importance in Ein-
stein’s general relativity. The positive mass theorem for 5-dimensional Lorentzian man-
ifolds is therefore interesting in the context of Kaluza-Klein theory which provides a 5-
dimensional general relativity containing both Einstein’s 4-dimensional theorey of gravity
and Maxwell’s theory of electromagnetism. This idea of Kaluza-Klein was enthusiasti-
cally received by unified-field theorists and was extended to higher dimensions to include
the strong and weak forces (i.e., 11-dimensional supergravity theories and 10-dimensional
superstrings). We refer to review article [OW] for higher-dimensional unified theories
from the general relativity side. Mathematically, the existence of Spin® structures on
orientable 4-manifolds provides a unified treatment on gravity and electromagnetism. In
this paper we adapt Witten’s method and the analytic arguments of Parker and Taubes
to such a Spin® structure. This yields a Positive Mass Theorem (Theorem 1.2 below) for
hypersurfaces in 5-dimensional Lorentzian manifolds.

Let N be a 5-dimensional Lorentzian manifold with Lorentzian metric g of signature
(—1,1,1,1,1), which satisfies the Einstein equations

~ R _

Raﬂ - 5 Gap = Taﬂ; (11)
where éag, R are the Ricci and scalar curvatures of § respectively, T,p is a symmetric
tensor field which is interpreted physically as the energy-momentum tensor of matter.

Definition 1.1 A spacelike hypersurface M of N is called asymptotically flat of order T
if there is a compact set K C M such that M — K is the disjoint union of a finite number
of subsets My, -+, My — called the “ends” of M — each diffeomorphic to the complement

of a contractible compact set in R*. Under the diffeomorphism the metric of M, C M is
of the form

Gij = 05 + aj (1.2)
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in the standard coordinates {x'} on R*, where a;; satisfies
a;; =0(r™7), Okay; = O(r—™1), O0kai; = O(r—72). (1.3)

Furthermore, the second fundamental form of M satisfies
hij =0 "1,  Okhij =00 2. (1.4)

A U(1) line bundle L over M is called asymptotically flat of order T if there is a trivial-
ization of L over the end and a u(1)-value 1-form A such that on end M, the connection
on L can be written as

daj = 0; + Aji, (1.5)
where A; is real, and satisfies
A;j =0, OA; = O(r"?). (1.6)

We will often identify the end M, C M with the corresponding set M; C R*.

The curvature Fy = dA of such a connection on L may be interpreted physically as
the electromagnetic field. For spacelike asymptotically flat hypersurface M and asymp-
totically flat line bundle L, we can define the total energy, the total linear momentum
and the total electromagnetic momentum. They are defined in each asymtotic end M; as
limits over the sphere Sk, of radius R in M; C R

Definition 1.2 Total energy of end M, is defined as
Ey= lim ;' SRJ(ajgz'j — 0395;)dSY’, (1.7)
total linear momentum of end M, is defined as
Pk = lim 04_1 2(hzk - (Szkh]])dQZ, (18)
R—o0 SR

total electromagnetic momentum of end M, is defined as

2A,dQY — / 2 4,d0), (1.9)

SR

SR,

where C; = 12ws and ws is the volume of unit sphere S® with standard metric.



Definition 1.3 The current matriz of electromagnetic field on end M; is defined by

Y = (wiyy),
where
Wi = 2_1(_%212 - %213 - %214 + %234 + %242 + %223):
Wiz2 = 271(_‘11212 + ql213 + ql214 + ql234 - ql242 - %223)7
W33 271(%212 - ql213 + ql214 - ql234 + ql242 - ql223)7
9-1( 2 2 92 2 9 2

Wi44 (%12 T Qi3 — Qg — YUza — Qa2 T+ %23)7
Wij = Z QikQikj> 1<4,5 <4, 1#].

k#{i.j}

When the asymptotic order 7 > 1, these quantities are finite, independent on the
choice of asymptotic coordinates. Since q;; = —qij;, {2 is real symmetric. Moreover, )
is traceless.

The following Positive Mass Conjecture was proved first by R. Schoen and S.T. Yau
[SY1, SY2, SY3|, then by E. Witten [W, PT].

Theorem 1.1 (Schoen-Yau, Witten) Let N be a 4-dimensional Lorentzian manifold with
Lorentzian metric g of signature (—1,1,1, 1), which satisfies the Einstein equations (1.1),
M C N be a spacelike asymptotically flat hypersurface of order ™ > % If M satisfies the
dominant energy condition

Too > [D> T3, and Too > |Tasl,

then, for each end M;, we have
E > 1/22?121'-

If By, =0 for some ly, then M has only one end and N is flat over M.

One key point in Witten’s argument is to prove that there is a positive definite Hermi-
tian metric on Spin(3,1) spinors. This fact was verified by T. Parker and C. Taubes [PT]
in terms of representation theory of spin group SL(2,C'), and was extended to Spin(4,1)
spinors by the author in terms of representation theorey of spin group HU(1,1). Con-
sequently, Positive Mass Conjecture can be proved for spin spacelike hypersurface in
5-dimensional Lorentzian manifolds [Z1]. It should be true for all spin group Spin(n,1),
an issue we will address elsewhere.



Now since N is 5-dimensional and M is an orientable hypersurface in N, M has a Spin®
structure. It means that there is a U(1) line bundle L on N such that S ® L2 is globally-
defined over M, where S is (locally) spinor bundle of N, which is not globally-defined on
N except that NV is spin. Denote W = S ® L3. W is called the complex Witten-Dirac
spinor bundle, and L is called Spin® structure. Let A be a U(1) connection 1-form on
L, and denote F}! as the curvature of L restricted on M. The corresponding connection
on L3 isdy=d+ %A. Let V be the metric connection on S. Then the globally-defined
connection V4 and the metric on W are defined as follows: write ¢ = s1®071, ¥ = 55 ® 09
locally, where s1,s5 € S, 02,02 € L, then

VA¢ == VSl (024 g1 + S1 (024 CZAO'l,
(6, V)w = (s1,52)5 - (01,02)L.
Obviously, V 4 is compatible with the metric (, )w. At each p € M, we fix an orthonormal
frame {e,|a = 0,1,2,3,4} with ey normal to M and ey, es, €3, e4 tangent to M. (Here,

and henceforth, repeated indices are summed with Latin indices running from 1 to 4 and
Greek indices running from 0 to 4.) Denote {e*|a =0, 1,2, 3,4} as its dual frame.

Definition 1.4 The above M satisfies the charged dominant energy condition if

Too > \/Z 2+ \/Z F2,., and Toy > |Tag| + |Fas| (1.10)
i i.j

Theorem 1.2 Let N be a 5-dimensional Lorentzian manifold with Lorentzian metric g of
signature (—1,1,1,1, 1), which satisfies the Einstein equations (1.1), M C N be a spacelike
asymptotically flat hypersurface of order T > 1. Let L be the Spin® structure of complex
Witten-Dirac spinor bundle of M with U(1) connection A, which is also asymptotically
flat of order T > 1. If M satisfies the charged dominant energy condition (1.10), then,
for each end M,;, we have

B> { \/|Qz|2 + 2|qi2qiza + Q3qia2 + qadios| if |P|=0,
L= =4 =y .
B+ /271 Q2 + Py if 1P| #0,

where |Pl| = /3 pj, 1Qil = \/Xicjai; and B = || (pu, piz pis. )’ if |2 # 0. If
E,, = 0 for some ly, then M has only one end and N, L are flat over M. Moreover,

Piok = 0, q1y55 = 0.

We also prove an analogous theorem for 4-dimensional Lorentzian manifolds in the
appendix. Namely,



Theorem 1.3 Let N be a 4-dimenstonal Lorentzian manifold with Lorentzian metric g of
signature (—1,1,1, 1), which satisfies the Einstein equations (1.1), M C N be a spacelike
asymptotically flat hypersurface of order ™ > % Let L be the Spin©(3,1) structure of N
with U(1) connection A, which is also asymptotically flat of order T > % over M. If M
satisfies the charged dominant energy condition (1.10), then, for each end M,, we have

E > \/|Pz|2 + |Qul* + 2|puqizs + pr2qis1 + Pisqnal,

where |P| = \/ X 0, |Qil = \/Xi<j Giij- If Bty = 0 for some ly, then M has only one end
and N, L are flat over M. Moreover, pyr = 0, qiyij = 0.

2 Spinors

Let N be a 5-dimensional Lorentzian manifold, and M be a spacelike hypersurface in V.
Denote H as the field of quaternions. The hyper-unitary group HU(1,1) = Spin°(4,1)
is the double covering group of connected Lorentz group SO(4,1) (see [Ha], p272). A
Spin® structure on N is a globally defined HU(1,1) Xz, U(1) bundle W over M locally
of the form W = S ® L2. For any X € End(W), denote X* the adjoint of X under
HU(1,1) xz, U(1) Hermitian structure. Denote

N={X € End(W),X = X", Trace(X) = 0}.
There is an invariant metric on X defined for X,Y € N by,
1
(X, Y)= —§%e(Tmce(XY)).

Moreover, for any X € T*N with coordinate (xg, 1,9, x3,24), we have a canonical
identification of X to an element in N, i.e.,

XH<:”°_ v ) (2.1)

—Tr —X

where x = x1 + w9l + x3J + x4K. As in [Z1] one can prove that this defines an isometry
T*N = .

The spinor bundle W has a HU(1,1) xz, U(1) invariant Hermitian metric defined by

(¢;w):§1'771—52'772

for ¢ = (£1,&)" € W, = (1, 1m2)" € W. This metric is not positive definite.



The Clifford multiplication is the map T*N ® W — W that sends X ® ¢ to X ¢,
where X ¢ means that spinor ¢ is mutiplied by the corresponding matrix (2.1) of covector
X. Obviously, XY +YX = —2g§(X,Y) - Id. The choice of a timelike covector e’ gives
another Hermitian metric on W by

<¢71/)> = (€0¢> w) = gl T +£2 P

for ¢ = (£1,&)" € W, ¢ = (n,m2)! € W. This new metric is positive definite and
Sp(1) x Sp(1) xz, U(1) invariant. Furthermore, for any X € T;N, x € T;M, spinors
¢, € W, we have

(X¢, ) = (6, X¢), (20, ) = —(¢, av)), ("¢, ¥) = (9, ™). (2.2)

The proofs of above facts are similar to those in [Z1]. By (2.1), we get a canonical

o, (10 i (01
¢ 0 -1 )° 10 )
2 0 I 3 0 J 4 0 K
e|—><10 ot BT Pl (P (2.3)

Now we derive the Pauli representation. We identify H = C? as follows: For any
xg = @1 + ol + 23] + 24K = (v + x2) + J(x3 — x41) € H, we identify it to z¢ =
(11 + @oi, w3 — x4i)t € C?. Since I -xy = I(xy + xo0) + J(—I)(x3 — 241), J - 2y =
J(xy 4+ 2ol) — (x3 — x4]), and K -y = J(=1I)(x; + xol) — I(x3 — x41). We can obtain
the following canonical Pauli representation

Ir—><(i) _0i>,J»—><(1) _01>,K»—><_0i _01> (2.4)

For any zg,yg € H, we have Re(Tgyy) = Re(TLyc). This fact implies that, for any
o, € W, Re(p, )y = Re(d, )¢, where (, )y is quaternions Hermitian metric on W
and (, )¢ is the corresponding complex Hermitian metric on W while W is viewed as a
complex rank-4 bundle.

representation of the coframe

Obviously, W = WT@W = over M, where W* = {¢p € W : x¢p = £} (x = —ele?e’e?).
The ‘half spinor bundles’ W* are orthogonal w.r.t. metrics (, ) and (, ). Moreover,
0% = %€, €¥ preserves W*. Now the space of 2-forms of M splits as the self-dual

part AT and the anti-self-dual part A=, A* = span{el,el, ek}, where

since e

eh=e' NPT Aet, el =e' NP et NP, el =l At et AR (2.5)



Define the Clifford multiplication of 2-form on W by: (e' A e?) = e'e? (i # j). A straight-
forward computation shows A* WF = 0. Furthurmore,

1y a0 1,2 20 I3 31 I 4 __ 4]
e_e =—ee,, e_e-=—ee, ee =e’e,, ee =ee,,
JoU_ g J.2 2.0 I3 _ 3.0 _J. A _ 4]
ele = —ee,, ele” =ece, e’ =—c’el, ele’ =ee,
efel = —elell, efe? =e?ell, efe® =eel, efe' = —e'el,
and
1,0 oK _J,K oI _K, I _ ol
ele, =2el, erel =2, ele, =2e, (2.9)
elel =2ef, elef =2¢l | el =2¢7. (2.10)

3 Hypersurface Spin® Dirac operator

Let N be a 5-dimensional Lorentzian manifold, and M be a spacelike hypersurface in V.
Fix a point p € M and an orthonormal basis {e, } of T, N with ey normal and ey, e, €3, €4
tangent to M. Extend ey, ey, e3, e4 to an orthonormal frame in a neighbourhood of p
in M such that (V,e;), = 0. Extend this to a local orthonormal frame {e,} for N with
(Voe;)p = 0. Let {e®} be the dual frame. Then (V;e?), = —h;;e®, (Vie?), = —hyel,
where h;; = <fVVieo, e;), 1 <1i,7 <4, are the components of the second fundamental form
at p. The metric connection V and V, together with a U(1) connection A on L, induce
two connections on W. These induced connections on W, which we denote by %A, Va
respectively, are related by

Vai =V + Ehijeoe]. (31)
By definition, V4 is compatible with the metric (,),ie.,

d((p, ) x €;) = ((%JAzfﬁa V) + (¢,$Aiw)) * 1.

Using (2.2) and (3.1), we can prove that V4 is also compatible with the metrics (, ) and

(,),ie,
d((¢, ) xe;) = (Vaid, V) + (¢, Vap)) = 1.
d(o,¢) xe;)) = (Vaiod, ) + (¢, Vaith)) = 1.

In a local orthonormal coframe {e'} of M, Spin¢ Dirac operator D4 and the hyper-
surface Spin® Dirac operator D, are defined by

i = S
Dy = €'V 4, Dy =e"V 4,
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respectively. Obviously, D, is self-adjoint with respect to the metric {, ). We also have
the following standard Weitzenbock formula:

R 1

where R is the scalar curvature of M, and F'}{! is the restriction on M of the curvature of
L. From (3.1), we have

~ H
DA - DA + 5607
where H = > h;; is the mean curvature of M. Moreover,

d((e'g, Py x¢') = (Dad,¥)) — (¢, Dath)) % 1
= ((Dao, ) — (b, Dath)) # 1.

and
d((, Vaith) ¥ €") = ((V 4id, Vaith) — (¢, (—V i + hije’e? )V ag0)) 1.

It follows that the adjoints under the metric ( , ) are D% = D4, D% = Da, V%, =
—V i + hije’e’. With the information, we can easily derive (as in [Z1]) the following two
Weitzenbock formulas,

— 1 1 |
Dy} = ViV,+ Z(R + H?) — §V2~H6062 + §F}f (3.2)
~ 1 .
= ZVA + §(T00 + TOZ-eOeZ + F/le) (33)

The integral form of Weitzenbéck formula (3.3) is
. - — 1 P .
[ Vaol + (0. 0) = 1Dadl = 5 [ (6,[¢"/IVa0) €' (3.4)

where R = 5 (Too + Toe®e + FAT), and [¢, ] = ¢'e? — ele.

Now recall that M and L are asymptotically flat of order 7 > 1 with asymptotic
coordinates {dz'} on the end. Orthonormalizing {dz'} yields an orthonormal coframe

. -]
e’ =da' + iaikdxk + O™ h).
Denote € as dz°. Then, on each end,
1 k l 1 . —27—-1
VA]‘ = 0j — Zrkﬂd{L‘ dr’ + EA]'I + O(T ),

; 1 . H 1 .
Dy = di’0; — Zl“kjldac]dxkdxl + deo + 5dal Aji+ O(r=271),
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where I'y; = %(@-gkl + O1gkj — Okgj1) = O(r~71). Therefore Dy gives the maps for the

weighted Holder spaces %2 (W) LDa, che (W) EZN C%* ,(W) defined by connection
V4 on W. Here we are using the weighted spaces defined in the papers of Bartnik [B]
and Lee-Parker [LP]. For constant spinor ¢g, 8,6 = 0, we have Dspo € C* (W), and
D¢ € CL,(W).

The following lemma can be easily proved in the spirit of [PT].

Lemma 3.1 Suppose M, L are asymptotically flat of order 7 > 1 and ¢, {¢;} € W are
C! spinors which satisfy $A¢ =0, %A@ =0 for each 1,

(1) If lim, o ¢(x) = 0, where the limit is taken along M in one asymptotic end, then
»=0.

(17) If {¢;} are linearly independent in some end, then they are linearly independent
everywhere on M.

Proof. By the assumption, we have V ;¢ = —2h;;e’e/¢. Then
6| = 2|Re(V.a¢, $)| < C|hllg]".
Therefore the lemma can be proved in the same way as Lemma 4.1, [Z1]. O

Lemma 3.2 If M, L are asymptotically flat of order = > 1 and the charged dominant
energy condition (1.10) holds on M, then the map

D% C*2 (W) — C% ,(W)
18 an isomorphism.

Proof. First note that the lower order term in (3.2) (;(R+H?)—$V;Hee' + 1 F}") lies
in C%® ,(W). Consequently, Theorem 9.2(d) of [LP] shows that 5/1 is an isomorphism
prov1ded it is injective. To show injectivity, suppose that ¢ € c? 2(W) satisfies D? 10 =
VAVAqﬁ + Rqﬁ = 0. Integrating over the region M, C M inside radius r in asymptotic
coordinates, we have

[ Vaol+ (Roo) = [ (6.V)xe

But (¢, Vid) = (¢, (Vaip+ shije.el.¢))= O(r=>""1), and Vol(0M,) = O(r?) by (1.2),
(1.3). Hence the right hand side of the above integral vanishes in the limit as r — oo.
Therefore V¢ = 0 on M. Hence ¢ = 0 by Lemma 3.1 (i), and the proof of the lemma is
complete. O



Theorem 3.1 If M, L are asymptotically flat of order T > 1 and the charged dominant
energy condition (1.10) holds on M, then for any constant spinor ¢g on ends, the following
boundary value problem has a unique solution ¢ € C**(W),

{ Dap = 0, (3.5)

hmr%oo¢ = ¢0-

Proof. Since D%¢y € C** 5(W), Lemma 3.2 show that there is unique ¢; € sz(W)
such that DA¢1 = —DAqﬁo Then ¢ = ¢ + ¢o satisfies DAqﬁ = 0. Let » = Dyg €
O (W), then

/M Vav + (R, ) = /aM (Y, Van) x e’ = /BM O(r*3) =0

as r — oo. Therefore VALD = 0on M. Hence ) =0 by Lemma 3.1 (i) and ¢ is the unique
solution of (3.5). O

4 Positive Mass Theorem

In this section, we will prove Positive Mass Theorem.

Proof of Theorem 1.2: Fix a constant spinor ¢9 # 0 on M; and ¢, = 0 on the
other ends. Let ¢ = ¢ + é; be the solution of (3.5) with ¢, € C*¢(W). As in [Z1] we
have

[ Va6l + (0. o)
- 2/ (bo, [da’, dz?]V 4o)

= [ (oo [dal, dad)V ;) * dai + - / (b0, [da, da?) Ajigy) + da’

2 JoMq
= (:14 (B0, Ergo) + (o, pudz’dz® o) + > (o, dz'dz’qzidy)). (4.1)
l i<y

We next simplify these terms algebraically. For this we temporarily drop the subscript
on ¢y, writing ¢y = (¢*,¢~) € W @ W . Similarly, we drop the subscript [ from Ej, P,
Qi, U, pii and g;;. When |P| # 0, we choose ¢~ so that ppdz®daf¢t = —|P|¢~. Then

(¢o, peda’da® o) = (¢, ppda®da®¢™) + (¢, prda’da®¢T) = —|P||¢o|*.

Denote the self-dual part of total electromagnetic momentum of end M, by
0 =27 (2 + g31); ¢ =27 (qus + qu2), @5 =27 (qua + gas),
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and anti-self-dual part of total electromagnetic momentum of end M, by

a7 =2 Y qi2 — q31), ¢ =27 (qu3 — qaa), 43 = 27 (q1a — qo3). (4.2)
Let ¢* = el qi +elgy +effqs, ¢~ =elqr +e’qy +e"¢y, then

Z<¢07 dxldqu”i¢0> = <¢+7 q+i¢+> + <¢77 qiid)i)

i<j
= (o7, (¢F = |P|prp;da®q=da’)ig™). (4.3)
Using (2.6), (2.7), (2.8), (2.9) and (2.10), we obtain
prpjdatel di? = (—pgprda®dat — pppeda®da® + pypsdatda® + p/ycmdxkdac‘l)efL
= (p% + p% — p§ — pi + 2p 1 psdatde® — 2pypodatda?
+2pipadatda® + 2}92173cl31,‘20l963)eI+
= [P} + 15 — 05 — Pt + (P03 — pap2)e’ + (p1ps + paps)ely el
= (T + 15— 05 — piel + 2(p1ps + paps)el + 2(paps — prps)ely.

Similarly, one finds that

prpjdae’ dx’ = 2(paps — pipa)el + (p] — p5 + 3 — pi)el + 2(pips + papa)e’,
prpjdatedal = 2(pips + papa)el + 2(psps — pipo)e + (5 — 3 — p3 + pi)e’.
Denote

¢ = qf —|PI72((p] + 95 — 13 — p1)q; + 2(paps — Pipa)as + 2(p1ps + Papa)ds ),
c2 = qf — |P|7?2pipa + pops)ayr + (07 — P35+ P53 — p3)as + 2(psps — pip2)as ),
cs = qf —|P|7*(2(peps — p1p3)qi + 2(pip2 + pspa)ds + (7 — P35 — P53 +p1)gs ).

When |P| = 0, we set

¢ = qf —[S]7((sT+ 53— 55— s + 2(s255 — 5154)q5 + 2(s153 + $254)q3)
¢ = g5 —[S]7%(2(
(

s = qf —|5]7*(2 1=

3 )
S154 + $253)¢; + (51— 53+ 53 — $3)¢5 + 2(s354 — 5152)q3 ),
S284 — $183)q; + 2(S159 + $354)q5 + (s — s5 — Sg + Si)qg—),

where sy, S9, 83, 4 are arbitrary real numbers such that |S| = /3, s? # 0. We choose ¢~
by spdz’dz*¢t = —|S|¢~. Then we can repeat the above calculation, replacing py by sj.
Therefore,

Z<¢0; dxidxj%ji(ﬁ@ = (o7, (6101 + 6102 + 6503)i¢+>
i<j

= 2¢", (Iey + Jeg + Keg)igh).
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By the Pauli representation (2.4), we have
Re > (¢o, da'da’qijigo) = 2Re(p™, Co™),

1<j
—C1 —i02 + ¢3
c=1. ;
1co + C3 C1

which has real eigenvalues A = £|C|, |C| = /X; ¢?. Now we take ¢ to be the eigenspinor
of eigenvalue —|C| with |¢T|? = 1. We obtain

where

— 1P| = |C = 4G [ [Vadl* + (6, R9) = 0
Next we compute |C|. Denote

(I8 if P=o,
g 1P|~ 'py if |P|#0.

Obviously, 3,12 = 1. A straightforward computation gives
(2 + 12 — 12 —12)qy + 2(tats — tits)qy + 2(tits + tots)qs )?
+2(tty +toty)qr + (1 — 5+ 15 — 11)ay + 2(tats — tita)gz ) (4.4)
+(2(tats — tits)gy + 2(tats + tsta)gy + (] — 85 — 6 +13)g3)?
= ((h) +(Q2) +(Q3)2
Therefore
C1P = (a)* + () + (a3)" + (a7)* + ()" + (a5 )°
=28 + 15 — 15 — t))af qr — Atats — tits)q a5 — 4(tits + tats)q @5
—d(tity + tats)qg qr — 206 — G5+ 15 — 1h)a3 a5 — Altsta — tita) 3 g5
—4(tats — tits)gs qr — A(tits + tsta)gd gy — 2(6] — 15 — 5 + 13)af g5
1 — —
~ SlQP+ Tt
where T' = (t,t5,13,t4)". Now we show when |P| = 0, there is an another choice of

constant spinor ¢g such that the third term in (4.1) has sharper value. First, by mean
value inequality and (4.4),

C1* < 2((¢])* + (62)* + (65)° + (a0)* + (&))" + (a5)*) = |QI*- (4.5)
On the other hand,
Re > (o, da'da’qijige) = Re(p?t, ¢Tig?) + Re(dp™, ¢ ip")
i<j
= 2Re(p", QT9T) —2Re(9p™, Q7 97),

12



where

T (S (e o =(."% “etae
igy + g5 a ’ iy +aq5 ar

When |P| = 0, we can choose ¢*, ¢~ freely. So we choose ¢ to be the eigenspinor of
eigenvalue —|QT| of @T, and choose ¢~ to be the eigenspinor of eigenvalue |Q~| of @~

such that [T |* + o7 = 1, |QF| = \/Xi(¢")?, |Q7] = /Zi(¢; )?. Then,

—Re Y (o, da'da’qiide) = 20Q7 |67 +2Q 7 [lo7 [

i<j
We choose ¢~ =0 if |QT| > |Q |, and ¢T = 0if |QT| < |Q|. Thus

—Re > (o, dr'da’ qijigy) = 2max{|Q"|,|Q"|}

1<J

= \/|Q|2 + 2|q12G34 + q13G42 + q14Go3]-

By (4.5), we know to get a sharper result by choose constant spinor in this way when
|P| = 0. The proof of the first part of Theorem 1.2 is complete.

Now suppose £y = 0. Then p1; = 0,1 <k <4,¢; =0,1<j<3andqy =0,
1 <14,j <4. Take {14, : p=1,2,3,4} which form a basis of W on M; and ¢, = 0 on all
other ends M, where we take W as complex bundle. Let v, be the solutions of EAwu =0
constructed from this data by Theorem 3.1. The vanishing of E; then implies ?Awu =0
and 1, — 0 uniformly on each end except M;. But this contradicts Lemma 3.1 (i) unless
M, is the only end of M. By Lemma 3.1 (ii), {¢, : p = 1,2, 3,4} are linearly independent
everywhere on M, so in a local frame {e;} of M,

1~ 1 —_ — — —
—ZRa,@ijeaeﬂ% + §FAij¢u = (VaiVaj = VajVai = Ve ;)0 = 0.
In terms of (2.3), (2.4), we obtain
ézgll FAZ] Rz]Z Rzg3i }:%ijOI + }:%ijOQi _ﬁij03 _ﬁij04i
Rng Rz]31 le Faig Rijos — Rijoal  Rijor — Ryjool

Rijor — szgozl —Rijos +~Rz3041 _Ei_jli — Py R_z + Rzy?)l
Rijos + Rijoal  Rijor + Rijosl  —Ryjp + Ryjsi Rzgll Faij

where
771 1512 17345 752 1513 17425 753 1714 1j23 -
J J J

This immediately implies that, over M, Rijag = 0, Fa;j = 0. Therefore Ty = 0 by the
Einstein equations, and Ryjp; = 0, Flap; = 0 by the charged dominant energy condition.
Thus the proof of Theorem 1.2 is complete. O
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5 Appendix: Analogue on 4-Lorentzian Manifolds

In this appendix, we assume N is a 4-dimensional Lorentzian manifold with Lorentzian
metric g of signature (—1,1, 1, 1), which satisfies the Einstein equations (1.1), and M is a
spacelike hypersurface in N which is asymptotically flat of order 7 > % Let L be a U(1)
line bundle which is a Spin¢(3,1) structure of N. We assume L is also asymptotically
flat of order 7 > % over M. The total energy, the total linear momentum and the total
electromagnetic momentum of each end of M can be defined same as (1.7), (1.8), (1.9)
except that we integrate over the sphere in 3-dimensional asymptotically flat ends.

Proof of Theorem 1.3: Let V' be (locally) SL(2,C) bundle. The complex spinor
bundle W of N is equal to (V@ L2)@® (V*® Lz). Note that L? is globally-defined over M
since every orientable 3-manifold is spin. Now the Clifford multiplication can be defined
as follows: For any X € T*N with coordinate (zo, z1, 22, z3), we identify it to the corre-
sponding elements X € Hom(V @ L? — V* ® L2) and X° € Hom(V* ® Lz — V ® L?),

To—T1 T2+ il‘3 To + X1 —T9 — il‘g
X — . , X7 — . .
To —1T3 To+ T —To +1T3 Xog— T

Then the Clifford multiplication 7*N @ W — W is defined by X ® (§,7)" = (Xn, X7E)".
We refer to [PT, Z2] for details. Now let ¢g = (&0, m0)",

puda’da® go + > da'da? qi5ide = (Cno, Ciamo)',

i<j
where
Cre = D1 — Q23 —pi2 + @31 — (s — qn2)
¢ —pi2 + @31 + 1(pis — qn2) —pi + Qo3 ’
C, = —(pin + qu23) iz + @ +i(pis + qu2)
" iz + @3 — i(pis + qui2) P+ Q23 ’

Note Cj¢ has eigenvalues £\,

Nig = \/(pll — q123) + (P2 — @31)* + (Pi3 — qui2)?,

and C, has eigenvalues £,

iy = \/(pll + qo3)? + (P12 + @31)2 + (i3 + qui2)?%

We choose spinor ¢y = (£, 10) such that & is the eigenspinor of eigenvalue —\; and ny
is the eigenspinor of eigenvalue —\;,. Moreover, [&|? + |no|? = 1. Then

(b0, puda’dz” o) + > (B0, da'dz! qujicde) = —Nel&ol” — Aiglmo]*.

1<j

14



We choose 19 = 0 if A\jg > Ay, and § = 0 if N\jg < A\py,. Thus, if M satisfies the charged
dominant energy condition, then

E > \/|Pz|2 + |Qul* + 2|puqizs + pr2qist + Pisqnal-

If £, = 0 for some [y, then M has only one end, p;r = 0, g5 = 0, and ﬁa/@ws = 0,
Faop = 0 over M. Thus the proof of Theorem 1.3 is complete. O
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