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Abstract

The problem of determining the surface interface of fluid partly
filling a semi-infinite capillary tube closed at one end is considered,
in the absence of gravity. It is known that solutions of the formal
equations for a solution as a graph covering the base do not in general
exist. In this paper it is shown that whenever smooth solutions fail
to exist there will nevertheless exist a solution in a singular sense
suggested by physical intuition. In some configurations of particular
interest, the procedure leads to unique determination of the singular
solution. However, uniqueness cannot in general be expected, as is
shown by example. Further examples show a) that singular solutions
may appear also when smooth solutions exist, and b) they may fail to
occur in that case, depending on the particular geometry.

AMS Classifications: Primary 76B45; 53A10; 53C80. Secondary
49Q10; 35J60, 35B65

1. Introductory remarks.

We consider in this paper the classical problem of determining the configura-
tion of liquid that covers the base and partially fills a semi-infinite cylindrical
tube, composed of homogeneous solid material and of general section 2. In a
gravity field directed downwards along the generators of the cylinder toward
the base, one is led to the equation

Vu

V1+[Vul?

divTu=ru+\, Tu=

(1.1)



for the height u(z, y) of the liquid surface S over €2, with x a positive constant
and A\ a Lagrange parameter arising from an eventual volume constraint. If
gravity vanishes then x = 0. For background discussion, see, e.g., [F 3]
Chapter 1.

On the boundary X of €2, one finds the condition

v-Tu = cosvy (1.2)

with » unit exterior normal on ¥, and 7 the (physically determined) angle
between the surface interface S : u(x,y) and the vertical cylinder walls Z
along the contact manifold. We may assume 0 < v < 7/2; if v = 7 /2 then the
problem admits the (uniquely determined) trivial solution u = const, while
the case m/2 < v < 7 reduces to the indicated one by the transformation
u— —u.

The first general existence theorem for this problem was given by
Emmer [E 1]; Emmer’s conditions were later relaxed in some ways by Finn
and Gerhardt [FG 1]. In both works, however, the condition > 0 is essential
for the discussion. This is not an accident of the methods, as it was shown
by Concus and Finn [CF 1] that if kK = 0 (gravity absent) then existence of
classical solutions cannot in general be expected; solutions can fail to exist
even for convex analytic domains. Physically, what may occur is the existence
of a critical v, in the range 0 < 7, < 7/2, such that smooth bounded
solutions exist when 7., < v < 7/2, while if 0 < 7 < 7., the fluid will climb
up the walls in regions of relatively large boundary curvature, until either a
portion of the base becomes uncovered or the top of the container is reached.
(This change in behavior can under some circumstances be discontinuous in
the sense that the bound is uniform in v, < v < 7/2, see [CF 1], [CF 2];
it should be noted also that the climbing does not always occur at points
of maximum boundary curvature.) Conceptually there is a connection with
the soluzioni generalizzate introduced by M. Miranda [M 1] with regard to
minimal surfaces. These are formal solutions in a very weak sense, and may
be identically infinite on certain subsets of the domain having positive area.

Conditions sufficient for existence of smooth solutions when £ = 0
were given in [F 1, F 2]. These conditions include some configurations for
which v = 7,,. In ensuing literature [T 1, La 1, CF 2, FF 1, FL 1, FM 1]
other particular cases were examined for which v = ~,, and for which it could
be shown that no smooth solution exists. In these cases, it was established
that a solution surface S, : u.(z, y) nevertheless exists as a smooth function



diviu=2H

Figure 1: Regular and singular portions of a domain, v = v,

over the complement in ) of a subdomain 2., C €2, bounded within €2 by
non-intersecting circular arcs I' of radius R, = |Q]/(|X]cosv,) that meet
¥ in the angle 7., (see Figure 1); the surface S, achieves the prescribed
data on ¥\09Q,, and is upwardly tangent to vertical cylinder walls over T,
which meet ¥ in the same angle 7... Such solutions are necessarily infinite
on I, see [F 4, Theorem 2]; they are obtained as limits of solutions regular in
all of €2, and hence are soluzioni generalizzate, which are identically infinite
throughout €.

The indicated value for R, is determined by observing first that the
left side of (1.1) is twice the mean curvature H of a solution surface over (;
writing A = 2H and setting x = 0 in (1.1) the resulting equation

diviu =2H (1.3)

admits as particular soluzione generalizzata a vertical cylinder of radius R, =
1/2 H, whenever a curve I' satisfying the requisite geometrical conditions
can be found. In this respect H is the limiting value of mean curvatures
such that smooth solutions exist over €2, and thus can be determined by



a (symbolic) integration over Q and use of (1.2). The solution u..(z,y) in
O\Q,, is determined alternatively as the unique (up to an additive constant)
regular solution of (1.3) in that domain, for which v-Tu = cos 7. on X\0S,,,
and v-Tu=1 (i.e., y=0) on I'.

It must be expected that if .. > 0 then also for the case 0 < v < 7.,
solutions should exist in a generalized sense. To our knowledge, the only
authors to address this question in the literature were deLazzer, Langbein,
Dreher and Rath [LLDR 1], who offered an empirical procedure for deter-
mining the mean curvature of fluid interfaces in closed cylindrical containers
with polygonal cross-section and large height in zero gravity, in particular
cases for which it is known that regular solutions fail to exist. The paper
[LLDR 1] assumes without proof the existence of a singular solution of the
type sought; that existence is in our view not evident. The intuition of these
authors in the case of regular polygons that they considered was however
correct; singular solutions having the form they surmise do in fact exist for
such configurations, as we shall prove in Sec. 2.1.

In a general situation, the procedure of [LLDR 1] is not clearly defined,
as it depends on a judicious guess as to where the singular set will occur.
One of the contributions in the present work is to offer a procedure that
leads to a singular solution of the type envisaged, in every case for which a
smooth solution fails to exist. As it turns out, singular solutions can also
occur in particular cases for which smooth solutions do exist, see Example
4.1. Singular solutions do not, however, exist in every case, as we show in
Example 4.2.

We commence our study in Sec. 2 by considering the regular polygon
domains introduced in [LLDR 1] and also another class of special domains
of particular interest, for which we demonstrate the unique existence (up to
an additive constant) of solutions of the form postulated in that reference.
In these cases, both the subdomains of regularity and the corresponding
solutions in those subdomains are uniquely determined by the conditions
of the problem. In a general configuration the subdomain of regularity may,
however, not be uniquely determined, as we show by example in Sec. 2.3; thus
in general multiple solutions must be reckoned with. The precise conditions
for uniqueness in that sense remain an open question.

In Sec. 3 we study domains of general form, and provide the as-
serted procedure leading to existence of singular solutions whenever solutions



smooth throughout 2 fail to exist; these singular solutions are unique up to
constants in a piecewise smooth subdomain of regularity (which as just noted
may not be uniquely determined), and identically infinite on the complemen-
tary set in 2. The discussion here applies to general piecewise smooth planar
domains {2 bounded by a finite union ¥ = Uiv 2; of smooth arcs which meet
at angles strictly between 0 and 7, and with prescribed constant contact
angle data v on the arcs. No data are prescribed at the intersection points.
We determine conditions under which there will be a subdomain (2 strictly
contained in €2, bounded in part by subarcs ¥ of ¥ and in part within €2
by subarcs T' of semicircles of radius R = 1/2 H as in Figure 1, such that
a solution of (1.3) will exist in €, achieving the prescribed data 7 on %,
and boundary angle v = 0 on I'. Such solutions necessarily become positive
infinite on I'.

Our underlying weapon for attacking the general existence problem
is the necessary and sufficient condition Theorem 7.10 of [F 3], for existence
of smooth solutions. In the case of constant H considered here this theorem
takes the form: A smooth solution u(x,y) exists in Q if and only if the
functional

CD[Q*]E/QDXQ*—/ZXQ* cosyds + 2H|Q| (1.4)

15 positive for every Caccioppoli set (2 C Q, with Q* # @, €. Here x is
characteristic function, and

1
2H = — [ cosvyds. (1.5)
1| Jos

In order to determine whether a given set Q) has this property, we show
that for the configurations considered, there exists a minimizing set for @ in
Q, and that this set is bounded within Q by a finite number N of subarcs of
semicircles of radius 1/2H, each of which either meets ¥ at a smooth point
with angle v measured within Q, or meets 3 at a verter; see Sec. 3. The
curvature vector of each subarc is directed exterior to €). It can happen that
N =0, in which case a smooth solution does exist.

To fix the ideas, we examine in the next following sections some cases
of particular interest for which the constructions can be effected explicitly.



Figure 2: Regular polygonal section; singular arcs ['y;
subdomain €

2.1. Regular polygons.

We study here the construction effected in [LLDR 1], with a view to es-
tablishing the existence of appropriate singular solutions of (1.3, 1.2) in the
constructed subdomain of a regular N-gon 2. Specifically, we assume con-
stant prescribed data 7 in the range 0 < v < 7/N prescribed on ¥ = 0f.
For such data it is known [CF 1] that no regular solution can exist in 2. We
cut off the corners with circular arcs I'y = {I';}, j =1,... N, of radius R and
meeting the boundary segments in angle 7, as indicated in Figure 2, leaving
a domain €2y bounded in part by the arcs Iy and in part by subsegments ¥,
of 3. Here R = 1/2H is determined by the necessary condition for existence



of a solution of (3) in €y, achieving data v on ¥, and data v = 0 on 'y, that

/divTudx:2H|QO|: j{ v-Tuds = |Sg|cosy + [Tl (2.1)

Qo YoUTo

Following [LLDR 1], we obtain a quadratic equation for R, one root of which
is spurious; the other root yields the (necessary) condition

1 /tan %
R AN (2.2)

T 2H tan % cos y + \/sinfycosq/—i— I —y

where a is distance from the polygon’s center to its sides. From Theorem
6.13 of [F 3] adapted to the present configuration, we see that a solution will
indeed exist if for every non-trivial subset 2* of €y, bounded within €y by
subarcs [' of semicircles of the same radius R and which meet two interior
points of ¥, in angle v, or meet any interior point of I'y in angle zero, or
which terminate in one or more juncture points of I'y with X, there will hold
®[Q2*] > 0. In fact, the initial two categories of intersection can be excluded
directly by geometric considerations, which we proceed to verify.

Any arc I' of radius R that meets one of the arcs 'y in angle zero
would have to coincide with that arc. Hence we may restrict ourselves to the
case of an arc that meets Xy at two interior points in angle 7. Denoting the
boundary segments in Xy by {e;}, we consider such an arc initiating at an
interior point of e;, which it meets in angle v, and terminating interior to a
segment e;. We choose Cartesian coordinates with the center of the polygon
at the origin and e; orthogonal to the positive x-axis. Since ['; and I' have
the same radius and the same contact angle with e;, we can obtain I' by rigid
horizontal motion of I'; in the positive direction. Thus, the center of I'; will
be displaced positively from its original center. But since ['; intersects both
e; and e; in angle v, its center lies on the angle bisector at the vertex wvo; this
line passes through the origin and lies in the second and fourth quadrants.
Now I' meets both e; and e; in angle v, and thus its center lies either on
a line bisecting one of the vertices (if ¢ is even) or on a line bisecting one
of the sides (if 7 is odd). In either case its center lies on a line through the
origin. If # < N/2+1 this line lies either in the second or fourth quadrant or
is collinear with the z-axis. In the fourth quadrant, the line containing the
center of I lies to the negative x-direction of the line containing the center of
I';. However, we know that the former center is obtained by an e; translation
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of the center of I'y in the positive z-direction. Thus, the center of I lies either
in the fourth quadrant or on the z-axis. It follows that the center of I is
at least distance a from e;. But its distance from e; is exactly Rcosvy. We
conclude Rcos~y > a, hence

\/tan = cos
N CO5T > 1

Vitan Lcosy + (/sinycosy + & —v

contradicting 0 < < 7/N. Thus no such arc can exist, for i < N/2 + 1.

If i > N/2+1 and N is even, all cases are excluded since I' would
subtend at least 7 radians, which is impossible as I' must be a proper subarc
of a semicircle [F 3, Theorem 6.11]. If N is odd, all cases are excluded for
the same reason, except for the single case i = (N + 3)/3. But in this event,
we observe that the minimum distance between e; and e(y3)/2 is at least

(2.3)

sin? =
d:a<1+secl— f) (2.4)
N COS 1

Thus, we must have 2R > d, from which
2, /tan & sin? (&
= >\ [tan — 1+sec1—# :
cosyy/tan 3 + y/sinycosy + & — v N N cos &

Using the bound 0 < v < /N and noting N > 4, we calculate that
the left side of (2.5) is bounded above by 1.5, while the right side is bounded
below by 1.7. Thus we are led also in this case to a contradiction, and we
conclude that no such arc can exist.

We consider finally the possibility of an arc of the specified radius,
that terminates at a juncture point p of one of the singular arcs I'y with the
boundary ¥ of the polygon. We assert that this cannot occur in a minimizing
configuration. For, following the reasoning on p. 153 of [F 3] and denoting
by 7/,~"” the angles on the two sides of I' at the intersection point, we must
have either 7' > 7, " > m, or else 7/ > 0, 7" > 7 — 7, depending on the
orientation of I', see Figure 3. The first case is geometrically not possible,
while in the second case, I' would have to coincide with I'.

We conclude that there can be no minimizing arcs in 2y, which means
that the minimum for the functional ® is achieved by the entire domain €2;.



Figure 3: Extremal arc I' through juncture point p

But @[] = 0, and thus every non-trivial Caccioppoli subset of € yields a
positive ®. Existence now follows from the general theorem at the end of
Section 1.

2.2. Ice cream cones; existence.

As a second example, we consider “ice cream cone” domains €2 determined
by two line segments each of length @ which form an angle 2¢, and capped
by a circular arc tangent to both segments at their end points, see Figure 4a.
We may assume the arc has unit radius. This configuration has a particular
interest, as whenever 9+~ > 7/2 a regular solution to (2,3) is given explicitly
as a spherical cap, with center on the vertical through the center of the
circular arc. We consider again the case v < 7/2 — ¢, and we seek to cut off
the corner with a circular arc I" of radius R = 1/2H which meets the linear
boundary segments in angle v (Figure 4a), in such a way that a singular
solution will exist on the side of I" opposite to the corner, and which tends to
positive infinity on I'. As above, we note that the possibility of any solution
on the side including the corner is excluded by Theorem 6.2 of [F 3].

With notation as in the figure, we are to determine H by the relation
2H || = |To| + || cosy (2.6)
in which

26087 cos(V + )
sin ¢

2|Q0] = (7 + 29)a® tan® I + (7 — 20 — 2) (2.7)



cos(¥ + )

|X0| = 2a + (7 +2V)atan ) — 2R i

Do = R(m — 29 — 27). (2.9)

Figure 4a: Ice cream cone domain; singular arc [,

We are led again to a quadratic equation for H, which we write in the

form
cH?> +yH +2=0 (2.10)
where
x = a*(m + 29) tan® ¥ + 2a” tan ¥ (2.11)
y = —2acosy — a(m + 29) tan ) cos y (2.12)
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cos y cos(¥ + )
4z = —(m— 209 -2 2 . 2.13
z=—(m )+ e (2.13)

For the discriminant A of (2.10), we find

1 :
A= (7 + 209)% tan® ¥ cos® y + 2(sin 27y + (7 — 209 — 27) ) (2.14)

-( (7 4 29) tan® ¥ + tan 0)
from which we conclude A > 0, so that two real solutions appear; they are
given by
_ 2cosy + (74 2¢9) tand cosy £ VA

H:t
2a(m + 29) tan® 9 + 4a tan 9

(2.15)

We must examine these solutions with regard to consistency with the
geometric assumptions under which they were derived. Specifically, we must
ensure that the arc I'y actually meets the boundary segments between the
vertex and the circular cap. Denoting the distance from the vertex to the
intersections with I'g by d, we must thus show 6 < a. We find

cos( + )
0=R———= 2.16
sin ¢ ( )
and we thus require that
cos(V + )
> 7, 2.17
2a sin v ( )
But (2.15) yields the bound
N CoS 7y
. 2.18
2a tan v ( )
Since both ¥ and ~ lie between 0 and 7/2, it is clear that
cos 7y cos(V + )
> 2.19
2atand —  2asin? ( )
and we see that HT provides an effective solution to the problem.
To study H~, we consider the function
_ cos(d+7)
FW,v =H — ——= 2.20

11



over the region of admissible data, which is bounded between the coordinate
axes and the line ¥ + v = 7/2. On that line, F(9,v) = 0, while below the
line there holds F(¥,7) < 0. Thus, the solution H~ is extraneous, and we
conclude that there is a unique arc I'y meeting the boundary segments and
satisfying the required conditions. For this arc, we have

U[Q] = |To| + |X*|cosy — 2H|Q] =0 (2.21)

with 2H = 1/R, see Figure 4a.

Figure 4b: Ice cream cone; extremal domain (2*.

We consider now the possibility of arcs I' that intersect the circular
portion of ¥. A number of cases can arise, as indicated in Figures 4b,c,d.

In Figure 4b, a solution on the side of I' including the corner is ex-
cluded by Theorem 6.2 of [F 3]. A necessary condition for a solution in the
complementary domain Q* is that U[Q*] = 0, see (2.21). We translate I'
rigidly to the right, keeping R fixed and allowing 7 to change. We find,

12



denoting initial values with subscript zero and setting

* 1 *
U(;a) = [[(@)] +[2*(a)] cosyo — H2 ()], (2.22)
Rsin(a —v) =sina dy g esa (2.23)
7= ’ do R cos(a — ) '
d|T| oS (v
I'=2(a— — =2 — 2.24
r=2a-nr G122 (2.24)
d)>¥|
Y =21 — = -2, 2.25
o =2r-a), (2.25)

Denoting by x the intersection point of [' with the horizontal, relative to the
center of X*, we find

x=—cosa— (1—cos(a—"))R (2.26)
dgi | = —2Rsin(a — 7), d|dgzy | = —2Rtan(a — ) siny (2.27)
and thus
— ) d¥
w T, = cosa—cos cos(a — ) +sinysin(a — 7). (2.28)
«

Since the arc I" is a proper subarc of a semicircle, we have 0 < (a—7) < 7/2,
and thus by (2.23) v > 7o throughout the range oy < o < 7. Therefore,

dv 2

— < — — = 0. 2.29
7o < cos(a =) (cosa — cos @) (2.29)

Since ¥(m) = 0, we find that the initial value of ¥ cannot vanish, and thus
no singular solution can exist in the configuration considered.

Next we study a subdomain 2* as in Figure 4c. Allowing I' to move to
the right, we obtain as above that ¥ decreases. But at the extreme position,

WU = 0. Thus, initially ¥ > 0, which means there is no singular solution in
Q.

13



Finally, we consider the configuration of Figure 4d. We can exclude
this case again by moving the right hand arc to the right, observing that ¥
decreases in this motion, and that the end configuration is that of Figure 4b,
for which ¥ > 0.

Let us introduce now the functional (1.4) ®[Q*], Q* CC €. Using
that W[] = 0, one shows easily that if W[Q*] is defined by

U] = /QDXQ* + /2 Xo~ cosyds — 2H Q| (2.30)

Figure 4c: Ice cream cone; extremal domain 2*.

with H defined by (1.5), then
U[Q*] = @[Q2\Q7] (2.31)

all " C Qp. It follows that the minimizing problems for the two function-
als over subsets of {2y are equivalent, with the minimizer for ¥ being the
complement in €y of the minimizer for ®. The subsets ) determined by the
circular arcs T introduced above are exactly the extremal sets for U (up to

14



rigid motions of I' that do not affect V). Since we have shown that U is
positive on all these sets, it follows from the general theorem at the end of
Sec. 1 that a solution with the prescribed data exists over §2y. This is the
singular solution whose existence was to be proved.

Figure 4d: Ice cream cone; extremal domain (2*.

2.3. Ice cream cones; uniqueness and
non-uniqueness.

We observe from the above discussion that the domain g is uniquely deter-
mined. Also the singular solution is uniquely determined in €y, as follows
from Theorem 3.1 of [FLu 1]. (We note that we cannot use the simpler
Theorem 5.1 of [F 3] to this purpose, as the proof of that theorem required
solutions in W!(), which is not known in the present case.) We now show

15



by example that by altering the initial geometry, we can obtain configurations
for which the base domain gy is not uniquely determined.

Our underlying observation is that the requirement W[{2y] = 0 involves
only properties of the region €2 itself and its boundary. Thus, having found
o, we are free to alter the remaining part of the initial domain in any way,
without altering that property. We consider two ice cream domains Q) and
Q) with different opening angles ¢ and ¢, and we choose 7 so that
O+ < w2, ¢+ < w/2. By the discussion of the preceding section,
we may construct subdomains Q(()l),Q((f) admitting the respective singular
solutions u™,u®. Following a similarity transformation, we may assume
that the vertical heights at the two intersection points with the respective
arcs TW T are equal for the two domains. Since ¢V % ¢, we will then
have H(M % H® . We reflect one of the domains in a vertical axis, position
the two resultant domains as in Figure 5 and take as initial domain €2 the
domain bounded by the simple outer curve. This will be a piecewise smooth
domain with two re-entrant vertices.

The two singular solutions u", u(?, originally determined for the in-
dividual domains QM) and Q®, now provide two distinct singular solutions
for the domain €.

Figure 5: Construction for non-uniqueness.

16



3. General domains.

We study sections €2 of cylinders bounded by piecewise smooth curves 3,
that are assumed to be uniformly in C! except for a finite number Np of
protruding corners of opening 2q;, 0 < 2¢; < 7, and a finite number Ny of
re-entrant corners, m < 2q; < 2m. We suppose that for some boundary angle
v in 0 < 7y < /2 there exists a Caccioppoli set QcC Q, Q # ), @, such that
the functional

O H) = || — |5*| cos v + 2H || (3.1)

will be non-positive when

=]
2H = — cosvy (3.2)
2]

and Q* = Q up to a null set. Here, |I'| = Jo IDxa-| (x = characteristic
function) is the perimeter in Q of Q*, and ¥* is the trace on ¥ of Q*, see, e.g.,
[G 1, MM 1, EG 1] for background details on the associated “BV theory”, and
[F' 3] Chapters 6 and 7 for background material on the functional. We note
that this requirement is equivalent to the nonexistence of a smooth solution
of (1.3) in € that satisfies the boundary condition (1.2) in a reasonable sense,
see [F 3], Theorem 7.10. We intend to prove:

Theorem 3.1: Under the conditions just indicated, there exist Hy, 0 < Hy <
H and a subdomain Qo C 2, Qo # @,8, bounded in 2 by a finite number
of subarcs Ty of semicircles of common radius 1/(2Hy), all intersecting 2 at
smooth points and in angle vy (measured exterior to ) or else at re-entrant
vertices with angles > v, and a solution u(z,y) of

divTu = 2H, (3.3)

in Qq, such that v-Tu = cosy on X* =0QoNY, andv-Tu — 1 as [y is
approached from within y. Further, u — 400 for any approach to 'y from
within Qy. The solution u(x,y) is determined within Qy up to an additive
constant.

In this result, the curvature vectors of the arcs I'y are directed into
o, and the angles v are measured exterior to {2y, as is the case in Figure
1. In the expression v - T'u near [y, v is chosen as the vector directed along
the radial line from the center of I'y. We note that no differentiable function

17



can yield the value 1 for v - T'u; the result v - Tu — 1 on [y means that the
solution surface § is tangent vertically upward to the circular cylinders over
[y, that is, S meets those cylinders asymptotically in angle zero. The result
u — 400 on [y means that S is asymptotic at positive infinity to the vertical
cylinders over [y, as I'y is approached within 2.

We prove the theorem in several steps. We prove first:

Lemma 3.1: Suppose that Q0 contains no vertices (so that ¥ € C'), and

suppose that for some Hy, there exists a subset QO C Q, QO # ©,1, that
minimizes the “adjoint” functional

U(Q"; Hy) = T + || cosy — 2H|Q| (3.4)
and for which (Qq; Hy) = 0. Then

(i) the boundary fo of QO in S consist of a finite number of disjoint subarcs
of semicircles, each of radius 1/2H,, with curvature vectors directed
into Qo and meeting 3 in angles v measured exterior to y, and

(i1) there exists Qy C (AZO, bounded in ﬁo by arcs 'y of the same radius, for
which the theorem holds.

Proof:

(i) Since () is minimizing, we conclude from a theorem of Massari [Ma 1]
that it is bounded by €2 by analytic arcs, and we obtain from Lemmas
6.4, 6.9 and Theorem 6.11 of [F 3] (adapted to the functional ¥) that
these arcs are disjoint strict subarcs of semicircles fo, each of radius
1/(2Hy) and meeting ¥ in angles . The indicated orientation relations
must hold, as otherwise one shows easily that the configuration could
not minimize. Since vy > 0, there exists ¢ > 0 such that each arc of I'y
subtends an arc of length at least 6 on X, and thus the number of such
arcs must be finite.

(ii) We choose () as an initial candidate for the existence domain of the
sought regular solution, and we denote by C/I;, T the functionals O
restricted to subsets of €y, which we take as base domain, imposing
boundary data 7 = 0 on each of the arcs. The formal definition for ¥
changes to

~

(% Hy) = |T| + |9 cosy + |[T*| — 2H, || (3.5)
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where I'* is the trace on fo of 2%, and we see that the values achieved
by W on subsets of {2y are identical to those achieved by W. That is
not the case for the original functional ®, which when restricted to €2
becomes

(0% Hy) = |T'| — || cosy — |T*| + 2Ho| "] (3.6)

From the relation ¥(Qy; Hy) = 0 = ¥({y; Hy) we obtain at once
O (Q*; Hy) = U(Q\Q*; Hy) (3.7)

and thus if for every Caccioppoli subset 0* C (AZO with Q* # (AZO, %)
there holds ¥(Q*; Hy) > 0, we obtain also ®(Q*; Hy > 0 for every
such subset; as a consequence, we may apply Theorem 7.10 of [F 3] to
obtain the existence of a solution u(z,y) in Qo of divTu = 2H,, with
v-Tu=-cosyon X =00N%, v-Tu— 1 on the boundary arcs Iy,
as asserted in the theorem.

It may however occur that a subset Q* exists for which ¥(Q*; Hy) = 0.
In this event, Theorem 7.10 of [F 3] yields the nonexistence of such
a solution in QO. Should that happen, we proceed by constructing a
“locally smallest” domain on which the functional vanishes.

We begin by covering Qo with a net of squares T,(7,j) of side length
€, 0 < € < 1, and restrict attention to the index subset (i, ) € Z? for
which the squares T.(7,j) lie interior to QO. Under our assumptions,
there would exist a positive

e = lub{e:3Q C Q, Q# @, U(Q Hy) =0
and QN T2(i,j) = © for some (i, 5) € I°}.

Corresponding to this €, there would be a maximal number N; of
squares in T,(i,7) that can be excluded in this way by some such Q,
and we denote by Ql a particular non-null subset of QO, for which
\I!(Ql, Hy) = 0 and for which Ny squares of T¢, (i, j) lie in the closure of
QO and exterior to Ql Since Ql is minimizing for \II(Q* Hy) over QO, it
is bounded in QO by subarcs F1 of semicircles of radius 1/2H,. No two
of these subarcs can terminate in the same boundary point, as then
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the configuration could easily be modified to reduce the value of {I},
contradicting the minimizing property. Nor can any of them terminate
in an interior point of ['y, as it would have to meet that arc in angle zero
and hence would coincide with that arc, since it has the same radius.

We consider next the functional \Ifl, restricted to sets in Ql If there
is no O C Ql such that #* Q, Ql and \III(Q Hy) = 0, then Theorem
7.10 of R

[F' 3] yields that the set €2, satisfies the requirements of the theorem,
as in the reasoning above. Otherwise we proceed to construct a de-
creasing sequence €; — 0 and corresponding sequence €; C Q;_, §; #
Q, QJ 1. The SAI are bounded from zero in measure, since it follows
from U (QJ, Hy) = 0 and the isoperimetric inequality that

Q51+ [S5] cos y — 2H|Qy] < 0

for some fixed C' > 0. Further, each Qj is bounded in by a fi-
nite number N; of subarcs fj of semicircles of radius 1/2Hy. There
holds N; < N(€2;; Hy) independent of j, as each arc subtends on X
a length bounded from zero, depending only on €2, on 7, and on Hj.
Thus, a subsequence of the Qj converge to a limit set {1y # ©, and the
corresponding functional \/I\’O(QO; Hy) = 0. In view of the continuous
transition, )y is again minimizing, and is bounded in €2 by subarcs
of semicircles of radius 1/2H, that meet ¥ in angle ~. If there were
to exist  C Qp, with Q # @, Q and for which ¥o(Q; Hy) = 0, that
would contradict the maximality of the number V; of excluded squares,
for some j. Thus, \IIO(Q Hyg) > 0 for every such subset (), from which
we conclude from \IIO(QO,HO) = 0 that <I>0(Q Hy) > 0 for every such
subset, and finally from Theorem 7.10 of [F 3] that €y, Hy have the
properties required by the theorem. O

It is not clear whether there exist configurations for which the indi-

cated infinity of steps in this procedure is actually required, or whether the
procedure will always terminate after a finite number of steps. We remark,
however, that it cannot be expected that the initially given domain 2y will
always provide a configuration that works. An example is provided by the
“canonical proboscis” domains studied in [FF 1, FL 1, FM 1], see Figure 6.
The proboscis shape has the property that a continuum of “extremal arcs” T"
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meeting ¥ in the prescribed angle v appear as translates of a single circular
arc. Any of the subdomains consisting of the portion of the entire region to
the left of any of the arcs I' would serve equally well as the initial 2y. In
this particular example, the procedure will terminate after a finite number
of steps, yielding as €2y the region to the left of the extremal arc joining the
two intersections of the circular portion of the boundary with the proboscis.

Figure 6: Proboscis domain

Lemma 3.2: Suppose again that no vertices appear, and suppose there exists
QCQ Q#0,Q, such that (2, H) < 0, with H defined by (6). Then there
exists Qg C §2, with the properties described in Lemma 5.1.

Proof: If CI)(Q; H) =0 and 0 minimizes, we simply set Qp = Q\Q, Hy=H.
Suppose there exists Q C Q such that @(Q H) < 0. This functional is clearly
bounded below, and it is lower semicontinuous in BV norm [F 3, Lemma 6.3];
thus, there is a minimizing set, which we again denote by Q The set ) cannot
be the null set or all of €2, as ® vanishes on those sets. Q is bounded in Q
by a finite number of subarcs T of semicircles, of radius 1/2H, that meet ¥
in angles 7. The complementary set Ql = Q\Q is minimizing for the adjoint
functional W((*; H) in Q, and W(Qy; H) = ©($; H) < 0.

Slnce Ql =+ @, there exists H; with 0 < H; < H, such that \II(QI, H)) =
0. The set € is not a minimizer for the functional W(Q2*; Hy), as the boundary
arcs of a minimizer would have curvature 2H; # 2H. As with the functional
® above, a minimizer €2; does, however, exist and is bounded in €2 by a finite
number of subarcs of semicircles, each of radius R; = 1/2H; and meeting X
in angle ; we label this set I';.
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The set € cannot be the null set, as V(@; Hy) = 0 whereas U(Qy; H) <
0. Suppose ©; = §; then |¥X|cosy — 2H;|Q| < 0, and since H; < H there
follows |X| cosy — 2H|Q| < 0, contradicting (3.2). Thus, Q; is a strict non-
trivial subset of €, and |I';| + |X1]cosy — 2H;|Q1| < 0, Xy being the trace
on X of €.

We continue the procedure, choosing Hy < H; so that W(Q; Hy) =0
and then minimizing this functional, etc. We obtain in this way a decreasing
sequence of positive H,,, tending to a limit Hy. At each step, we have |I',| +
|X,] cosy—2H,|2,| < 0. Thus by isoperimetric inequality, there is a positive
constant C such that C' — 2H,1/Q, < 0, and from this we conclude both
that Hy > 0 and that the €, are bounded below in measure by a positive
constant. Since 2, is a minimizing set for U(Q,,; H,11), it is bounded in
by “extremal” subarcs of semicircles I';, of common radius 1/2H,, 1
([F 3, Theorems 6.10, 6.11]). Since X € CY) and each of the I, meets X at
two points in angle 7,0 < v < 7/2., each arc of T';, subtends on ¥ a length
bounded from zero, depending only on v and on the geometry. We conclude
that the total number of boundary arcs I',, remains less than a fixed bound
throughout the procedure. We may thus choose a subsequence j(n) so that
the arcs I'j(,) converge strictly throughout €2, to the boundary in €2 of a limit

setj\lo; from the continuity of ¥ with respect to such convergence, we have
U (05 Ho) = lim W(Qtny; Hjny4+1) = 0. Further, since the Hjq)1q and the
n—00
minimizing sets {2(,)41 corresponding to those values are both converging,
there holds lim W(;(,); Hjn)) = 0.
n—oo

Clearly the limit set ﬁo is bounded in €2 by a finite number of subarcs
of semicircles I'y of radius 1/2H,, each of which meets ¥ in angle v. We
assert now that for all Q* C Qq there holds ¥(€*; Hy) > 0. For if there were
an QO C Q with U(Q*; Hy) = —w? < 0, there would hold for all sufficiently
large n W(Q* N Qjny; Hjm)) < —w?/2. But () minimizes for Hj(,), hence
U (Qj(n); Hjm)) < —w?/2, contradicting the limiting behavior just established.
(I

We next consider configurations in which a finite number Ny of re-
entrant corners are present. This does not affect the lower semicontinuity of
the functionals ® and W; the only change that occurs is that the boundary
arcs [, in € of the minimizing sets need not all be disjoint, but that (at most)
two such arcs could meet at a corner point. An inspection of the proofs of
Lemmas 3.1 and 3.2 shows that no change is needed.
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We consider finally the general case in which additionally a finite num-
ber Np of protruding vertices appear. The major new difficulty that presents
itself is that the existence of minimizing configurations for ®(Q2*; H;) and
U (Q2*; H;) may no longer follow from established literature, as the conditions
for Lemma 6.3 in [F 1] will not be fulfilled when the opening angle 2« at a
corner is such that a + vy < 7/2. We continue to know, however, that any
minimizing set Q is bounded in Q by “extremal” curves I'; that are subarcs
of semicircles of radius 1/2H;, which if they terminate at smooth points of
Y must meet ¥ in angle . In fact, the following lemma shows that this is
the only case we need consider.

Lemma 3.3: No extremal arc of a minimizing configuration, either for ® or
for U, can terminate at a protruding vertex.

Figure 7: Proof of Lemma 4

Proof: For definiteness we consider a functional ®(2*; H;). We suppose that
at least one of the boundary arcs I' of a minimizing set Q) enters a vertex V.
This arc must extend from V', either to another vertex or to a point where
it meets X in angle . Since all such arcs have the same curvature, there
is a disk Bj of radius 0 about V', such that all extremal arcs that start at
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V' cannot again meet ¥ interior to Bs. We choose § small enough that all
such arcs will appear essentially linear, in a sense that will be clear from the
discussion.

No two such arcs can bound with a subarc of 0Bs a portion of Q. For
were that to happen, ® could be decreased by replacing two of the segments
of I' to the vertex by a segment AB as indicated in Figure 7; the shaded
portion shows the change in () effected by the construction. We conclude
that at most two extremals can end at V', and that each bounds, together
with one of the sides L of ¥ emanating from V', a portion of {2. But also this
configuration cannot occur, as the same procedure would again decrease .
Thus at most one extremal I' need be considered, bounding in Bj, together
with a boundary arc L that meets I' in angle 7 at V', a portion P of 2
(Figures 8,9).

Case 1; 7 < v: We cut off an end of P with a segment from I' that meets
L in angle v (Figure 8). This is easily seen to reduce ® if the segments
are small enough.

Case 2; 7 > v: We adjoin a piece to P by replacing a small length of [" near
V by a segment from I to the other arc L' of ¥ that emanates from V',
such that the segment meets L' in angle 7. See Figure 9. Again this
procedure decreases ®. O

It follows from Lemma 3.3 that once the existence of minimizing sets
for the functionals is established, the procedures of the first two lemmas can
be carried over without change, and the theorem will be established in the
generality stated. We proceed to demonstrate the existence. In the particular
case for which we are given a set  # ©,Q such that ®(Q; H) = 0 and O
minimizes (see the initial statement in the proof of Lemma 3.2) the proof of
Lemma 3.1 proceeds without change, and the theorem is complete. We may
thus assume the existence of {2 such that ®(Q; H) < 0.

Lemma 3.4: Under the hypotheses of the theorem, there exists a minimizer
Qo for the functional ®(Q*; H) over Q. Qq is bounded in Q by a finite number

of “extremal” subarcs Ty of semicircles of radius 1/2H, each of which meets
Y in angle v. No extremal can terminate at a protruding vertex.

Proof: By hypothesis, we have u = glbg..q ®(2*; H) < 0. We begin by
smoothing X at any protruding vertices, by inscribed circular arcs 7, as in
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Figure 8: Reduction of ¢; Case 1.
The shaded section is removed from P.

Figure 10; we denote by 2, the domain obtained when the contact points
with the arcs are distance 1/n from the vertex V', and by p,, the corresponding
glb. Since each ¥, = 09, € C*!, theze exists a minimizing set Qn, bounded
in €2, by a finite number of subarcs I',, of semicircles.

Choose € > 0, and let * C © be such that ®(Q*; H) — i < e. Denote
by ®,, the functional ® restricted to sets in €2,,. We observe that given € > 0
we can choose n(€) so that the contribution to ® of any sets interior to a ball
of radius 1/n about V' cannot be less than (—¢). We thus obtain

[ = P (Q; H) < (0 H) < OO H) + €< pu+ e+ 6 (3.8)

Let f]n be the trace on 7, of ﬁn We can choose n(é) large enough that if
n > n(€) then the change in its contribution to ®,, that arises by considering

this set as part of the inner boundary set fn will not exceed €. If that is
done, then ®(2,; H) becomes well defined, and we obtain

in = O (s H) > ®(Qs H) =6 > p— ¢ (3.9)
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Figure 9: Reduction of ¢; Case 2.
The shaded portion is added to P.

Since € and € are arbitrary, we have proved that lim pu, = p.
n—oo

Returning to our construction, we wish to let n — oo and extract
a convergent subsequence of the €2,. We cannot do that directly, as the
number of arcs I';, can conceivably increase unboundedly with n. However,
if we construct for fixed § > 0 a disk of radius Bs about each vertex, and
restrict attention to arcs that extend exterior to all Bs(V') then the number
stays uniformly bounded, as each such arc must subtend an arc of length
bounded from zero on ¥,. Thus, a subsequence of the {I',} can be chosen
that converges throughout 2, uniformly in Q° = Q\{B;} for any fixed J > 0,
to a countable set of arcs {f} with the same geometric properties as fn, and
bounding Qg in 2. We must show that ®(Qy; H) < p.

We write
O H) = @(Q H) + [0,(Qo; H) — @(Q; H)]
+[(S20; H) — @ (203 H)] (3.10)
= p,+ A, + B,.
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1/n

Figure 10: Smoothing at a corner.

We know that the initial term tends to p. In the subsequence considered,
the contributions to A, that arise from sets lying in Q‘ltend to zero with
increasing n because of the uniform convergence of the I',, in this domain,
and the corresponding contributions to B, vanish for n large enough. We
will show that interior to B; each of the individual terms arising in A4,, and
in B,, is small depending only on §. R

Consider first those terms involving €. Only a finite number of the
boundary arcs {I'} can extend into €°. But if § is small enough, then none
of these arcs can lie entirely in Bj; and fulfill the geometric conditions on
radius and boundary angle (that is so even if one of the end points lies at V/,
without angle condition there). Thus it is clear that all contributions to the
terms considered become vanishingly small, depending only on 9.

In the remaining term involving €2,,, many arcs of I';, can appear with
increasing n; however, these are necessarily disjoint circular arcs of common
radius, joining points of 7,, and their cumulative contribution tends to zero
with 0.

Thus, by choosing first 0 and then n sufficiently large depending on
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8, we can make ®(Qy; H) as close to p as desired. Hence, €} is minimizing
for ®(Q*; H). Lemma 3.3 now guarantees that none of the boundary arcs I'
extends to any of the vertices.

Lemma 3.5: The conclusion of Lemma 3.4 hold for each of the boundary
problems occurring in the proof of Lemma 3.2.

Proof: The formal reasoning is identical to that of Lemma 3.4 for each of
these problems.

Lemmas 3.4 and 3.5 permit us to complete the proofs of Lemmas 3.1
and 3.2 in the requisite generality, and these lemmas lead directly to the
proof of the stated Theorem 3.1. O

4. Two examples.

The hypothesis that ®(Q*; H) < 0 for some Q* C Q,Q" # @, , is essen-
tial for the proof we have given of Theorem 3.1. The following examples
show respectively that the hypothesis is not in general necessary, but that
nevertheless it cannot in general be discarded.

Example 4.1: Chen [C1] introduced “neck domains” €2 formed by two in-
tersecting circles of unit radius, as indicated by the solid lines in Figure 11,
and he showed that ®(Q*; H) > 0 for all Q* C Q,Q* # ©, €2, whenever the
aperture height 2p is sufficiently small. Concus and Finn [CF 3] introduced
“double bubble” domains as indicated in Figure 12. They showed that if p is
small enough, then there is a value 7,0 < v < 7/2, a circular arc ' of radius
R > p as indicated in the figure, and a solution u(z) of (1.3) in Q*, with
H =1/2R, such that v-Tu = cosy on ¥* and v-Twu = 1 on I'; here v is unit
normal vector directed exterior to 2*. This solution provides a solution in
the subdomain €2* indicated in Figure 11, which becomes vertically infinite
on [ and achieves the data v on ¥*. That is, it can happen that both smooth
and singular solutions occur in the identical domain. The procedure of this

paper will locate such singular solutions, even though the hypotheses of the
theorem, that ® < 0 for some subset, is not fulfilled. That hypothesis cannot,
however, be abandoned; the following example shows that without it there
may be no singular solution.
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2*

Figure 11: Neck domain bounded by solid lines; 2* extends to
right hand dashed line.

Example 4.2: If the domain € is a disk, then the boundary problem (1.2),
(1.3) can be solved explicitly by a spherical cap, for any data 75,0 < v <
7/2; hence by Theorem 6.1 of [F 3] there holds ®(Q*; H) > 0, for all Q* C
O, Q0" # @, Q. Thus as in the preceding example the hypothesis fails. But
in this case we assert that if 0 < 7 < 7/2 then no singular solution of the
indicated type can exist in 2. Specifically, we shall exclude the possibility of
a solution of (1.3) in a subdomain Q* bounded by a subset ¥* C ¥ and a set
of disjoint circular arcs I' of common radius R = 1/2H in €, each of which
meets ¥ in angle 7, such that (1.2) holds on ¥*, and v - Tu =1 on I

We may assume that the disk €2 has unit radius. As we have seen,
a necessary condition for existence of such a solution is that ¥(Q*; H) = 0.
Since vy # 0, there is at most a finite number N of arcs I

We consider first what happens when N = 1; we then encounter
a configuration as shown in Figure 13. We introduce the one parameter
family of domains Q*(«) and corresponding functionals ¥(Q*(a); H;a) =
U(;a), ap < a < 7, obtained by moving I' rigidly to the right until it
degenerates to the single point (1,0). Following the discussion of the “ice
cream cone” at the end of Sec. 2.2, we see that ¥(-;a9) > 0. Thus no
solution of the projected form is possible.

29



Figure 12: Double Bubble Domain.

Suppose now N > 1. We observe that U[Q*] = ®[Q\Q*]. Since 2\Q*
consists of a finite number of disjoint domains, each of which yields a positive
®, the additivity properties of the ® functional yield the result.
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Figure 13: Configuration for Example 4.2; Case N = 1.
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