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Abstract� The paper deals with optimal control problems for which minimizing
�sub�sequences of controls do not converge weakly in L

�� For such problems� here gov�
erned by ordinary di�erential equations� the relaxed �generalized� solutions in terms of
DiPerna�Majda measures are de�ned� correctness of the relaxation is shown and a numeri�
cal approximation is developed and tested on model examples�

Key words� Optimal control� impulse control� oscillations� concentrations� Young mea�
sures� DiPerna�Majda measures� weak L��compactness� numerical approximation�
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� Motivation � examples

The paper treats optimization problems which are coercive only in a non�re�exive space
L�� In other words� the minimized functional has only the linear growth� More generally�
the concentration e�ects can occur if the growth of the minimized functional is not strictly
greater than the growth of the constraints� Such problems naturally appear in many
applications� for instance in impulsive control theory �see e�g� Blaquire ���� Bryson� Ho
�	� Sect� 
���� Getz� Martin ���� Liu �
��� Rempala� Zabczyk ����� Seierstad ��	�� Warga
����� etc�� or in variational problems of the type of Plateau�s nonparametric minimal
�hyper�surface �see e�g� Giusti �
�� or Ka�cur and Sou�cek �
�� and references therein��

For simplicity� we will con�ne ourselves to problems of optimal control� Our relaxation
method presented in Section 
 is systematically based on functional�analytical approach�
using DiPerna and Majda�s ��� generalization �cf� also �
�� �
�� of classical Young measures
�

� summarized in Section �� Developing a theory of approximation of such measures in
Section �� it leads in Section 	 naturally to an e�cient numerical method for the relaxed
problem which keeps convex structure �if the relaxed problem has it� in the approximate
relaxed problems� so that sometimes even �nite linear�quadratic solvers can be used� see
Section � below�

Let us however begin with a few illustrative examples� We remark that� contrary to
usual impluse control �	� �� ��� we admit unlimitted number of impulses and concentration
e�ects combined with oscillation ones and also� in contrary to ��	�� the general theory will
admitt vector�valued control u�






��� Example� Let us �rst consider the following Bolza�type optimal control problem for
a system governed by an initial�value problem for a linear ordinary di�erential equation�

Minimize J�y� u� ��
Z T

�
��� �t � t��ju�t�j dt� �y�T �� 
��

subject to
dy

dt
� u� y��� � � �

y � W ������ T � � u � L���� T � �

��������
�������

�
�

where u is a control ranging the Lebesgue space of integrable functions L���� T � and y is
the corresponding state living in the Sobolev space W ������ T � of functions whose �distri�
butional� derivative belongs to L���� T �� and the time horizon T � 
 is �xed� Roughly
speaking� a minimizing control u must drive the state y su�ciently close to 
 at the ter�
minal time t � T � Note also that the coe�cient a�t� �� t� � �t � � attains its minimum
value at the point t � 
 so that the optimal control is forced to concentrate around t � 

provided T � 
� Considering� for � � ��� T � 
� and � � IR� the control

u��t� �

�
��� if t � �
� 
 � �� �
� otherwise �

���

the corresponding state y� is obviously given by

y��t� �

���
��

� if t � ��� 
 � �
��t� 
��� if t � �
� 
 � � � �
� if t � �
 � �� T � �

�
�

and J�y�� u�� � �mint����T � a�t� � �� � 
�� � O����� Since mint����T � a�t� � 
� the sequence
f�y�� u��g��� will minimize J provided � � 
��� then obviously lim��� J�y

�� u�� � 
�� �
inf J � On the other hand� this value inf J cannot be achieved� i�e� the optimal control
does not exist� Indeed� supposing u � L���� T � optimal� then obviously u �� �� and we can
always take some nonvanishing �part� of this control and add the corresponding area in a
closer neighborhood of 
� This does not a�ect y�T � but make

R T
� ����t� t��ju�t�j dt lower�

contradicting the optimality of u� This nonattainment is here because of the concentration
e�ect� More precisely� the sequence fu�g��� � L���� T � is not uniformly integrable �see
e�g� ��� for a de�nition�� As we mentioned above the reason for concentration e�ects is the
coercivity of the optimization problem only in L��space� i�e� the linear growth in terms
of u of the cost functional� Concentration e�ects are excluded if the growth of the cost
functional is strictly greater than the growth of the controlled system� as proved in ��
�
Corollary ��
�	��

��� Example� Moreover� the concentration e�ects can be combined with oscillation

�



ones� This can be seen from the following optimal control problem�

Minimize J�y� u� ��
Z T

�
��� �t� t��ju�t�j� y���t� dt� �y��T �� 
��

subject to
dy�
dt

� juj� y���� � � �

dy�
dt

�
max��� u�

�
�

min��� u�


� �
� y���� � � �

y � �y�� y�� � W ������ T � IR��� u�L���� T ��

������������
�����������

���

with some � � ��� 
�� Obviously� ky�kL����T � tends to be as small as possible� Taking the
control

u��t� �

���
��

��� if t � �
� 
 � ����
���� if t � �
 � ��� 
 � ���
� otherwise �

�	�

the corresponding state y� � �y��� y
�
�� has the component y�� as in �
� while y�� is small�

namely ky�kL����T � � O���� Argumenting as in the previous case� for � � 
�� we get a
minimizing sequence and the in�mum of the problem ��� is again 
���

��� Example� Concentrations do not have to occur only at isolated points but they
can be smeared out along the whole interval� This can be demonstrated on the following
problem�

Minimize J�y� u� ��
Z �

�
e��u�t�� � �y�t�� t�� dt

subject to
dy

dt
� u� y��� � � �

y � W ������ 
� � u � L���� 
� �

��������
�������

���

where e� � IR� IR is de�ned by

e��s� �

�
�
 � ��jsj if s � ��
� 
� �
e���jsj� � �jsj otherwise �

���

with a parameter � � �� For � � �� the problem ��� is coercive in L���� T � but we know
the exact behavior of minimizing sequences only for � � �� then the in�mum of ��� is ��
Indeed� consider the control

u��t� �

�
��� if t � �l�� ��

�
� l�� ��

�
��

� otherwise �

where � � � is small and 
 � l � 
��� 
� The corresponding state is

y��t� �

�
�l � 
���� � ����t� l�� ��

�
� if t � �l�� ��

�
� l�� ��

�
�

�l � 
���� otherwise �

An easy calculation shows that lim��� J�y
�� u�� � �� On the other hand� there is no

y � W ������ 
�� u � L���� 
� satisfying the state equation for which J�y� u� � ��






��� Example� By a combination of ��� and ���� one gets the following example�

Minimize J�y� u� ��
Z �

�
e��u�t�� � �y��t�� t�� � y��t�

� dt

subject to
dy�
dt

� juj � y���� � � �

dy�
dt

�
max��� u�

�
�

min��� u�


� �
� y���� � � �

y � �y�� y�� � W ������ T � IR�� � u�L���� T � �

������������
�����������

���

Here again the minimum does not exist and utilizing a similar construction as in ��� and
��� we can see that the in�mum is zero if � � �� Figure 
 sketches one possible minimizing
sequence for � � � and � � 
�
�
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Figure 
� A �nearly� optimal control u� and the response y��

Therefore� Examples 
�
�
�� show that it is desirable to look for some generalized so�
lutions to �
�� ���� ��� and ���� It is clear that standard relaxed controls �cf� e�g� �
���
in terms of Young measures �

� cannot record properly concentration e�ects and thus we
have to make the relaxation by a suitable generalization � here we use the DiPerna and
Majda ��� measures� brie�y summarized in Section �� Then� in Section 
� we will use these
measures for a relaxation �by a continuous extension� of optimal control problems from
the class containing also Examples 
�
��� To handle the relaxed problems numerically� in
Section � we construct a convex �nite�dimensional subset of DiPerna�Majda measures� For
this� we will need an auxiliary envelope �ner than DiPerna�Majda measures so that piece�
wise constant test functions can be admitted� constructed by using the so�called generalized
Young functionals� cf� �
	� �
� ���� Then� in Section 	� we construct approximate relaxed
problems and prove their convergence� Finally� numerical results for Examples 
�
�
�� are
presented in Section ��

� DiPerna�Majda measures in brief

First� we have to construct a suitable locally compact convex hull of the involved Lebesgue
spaces Lp��� T � IRm� used for p � 
 in Examples 
�
�
��� As already mentioned� we will use

�



a special extension proposed by DiPerna and Majda ���� In what follows C��IRm� stands
for the space of bounded continuous functions while C�IRm� for the space of continuous
functions on IRm� etc�

Let Sm�� denote the unit sphere in IRm� Let further

R �

��
� w�C��IRm�� �w��C

��IRm�� w��C�Sm��� �

lim
jsj��

w��s� � � � w�s� � w��s� � w�

�
s

jsj

	
jsjp


 � jsjp



� ���

the set R is a complete separable subring of the ring C��IRm� of all bounded continuous
functions on IRm� The corresponding compacti�cation of IRm� denoted �IRm� is then home�
omorphic with a unit ball in IRm� or equivalently with a simplex � in IRm� This means that
every w � R admits a uniquely de�ned continuous extension on �IRm �denoted then again
by w without any misunderstanding� and conversely for every w � C��IRm� the restriction
on IRm lives in R� cf� e�g� ����

Further� we will denote by Y���� T �� 	� �IRm� the subset of L�w ���� T �� 	� rca��IRm�� con�
sisting from the mappings  
 � t 	�  
t such that  
t is a probability measure on �IRm for
	�a�a� t � ��� T �� here 	 is a positive Radon measure on ��� T � and L�w ���� T �� 	� rca��IRm��
denotes the Banach space of all weakly 	�measurable �i�e�� for any w � R� the mapping
��� T �� IR � t 	�

R
�IRm w�s� 
t�ds� is 	�measurable in the usual sense� 	�essentially bounded

mappings from ��� T � to the set of Radon measures rca��IRm� on �IRm�
DiPerna and Majda ��� showed that� having a bounded sequence fukgk�IN in

Lp��� T � IRm�� there exists its subsequence �denoted by the same indices�� 	 � rca���� T ��
positive and  
 � Y���� T �� 	� �IRm� such that� for any g�C���� T �� and any w�R�

lim
k��

Z T

�
g�t�v�uk�t��dt �

Z T

�

Z
�IRm

g�t�w�s� 
t�ds�	�dt� � �
��

where v�s� � w�s��
�jsjp�� note that w on the right�hand side of �
�� denotes in fact a con�
tinuous extension on �IRm� We say that such a pair �	�  
� � rca���� T ��
Y���� T �� 	� �IRm�
is attainable by a sequence fukgk�IN � Lp��� T � IRm�� The set of all attainable pairs �	�  
�
is denoted by DMp��� T � IRm�� and its subset containing measures attainable by sequences
contained in the ball of the radius � � � in Lp��� T � IRm� is denoted by DMp

���� T � IR
m��

It is well�known �see �
�� 
�� �
� ���� that� for any v � C�IRm� such that
limjsj�� v�s��jsjp � � and any g�L���� T �� the limit in �
�� can also be described as

lim
k��

Z T

�
g�t�v�uk�t��dt �

Z T

�

Z
IRm

g�t�v�s�
t�ds� dt � �

�

where 
 � f
tgt����T � is a so�called Lp�Young measure� i�e� 
 � Y���� T �� IRm� andR T
�

R
IRm jsjp
t�ds� dx � ��� cf� �

�� We then say that 
 is generated by fukgk�IN�
We will call a DiPerna�Majda measure �	�  
� � DMp��� T � IRm� p�nonconcentrating ifR T

�

R
�IRmnIRm  
t�ds�	�dt� � �� We should also mention that to any �	�  
� � DMp��� T � IRm�

	



we can assign the so�called p�nonconcentrating modi�cation� i�e�� �	��  
�� � DMp��� T � IRm�
such that Z T

�

Z
�IRm

g�t�w�s� 
t�dt�	�dt� �
Z T

�

Z
�IRm

g�t�w�s� 
�t �dt�	
��dt�

for any g � C���� T �� and any w � R vanishing at in�nity� It was proved in ��

� 
��� that
	� has a density with respect to the Lebesgue measure and that �	��  
�� can be expressed
through an Lp�Young measure representation� cf� ��
� Prop� 
���
	�� Therefore� �
�� can
be now written as

lim
k��

Z T

�
g�t�v�uk�t��dt �

Z T

�

Z
IRm

g�t�v�s�
t�ds�dt �
Z T

�

Z
�IRmnIRm

g�t�w�s� 
�ds�	�dt�� �
��

For a numerical implementation� it will be important that we have the following com�
plete characterization of DMp��� T � IRm� at our disposal� see �
�� �
� for the proof�

��� Theorem� Let R be as in ��� and �	�  
� � rca���� T �� 
 Y���� T �� 	� �IRm�� Then
the pair �	�  
� belongs to DMp��� T � IRm� if and only if the following three properties are
satis�ed simultaneously�

� 	 is positive�

�� 	�� � rca���� T �� de�ned by 	���dt� � �
R
IRm  
t�ds��	�dt� is absolutely continuous with

respect to the Lebesgue measure �d��� will denote its density��


� for a�a� t � ��� T � it holdsZ
IRm

 
t�ds� � �� d��� �t� �

�Z
IRm

 
t�ds�


 � jsjp

	�� Z
IRm

 
t�ds� �

Let us de�ne the natural imbedding i � Lp��� T � IRm�� DMp��� T � IRm� as

i�u� � �	�  
� � where  
t � 
u�t� and d��t� � 
 � ju�t�jp for a�a� t � ��� T �� �

�

Alternatively� DiPerna and Majda ��� however worked with measures from rca���� T � 

�IRm�� let us put here

DMp��� T � IRm� �

��
� ��rca���� T �
 �IRm�� �fukgk�IN � Lp��� T � IRm� �
��

�z�C���� T �
�IRm� � h�� zi � lim
k��

Z T

�
z�t� uk�t���
 � juk�t�j

p�dt




where� of course� h�� zi �
R
���T ���IRm z�t� s���dtds�� Further� there is a one�to�one corre�

spondence between DMp��� T � IRm� and DMp��� T � IRm� given byZ
���T ���IRm

g�t�w�s���dtds� �
Z T

�
g�t�

Z
�IRm

w�s� 
t�ds�	�dt� � g�C���� T ��� w�R� �
	�

Thus we can also denote by DMp
���� T � IR

m� the image of DMp
���� T � IR

m� via this corre�
spondence�

Let us remark that the above results as well as the approximation theory introduced
below hold for a multidimensional domain with a �nite Lebesgue measure in place of the
interval ��� T �� too�

�



� Optimal�control problems and their relaxation

Let us now consider the following Bolza problem covering the special cases �
�� ���� ���
and ����

�P�

������
�����

Minimize J�y� u� ��
Z T

�
a�t� y� u� � b�t� u� dt� f�y�T ��

subject to
dy

dt
� c�t� y� u� � d�t� u�� y��� � y� �

y�W ������ T � IRn� � u�Lp��� T � IRm� �

where a � ��� T �
 IRn
 IRm � IR is a Carath!eodory function �i�e� a�t� 
� 
� � IRn
 IRm � IR
is continuous for a�a� t � ��� T � and a�
� r� s� � ��� T � � IR is measurable for all r and
s�� also c � ��� T � 
 IRn 
 IRm � IRn is a Carath!eodory function� b � C���� T � 
 IRm� and
f � C�IRn� satisfying

max�ja�t� r� s�j� jc�t� r� s�j� � �����t� � ��jrj��� � jsjp�������� �
��

b� � C���� T ��R�� where b��t� s� �� b�t� s���
 � jsjp� � �
��

jc�t� r� s�j � ����t� � �jsjp��
 � jrj�� �
��

ja�t� r�� s�� a�t� r�� s�j � ����t� � �jr�j
��� � �jr�j

��� � �jsjp�������jr� � r�j� �
��

jc�t� r�� s�� c�t� r�� s�j � ����t� � �jr�j
��� � �jr�j

��� � �jsjp�������jr� � r�j� ����

d� � C���� T ��Rn�� where d��t� s� �� d�t� s���
 � jsjp� � ��
�

f � � � a�t� r� s� � b�t� s� � �jsjp � ����

with some � � �� � � IR� �q � Lq��� T ��
Due to concentrations in the control u� the response y may fall out W ������ T � IRn��

keeping its variation bounded� Instead of a bounded�variation space BV��� T � IRn�� we will
rather work with a bit �ner extensionW �

	��� T � IR
n� ofW ������ T � IRn� introduced by Sou�cek

����� namely

W �
	��� T � IR

n� ��

��
� �y� "y� � L���� T � IRn�
 rca���� T �� IRn�� ��
�

�fykgk�IN � W ������ T � IRn� � yk � y�
dyk
dt

� "y weakly#



�

more precisely� ���� used n � 
 but a multidimensional domain instead of ��� T �� See
also ��
� Example 	�
��� for a comparison with BV��� T � IRn�� The canonical embedding
j � W ������ T � IRn��W �

	��� T � IR
n� is de�ned by j�y� � �y� dy�dt�� It is shown in ���� that�

if normed by k�y� "y�k �� kykL����T 	IRn� � k "ykrca����T �	IRn�� W
�
	��� T � IR

n� is a Banach space
containing� just by de�nition ��
�� j�W ������ T � IRn�� densely� Moreover� there exist unique
yT � y� � IRn such that the per�partes formula

Z T

�

�
y
dv

dt
� "yv

	
dt � yTv�T �� y�v���

�



holds for any v � C����� T ��� it is then natural to call yT and y� the trace of �y� "y� and
write yT � �y� "y�jt
T and y� � �y� "y�jt
�� The mapping �y� "y� 	� �yT � y�� � W

�
	��� T � IR

n� �
IRn 
 IRn is weakly# continuous and the balls in W �

	��� T � IR
n� are weakly# compact� cf�

���� Theorems ��ii� and ���
Using DiPerna�Majda�s extension of Lp��� T � IRm� and Sou�cek�s extension of

W ������ T � IRn�� the relaxed problem will look as�

�RP�

��������
�������

Minimize  J�y� "y� 	�  
� ��
Z T

�

Z
�IRm

a�t� y�t�� s� � b�t� s�


 � jsjp
 
t�ds�	�dt� � f ��y� "y�jt
T�

subject to "y �
Z
�IRm

c�t� y�t�� s� � d�t� s�


 � jsjp
 
t�ds�	� �y� "y�jt
� � y� �

�y� "y� � W �
	��� T � IR

n�� �	�  
� � DMp��� T � IRm� �

Of course� the state equation is now understood in the sense of measures on ��� T �� The fol�
lowing assertion and Proposition 
�� below justify that �RP� is actually a correct relaxation
of �P��

��� Proposition� Let ����	��
�� ����� and ���� be valid� let yk solves

dyk
dt

� c�t� yk� uk� � d�t� uk� � yk��� � y� � ����

and let the sequence fukgk�IN attains �	�  
� in the sense ����� Then �yk�
d
dt
yk� � �y� "y�

weakly
 in W �
	 ��� T � IR

n� and yk�T �� �y� "y�t
T � and �y� "y� is the unique solution to

"y �
Z
�IRm

c�t� y�t�� s� � d�t� s�


 � jsjp
 
t�ds�	 � �y� "y�jt
� � y�� ��	�

Proof� First� we show the apriori estimate kykkW ������T 	IRn� � C� Using �
�� and �����
from ���� one gets

d

dt
jykj � j

d

dt
ykj � jc�yk� uk� � d�uk�j ����

� ��� � �jukj
p��
 � jykj� � kd�kC���T 	C�IRm���
 � jukj

p�

from which we get by Gronwall�s inequality that kykkL����T 	IRn� is bounded independently
of k because jukj

p is bounded in L���� T �� By ���� one then gets also boundedness of
k d
dt
ykkL����T 	IRn�� Altogether� we proved boundedness of kykkW ������T 	IRn��
Then� we can select a subsequence �denoted by the same indices� such that fj�yk�g

converges weakly# in W �
	��� T � IR

n�� Let us denote by �y� "y� the limit of this subsequence�
Then also yk�T � � �y� "y�t
T and yk��� � �y� "y�t
�� Since yk��� � y�� we thus obtain
�y� "y�t
� � y��

Also� we know that

dyk
dt

� "y weakly# in rca���� T �� IRn� ����

�



and

d�
� uk��
Z
�IRm

d�t� s�


 � jsjp
 
t�ds�	 weakly# in rca���� T �� IRn� � ����

which follows directly from �
�� provided d � �di�
n
i
�� di � gi�vi for some gi � C���� T �� and

vi � R� while for general d satisfying ��
� we must still use the fact that d�t� s���
�jsjp� can
be approximated uniformly on ��� T �
 IRn by functions from C���� T ���Rn� as implicitly
used already in the de�nition �
���

By the compact embedding W ������ T � IRn� � Lq��� T � IRn�� we have yk � y in
Lq��� T � IRn� for any q � ��� Using q � 
��� from �
�� one gets

c�yk� uk��
Z
�IRm

c�t� y�t�� s�


 � jsjp
 
t�ds�	 weakly in L������ T � IRn� � ����

note that t 	� c�t� y�t�� s� need not be continuous but� since c�t� r� 
� has a lesser growth
than the p�th power due to �
��� we can work with the Lp�Young measure representation
of �	�  
� from �

� and use ��
� Lemma 
������

Altogether� by ��������� we can pass to the limit in ����� which gives just ��	��
The solution to ��	� is unique� Indeed� taking two solutions �y�� "y�� and �y�� "y�� and

subtracting ��	� for �y�� "y�� and �y�� "y��� we get by �
�� that

"y�� �
Z
�IRm

c�t� y��t�� s�� c�t� y��t�� s�


 � jsjp
 
t�ds�	

�

�
�� � �jy�j

��� � �jy�j
��� � �

Z
�IRm

jsjp������


 � jsjp
 
t�ds�	

	
jy��j�

where y�� �� y� � y� and "y�� �� "y� � "y�� As
R
�IRm

jsjp������

��jsjp
 
t�ds�	 � L������ T �� one can see

that "y�� has a density� and thus "y�� � dy���dt a�e� on ��� T �� As y����� � �� by Gronwall�s
inequality one gets y�� � � on ��� T �� �

Let us de�ne � � Lp��� T � IRm� � W ������ T � IRn� by y � ��u� where y is the solution
to the state equation dy�dt � c�t� y� u� � d�t� u�� y��� � y�� Then� if we de�ne  � �
DMp��� T � IRm� � W �

	��� T � IR
n� by �y� "y� �  ��	�  
� where �y� "y� is the solution to the

relaxed state equation ��	�� we have j���u�� �  ��i�u�� or� saying otherwise� j � � �  � � i�
where the imbeddings i and j were de�ned respectively by �

� and by j�y� � �y� dy�dt��

Let us note that in �
�� we assumed a sub�critical growth of a and c because a correct
extension of problems with terms of critical growth p in u interacting nonadditively with y
would bring delicate problems� see �
��� Here� as y need not be continuous� discontinuous
test integrands of the form c�t� y�t�� s� would have to be admitted� which would require to
work with a locally convex envelope of Lp��� T � IRm� strictly �ner than DMp��� T � IRm�� cf�
��
� Example 
�
�

��

The set of �	�  
� � DMp��� T � IRm� involved in �RP� is not convex� which is an essential
drawback especially for numerical treatment in Sections ���� Moreover� we did not de�ned
any �locally� compact topology on DMp��� T � IRm�� It lead us to a modi�cation of �RP� by

�



exploiting DMp��� T � IRm� de�ned in �
�� and endowed by the weak# topology of rca���� T �

�IRm�� so that we get�

�RP��

��������
�������

Minimize $J�y� "y� �� ��
Z
���T ���IRm

a�t� y� s� � b�t� s�


 � jsjp
��dtds� � f ��y� "y�jt
T�

subject to "y �
Z
�IRm

c�t� y�t�� s� � d�t� s�


 � jsjp
��
ds�� �y� "y�jt
� � y� �

�y� "y� � W �
	��� T � IR

n� � � � DMp��� T � IRm��

where
R
�IRm

z�t�s�
��jsjp

��
ds� � rca���� T �� IRn� is de�ned by the identity

�g�C���� T �� IRn� �

�Z
�IRm

z�t� s�


 � jsjp
��
ds�� g

�
�
Z
���T ���IRm

g�t� 
 z�t� s�


 � jsjp
��dtds��

Note that the problem �RP�� may have a convex structure� it occurs� e�g�� if a�t� 
� is convex
and c�t� 
� is linear� We will denote $���� �� �y� "y� the solution to the state problem in �RP���

��� Proposition� Let ����	���� be valid� Then the relaxed problem �RP�� has a solution�
inf�P�� min�RP��� Moreover� every solution � � DMp��� T � IRm� to �RP�� is attainable �in
the sense used in ����� by a minimizing sequence for �P� and� conversely� every minimizing
sequence for �P� contains a converging �in the sense ����� subsequence to a solution of

�RP���

Proof� Denote %�u� � J���u�� u� and $%��� � $J�$����� ��� The existence of a solution
to �RP�� follows from the fact that� due to coercivity of %� the level sets of $% �i�e� sets
f� � DMp��� T � IRm�� $%��� � cg� are contained in a weakly# compact set DMp

���� T � IR
m�

and that $J and $� �and thus also $%� are weakly# continuous� this follows from �
�� and �
��
and the �weak#�norm��continuity of the mapping � 	� y � DMp��� T � IRm�� L������ T � IRn�
with �y� "y� � $���� proved essentially in Proposition 
�
�

Suppose that inf�P�� min�RP�� and that � � DMp��� T � IRm� is a solution to �RP���
Then there is fukgk�IN � Lp��� T � that generates � � DMp��� T � IRm� in the sense �
���
Further� we put yk � ��uk�� We have due to the mentioned continuity of $J and $� that
limk��%�uk� � limk�� J�yk� uk� � limk�� J���uk�� uk� � $J�$����� �� � min�RP��� Thus�
for k large enough we would get %�uk� � inf�P�� which cannot be true� Thus we proved
inf�P��min�RP��� If there is another sequence f&ukg such that lim infk�� J���&uk�� &uk� �
limk�� J���uk�� uk� � min�RP�� then there would be its subsequence generating some
�� � DMp��� T � IRm� that $J�$������ ��� � $J�$����� ��� which gives a contradiction� This
shows that fukg is also a minimizing sequence for �P��

Similarly� if we suppose that inf�P��min�RP��� then there would exist a minimizing
sequence fu�kgk�IN of �P� necessarily bounded due to the coercivity of % implied by ����
generating some �� � DMp��� T � IRm� and� for y�k � ��u�k�� also �y�k�

d
dt
y�k� � �y�� "y�� �

$����� weakly# in W �
	��� T � IR

n� and y�k�T � � yT � �y�� "y��t
T � Finally� we would have
that $J�$������ ��� � $J�$����� ��� contrary to the assumption that $J�$����� �� � min�RP���


�



Altogether� we showed that inf �P�� min �RP��� This also shows that every minimizing
sequence of �P� contains a subsequence converging to a solution to �RP��� �

As there is a one�to�one mapping between DMp��� T � IRm� and DMp��� T � IRm� given
by �
	�� we can also modify Proposition 
�� for �RP�� It gives that �RP� has a solution�
inf�P� � min�RP�� and there is the above speci�ed relation between minimizing sequences
for �P� and solution to �RP�� the convergence being now understood in the sense of �
��
instead of �
���

To illustrate the general considerations� we can return to Examples 
�
�
��� For m � 

the compacti�cation �IR is just the standard two�point compacti�cation �IR �� $IR ��
IR � f�����g� In terms of the Diperna�Majda measure �	�  
� � DMp��� T � IRm�� the
�unique� optimal relaxed control for the special case of �
� has then the form

	�dt� � dt � �
� �  
t �

��
�


� if t �� 
 �


�� if t � 
 �
�
��

while for the case of ��� it has the form�

	�dt� � dt� �
� �  
t �

��
�


� if t �� 
 �

�
�� � �
� ��
�� if t � 
 �
�

�

with � � 
��� where 
t � rca���� T �� or 
s � rca� $IR� denotes the Dirac measure supported at
t � ��� T � or at s � $IR� respectively� Eventually� we know solutions to the relaxed problems
of ��� and ��� explicitly only if � � �� an optimal relaxed control for ��� with � � � has
the form

	�dt� � �dt �  
t �



�

� �




�

�� � �
��

and an optimal relaxed control for ��� with � � 
�� and � � � is

	�dt� � �dt �  
t �



�




� � �
�� � �
� ��
��

�
� �

�

See also Figures ��	 below for �an approximation of� such optimal relaxed controls� we
calculated a bit more illustrative case � � �� however�

� Approximation of DiPerna�Majda measures

We want to apply the general approximation theory introduced in ��
� resulting here to
some suitable �nite�dimensional convex subsets of DMp��� T � IRm�� In such a way� the
possible convex structure of �RP� is preserved for discrete problems� which is advantageous
for optimization routines� We want to use the partition of the interval ��� T � and then
piecewise constant DiPerna�Majda measures� The standard construction from ��
� thus
needs piecewise continuous test functions� but the DiPerna�Majda measures introduced in







Sect� 
 admit only continuous test functions� This will force us to introduce an auxiliary
�ner extension �i�e� a �ner convex local compacti�cation� of Lp��� T � IRm��

Let fT �
d�
gd��� denote an equidistant partition of ��� T � and fT �

d�
gd��� a regular triangu�

lation of �IRm �� IRm � Sm�� with fsld�g
L�d��
l
� the set of mesh points� here we use the fact

that IRm � Sm�� is homeomorphic with a compact polyhedral domain in IRm that is then
triangulated by a mesh of L�d�� � IN points� We suppose that T �

d� is a re�nement of T �
d if

d� � d and similarly for T �
d � In what follows we will denote the number of subintervals in

��� T � by M�d�� � T�d�� In the following two assertions� we now formulate the results of
this sections�

��� Proposition� Let �d � rca���� T �
 �IRm� be given by the formula

h�d� hi �
M�d��X
j
�

L�d��X
l
�

Z
E�
j

h��t� s
l
d�
�qjl dt � �
��

with h� � C���� T �
 �IRm� being the continuous extension of h�t� s���
 � jsjp�� and with

L�d��X
l
�

qjl

 � jsld� j

p
� 
 � 
 � j � M�d��� and �
	�

qjl � � � 
 � j � M�d��� 
 � l � L�d��� �
��

Then �d � DMp��� T � IRm��

Proof� Put �jk � qjk�
PL�d��

l
� qjl for j � 
� � � � �M�d��� Then �jl � � and
PL�d��

l
� �jl � 
�
Then �d given by �
�� de�nes through the correspondence �
	� the pair �	�  
� given by

 
t �
L�d��X
l
�

�jl
sl
d�

� d��t� �
L�d��X
l
�

qjl� t � E�
j � �
��

where d� denotes the density of 	 which is thus absolutely continuous with respect
to the Lebesgue measure� It remains to show that �	�  
� de�ned by �
�� belongs to
DMp��� T � IRm��

By �
	�� we have

L�d��X
l
�

�jl

 � jsld�j

p
�


PL�d��
k
� qjk

L�d��X
l
�

qjl

 � jsld� j

p
�


PL�d��
l
� qjl

�

so that

qjl � �jl

�
�L�d��X

k
�

�jk

 � jskd�j

p

�
A
��


�



and� for t � E�
j � one gets

d��t� �
L�d��X
l
�

qjl �

�
�L�d��X

l
�

�jl

 � jsld� j

p

�
A
��

�

�Z
IRm

 
t�ds�


 � jsjp

	��
�

Now one can easily use Theorem ��
� First� 	 is positive� The condition �
	� ensures thatR
IRm  
t�ds� � � and� �nally� the measure 	�� from Theorem ��
 is absolutely continuous with

the density

R

IRm
��t�ds�
��jsjp

��� R
IRm  
t�ds�� �

Note that the subset of DMp��� T � IRm� containing measures satisfying �
����
�� is con�
vex� Indeed� for arbitrary � � ��� 
� and ��d� �

�
d ful�lling �
����
��� the measure ���d��
�����d

obeys again �
����
�� with qjl �� �q�jl � �
� ��q�jl� where q
�
jl and q�jl correspond to ��d and

��d� respectively�

��� Proposition� For any � � DMp��� T � IRm� there is f�dgd�� � DMp��� T � IRm�� �d in
the form ���������� such that w
�limd�� �d � ��

As already mentioned� the proof of this assertion requires a construction of a �ner local
compacti�cation of Lp��� T � IRm�� We de�ne Carp��� T � IRm� � fh � ��� T � 
 IRm � IR
Carath!eodory� �� � L���� T �� � � IR�� jh�t� s�j � ��t� � �jsjpg� Following ��
�� we will
endow Carp��� T � IRm� by the norm

khkCarp���T 	IRm� �� inf
��t�s�����T ��IRm�
jh�t�s�j�
�t���jsjp

k�kL����T � � � � �
��

We will consider a separable linear subspace H of Carp��� T � IRm� containing a coercive
function� e�g�� h�t� s� � jsjp� Following ��
� we de�ne the embedding iH � Lp��� T � IRm� �
H	 by

hiH�u�� hi ��
Z T

�
h�t� u�t�� dt �
��

for any u � Lp��� T � IRm� and h � H� Moreover� we put

Y p
H��� T � IR

m� �� w#�cl iH�L
p��� T � IRm��� ����

The set Y p
H��� T � IR

m� will be addressed as the set of generalized Young functionals� We
say that � � Y p

H��� T � IR
m� is generated by fukgk�IN if � � w	� limk�� iH�uk�� We recall

that Y p
H��� T � IR

m� makes a convex locally compact envelope of Lp��� T � IRm�� for a detailed
investigation of it we refer to ��
��

Let us de�ne 'p
R �� fv � C�IRm�� v�s� � v��s��
 � jsjp� � v� � Rg with R from ���

and then

H �� G� �'p
R �

�
h� h�t� s� �

kX
i
�

g�t�v�s� � g�G� � v�'
p
R � k� IN



�







where

G� ��
�
d��

Gd with Gd ��
n
g�L���� T �� �E�T �

d � gjE � C� $E�
o
�

This choice of G� was already used in ��
� Sec� 
�	�� note that such H is separable in the
norm �
�� because both R � C�IRm� and G� � L���� T � are separable�

Following ��
� Sec� 
�	� we de�ne a projector P �
d� � H � H by

�P �
d�
h��t� s� ��




jEj

Z
E
h��� s� d� � t � E� h � H�

E � ��� T � denotes the current subinterval of the equidistant partition T �
d�
� Obviously�

P �
d�

makes an interval�wise constant approximation of h�
� s�� Analogously� the projector
 P �
d�

� G� � G� is de�ned by

�  P �
d�
g��t� �




jEj

Z
E
g��� d� � t � E� g � G��

Furthermore� we de�ne  P �
d � C��IRm� � C��IRm� by assigning to each v � C��IRm� an

element�wise a�ne interpolation coinciding with v at any mesh point of T �
d�
� i�e�

�  P �
d�
h���t� s� ��

L�d��X
l
�

h�t� sld��


 � jsld� j
p
vld��s� �

with fvldg��l�L�d�� denoting a basis of the �nite element subspace  P �
d�C��IRm� � C��IRm�

such that� for all s � �IRm�
PL�d��

l
� vld��s� � 
 and vld��s� � �� and that vld��s
l
d�
� � 
 for

any mesh point sld� of T �
d�
� recall that L�d�� denoted the number of the mesh points of T �

d�
�

Then we de�ne the projector P �
d� � H � H by

h
P �
d�
h
i
�t� s� ��

h
 P �
d�
�h��t� 
��

i
�s��
 � jsjp� � ��
�

see also ��
� Example 
�	�	�� Eventually� for d � �d�� d�� we de�ne the projector Pd � H � H
by

Pd �� P�d��d�� �� P �
d�P

�
d� � P �

d�P
�
d� �

��� Lemma� For any h�t� s� � g�t�w�s��
� jsjp� with g � G� and w � R� the following
holds�

lim
d���

kh� P �
d�
hkCarp���T 	IRm� � � � ����

lim
d���

kh� P �
d�
hkCarp���T 	IRm� � � � ��
�

lim
d��

kh� PdhkCarp���T 	IRm� � � � ����


�



Proof� Take some &d� � � �xed� Then g is continuous on the closure of &E � T �
�d�

and

thus� for any t�� t� � &E� jg�t���g�t��j � � �E�jt�� t�j� with � �E being the continuity modulus
of g restricted on the closure of &E� We recall that limr�� � �E�r� � � for any &E � T �

�d�
� One

can estimate for any d� � &d�

kh� P �
d�
hkCarp���T 	IRm� � sup

s��IRm
jw�s�jkg �  P �

d�
gkL����T �

� kwkC��IRm�

X
E�T �

d�

Z
E

�����g�t�� 


jEj

Z
E
g��� d�

����� dt

� kwkC��IRm�

X
E�T �

d�




jEj

Z
E

Z
E
jg�t�� g���j d� dt

� kwkC��IRm�

X
�E�T �

�d�

X
E
 �E




jEj

Z
E

Z
E
� �E�d�� d� dt

� TkwkC��IRm�

X
�E�T �

�d�

� �E�d��� � as d� � � �

The proof of ��
� is similar� we exploit the uniform continuity of w �precisely of its
extension� on the compact set �IRm� Eventually� ���� follows from ���� and ��
� by ��
�
Prop� 
�	�
�� �

We can de�ne the adjoint operator P 	
d to Pd obviously by h�� Pdhi � hP 	

d �� hi for any
� � Y p

H��� T � IR
m� and h � H� Moreover� as C���� T �� � G�� Y

p
H��� T � IR

m� makes a �ner
convex local compacti�cation of Lp��� T � IRm� than DMp��� T � IRm� which is equivalent with
Y p
H�
��� T � IRm� for H� �� C���� T �� � 'p

R� cf� ��
�� This means that there exists an a�ne
weakly# continuous surjection

� � Y p
H��� T � IR

m�� DMp��� T � IRm� �

�xing Lp��� T � IRm� in the sense � � iH � iH� � This mapping is not injective� however�

��� Lemma� It holds P 	
dY

p
H��� T � IR

m� � Y p
H��� T � IR

m�� Moreover� for any � �
Y p
H��� T � IR

m�� it holds w#� limd�� �d � � with �d � P 	
d � � Y p

H��� T � IR
m�� Then also

w#� limd�� ���d� � �����

Proof� Utilizing ��
� Prop� 
�	��� we get that P 	
dY

p
H��� T � IR

m� � Y p
H��� T � IR

m�� By
Lemma ��
 one gets

h� � �d� hi � h�� h� Pdhi

� k�kCarp���T 	IRm��kh� PdhkCarp���T 	IRm� � �� ��	�

This shows �d � � weakly# in H	� Further� as � is a weakly# continuous surjection�
���d�� ���� weakly# in H	

� � �

Proof of Proposition ���� For the orientation� let us display our situation by the follow�
ing diagram�


	



YH��� T � IR
m� P 	

dYH��� T � IR
m�

P 	
d YH��� T � IR

m�

DMp��� T � IRm� f��DMp��� T � IRm�� �
�� holdsg�

��

� �
� �

Let � � DMp��� T � IRm�� Then� by the above diagram� there is � � Y p
H��� T � IR

m� �generally
not unique� such that � � ����� We put

�d � ���d� � �d � P 	
d � �

By Lemma ���� we know that w#�limd�� �d � �� �d � DMp��� T � IRm� and w#�limd�� �d �
� � DMp��� T � IRm�� Now it remains to show that �d can be expressed in the form �
����
���

AsH is separable� for any � � Y p
H��� T � IR

m� there is uniquely de�ned �� � Y p
H��� T � IR

m��
the so�called p�nonconcentrating modi�cation of �� such that h�� hi � h��� hi for any h � H�
limjsj�� h�t� s��jsjp � � for a�a� t � ��� T �� Therefore� de�ning &� � � � �� we have

h�� Pdhi � h��� Pdhi�
D
&�� Pdh

E
� hP 	

d �
�� hi�

D
P 	
d
&�� h

E
�

Due to ��
� Prop� 
���
	�� and ��
� Sec� 
�	�� P 	
d �

� has the unique representation by an
interval�wise homogeneous aggregated Lp�Young measure� say 
d�


d�t �
L��d��X
l
�

&�jl
sl
d�

� for any t � E�
j � Td� �

where we suppose that sld� � IRm for l � 
� ���� L��d�� �while sld� � �IRm n IRm for l �

L��d�� � 
� ���� L�d����
PL��d��

l
�
&�jl � 
 and &�jl � �� As Lp�Young measures can be embedded

into p�nonconcentrating DiPerna�Majda measures �see ��
� Remark 
���
����� we obtain an
interval�wise homogeneous aggregated p�nonconcentrating DiPerna�Majda measure ��d

��
�	�d�  


�
d� with

d��
d
�t� �

�
�L��d��X

l
�

�jl

 � jsld� j

p

�
A
��

�  
�d�t �
L��d��X
l
�

�jl
sl
d�

� for any t�E�
j �Td� �

where d��
d
stands for the density of 	�d and

PL��d��
l
� �jl � 
 and �jl � �� Finally� we de�ne

for any j � 
� � � � �M�d�� and any l � 
� � � � � L��d��

qjl � �jl

�
�L��d��X

l
�

�jl

 � jsld� j

p

�
A
��

����

and the measure ��d having the representation

h��d� hi �
M�d��X
j
�

L��d��X
l
�

Z
E�
j

h��t� s
l
d�
�qjl dt ����


�



for any h�t� s� � h��t� s��
�jsj
p� with h� � C���� T ���R� Note that� for any 
 � j � M�d���

L��d��X
l
�

qjl

 � jsld� j

p
� 
 � ����

It remains to approximate &�d � ��P 	
d
&��� For h�t� s� � g�t�w�s��
�jsjp� with g�C���� T ��

and w�R� we can write

h&�d� hi �
M�d��X
j
�

L�d��X
l
L��d����

Z
E�
j

gj�t�w�s
l
d�
�qjldt � ����

where gj � P �
d�
g�t� for t � E�

j � L
��d�� � 
 � l � L�d��� E

�
j � T

�
d�
� E�

l � T
�
d�

and

qjl �
Z
E�
j

Z
E�
l

 
t�ds�	�dt�

with � �� �	�  
� � DMp��� T � IRm�� Combining now ���� and ���� and taking into account
���� and ����� we get that ���d� is described in the form �
����
��� which gives the desired
result� �

� Numerical approximation of the relaxed problem

As we cannot implement an arbitrary DiPerna�Majda measure � � DMp��� T � IRm� on
computers� we restrict ourselves to piecewise constant DiPerna�Majda measures given by
�
�� for given discretization parameter d � �d�� d��� i�e� for given discretizations T �

d�
and

T �
d� � For these measures the approximation of problem �RP�� looks as follows�

�RPd�

�������������������
������������������

Minimize &J�y� "y� q� �
L�d��X
l
�

Z T

�

a�t� y� sld�� � b�t� sld��


 � jsld�j
p

ql�t� dt� f ��y� "y�jt
T�

subject to "y �
L�d��X
l
�

c�t� y� sld�� � d�t� sld��


 � jsld� j
p

ql�t� � �y� "y�jt
� � y� �

ql�t� � � and
L�d��X
l
�

ql�t�


 � jsld� j
p
� 
� t � ��� T ��

q piecewise constant on T �
d� �

�y� "y��W �
	 ��� T � IR

n�� q � L���� T � IRL�d����

In accord with the formula �
��� we will identify q � L���� T � IRL�d��� admissible for �RPd�
with � � DMp��� T � IRm� given by the formula

h�� hi �
L�d��X
l
�

Z T

�

h�t� sld��


 � jsld� j
p
ql�t� dt � �	��


�



Then� in particular� $J�y� "y� �� � &J�y� "y� q�� For simplicity� we suppose that all the integrals
as well as the initial�value problem in �RPd� can be evaluated exactly so that �RPd� can
already be implemented� as it is indeed the case in Section � below� The following two
assertion establish the convergence of �RPd� to �RP���

	�� Proposition� The discrete relaxed problems �RPd� possess solutions� Moreover�
limd��min�RPd�� min�RP���

Proof� The existence of a solution to the discrete problem follows from the same argu�
ments as in the proof of Proposition 
��� Due to the coercivity of the problem its solutions
identi�ed via �	�� are contained in a set ��P 	

d �Y
p
H����� T � IR

m��� for some � � � su��
ciently large� where Y p

H����� T � IR
m� �� f� � H	� � � w#� lim iH�uk�� kukkLp���T 	IRm� � �g

is weakly# compact� As both P 	
d and � are weakly# continuous� ��P 	

d �Y
p
H����� T � IR

m��� is
weakly# compact� as well�

Let � � DMp��� T � IRm� be a solution to �RP��� Then we know from Proposition ���
that w	�limd�� �d � � for some �d admissible for �RPd�� Therefore� from the weak	 con�
tinuity of � 	� $%��� � $J�$����� ��� we get limd��

$%��d� � $%���� Clearly� �as we use
inner approximations� $%��d� � $%���� Now� if $�d � DMp��� T � IRm� is a solution to �RPd��
we have $%��d� � $%�$�d� � $%���� Finally� we have limd��

$%�$�d� � $%���� or equivalently
limd��min �RPd� � min �RP��� �

	�� Proposition� Let �d be a solution to �RPd�� Then f�dgd�� contains a weakly	

converging subsequence and the limit of each such a subsequence solves �RP���

Proof� The problems �RPd�� d � �� are uniformly coercive� Indeed� by ����� we have
$%��� � �h�� jsjp��
 � jsjp�i for any � � DMp��� T � IRm�� Then� for some u� � Lp��� T � IRm�
such that i�u�� is admissible for every �RPd� we have %�u�� � $%��� � �h�� jsjp��
 � jsjp�i
for any solution � to �RPd�� Thus DMp

���� T � IR
m� with � � ����p%�u��

��p�
As DMp

���� T � IR
m� is sequentially compact f�dgd�� contains a subsequence f�d�gd��� that

converges for d� � � to some �� � DM���� T � IR
m�� We know due to the previous proposition

that limd���min �RPd�� � limd���
$%��d�� � min �RP��� As $% is weakly	 continuous� we have

limd���
$%��d�� � $%���� Therefore� �� minimizes $%� �

� Illustrative examples

The approximate relaxed problem �RPd� is a minimization problem over the polyhedral set
of the parameters fqjlg with 
 � j �M�d�� and 
 � l � L�d��� We calculated the Exam�
ples 
�
�� whose objective functions are quadratic because they have the cost functional
J additively splitted and quadratic in terms of the state y� Therefore� the resulting opti�
mization problems can be solved even by a �nite algorithm� Here we used Schittkowski�s


�



QLD routine which is a part of the sequential quadratic programming package NLPQL
��
�� All the computations were performed on SGI workstations� On each �gure the left�
hand side picture denotes the computed relaxed control and the right�hand side picture
the corresponding state�

The �rst case is Example 
�
� Here� in the notation of �P�� we have n � m � 
�
a � c � �� b�t� s� � ��� �t� t��jsj� d�t� s� � s� f�r� � �r � 
��� and T � 
�	�

y (t)
d
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Figure �� Approximate solution to the relaxation of ���� M�d�� � ��� L�d�� � ���
Relaxed control �left� and corresponding state �right��

The second case is Example 
�� with � � 
�
� Here� n � �� m � 
� a�t� r� s� � r���
b�t� s� � ��� �t � t��jsj� c � �� d�t� s� � �jsj� �



max��� s� � �

��

min��� s��� f�r� � �r � 
���

and T � 
�	�

y    (t)
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Figure 
� Approximate solution to the relaxation of ���� M�d�� � ��� L�d�� � ���
Relaxed control �left� and corresponding state �right��

The third case is Example 
�
� Here n � m � 
� a�t� r� s� � �r � t��� b�t� s� � e��s�
with � � 
�	 where e� is given by ���� c � �� d�t� s� � s� f � �� and T � 
���


�
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Figure �� Approximate solution to the relaxation of �	�� M�d�� � ��� L�d�� � ���
Relaxed control �left� and corresponding state �right��

Eventually� the last case is Example 
�� with � � 
�
� We have n � �� m � 
�
a�t� r� s� � �r� � t�� � r��� b�t� s� � e��s� where e� is given by ��� with � � 
�	� c � ��
d�t� s� � �jsj� �



max��� s� � �

��

min��� s��� f � �� and T � 
��

η
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Figure 	� Approximate solution to the relaxation of �
�� M�d�� � ��� L�d�� � ���
Relaxed control �left� and corresponding state �right��

Note that� in accord with �
����

�� the calculated relaxed control is ��atomic �see
Figures � and �� or 
�atomic �see Figures 
 and 	� for some t�
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