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Abstract. The paper deals with optimal control problems for which minimizing
(sub)sequences of controls do not converge weakly in L'. For such problems, here gov-
erned by ordinary differential equations, the relaxed (generalized) solutions in terms of
DiPerna-Majda measures are defined, correctness of the relaxation is shown and a numeri-
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1 Motivation — examples

The paper treats optimization problems which are coercive only in a non-reflexive space
L'. In other words, the minimized functional has only the linear growth. More generally,
the concentration effects can occur if the growth of the minimized functional is not strictly
greater than the growth of the constraints. Such problems naturally appear in many
applications, for instance in impulsive control theory (see e.g. Blaquire [4], Bryson, Ho
[5, Sect. 3.7], Getz, Martin [9], Liu [16], Rempala, Zabczyk [20], Seierstad [25], Warga
[29], etc.) or in variational problems of the type of Plateau’s nonparametric minimal
(hyper)surface (see e.g. Giusti [10] or Kacur and Soucek [12] and references therein).

For simplicity, we will confine ourselves to problems of optimal control. Our relaxation
method presented in Section 3 is systematically based on functional-analytical approach,
using DiPerna and Majda’s [6] generalization (cf. also [14, 21]) of classical Young measures
[31] summarized in Section 2. Developing a theory of approximation of such measures in
Section 4, it leads in Section 5 naturally to an efficient numerical method for the relaxed
problem which keeps convex structure (if the relaxed problem has it) in the approximate
relaxed problems, so that sometimes even finite linear-quadratic solvers can be used, see
Section 6 below.

Let us however begin with a few illustrative examples. We remark that, contrary to
usual impluse control [5, 9, 20] we admit unlimitted number of impulses and concentration
effects combined with oscillation ones and also, in contrary to [25], the general theory will
admitt vector-valued control u.



1.1 Example. Let us first consider the following Bolza-type optimal control problem for
a system governed by an initial-value problem for a linear ordinary differential equation:

Minimize  J(y,u) = /(]T(2—2t+t2)|u(t)|dt+(y(T)—1)2

d
subject to d_?jf =u, y(0)=0, (1)

ye WHH0,T), we LY0,7),

where u is a control ranging the Lebesgue space of integrable functions L'(0,T) and y is
the corresponding state living in the Sobolev space W'(0,T') of functions whose (distri-
butional) derivative belongs to L'(0,7), and the time horizon 7" > 1 is fixed. Roughly
speaking, a minimizing control u must drive the state y sufficiently close to 1 at the ter-
minal time ¢ = T. Note also that the coefficient a(t) := #* — 2t + 2 attains its minimum
value at the point ¢ = 1 so that the optimal control is forced to concentrate around ¢t = 1
provided 7' > 1. Considering, for ¢ € (0,7 — 1) and ¢ € IR, the control

o )t ifte(l,14+¢),
u(t) = { 0  otherwise , 2)

the corresponding state y® is obviously given by

0 ifte(0,1],
v (t) =4 Lt—1)/e ifte(l,14+¢], (3)
¢ ifte (1+¢T],

and J(y°,u) = {mingeora(t) + (£ — 1)* + O(e?). Since mingep 1 a(t) = 1, the sequence
{(v°, u®) }e>0 will minimize J provided ¢ = 1/2; then obviously lim._,, J(y%,u°) = 3/4 =
inf J. On the other hand, this value infJ cannot be achieved, i.e. the optimal control
does not exist. Indeed, supposing u € L'(0,T) optimal, then obviously u # 0, and we can
always take some nonvanishing “part” of this control and add the corresponding area in a
closer neighborhood of 1. This does not affect y(7T') but make [ (2 — 2t +¢)|u(t)| dt lower,
contradicting the optimality of u. This nonattainment is here because of the concentration
effect. More precisely, the sequence {uf}.»o C L'(0,T) is not uniformly integrable (see
e.g. [7] for a definition). As we mentioned above the reason for concentration effects is the
coercivity of the optimization problem only in L'-space, i.e. the linear growth in terms
of u of the cost functional. Concentration effects are excluded if the growth of the cost
functional is strictly greater than the growth of the controlled system, as proved in [21,
Corollary 4.3.5].

1.2 Example. Moreover, the concentration effects can be combined with oscillation



ones. This can be seen from the following optimal control problem:

Minimize  J(y,u) := /OT(Q =2t + ) u(t)] + y3 () dt + (y:(T) — 1)

. dy,
subject to —— = |ul, 0)=0,
Yo max(0,u min(0, u
- 0)=0
dt o + 1—a ) y?() )

y = (y1,92) € WHH(0, T; IR?), uwe LY(0,T),

7

with some a € (0,1). Obviously, ||y2||z2(,r) tends to be as small as possible. Taking the
control

l/e ifte (1,14 ae),

u?(t)y =49 —L/e ifte(1+ael+e), (5)
0 otherwise ,

the corresponding state y° = (yf,y5) has the component yj as in (3) while y5 is small,
namely ||y2]|z2(0,r) = O(€). Argumenting as in the previous case, for £ = 1/2 we get a
minimizing sequence and the infimum of the problem (4) is again 3/4.

1.3 Example. Concentrations do not have to occur only at isolated points but they
can be smeared out along the whole interval. This can be demonstrated on the following
problem:

Minimize  J(y,u) := /01 ea(u(t)) + (y(t) — t)*dt

d
subject to d_?i =u, y(0)=0, (6)

y € Wh(0,1), uwe LY(0,1),
where ey : IR — IR is defined by

[ (1+0)|s] if s € [-1,1] ,
eg(s) = { el=s) 1 g|s|  otherwise . "

with a parameter § > 0. For § > 0, the problem (6) is coercive in L'(0,7) but we know
the exact behavior of minimizing sequences only for # = 0; then the infimum of (6) is 0.
Indeed, consider the control

u (t) = el ifte(le— 2,0+ 2,
10 otherwise ,

where ¢ > 0 is small and 1 <[ < 1/e — 1. The corresponding state is

V() = (=1 tvel(t—lc+5) iftelle—5,le+5]
(=1t otherwise .

An easy calculation shows that lim. ,oJ(y*,u*) = 0. On the other hand, there is no
y € WH1(0,1), u € L'(0,1) satisfying the state equation for which J(y,u) = 0.
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1.4 Example. By a combination of (4) and (6), one gets the following example:

1
Minimize  J(y,u) = / eo(u(t)) + (y1(t) — )% + ya(t)? dt
0

d
subject to (?—ytl = |u|, o o y1(0) =0, (8)

Y2 max(0,u min(0, u B

dt_ o + 1—a ) yZ(O)_Oa

y=(y1,92) € WHHO,T5IR?) . weL'(0,T), )

Here again the minimum does not exist and utilizing a similar construction as in (4) and
(6) we can see that the infimum is zero if # = 0. Figure 1 sketches one possible minimizing
sequence for # = 0 and oo = 1/3.
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Figure 1: A “nearly” optimal control u® and the response y°.

Therefore, Examples 1.1-1.4 show that it is desirable to look for some generalized so-
lutions to (1), (4), (6) and (8). It is clear that standard relaxed controls (cf. e.g. [30])
in terms of Young measures [31] cannot record properly concentration effects and thus we
have to make the relaxation by a suitable generalization — here we use the DiPerna and
Majda [6] measures, briefly summarized in Section 2. Then, in Section 3, we will use these
measures for a relaxation (by a continuous extension) of optimal control problems from
the class containing also Examples 1.1-4. To handle the relaxed problems numerically, in
Section 4 we construct a convex finite-dimensional subset of DiPerna-Majda measures. For
this, we will need an auxiliary envelope finer than DiPerna-Majda measures so that piece-
wise constant test functions can be admitted, constructed by using the so-called generalized
Young functionals; cf. [15, 21, 22]. Then, in Section 5, we construct approximate relaxed
problems and prove their convergence. Finally, numerical results for Examples 1.1-1.4 are
presented in Section 6.

2 DiPerna-Majda measures in brief

First, we have to construct a suitable locally compact convex hull of the involved Lebesgue
spaces LP(0,T;IR™) used for p =1 in Examples 1.1-1.4. As already mentioned, we will use
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a special extension proposed by DiPerna and Majda [6]. In what follows C°(IR™) stands
for the space of bounded continuous functions while C'(IR™) for the space of continuous
functions on IR™, etc.

Let S™~! denote the unit sphere in IR™. Let further

R = {weCO(IRm); Jwy € CO(R™), w, €C(S™1)

lmumﬁzo,w@th$+m(s)'* }; )

5|00 [s|) 1+]sl?

the set R is a complete separable subring of the ring C°(IR™) of all bounded continuous
functions on IR"™. The corresponding compactification of IR™, denoted vIR™, is then home-
omorphic with a unit ball in IR™, or equivalently with a simplex A in IR™. This means that
every w € R admits a uniquely defined continuous extension on yIR™ (denoted then again
by w without any misunderstanding) and conversely for every w € C'(yIR™) the restriction
on R™ lives in R, cf. e.g. [8].

Further, we will denote by Y([0, 7], o;vIR™) the subset of L ([0, 7], o;rca(yIR™)) con-
sisting from the mappings v : t +— 1 such that 7 is a probability measure on vIR™ for
o-a.a. t € [0,T]; here o is a positive Radon measure on [0,7] and L°([0, T], o; rca(yIR™))
denotes the Banach space of all weakly o-measurable (i.e., for any w € R, the mapping
[0, 7] = R : t = [ gm w(s)P(ds) is o-measurable in the usual sense) o-essentially bounded
mappings from (0,7") to the set of Radon measures rca(yIR™) on vIR™.

DiPerna and Majda [6] showed that, having a bounded sequence {ug}ren in
LP(0,T;IR™), there exists its subsequence (denoted by the same indices), o € rca([0,7])
positive and v € Y([0, 7], 0; yIR™) such that, for any g€ C([0,7]) and any weR,

T

tim [ go(u®)dt = [ ' [ gtpu(s)n(ds)o(dr) (10)
k—o0 Jo 0 Jymm
where v(s) = w(s)(1+]s|?); note that w on the right-hand side of (10) denotes in fact a con-
tinuous extension on yIR™. We say that such a pair (o, 7) € rca([0,T]) x Y([0,T], o;vyIR™)
is attainable by a sequence {uy}rew C LP(0,7;IR™). The set of all attainable pairs (o, 7)
is denoted by DMP(0,T;IR™), and its subset containing measures attainable by sequences
contained in the ball of the radius p > 0 in L?(0,7;IR™) is denoted by DMP%(0,7;IR™).
It is well-known (see [18, 19, 21, 24]) that, for any v € C(IR™) such that
limjs| o0 v(5)/|5[P = 0 and any g€ L>(0,T), the limit in (10) can also be described as

T T
lim [ g@uu)at = [ [ g@e(spmds)at (11)
where v = {v}icor is a so-called LP-Young measure, ie. v € Y([0,T];IR™) and
I e |8[Pvi(ds) do < +o0; cf. [13]. We then say that v is generated by {ug}ren.

We will call a DiPerna-Majda measure (o,7) € DMP(0,T;IR™) p-nonconcentrating if
Jr Jyrm\m 71(ds)o(dt) = 0. We should also mention that to any (o,2) € DMP(0,T;R™)



we can assign the so-called p-nonconcentrating modification, i.e., (0°,7°) € DMP(0,T;IR™)

such that
/ / 9 py(dt)o(dr) / / §)02 (dt)o® (d1)

for any g € C'([0,7T]) and any w € R vanishing at infinity. It was proved in ([13, 14]) that
0° has a density with respect to the Lebesgue measure and that (0°,2°) can be expressed
through an LP-Young measure representation; cf. [21, Prop. 3.4.15]. Therefore, (10) can
be now Written as

lim | ( v(ug(t))dt = //m s)vy(ds) dt+/ /ymm\]Rm g()w(s)v(ds)o(dt). (12)

k— 00

For a numerical implementation, it will be important that we have the following com-
plete characterization of DMP(0, T;IR™) at our disposal; see [14, 21] for the proof.

2.1 Theorem. Let R be as in (9) and (o,0) € rca([0,T]) x Y([0,T],0;vIR™). Then
the pair (o,v) belongs to DMP(0,T;IR™) if and only if the following three properties are
satisfied simultaneously:

1. o 1is positive,

2. o0y € rca([0,T)) defined by oy,(dt) = (Jrm P¢(ds))o(dt) is absolutely continuous with
respect to the Lebesgue measure (d,, will denote its density),

3. for a.a. t € (0,T) it holds

[ >0, dy(r) = (/}Rm fﬁ;)p>_l/mat(ds) |

Let us define the natural imbedding i : LP(0,T;IR™) — DMP(0,T;IR™) as
i(u) = (o,v),  where iy = 6y and d,(t) = 1 + |u(t)|? for a.a. ¢t € [0,T]. (13)

Alternatively, DiPerna and Majda [6] however worked with measures from rca([0,7] X
vIR™); let us put here

DMP(0,7;R™) = { nerca([0,T] x yIR™); Hugrew € LP(0,7;R™) (14)
VOO TR - (12) = fim [0 @)1+ (0Pt

where, of course, (,2) = [jg7yxymm #(¢, s)n(dtds). Further, there is a one-to-one corre-
spondence between DMP(0, T;IR™) and DMP(0,7T; IR™) given by
T

/[mxmm g(t)w(s)n(dids) :/0 9(t) Ammw(s)ﬁt(ds)a(dt) . ge0([0,T]), weR. (15)

Thus we can also denote by DME(0, T;IR™) the image of DMP%(0,T;IR™) via this corre-
spondence.

Let us remark that the above results as well as the approximation theory introduced
below hold for a multidimensional domain with a finite Lebesgue measure in place of the
interval (0,7, too.



3 Optimal-control problems and their relaxation

Let us now consider the following Bolza problem covering the special cases (1), (4), (6)
and (8):

Minimize  J(y,u) := /OTa(t, y,u) + b(t,u)dt + f(y(T))

(P) subject to % = c(t,y,u) +d(t,u), y(0)=yo,

yeWhH(0,T;R"), well(0,T;R™),

where a : [0, 7] x R" x R™ — IR is a Carathéodory function (i.e. a(t,-,:) : R" x R™ - R
is continuous for a.a. ¢t € (0,7") and a(-,r,s) : (0,7) — IR is measurable for all r and
s), also ¢ : [0, T] x R" x R™ — IR" is a Carathéodory function, b € C'([0,7] x IR™) and
f € C(IR") satistying

max(la(t,r, s)|, |e(t,r, 5)]) < @y (t) + B(Jr|" + [s[P/0F)), (16)
b € C([0, T|; R), where by(t,s) :=b(t,s)/(1+ |s|"), (17)
lc(t, 7, s)| < (aa(t) + Bls[P) (1 + |r]), (18)
la(t, 71, s) — a(t,rg, )| < (ay(t) + Blri|Ye + Blra| Ve + B|sP/ N — 1y,  (19)
le(t 71, 8) = e(t,ra, 8)| < (u(t) + Blr[YV= + Blro| /% + Bls[P/CF)[re —rof, (20)
do € C([0, T]; R"™), where dy(t,s) :=d(t,s)/(1+ |s|F) , (21)
f>0, a(trs)+bt,s)>cels|P, (22)

with some ¢ > 0, # € R, oy € L9(0, 7).

Due to concentrations in the control u, the response y may fall out Wh1(0,T;R"),
keeping its variation bounded. Instead of a bounded-variation space BV(0,7;IR"), we will
rather work with a bit finer extension W; (0, T;IR") of W(0, T'; IR") introduced by Soucek
[26], namely

W,(0,T;R") := {(y,y) € L'(0,T;IR"™) x rca([0, T); IR"™); (23)

d
Hoedeew CWHHOTRY) -y =y, o = i weakly* } ;

more precisely, [26] used n = 1 but a multidimensional domain instead of [0,7]. See
also [21, Example 5.1.8] for a comparison with BV(0,T;IR"). The canonical embedding
7 WHH0,T;IR"™) — W, (0,T;1R") is defined by j(y) = (y,dy/dt). It is shown in [26] that,
if normed by [[(y, 9)I| == |yllzsozme) + 19llzecagoimn), W,(0, T;R") is a Banach space
containing, just by definition (23), 7(W'(0,T;IR")) densely. Moreover, there exist unique
yr, Yo € IR" such that the per-partes formula

/OT (y(jl_z + yv> dt = yrv(T) — yov(0)



holds for any v € C'([0,T1]); it is then natural to call yr and y, the trace of (y,y) and
write yr = (y,9)|i=r and yo = (y, §)|i=o- The mapping (y,9) = (yr,yo) : W,;(0,T;R") —
IR" x IR" is weakly* continuous and the balls in W;(O,T; IR") are weakly* compact; cf.
[26, Theorems 2(ii) and 6.

Using DiPerna-Majda’s extension of LP(0,7;IR™) and Soucek’s extension of
W10, T;R"), the relaxed problem will look as:

Minimize j(y,y,a, V) = /OT/7 alt y(t), 5) + bit, 5) v(ds)o(dt) + f ((y,9)|i=r)

R™ 1+ |slp
RP . . c(t,y(t),s)+d(t,s) . )
TN subgect 0= [ AHDELLD s @) (il =,

(y,9) € W,(0,T;R"),  (0,2) € DMP(0,T5IR™) .

Of course, the state equation is now understood in the sense of measures on [0, T]. The fol-
lowing assertion and Proposition 3.2 below justify that (RP) is actually a correct relaxation
of (P).

3.1 Proposition. Let (16)-(18), (20), and (21) be valid, let yi solves

dye

dt = C(ta Yk, uk) + d(ta uk) ) Yk (0) = Yo , (24)

and let the sequence {uy}ren attains (o,0) in the sense (10). Then (yk, Syr) — (y,9)
weakly™ in W3 (0, T;IR™) and yp(T) = (y,9)i=r, and (y,y) is the unique solution to

j = /ﬂRm c(t,y(t),s) +d(t,s) 7u(ds)o |

1 + |3|P (ya y)|t:0 = Yo- (25)

Proof. First, we show the apriori estimate ||yx||w110,7m) < C. Using (18) and (20),
from (24) one gets

d

d
Sl < 1wl = Lot ) + d(w) (26)

< (o 4 Blug”) (14 [yxl) + [l dollco,riommy) (1 + ugl”)

N

from which we get by Gronwall’s inequality that ||| zo(0,r;r») is bounded independently
of k because |ug|? is bounded in L'(0,7). By (26) one then gets also boundedness of
||%yk||L1(O,T;IR")- Altogether, we proved boundedness of ||yx||w1.10,7;m")-

Then, we can select a subsequence (denoted by the same indices) such that {j(yx)}
converges weakly* in W (0,T;IR"). Let us denote by (y,¢) the limit of this subsequence.
Then also yx(T) — (y,9)i=r and yx(0) — (y,9)i=0. Since yx(0) = yp, we thus obtain
(Y ¥)i=0 = Yo-

Also, we know that

dys

" g weakly* in rca([0, T]; IR") (27)



and

1 et

which follows directly from (10) provided d = (d;)?_,, d; = g;®v; for some g; € C([0,T]) and
v; € R, while for general d satisfying (21) we must still use the fact that d(t, s)/(1+|s|P) can
be approximated uniformly on [0,7] x IR" by functions from C(]0,7]) ® R™, as implicitly
used already in the definition (14).

By the compact embedding WH'(0,T;R") c L%0,T;IR"), we have y, — y in
L1(0,T;IR"™) for any ¢ < +o00. Using ¢ = 1/e, from (16) one gets

v (ds)o weakly™ in reca([0, T]; IR") , (28)

(Yg, ug) — wﬁt(ds)a weakly in L'*¢(0, T;IR") ; (29)
yIR™ 1+ |S|p

note that ¢t — c¢(t,y(t), s) need not be continuous but, since ¢(t,r,-) has a lesser growth
than the p-th power due to (16), we can work with the LP-Young measure representation
of (o,7) from (11) and use [21, Lemma 3.6.7].

Altogether, by (27)-(29) we can pass to the limit in (24), which gives just (25).

The solution to (25) is unique. Indeed, taking two solutions (yi,91) and (y2,92) and
subtracting (25) for (yi,71) and (ya, §2), we get by (19) that

i = K/]Rm c(t,yi1(t), s) — c(t, yo(t), S)ﬁt(ds)a

1+ |slp
|s|p/(1+e)

< (an ol 4 ot [ B D@90 )

r™ 1+ |s|P
. . . /(1+e)

where Y12 := y1 — yo and Y12 := 91 — Yo. As [ pm %Vt(ds)a € L'*¢(0,T), one can see

that ¢, has a density, and thus o = dy;2/dt a.e. on [0,T]. As y;2(0) = 0, by Gronwall’s

inequality one gets y1o = 0 on [0, 7. O

Let us define 7 : LP(0,T; R™) — WH(0,T;IR") by y = m(u) where y is the solution
to the state equation dy/dt = c(t,y,u) + d(t,u), y(0) = yo. Then, if we define 7 :
DMP(0,T;R™) — W,(0,T;R") by (y,9) = (0, 7) where (y,9) is the solution to the
relaxed state equation (25), we have j(m(u)) = 7(i(u)) or, saying otherwise, j om = 7 o 4,
where the imbeddings i and j were defined respectively by (13) and by j(y) = (y, dy/dt).

Let us note that in (16) we assumed a sub-critical growth of a and ¢ because a correct
extension of problems with terms of critical growth p in u interacting nonadditively with y
would bring delicate problems, see [17]. Here, as y need not be continuous, discontinuous
test integrands of the form ¢(¢, y(t), s) would have to be admitted, which would require to
work with a locally convex envelope of LP(0,7;IR™) strictly finer than DM?(0,7; IR™), cf.
[21, Example 3.3.11].

The set of (0,0) € DMP(0,7;IR™) involved in (RP) is not convex, which is an essential
drawback especially for numerical treatment in Sections 4—6. Moreover, we did not defined
any (locally) compact topology on DMPF(0,T;IR™). It lead us to a modification of (RP) by

9



exploiting DM?(0,7"; IR™) defined in (14) and endowed by the weak™* topology of rca([0, 7' x
vIR™), so that we get:

o o a(t,y,s) + b(t,s) .
= / =
Minimize  J(y,9,n) A T4 [P n(dtds) + f (v, 9)|=1)

| o cltylt),s) () |
b t t — / -d 0 =
subjec 0 Y JR™ 1+ |S|p 77( 8)7 (yay)|t—0 Yo ,

(y,9) € Wj(O,T;]R”) , n € DM?(0,7;IR™),

(RP?)

where [ jzm %n(-ds) € rca([0, T];IR") is defined by the identity
2(t, 5) g(t) - #(t, 5)
VgeC ([0, T];IR") : / -ds), :/ —r————"n(dtds).
secorimy: ([ STt} [ SO )

Note that the problem (RP’) may have a convex structure; it occurs, e.g., if a(t, -) is convex
and c(t, -) is linear. We will denote 7(n) := (y, y) the solution to the state problem in (RP’).

3.2 Proposition. Let (16)-(22) be valid. Then the relazed problem (RP’) has a solution,
inf(P)= min(RP’). Moreover, every solution n € DMP(0,T;IR™) to (RP’) is attainable (in
the sense used in (14)) by a minimizing sequence for (P) and, conversely, every minimizing
sequence for (P) contains a converging (in the sense (14)) subsequence to a solution of

(RP").

Proof. Denote ®(u) = J(mw(u),u) and ®(n) = J(7(n),n). The existence of a solution
to (RP’) follows from the fact that, due to coercivity of ®, the level sets of ® (i.e. sets
{n € DMP(0,T;IR™); ®(n) < c}) are contained in a weakly* compact set DM? (0, 7; IR™)
and that J and 7 (and thus also ®) are weakly™ continuous; this follows from (16) and (19)
and the (weak* norm)-continuity of the mapping n + y : DM?(0, T; IR™) — L'*¢(0,T; IR")
with (y,9) = 7(n) proved essentially in Proposition 3.1.

Suppose that inf(P)> min(RP’) and that n € DMP(0,7;IR™) is a solution to (RP’).
Then there is {u}rew C LP(0,7T) that generates n € DMP(0,7;1R™) in the sense (14).
Further, we put y, = m(uz). We have due to the mentioned continuity of J and 7 that
limy, oo ®(ug) = limg oo J(Yr, ug) = limg_yoo J(7(ug), ux) = J(7(n),n) = min(RP’). Thus,
for k large enough we would get ®(uy) < inf(P), which cannot be true. Thus we proved
inf(P)<min(RP’). If there is another sequence {ux} such that liminfy_,o J(7(dg), ax) <
limy 00 J (7 (ug), ux) = min(RP’) then there would be its subsequence generating some
no € DMP(0,T;IR™) that J(7(no),m0) < J(7(n),n), which gives a contradiction. This
shows that {u} is also a minimizing sequence for (P).

Similarly, if we suppose that inf(P)< min(RP’), then there would exist a minimizing
sequence {u} }ren of (P) necessarily bounded due to the coercivity of ® implied by (22)
generating some 7' € DMP(0,T;IR™) and, for y;, = 7(u}), also (y, Syp) — (v,9) =
7(n') weakly* in W}(0,7;1R") and y,(T) — yr = (¥',9)i=r. Finally, we would have
that J(7(n'),n") < J(7(n),n), contrary to the assumption that J(7(n),n) = min(RP’).

10



Altogether, we showed that inf (P)= min (RP’). This also shows that every minimizing
sequence of (P) contains a subsequence converging to a solution to (RP’). O

As there is a one-to-one mapping between DMP(0,7;1R™) and DM?(0,T;IR™) given
by (15), we can also modify Proposition 3.2 for (RP). It gives that (RP) has a solution,
inf(P) = min(RP), and there is the above specified relation between minimizing sequences
for (P) and solution to (RP), the convergence being now understood in the sense of (10)
instead of (14).

To illustrate the general considerations, we can return to Examples 1.1-1.4. For m =1
the compactification yIR is just the standard two-point compactification yIR & IR :=
IR U {400, —oc}. In terms of the Diperna-Majda measure (o,0) € DMP(0,T;IR™), the
(unique) optimal relaxed control for the special case of (1) has then the form

o ift#1,
o(dt) = dt+465,, v = ‘ (30)
6+OO ift=1 s
while for the case of (4) it has the form:
do ift#1,
odt) = dt+45,, v = (31)
oo+ (1—a)o_o ift=1,

with ¢ = 1/2, where 6; € rca([0,T]) or J5 € rca(IR) denotes the Dirac measure supported at
t €]0,7] or at s € IR, respectively. Eventually, we know solutions to the relaxed problems
of (6) and (8) explicitly only if # = 0: an optimal relaxed control for (6) with §# = 0 has
the form

1 1
U(dt) = 2d¢ y ﬁt == 5(50 + §6+oo s (32)
and an optimal relaxed control for (8) with @ =1/2 and § =0 is
1
o) =2dt, =g (90 + 0000 + (1 = @)0_o ) - (33)

See also Figures 2-5 below for (an approximation of) such optimal relaxed controls; we
calculated a bit more illustrative case # > 0, however.

4 Approximation of DiPerna-Majda measures

We want to apply the general approximation theory introduced in [21] resulting here to
some suitable finite-dimensional convex subsets of DM?(0,7;1R™). In such a way, the
possible convex structure of (RP) is preserved for discrete problems, which is advantageous
for optimization routines. We want to use the partition of the interval [0,7] and then
piecewise constant DiPerna-Majda measures. The standard construction from [21] thus
needs piecewise continuous test functions, but the DiPerna-Majda measures introduced in

11



Sect. 3 admit only continuous test functions. This will force us to introduce an auxiliary
finer extension (i.e. a finer convex local compactification) of L?(0,7;IR™).

Let {7} }4,>0 denote an equidistant partition of [0, 7] and {77 }4,>0 a regular triangu-
lation of YIR™ = IR™ U S™! with {s!, lL:('lb) the set of mesh points; here we use the fact
that IR™ U S™ ! is homeomorphic with a compact polyhedral domain in IR™ that is then
triangulated by a mesh of L(d;) € IN points. We suppose that 7} is a refinement of 7} if
d' < d and similarly for 77. In what follows we will denote the number of subintervals in
[0,T] by M(dy) = T/d;. In the following two assertions, we now formulate the results of
this sections:

4.1 Proposition. Let 1y € rca(]0,T] x vIR™) be given by the formula

M(dy) L(d2)
(na, b Z Z/ ho(t, sb,)az dt (34)

with hy € C([0,T] x vyIR™) being the continuous extension of h(t,s)/(1+ |s|P), and with

L(d2)
4ji .
—— =1 1<5< M(d d 35
lz:; 1+|Sil2|p ) >)> ( 1)7 an ( )
g1 >0, 1 <j < M(dy), 1 <1< L(dy). (36)

Then ngy € DMP(0,7;IR™).

Proof. Put Ay = qjr/ SH%) g for j =1,..., M(dy). Then Aj; > 0 and SF5%) ) =
Then 7, given by (34) defines through the correspondence (15) the pair (o, ) given by

L d2)
b= Ajidst do(t) = g, tE€E;, (37)
=1

=1

—~

where d, denotes the density of o which is thus absolutely continuous with respect
to the Lebesgue measure. It remains to show that (o,7) defined by (37) belongs to
DMP(0,T; IR™).

By (35), we have

L(d2) )\ 1 L(dz) ] 1
jl _ 4t _
) = ) T i@

=1 [sg,l? Zk 1 %k = 1+ s, Zl:(f qj1

L(dg) )\Jk —1
gt = Aji —
J J kz::l 1+ |sk |p

so that

12



and, for t € E}, one gets

L(d2) L) -1 . -1
_ o N _ 4(ds)
da(t)_ lz:;qjl— (Z 1+|822|p) _</1Rm1+|8|p .

=1

Now one can easily use Theorem 2.1. First, o is positive. The condition (35) ensures that
Jrm 7¢(ds) > 0 and, finally, the measure o, from Theorem 2.1 is absolutely continuous with

the density (f]Rm ﬁ(‘(jz,)_l S 2e(ds). O

Note that the subset of DM”(0,7"; IR™) containing measures satisfying (34)-(36) is con-
vex. Indeed, for arbitrary A € [0, 1] and 7}, n3 fulfilling (34)-(36), the measure Anj+(1—\)n3
obeys again (34)-(36) with g := Agj; + (1 — A)gj;, where ¢j; and ¢j; correspond to 7; and
n3, respectively.

4.2 Proposition. For anyy € DMP(0,7sR") there is {ia}as0 < DMP(O, T5IR™), 1 in
the form (34)-(36), such that w*-limg o 14 = 7.

As already mentioned, the proof of this assertion requires a construction of a finer local
compactification of LP(0,7;IR™). We define Car”(0,7;IR™) = {h : (0,7) x R™ - R
Carathéodory; Ja € L*(0,T), 8 € R™; |h(t,s)| < a(t) + B|s|’}. Following [21], we will
endow Car?(0,T;IR™) by the norm

||h||Carp(0,T;IRm) = mf ||Oé||L1(0,T) + ﬁ . (38)
V(t,5)€(0,T) X IR™:
h(t,s)|<a(t)+5]s|P
We will consider a separable linear subspace H of Car?(0,7;IR™) containing a coercive
function, e.g., h(t,s) = |s|P. Following [21] we define the embedding iy : LP(0,7; R™) —
H* by

T
G (), by o= [ (e u(e) at (39)
0
for any u € LP(0,7;IR™) and h € H. Moreover, we put
YH(0,T;IR™) := w*-cliy (LP(0,T;IR™)). (40)

The set Y};(0,7;IR™) will be addressed as the set of generalized Young functionals. We
say that n € Y}(0,7;IR™) is generated by {uy}rew if 7 = w*-limg o0 ig(uy). We recall
that Y2 (0, 7;IR™) makes a convex locally compact envelope of LF(0, T;IR™); for a detailed
investigation of it we refer to [21].

Let us define Y4, := {v € C(R™); v(s) = vo(s)(1 + [s|’) , vo € R} with R from (9)
and then

k
H=G,®7T: = {h; h(t, s) :Zg(t)v(s) , g€Gy, veYh | kE]N} ,

i=1

13



where

Go:=|J Gq with Gqy:= {gELOO(O,T); VEET} : g|E€C(E)}.

d>0

This choice of Gy was already used in [21, Sec. 3.5]; note that such H is separable in the
norm (38) because both R C C(R™) and Gy C L*(0,T) are separable.
Following [21, Sec. 3.5] we define a projector P; : H — H by

[Pd1 = |E|/ 7,8)dr | te B, heH,

E C [0,T] denotes the current subinterval of the equidistant partition 7;11 Obviously,
le makes an interval-wise constant approximation of A(-,s). Analogously, the projector
P} : Gy — Gy is defined by

[Pdll |E|/ T, tEE, gEGO

Furthermore, we define P7 : C'(vYIR™) — C(7IR™) by assigning to each v € C(7IR™) an
element-wise affine interpolation coinciding with v at any mesh point of 7;22, ie.

L(dz

h(t,s,)
[P hO — e (S) )
0= B T
with {v}}1</<1(4,) denoting a basis of the finite element subspace P2 C(yIR™) C C(yIR™)
such that, for all s € yIR™, Y15 v}, (5) = 1 and v} (s) > 0, and that v} (sh ) = 1 for
any mesh point s}, of 772; recall that L(ds) denoted the number of the mesh points of 72.
Then we define the projector P; : H — H by

[PL1] (8, 5) = [P2(ho(t,-))] (s)(1 + |s]") . (41)

see also [21, Example 3.5.5]. Eventually, for d = (d;, d) we define the projector P; : H — H
by
Pd = P(dl,dz) = Pélpdzz = Pd22Pd11 .

4.3 Lemma. For any h(t,s) = g(t)w(s)(1+ |s|P) with g € Gy and w € R, the following
holds:

i — 1 P Rmy =
dlllgloﬂh Pd1h||Car (0,T;IR™) 0, (42)
Jim |h — P}, hl|car©.rmm) =0 (43)
tim 15— Pabcaroizimm) = 0 (4
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Proof. Take some d; > 0 fixed. Then g¢ is continuous on the closure of E € 7;11 and

thus, for any t,,t, € F, |g(t,) — g(t2)| < pg(|t, —t2]) with pz being the continuity modulus
of g restricted on the closure of E. We recall that lim,_,o puz(r) = 0 for any E € 7;11 One

can estimate for any d; < ch

Ih = Pihllcarormeny < sup fuls )|||g—15519||L1<o,T>
sey

= Jwllogrmy Y /‘ |E| g(T)dr| dt
EeT1

< [l S o [, [, 1ot o)l vt
Ee’r1

< ||w||C(7]I{ |E|/ / ,UE d1 drdt
Ee’ﬂ ECE

< T||w||C('yIRm) Z Ui dl) — 0 as d1 — 0.
EGEJI

The proof of (43) is similar; we exploit the uniform continuity of w (precisely of its
extension) on the compact set yIR™. Eventually, (44) follows from (42) and (43) by [21
Prop. 3.5.3]. O

We can define the adjoint operator P, to P, obviously by (£, Pyh) = (P&, h) for any
€ € Y,(0,T;IR™) and h € H. Moreover, as C([0,T]) C Gy, Y}(0,T;IR™) makes a finer
convex local compactification of LP(0,7; IR™) than DMP(0,7; IR™) which is equivalent with
Y}, (0,T;IR™) for Hy := C([0,7]) ® T%; cf. [21]. This means that there exists an affine
weakly™ continuous surjection

Y YH(0,T;IR™) — DMP(0, T; IR™) .

fixing LP(0,7;IR™) in the sense 1) o iy = ig,. This mapping is not injective, however.

4.4 Lemma. [t holds P;Y5(0,T;IR™) C YL(0,T;IR™). Moreover, for any & €
YH(0,T;IR™), it holds w*-limy_,0 &y = & with & = P3¢ € YH(0,T;R™). Then also
w¥-limg 0 ¥(€a) = ¥(§)-

Proof. Utilizing [21, Prop. 3.5.9] we get that P;Y}(0,7;R™) C Y4(0,7;IR™). By
Lemma 4.3 one gets
(=& h) = (& h—Fh)

< ||€]lcare 0,75

hHCarP(O,T;]Rm) — 0. (45)

This shows & — & weakly® in H*. Further, as v is a weakly® continuous surjection,
¥(&q) — (&) weakly™® in H. a

Proof of Proposition 4.2. For the orientation, let us display our situation by the follow-
ing diagram:

15



P*
Yy (0,T;R™) —4 P;Yy(0,7:R™) < Yu(0,T;IR™)
v | v
DMP(0,T;IR™) D {neDMP?(0,T;IR™); (34) holds}

Let n € DMP(0,7;1R™). Then, by the above diagram, there is £ € Y};(0,T;IR™) (generally
not unique) such that n = (£). We put

na=v), &a=Pi¢.

By Lemma 4.4, we know that w*-limg ,0&; = £, 1y € DM?(0,7;R™) and w*-limy_,o g =
n € DMP(0,7;IR™). Now it remains to show that 7, can be expressed in the form (34)-(36).
As H is separable, for any £ € Y};(0, T; IR™) there is uniquely defined £° € Y}, (0, T;IR™),
the so-called p-nonconcentrating modification of &, such that (£, h) = (£°, h) for any h € H,
limy| 00 A(t, 5)/]5|P = 0 for a.a. t € [0,T]. Therefore, defining £ = & — £° we have

(& Pah) = (€°, Pah) + (€, Pah) = (Pi€°,h) + (i€ h) .

Due to [21, Prop. 3.4.15.] and [21, Sec. 3.5], P;&° has the unique representation by an
interval-wise homogeneous aggregated LP-Young measure, say vg,

L'(d2) _
Vag = Y )\jl(szh , forany t € Ej € Tg, ,
I=1

where we suppose that s € R™ for I = 1,...,L'(d) (while s}, € yIR™ \ R™ for | =
L'(dy) +1,..., L(dy)), ZL:I(ldQ) Aji =1 and \j; > 0. As LP-Young measures can be embedded
into p-nonconcentrating DiPerna-Majda measures (see [21, Remark 3.2.16.]), we obtain an
interval-wise homogeneous aggregated p-nonconcentrating DiPerna-Majda measure 7 =
(09, v3) with

L'(d2) A ” -1 L'(d2)
— J
do—g(t) = ; m s th Z )\]l(SI fOI‘ any tEE}E%l ;

where dgg stands for the density of o and ZZL:I(ldQ) Aji = 1 and Aj; > 0. Finally, we define
forany j =1,...,M(dy) and any | =1,..., L' (dy)

) -1
gt = \ji LE(%Q) A (46)
! T\ & 1+ sl
and the measure 77 having the representation

L’(d2

MA

(g ) / ot s, )ajn dt (47)

1 I=1
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for any h(t,s) = ho(t, s)(1+]s|P) with hg € C([0, T])®@R. Note that, for any 1 < j < M(d,),

L'(d2)

Y =1, (48)

= 1+ s, P

It remains to approximate 7y = ¢ (P;€), For h(t, s) = g(t)w(s)(1+|s|?) with g€ C([0,T])
and w€R, we can write

(ias h) = |, gi0w(sh,)auat | (49)
j=1 =1/ (ds)+17 F;

where g; = Py g(t) for t € E}, L'(dy) +1 <1 < L(dy), E} € T, Ef € T, and

a1 :/l/zﬁt(ds)a(dt)
B! JE;

with n = (o,0) € DMP(0,T;IR™). Combining now (47) and (49) and taking into account
(46) and (48), we get that ¢(&,) is described in the form (34)-(36), which gives the desired
result. a

5 Numerical approximation of the relaxed problem

As we cannot implement an arbitrary DiPerna-Majda measure n € DMP?(0,7;1R™) on
computers, we restrict ourselves to piecewise constant DiPerna-Majda measures given by
(34) for given discretization parameter d = (dy,d,), i.e. for given discretizations 7; and
74 For these measures the approximation of problem (RP’) looks as follows:

( L(d2) T ot ! !
. = y Y, 8q,) + b(L, sy, )
Minimize  J(.g.0) = Y. | ol SHOS)y g ()
= Jo L+ s4,]
L(d2) c(t l l
. ) Y, sy ) +d(t,sh) )
subject to. = > S CE () (y)lo =0
=1 do
(RPa) 9 L%) a(t)
Ql(t) >0 and 7:17 te [OaT]a
= 14 |sh, [P
q piecewise constant on T,
\ (v, ) EWL(0, T;R"), g€ L0, T;RM®).

In accord with the formula (34), we will identify ¢ € L>°(0,7; IR“(*)) admissible for (RP4)
with n € DMP(0,7;IR™) given by the formula

Thtsd2

Z/O e de (50)
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Then, in particular, J(y,9,n) = j(y, Y, q). For simplicity, we suppose that all the integrals
as well as the initial-value problem in (RP,) can be evaluated exactly so that (RPy) can
already be implemented, as it is indeed the case in Section 6 below. The following two
assertion establish the convergence of (RP4) to (RP’).

5.1 Proposition. The discrete relazed problems (RPy) possess solutions. Moreover,
lim;_,o min(RP;)= min(RP’).

Proof. The existence of a solution to the discrete problem follows from the same argu-
ments as in the proof of Proposition 3.2. Due to the coercivity of the problem its solutions
identified via (50) are contained in a set ¥ (P; (Y} ,(0,T;IR™))) for some p > 0 suffi-
ciently large, where Yy (0, T;IR™) := {£ € H* & = w*-lim ig(ug), [|ukllzeormm) < p}
is weakly* compact. As both Pj and v are weakly* continuous, ¥ (P; (Y% ,(0,T;1IR™))) is
weakly™ compact, as well.

Let n € DM?(0,T;IR™) be a solution to (RP’). Then we know from Proposition 4.2
that w*-limg 07y = n for some 7y admissible for (RPy). Therefore, from the weak* con-
tinuity of n — ®(n) = J(7(n),n), we get limg o P(ng) = ®(n). Clearly, (as we use
inner approximations) ®(n4) > ®(n). Now, if j; € DM?(0,T;IR™) is a solution to (RP,),
we have ®(ny) > ®(7y) > ®(n). Finally, we have limy o ®(74) = ®(n), or equivalently
limy o min (RP;) = min (RP’). O

5.2 Proposition. Let 1y be a solution to (RPy). Then {n4}aso contains a weakly*
converging subsequence and the limit of each such a subsequence solves (RP’).

Proof. The problems (RPg4), d > 0, are uniformly coercive. Indeed, by (22), we have
d(n) > e(n,|s|P/(1 + |sP)) for any n € DMP(0,T;R™). Then, for some uy € LP(0,T;IR™)
such that i(ug) is admissible for every (RP4) we have ®(ug) > ®(n) > e(n, |s[P/(1 + |s[F))
for any solution 7 to (RP4). Thus DM (0, T IR™) with p = e 1/7®(ug) /7.

As DMP(0, T IR™) is sequentially compact {14 }4>0 contains a subsequence {nq } 4o that
converges for d’ — 0 to some 7’ € DM, (0, T;IR™). We know due to the previous proposition
that limy_,o min (RPg) = limg 0 ®(¢) = min (RP’). As ® is weakly* continuous, we have

limg_,0 ®(ne) = ®(1') Therefore, ’ minimizes ®. O

6 Illustrative examples

The approximate relaxed problem (RP,) is a minimization problem over the polyhedral set
of the parameters {¢;;} with 1 < j < M(d;) and 1 <[ < L(ds). We calculated the Exam-
ples 1.1-4 whose objective functions are quadratic because they have the cost functional
J additively splitted and quadratic in terms of the state y. Therefore, the resulting opti-
mization problems can be solved even by a finite algorithm. Here we used Schittkowski’s
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QLD routine which is a part of the sequential quadratic programming package NLPQL
[23]. All the computations were performed on SGI workstations. On each figure the left-
hand side picture denotes the computed relaxed control and the right-hand side picture
the corresponding state.

The first case is Example 1.1. Here, in the notation of (P), we have n = m = 1,
a=c=0,0b(t,s)=(2—2t+*)]|s|,d(t,s)=s, f(r)=(r—1)% and T = 1.5.

+00 I nd 1
1 I (1)
0 0.5 1 t 0 0.5 o t
1+
- ool

Figure 2: Approzimate solution to the relazation of (1); M(d1) = 80, L(ds) = 20.
Relazed control (left) and corresponding state (right).

The second case is Example 1.2 with o = 1/3. Here, n = 2, m = 1, a(t,r,s) = 3,
b(ta S) = (2 —2t+ t2)|8|> c=0, d(ta S) = (|8|7 é maX(0> S) + ﬁ min(0> S))> f(T) = (T o 1)27
and T'=1.5.

+oor - Mg 1
1+ /7 ¥, (1)
0 ‘ y,, (1)
0.5 1 t 0 0.5 1 173
14+
- m,,

Figure 3: Approzimate solution to the relazation of (4); M(di) = 80, L(dz2) = 20.
Relazed control (left) and corresponding state (right).

The third case is Example 1.3. Here n = m = 1, a(t,r,s) = (r — )2, b(t,s) = ey(s)
with # = 1/5 where ¢y is given by (7), ¢ =0, d(t,s) = s, f =0, and T = 1.0.
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(1)

Figure 4: Approzimate solution to the relazation of (6); M(d1) = 60, L(dg) = 20.
Relazed control (left) and corresponding state (right).

Eventually, the last case is Example 1.4 with o = 1/3. We have n = 2, m = 1,
a(t,r,s) = (ry — )% + r2, b(t,s) = eg(s) where ey is given by (7) with 6 = 1/5, ¢ = 0,
d(t,s) = (|s], £ max(0, s) + = min(0, s)), f =0, and T = 1.0

n, 1.
+00 d 1 yld(l‘)
14 1
0 ‘
0.5 0 05 %4V
1
- ®

Figure 5: Approzimate solution to the relazation of (8); M(di) = 60, L(dz) = 20.
Relazed control (left) and corresponding state (right).

Note that, in accord with (30)—(33), the calculated relaxed control is 2-atomic (see
Figures 2 and 4) or 3-atomic (see Figures 3 and 5) for some ¢.
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