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ON A CONJECTURE OF WOLANSKY

GUOFANG WANG AND JUN-CHENG WEI

ABSTRACT. In ths paper, we consider the following problem (Pas) :

Au+)\|z|ﬁe“ =0, =z € Bpg,

ey
8B OV

=0 on OBg,

where ) is an unknown constant, 8 > 0, Br = {r € R?||z| < R}, M is a prescribed
constant and v is the outer normal to the disk. Problem (Pys) arises in the evolution
of self-interactioning clusters and also in prescribing Gaussian curvature problem. It
is known that for M < 8, problem (Pjs) has a global minimizer solution (which is
radially symmetric). We prove that for M > 8, there exists a 8. > 1 such that for
B > Bec and M € (87,4(2 + B)m)\{8m=n,m = 2,...}, problem (Pjps) admits a non-
radially symmetric solution. This partially answers a conjecture of Wolansky. Our
main idea is a combination of Struwe’s technique and blow-up analysis for a problem
with degenerate potential.

1. INTRODUCTION

In this paper, we consider a problem proposed by Wolansky. In [W2], he conjec-
tured

Conjecture 1.1. Let C, be the circular cone obtained from the disk Br by identi-
fying the rays {0 <r < R,0 =0} and {0 <r < R,0 = «a}. Let M > 8. Then, if
a > a. for some a, > 27, there is a metric do? on C,, conformally equivalent to
the Euclidean metric where

(a) do? is not radially symmetric,

(b) do? admits a constant, positive Gaussian curvature on Co and total curva-

ture = M /2,
(c) do? is point-wise isometric to the Euclidean metric on 0C, .

An equivalent formulation is as follows. Let us consider the following problem
(Pn):

(1.1) —Au = NV in Bp,

Key words and phrases. semilinear equation, exponential nonlinearity, free energy functional,
total curvature, conical singularity.
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(1.2) —/8 Ou _

Br 8V

(1.3) u=0, on 0Bg,

where A is an unknown constant, M is a prescribed constant and v is the outer
normal to the disk. When V = glog|z|, (1.1) and (1.2) mean that e*|z|?dx? admits
a constant, positive Gaussian curvature and total curvature M /2, while (1.3) means
that e*|x|Pdx? is point-wise isometric to the metric |z|?dz? on 9Br. When M = 87
and V() > ¢ > 0, problem Pp; is critical with respect to the Moser-Trudinger
inequality. We refer reader to [KW], [CD], [CLMP], [CY], [CkL], [DJLW1], [W2]
and references therein. When M > 8, problem (Pys) is supercritical. If, in
addition, V) > g > 0, we refer to [ST], [DJLW2] and [WW]. In this paper, we
consider the case when M > 87 and V() = |z|® with 3 > 0.
Conjecture 1.1 is equivalent to

Conjecture 1.2. Given M > 8w, consider the Dirichlet problem (1.1)-(1.3) on
the disk B with V = [logr. Then there exists 3. > 0 such that (1.1)-(1.3) admits
a non-radially symmetric solution, provided that 3 > f..

A solution of (1.1)-(1.3) can be characterized in [W2] as a critical point of a free
energy functional. For any M > 0, let I'j; be a subset of the Orlicz space Llog L
defined by

Ty ={pe LlogL|p>0 a.e. and / p=DM}.
Br

Define a functional F': I'j; — R by

1
(1.4) F(p)z/ plogp+/ Vp+§/ Upp
Bgr Bgr Bgr

with U, € H;(Bpg) satistying
(1.5) AU, = p.

A solution of (1.1)-(1.3) is a critical point of F' in I'j;. For problem of free energy
functionals, we refer to [BB] and [CSW]. In [W2] Wolansky observed that one can
construct a mountain pass value as follows. If 87 < M < 47 (2 + f3), all radial
solutions of

(1.6) Au + |z|fe* =0 in Bg

with (1.2)-(1.3) can be explicitly determined (see section 2 below). In fact, in this
case, (1.6) admits a unique radial solution ups (cf [W1]). Furthermore, for large
B > 0, he proved that pps = —Auys is a local minimizer of F' in I'p;. On the other
hand, when M > 8, F' is unbounded in I';. Hence one can construct a mountain
pass value, see the definition in [W2] or section 2 below. However, the functional
F' is lack of compactness when M > 8x. It is difficult to analyze the Palais-Smale
sequence ([AE] or [P]) of F or the heat equation of (1.1)-(1.3).
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One can also use another formulation of the problem, see [Ws|. For convenience,
here we use a third formulation which is motivated in studying the Moser-Trudinger
inequality ([M]) in [DJLW1], [CSW] and [Wg]. Let us consider the following func-
tional

(1.7) Tt (u) = —/ |Vu|2—Mlog/ [Pen
2 Bgr Br

in the space H}(Bg). It is also easy to check that the Euler-Lagrange equation of
Jur is (1.1)-(1.3). Jps and F are almost equivalent, see section 2 below or [CSW].
So we can also define a mountain pass value for Jj;. Again, there is the problem
of analyzing the Palais-Smale sequence of .Jy,.

In this paper, we first use a trick of Struwe [St1] to show that for certain dense
subset A of (8, (2 + ()4n), the mountain pass value discussed above is achieved
for Jps with M € A. Then we consider convergence of solutions of (1.1)-(1.3). By
generalizing the results in [LS] (see also [NS], [Su], [Wj], [WW] and [Y]), we show
that

Theorem 1.3. There exists a . > 0 such that for any > . and M € (8, (2 +
B)4m)\{8mm, m = 2, ...}, the conclusion of Congjecture 1.2 holds.

This means that expect the set Upen{8mm} Conjectures 1.1 and 1.2 are true.
On the other hand, it is very difficult to handle the problem when M € {8mm|m €
N} N (87, 47(2+ ). This method was also used in [ST], [DJLW2] and [WW].

Equation (1.1) with V' = flog|z| can also be interpreted as an equation on a
surface with conical singularities. For such a problem, we refer reader to [CL2] and
references therein.

Part of this work was carried out while the first author visited Chinese University
of Hongkong and Max-Planck Institute for Mathematics in the Sciences. He would
like to thank two institutions for hospitality. The research of the second author is
supported by an Earmarked Grant of RGC of Hong Kong and a Direct Grant of
the Chinese University of Hong Kong.

2. EXISTENCE FOR A DENSE SUBSET
First we list an obvious Lemma.
Lemma 2.1. A critical solution of Jy in H}(Bg) satisfies (1.1)-(1.3).
Proof. Clearly, a critical solution of Jys in H}(Bpg) satisfies

eV—}-u

and (1.3). Integrating (2.1), we get (1.2). (2.1) is (1.1) with

A= M(/ V)L,
Br

O

Lemma 2.1 means that F' and Jp; are equivalent as the first derivative.
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Lemma 2.2. For any p € Ty there exists u € H}(Bgr) with F(p) > Jy(u) +
M log M, while for any u € H}(BR) there exists some p € I py with

1
(22) Tu(w = Fp) =5 [ [Fa-w),
where w € H} (Bg) satisfies
—Aw = p.

Proof. The same argument in [CSW] gives the proof. For convenience of the reader,
we give the proof of the second statement. For any u € Hj(Bg), let p € Ty defined
by

=M.
P fBR eV+u

A direct computation shows

where w was defined above. [

Let ups be the unique radially symmetric solution of (1.1)-(1.3) (see [W1] and
[W2]). In fact, ups has following form

(2) = lo 2(2+ B)3%0 2(2+ B)3%0
u Tr) = - @ R
M 811 o|z[2+P 1+ o|R|>+P
with
M
g = .
dr(2+8) - M

If M € (0,47(2 + f3)), then o € (2/8,4+00). Let ppy = —Auyps. From [W2], for
large 3 > 0, pas is a local minimizer of F' in I'j;. By Lemma 2.2, ujy is also a local
minimizer of Jys in Hi(Bg). In fact, we have

Lemma 2.3. For any M € (8m,47(2+ 3)), there exists a dpr > 0 such that

fB |3”|BeuM§2 (IB |$|ﬁeUM‘S)2
D%J &) = VEP2 - MR + M-
s M (unr)(§;€) /BR| 3 T [alPemn ([, lPemon )2 |
> 0m Ve
Br

for any & € H}(BRr) with £ # 0.
Proof. First, from Lemma 2.2 and the result of [W2], one can show that
(2.4) D? Ty (upr)(€,€) >0 for any ¢ € Hy(Bgr) with & £ 0.

Then, we claim that there exists a dp; > 0 such that (2.3) holds. If the claim were
false, then there exists a sequence &; € Hj(Bg) satisfying
2 ;=
(a) fBR |IVE&|? =1 forany i = 1,2, ...,
(b) D% Jnr(unr)(&, &) — 0 as i — oc.
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From (a), we know that there exists £, € Hj(Bg) such that

(i) & converges to & weakly in H}(Bg),

(ii) &; converges to &y strongly in LP(Bp) for any p > 1 and almost everywhere.
From (i), (ii) and (b), we can show that D?Jp(upr)(€o,&) = 0. It follows from
(2.4) that & = 0, which is impossible. [

On the other hand, since the best constant for the Moser-Trudinger inequality
is 87, Jps is unbound below when M > 8. In fact, let 2y = (12—%, 0). We now define

32¢2
€2 + |z — x¢|?)

Uo(m)zx(|x—m0|)log( 5, € Bg,

where x(t) = 1 for |t| < R/4 and x(¢t) = 0 for [t| > R/2. It is easy to see that
vo € H}(BRr) and moreover by simple computations (see Lemma 2.2 of [WW]),

I (vo) = 2(8m — M) log% +O(1)

where |O(1)| < C as ¢ — 0.
Since wuys is a local minimizer of Jy; and Jas(vo) < Jpr(ups) for € small, it is now
natural to define a mountain pass value by

apy = inf max Jy(I(t)),
leL oy te[0,1]

where L), consists of all paths connecting uj; and v, i.e.
Ly =A{l¢€ CO([O, 1],H&(BR))|Z(0) =wups and [(1) = vp}.

The definition of aps was suggested in [W2]. If aps is a critical value, we then obtain
a non-radially symmetric solution. The main difficulty is the lack of compactness of
the functional Jy; when M > 87. To overcome this, we use a technique introduced
by Struwe [St1]. However, to apply the method of Struwe [St1], we have to show the
monotonicity of aps with respect to M, which is difficult since the definition of Ly,
depends on M. With the help of Lemma 2.3, we now define another mountain-pass
value.

Consider any small interval [ in (87,47 (2+ (3)). In such a small subinterval, we
can show that for any M € I, 05 > 09 > 0, where dj; is obtained in Lemma 2.3
and dp can be made a fixed constant. Let us fix some My € I. And we can also
choose vy in the definition of Las such that Jas(vo) < Jar(upr) for any M € I. Now
we change the definition of £y, and aps a little bit as follows

L ={l€C°[0,1], H}(Br))|l(0) = upg, and I(1) = v}
and

2.5 \ = inf Tar (1(1)).
(2:5) o = inf max Ju(U(t))
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Note that we can choose |I| so small so that

I (v) = T (unty) = I (v) = Tnr (ung) + Ina (une) — Tna (ungg)
> (50/ V(v —up)|? + O(|M — Mg|) > 19 >0

for [[v — un, || g3 (Br) = Po, where no > 0,p9 > 0 are small fixed numbers (which
can be chosen to be independent of I). Hence o, defines a Mountain-Pass value
and moreover

O/I\/[ >Mno + JM(UMO) > JM(UM)

Since the definition of L£; is independent of M € I, we now have the required
monotonicity.

Lemma 2.4. %, as a function in I, is monotone.
Proof. 1t is trivial by definition. See, for instance, [ST] or [WW]. O

Applying Struwe’s method in [St1,2], (see [ST], [WW] for similar arguments),
we obtain that

Proposition 2.5. There exists a dense subset A C (8m,4m(2+ [3)) such that, for
any M € A, oy, is achieved by wyy € Hy(Bgr), which, in particular, is a solution
of Py (and is different from upy ).

3. CONVERGENCE

Let My € (8m,4(2+ B)m)\{8mn, m = 2,...}. By Proposition 2.5, there exists a
sequence M; € A and M; — M, as i — oo. Let u; be the solutions of (2.1) and
(1.3) corresponding to M; constructed in Proposition 2.5. From results of [BM] and
[LS] (see also [L]), if ¢ > a > 0 for some constant a, then either, u; converges in
H}(B), or, My = 8mm for some positive integer m. However, here ¢V = |z|°, we
can not apply their results directly. So we need to generalize their results.

Theorem 3.1. Let u; be a sequence of solutions of equations (2.1) and (1.3) with
M = M; and M; — My as i — oco. If My € (8m,4w(2 + 3)), then there are two
possibilities:

(1) u; converges to ug in H?,

(2) maxu; — +oc as i — oo. In this case,

My = 8mm
for some integer m.

Proof. From the result of [LS], we only have to consider the case that the blow-up
point is the origin. That is, there exists a sequence {z;} such that u;(z;) — +o0
and z; — 0 as ¢+ = oo. And for simplicity, assume there is no other blow-up point.
Hence, we may assume that wu;(z;) = maxu;. Consider the following rescaling
argument (see also [NT]). Set

5s = exp(— 5 ui(ws) +log M; —log [ [alPe)).

1
2+ B
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Clearly, 6; — 0. There are two possibilities:

(1) limi o 22 = o0;

(ii) lim;, oo |§?| = ¢ for some constant ¢ > 0.
1

If case (ii) occurs, we may assume that

x:
= — X € R?.
d;

Define v;(x) = u;(6;x + ;) — ui(z;) in 67 '(Br — ;) := {y € R®|§;y + x; € Br}.
Clearly, v; satisfies

(3.1) —Av; = |z + %We“i in 071 (Bp — x;)
and
(3.2) / &+ B — a,.

67 (Br-z:) O

Since d; — 0o, 0; '(Br — w;) — R?. The result of [BM] can be applied to obtain
that v; = vg in CF _(R?), where vy satisfies that

(3.3) —Avg = |z + 20|Pe® in R?,
(3.4) / |z + zo|Pe < M
R2
and
(3.5) vo <0 for any x € R%.

We now have

Lemma 3.2. Ifv is a solution of (3.3)-(3.5), then

/ | + wolPe” = (2 + B)4n.
RQ

Proof. The idea of the proof is similar to one in [CL3]. So we only give the sketch.
We may assume that zg = 0. Set

(3.6 wiaw) = [ 5-(ogla =yl =Tox(ly| + 1)yl (1)

and
1

= — Pe’dz.
2 Rzm ¢

fy
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Clearly,
—Aw(z) = |z|Pe” in R

A potential analysis as in [CL1] and [CL3] gives
(3.7) —vlog|z| — ¢ < w(z) < —ylog|z| +¢ for x € R?,
for some constant ¢ > 0. Let @ = v —w. From (3.6), (3.5) and (3.7), we know that

w is a harmonic function with w(z) < clog|z| + ¢ for any z € R?. Hence w = ¢;
for some constant ¢;. It follows that

1
v= [ 5 Uogle |~ log(ly| + 1)y’ (w)dy
R2 &7
(3.7) and (3.4) imply that
(3.8) v > 24 5.

Furthermore, we can also estimate

Ov

Ur et o(1)
and 9
v
% = 0(1)

as |z| — 0o. We now apply the following Pohozaev identity for (3.3)

1 ov v v
R [ ol [ [ =R [ afe-eep [ e
2 JoBn 0By OT 9B Bnr

Taking limit on the both sides of the previous identity and using the estimates
obtained above, we have

v=2(2+ 7).
This proves the Lemma. [

Remark. (1) Lemma 3.2 is also true without (3.5).

(2) When —2 < 3 < 0, all solutions of (3.3)-(3.4) are classified, see [CL1] and
[CL3].

(3) When g > 0, solutions of (3.3)-(3.4) may not be radially symmetric. Actually,
in [CK2,p230] examples of non-symmetric solutions were given when > 2 is an
integer. These solutions satisfy all conditions in Lemma 2.3, and the conclusion
certainly.

Completion of the proof of Theorem 3.1. From Lemma 3.2 and the argument above,
we get a contradiction since M < 4(2+3)w. Hence we have, if the blow-up happens,

(3.9) lim
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which means that x; approaches the origin much slower than bubbling off.
Now we want to show, in this case, that My = 8mm for some integer m. Let

1
Yi = |$i|_5/2 exp(——(ui(xi) -+ log M; — 10g/ eui))‘
2 B

It is easy to see, from (3.9), that

|3

Vi

(3.10) — +o0 as 1 — oc.

Define w;(x) = u;(vix + ;) — ui(z;) in *yi_l(BR — ;). One readily shows that w;
satisfies in v; ' (Bg — ;)

(3.11) —Aw; = | 8L 4 B
|| [l
and
(3.12) / |1 T Bews —
v Y Brew) (Tl Tl

Brezis-Merle’s result implies that w; converges to wg in CF _(R?), where wq is a

loc
entire solution of
—Awg = e"° with / e’o < M
R2
and
wp(0) = 0 and we(x) < 0.

It follows from the classification result of Chen-Li that wy = —21log(1 + |z|?/8).
We can also interpret the above as follows. Let v;(x) = u;(z) + log |z|. Clearly
v;(x) satisfies

Av; = Mi———  in Bp\{0},
fBR €
1
vi = exp{ = (vi(z;) + log M; — log/ e’ )},
2 Br
|$i|__>_1L :
00, as 1 — 0o.
Yi
Set v;(x) = v;(yix + x3) — vi(x;). It is clear that
~ Vi T
0;(x) = wi(x) + Blog | T+ |.
lzi| |l

Hence 9; converges to wo in any compact subset of R2. The argument above holds
for local maximum of u;.

Now we can follow the argument given in [LS] to show the Theorem. Applying
the argument of Lemma 4 in [LS] to v; and the above argument, we have:
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There exists m (1 < m < M/8m) sequences of points {:Ugj)}gn:_ol in Br and

m sequences of positive numbers {kfj) ;’L:_Ol with limxgj) = 0 and lim kgj ) =
(0 <j <m—1) such that for any 0 < j <m —1

(3.13) ul(my)) + Blog |ac§j)| = max (ui(x) + Blog |x|) — oo,
=D | <k 4@

. . L (s (W) o m; —lo eli .
where /@) = [o|-8/2¢= 3 (us(el)Hlog ma—log [ € iy
=)
(3.14) lim 221 o,
i—o0 A7)
Vi
(3.15) By, (@) 0 By _on () = 0, for any j # '
P . . N
(3.16) guz(ty + xgj))|t:1 < 0, for any 'yi(]) <yl < 2k§])'yi(]),
(3.17) lim zfPe¥ = lim z[Pevi = 8,
1—00 B2k§j)7§j) (ng)) 1—00 Bkgj)ygj)(mgj))
(3.18) max {u;(z) + flog |z| + 2log min |z — xl(.j)|} < C, for any i.
z€BR 0<j<m—1

From (3.13)-(3.18), the argument in [LS] applies to our case to get the conclu-
sion. [J

Proof of Theorem 1.3. From Theorem 3.1 and Proposition 2.5, we have a second so-
lution for any M € (87,47 (2+3))/{8mm,m = 2,--- }. It is non-radially symmetric.
This gives the proof of Theorem 1.3. [
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