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EXISTENCE AND UNIQUENESS OF ENERGY WEAK
SOLUTIONS TO BOUNDARY AND OBSTACLE PROBLEMS
FOR QUASILINEAR ELLIPTIC-PARABOLIC EQUATIONS

A.V.IvANOov AND J.F.RODRIGUES

ABsTRACT. We prove existence and uniqueness of weak solutions to initial-boundary
value problem and problem with inner obstacle for elliptic-parabolic equations

¢ b(u) — div{|d(w)|"725(u)} = f(a,1),
6(u) = Vu+ k(b(u))e, [el=1,m>1

with a monotone nondecreasing function b. These equations arise in the theory of
non-Newtonian filtation and mathematical glaciology.

1. INTRODUCTION
Let Qr = Q2 x(0,T], Q@ C R*,n > 1. Consider initial-boundary value problem
Mu = 0 b(u) — diva(b(u), Vu) = f(z,t) in Qr, (1.1)

u=0 on Spr=0Qx(0,T], (1.2)
b(u) =by on Qx{t=0}

where b : R — R be monotone nondecreasing and continuous while function a be
continuous on R x R™, strictly monotone in p € R™ for any w € R and satisfies the
growth condition

la(w,p)™ < e(lpl™ + U(w) +1);m > 1,1/m+1/m' = 1, (14)

where U(w) is the Legendre transform of the primitive of b, i.e.,

¥(w) =sup(ew -~ [ Tb(0)dc). (1.5)
In view of (1.5), we have
W (b(u)) = ub(u) — / b0, (1.6)

Considering problem (1.1)—(1.3) under strict monotonicity condition
[a(w, p) — a(w,q)]- (p—q) > clp—q|™,m > 1 (1.7)
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Alt and Luckhaus proved existence of solution to problem (1.1)-(1.3) in the natural
class of weak solutions with finite energy

te[0,T]

sup /Q\I/(b(u))dx+//|Vu|mdxdt < +o0. (1.8)
Qr

Uniqueness of that energy weak solution to problem (1.1)-(1.3) was proved recently
by Otto in his paper [2], where along with conditions (1.4) and (1.7) it was used also
assumption

ja(b(ua), p) = a(b(uz), p)|™ < clus = uz[{[p|™ + U (b(ua)) + (b(uz)) + 1} (1.9)

Using these conditions Otto proved also important L!-contraction for problem (1.1)-
(1.3).

In reality in the papers [1] and [2] the results cited were obtained for mixt boundary
value problem with in general non-homogeneous Dirichlet data and with additional
term g(b(u)) of the left-hand side to equation (1.1) (under appropriate assumptions
on Dirichlet data and function g(w)). We shall restrict to consider here problem
(1.1)—(1.3) for the sake of simplicity and breavity of a presentation.

In the study of turbulent filtration of a fluid or a gas through porous media ([3]-[5])
as well as of nonstationary saturated — unsaturated flows though porous media ([6]),
in the theory of non-Newtonian fluids ([7]) and in the mathematical glaciology ([8])
equations of the type

Lu := 04 b(u) — div{|Vu + k(b(u))e|™ *(Vu + k(b(u))e)} = f(x,1),
m > 1,b is nondecreasing and continuous on R function, (1.10)

k is continuous on b(R),|e| =1

arise. Unfortunately the results of papers [1] and [2] can not be applied to equation
(1.10) in the case m € (1, 2) because the strict monotonicity condition (1.7) is fulfilled
for equation (1.10) only if m > 2. For equation (1.10) with m € (1,2) the following
strict monotonicity condition holds:

m—2

[a(w,p) — a(w,q)] - (p—q) > c|p — q*(|]p + k(w)e]™ + |q + k(w)e]™) "=

(1.11)

Extention of results of papers [1] and [2] to equation (1.10) with m € (1,2) is one of
the aims of given paper.

The main aim of this paper is to state our results on existence and uniqueness of
energy weak solution to the obstacle problem

u=0>¢ on I'r; (1.12)
b(u) = by = b(up),up > ¢ on 92 x{t=0}

where operator £ is defined by (1.10) and the obstacle ¢ = ¢(z,t) is given on Qr
function.
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As for as we know both existence and uniqueness of energy weak solution to problem
(1.12) are not established in the case m # 2 and b(u) # u. Existence and uniqueness
of a strong solution to problem (1.12) in the case m = 2 with bounded function b
are established in [9]. In paper [9] one can find also some references on the obstacle
problems for quasilinear degenerate parabolic equations.

Using the results of papers [1] and [2] as well as the first part of given paper we
establish existence of energy weak solution to problem (1.12) assuming that obstacle
¢ and function b satisfy some compatibility condition (see the statement of Theo-
rem 2.3). In particular existence of weak solution of problem (1.12) is established if
function b is strictly monotone on R.

Applying the methods of papers [9], [2] as well as the first part of given paper we
prove uniqueness of energy weak solution to problem (1.12) in the case when obstacle
¢ is independent of time.

Acknowledgement. A completion of this paper was realized during a stay of one
of the authors at the Max-Planck Institute for Mathematics in the Sciences (Leipzig)
in July, 1998. A.V.Ivanov would like to thank the MPI and Professor Mueller for
support and hospitality.

2. STATEMENT OF THE MAIN RESULTS

Further in this paper we always assume that the following conditions are fulfilled.

1) Q is bounded in R™, n > 1.

2) b is monotone nondecreasing and continuous function on R such that b(0) = 0;
k is given continuous function on b(R).

3) Function f = f(z,t) satisfies condition

fELmI(QT), 1/m+1/m':1, m > 1.

4) Initial function by = bo(x) is defined by formula

bp = b(up) with some measurable function wug = ugp(x);
bo € L1(£2),W(bg) € L1(2) (see(1.5)). (*)

It is shown in [1] that function ¥ defined by (1.5) is superlinear in the following
sence
|lw| <6V (w) + Cs  for any 6 > 0.

Hence really the first condition in (*) follows from the second one.
Denote o
V=Wh(Q)
and let V* is notation of the dual space to Banack space V.

Let the growth condition (1.4) is fulfilled. Function u is a weak solution of problem
(1.1)—(1.3) if u satisfies condition (1.8) and

M{u, ¢} = / / [(Bo — b(w)) By € + a(b(w), V) - VC]dadt = / fedudt
Qr Qr (2'1)
for all (€ L,,(0,T;V) with 0;¢ € Loo(Qr) and ((T)=0.
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;From identity (2.1) it follows obviously that the derivative (in the sence of distribu-
tions) J¢ b(u) belongs to W,,,/(0,T; V*) and

/0 (0 b(w), O)dt + / / ), Vu) - Vidwdt = / FCdzdt .

Qr
for all ( € Lm(O,T, V)
where pairing (.,.) is in V* and V.
Investigating problem (1.1)—(1.3) Alt and Luckhaus proved the following important
statesments.

Proposition 2.1 (Alt-Luckhaus, [1]). Let u € L,,(0,T,V), b(u) € Lo (0,T; L1(£2)),
0t b(u) € Ly, (0,T;V*) and for all ¢ € Ly, (0,T;V) with 0¢( € Loo(Qr) and ((T) =

/0< ()dt = // (bo — b(u)) Oy Cdzdt.

Then W(b(u)) belongs to Lo (0,T; L1(2)) and for almost all (a.a.) T € (0,T]

[ 1w - ve)lda = [ (@, b(w), updr. (2.3)
Q

0

Proposition 2.2 (Alt-Luckhaus, [1]). Suppose that functions u. converge weakly in
Ly (0, T;WL(Q)) to u with the estimates

T—h
% /0 /Q[b(us(t + h) — b(ue(t)]|[ue(t + h) — ue(t)]dxdt < c (2.4)
and

sup /Q\Il(b(ue(t)))d:v <ec.

te[0,T]
Then b(ue) — b(u) in L1(Qr) and V(b(ue)) — V(b(w)) almost everywhere (a.e.) in
Qr.

Using Proposition 1 and 2 the following existence theorem is proved in [1].

Theorem (Alt-Luckhaus). Let conditions (1.4) and (1.7) are fulfilled. Then there
exists at least one weak solution of problem (1.1)—(1.3).

To state the Otto results we have to define at first the following notations.

Function u is a subsolution of problem (1.1)—(1.3) with initial function by (satisfying
conditions 4)) if u satisfies (1.8), u < 0 on S, and for all nonnegative in Q7 function
¢ with the same properties as in (2.1) we have

M{u, ¢} < / f¢dwdt.

Function u is a supersolution of problem (1.1)—(1.3) with initial function by (sat-
isfying conditions 4)) if u satisfies (1.8), u > 0 on Sp and for all nonnegative in Qr
functions ( like above we have

Miuc > [ oo

JFrom the results of [2] the following proposition follows.
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Proposition 2.3. Let conditions (1.4), (1.7), (1.9) are fulfilled. Let u; be a subsolu-
tion of problem (1.1)~(1.3) with right-hand side fi and initial function bél) while us
be a supersolution of problem (1.1)—(1.3) with right-hand side fo and initial function
béZ) where f; and b(()i) (1 = 1,2) satisfy conditions 3) and 4) respectively. Then for any
nonnegative function v € C§°(R™ x (—o0,T))

J 1@ =82 = biun) = b)) 1204
Qr  +sign™ (uy — ug)(a(b(uy), Vur) — a(b(ug), Vug)) T Vy}dzdt

< / / (F1 — f) sign™ (u — us)dud. (2.5)
Qr

In particular for a.a. ¢t € (0,7T)

U1 — b(usg Tdx (()1)—82)+:U 1 — fo)sien™ (uy — us)dzdt.
Aw<m muMdsAw b>d+éﬁfJWg< )dadt
(2.6)

Theorem (Otto). Let conditions (1.4), (1.7), (1.9) are fulfilled. Then there is at
most one weak solution of problem (1.1)—~(1.3).

Consider now a problem
Lu=f in Qp, u=0 on Sp, blu)=by on Qx{t=0} (2.7)
with operator Lu defined by (1.10) assuming that

|k(w)|™ < c¢(¥(w)+ 1) on the set b(R),m > 1. (2.8)

In view of (2.8) function
a(w,p) = |p + k(w)e™*(p + k(w)e) (2.9)

satisfies condition (1.4) and hence the definition of weak solution given above can be
applied in the case of problem (2.7). Consider the following mapping ®,,(z) : R* —
R™ defined by

Ppn(2) = [2|™ 22, m > 1. (2.10)

It is well known that

: . (2.11)
w=m if m>2x=2 if me(1,2),c=c(n,m).

[@’M(zl) - @m(ZZ)] : (21 — Z2) > C|Zl — Z2|%(|Z1|m -+ |Z2|m)1_%7}
Then for a(w, p) defined by (2.9) we have

la(w,p) —a(w,q)]- (p— @) 2 clp — a*(Ip + k(W™ + |q + k(w)el™) =", (2.12)
w=m if m>2x=2 if me(l,2),c=c(n,m). '
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Obviously (2.12) coinsides with (1.7) if m > 2 and with (1.11) if m € (1, 2).
It is easy to check also directly that for all w € R, p € R

a(w,p) -p > volp|™ — c(¥(w) +1),v9 > 1,¢>0,m > 1. (2.13)

Note that inequality (2.13) can be derived also from conditions (1.4), (1.7) for any
m > 1.
Consider now the following conditions:

k(wy) — k(ws)| < clwy — wa|Y™  for any  wy,wy € b(R) (2.14)
and

[k (b(u1)) = k(b(uz))| < clur — ua|* (L (b(ur)) + ¥ (b(uz)) +1)1/™, (2.15)
a=1/m" if m>2,a=1/m if me(1,2),u,us € R .

The results of given paper allow to state in particular the following theorems.

Theorem 2.1. Let condition (2.8) and (2.14) are fulfilled. Then there exists at least
one weak solution of problem (2.7) for any m > 1.

Theorem 2.2. Let condition (2.8) and (2.15) are fulfilled. Then there is at most one
weak solution of problem (2.7) for any m > 1.

Remark 2.1. In the case m > 2 Theorem 2.1 and Theorem 2.2 follow from the results
of [1] and [2] respectively. Really in the case m > 2 conditions (2.8), (2.12) imply
obviously that conditions (1.4) and (1.7) are fulfilled and hence Theorem of Alt-
Luckhaus implies that Theorem 2.1 is valid for m > 2. To prove that Theorem of
Otto implies Theorem 2.2 for m > 2 it suffices to show that in this case condition
(1.9) follows from conditions (2.8), (2.15). Really denote

pi =p+Gb(y)), Gw):=k(w)e, z:=P,,),i=12.
Because m’ € (1,2) for m > 2 and @, (P, (p5)) = pi, ¢ = 1,2, from (2.11) it follows
that

(P (1) — P (B2)]? < €[ Pr (21) = Pomr (22)] - (21 — 22) (|22 ™ + |22|™ ) 78
< clp1 — P2l| @ (1) — Pon(D2)| ([P (B1)] + [P (B2)]) 2™ .

;From here and (2.8), (2.15) we derive

!

| (P1) — P (D2)[™
< clk(b(ua)) = k(b(u)|™ (Ip™ + ¥ (b)) + P (b(uz)) + 1)1
< cluy — ua|(|p|™ + (b(u1)) + ¥(b(uz)) + 1),

i.e., condition (1.9) is fulfilled.
We are able to prove Theorem 2.1 and Theorem 2.2 in the case m € (1,2).
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State now main results of given paper on existence and uniqueness of weak solution
to the obstacle problem (1.12).

We will assume further that (together with conditions 1)—4)) the following condi-
tions are fulfilled.

5) Obstacle ¢ = p(x,t) satisfies assumptions

p € W'(Qr), U(b(9)) € Loo(0,T5L1(2)), 0 ¢ € L (Qr),
<0 on Sp,p<wuy and b(ug)=by on Qx{t=0}, (2.16)
ug € Ll(Q), \I/(U()) € Ll(Q)

and
there exists nonnegative function (¢ € Ly, (Qr) such that
J[ b0+ atbio). o) Vidsar < [ [ 7+ )¢dsat 217
Qr Q
with a(w,p) defined in (2.9) for any ( € L,,,(0,T;V).
Denote

K=K(p):={ve L,0,T;V):v>¢ ae in Qr}.

Function u belonging to K(¢) such that U(b(u)) € Loo(0,T; L(2)) and 0¢(b(u) €
L, (0,7;V*) is a weak solution of problem (1.12) if u satisfies variational inequality

/OT@tb( U—udt+// ), V) - (v—u)dmdt>//fv—udxdt -

for all v e K(yp),

where
T
/ (04 b(w), )t = — / / b(w) 0y Cdadt for all ¢ € L (0,T: V)
0 Q

having a compact support in 2 x(0,7) and such that 0;¢ € Loo(Q1),

and initial condition

ess hm/ |bo — b(u(t))|dz = 0. (2.19)

Consider the following

Condition C. There exist numbAers dp > 0 and d0; > 0 such that the restriction of
function b on the neighborhood ® :=  |J [¢, ¢ +do] of the range ¢(Qr) of the

=p(z,t)

(mat)eQT
obstacle ¢ is strictly increasing function with a range containing the neighborhood
B:= U [b(e),b(p)+ 01] of the range b(¢(Qr)) of function b o . Moreover the

p=p(z,t)
(CC,t)EQT

inverse function to this restriction is uniformly continuous on B.
The mail results of our investigations can be expressed as the following statements.
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Theorem 2.3. Let conditions (2.9), (2.14) and (2.15) are fulfilled. Assume that
either b is strictly increasing on R or condition C holds. Then there exists at least
one weak solution of problem (1.12).

Theorem 2.4. Let conditions (2.9) and (2.15) are fulfilled. Assume that obstacle ¢
is independent of time t. Than there is at most one weak solution of problem (1.12).

OF
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