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Abstract

Chaotic attractors of discrete-time neural networks include infinitely
many unstable periodic orbits, which can be stabilized by small parameter
changes in a feedback control. Here we explore the control of unstable peri-
odic orbits in a chaotic neural network with only two neurons. Analytically
a local control algorithm is derived on the basis of least squares minimiza-
tion of the future deviations between actual system states and the desired
orbit. This delayed control allows a consistent neural implementation, i.e.
the same types of neurons are used for chaotic and controlling modules.
The control signal is realized with one layer of neurons, allowing selective
switching between different stabilized periodic orbits. For chaotic modules
with noise random switching between different periodic orbits is observed.

*permanent address: MOD, Forschungszentrum Jiilich, D-52425 Jiilich, Germany



1 Introduction

An essential feature of recurrent networks is their multi-functionality based on
their inherent complex dynamical properties. This corresponds to findings in
biological brain research, where oscillations of various periodicities, as well as
synchronization effects, wave patterns of activity, and even chaotic dynamics are
observed on different levels of signal processing. From this data it is now evident
that non-linear dynamics is fundamental for understanding higher level brain
functions. In particular, chaotic dynamics is frequently observed in biological
neural networks, although its functional role is still obscure (Guevara, et al., 1983;
Babloyantz, et al., 1985; Babloyantz and Destexhe, 1986; Freeman, 1988, 1992;
Elbert, et al., 1994; Freeman and Barrie, 1994; Schiff, et al., 1994; Hayashi and
Ishizuka, 1995). One hypothesis is that chaotic dynamics endows a neural system
with the ability to respond rapidly and with a flexible repertoir of behaviors to
a changing environment (Skarda and Freeman, 1987; Freeman, 1993).

The control of chaos in non-linear systems is a mechanism which can be used
effectively for information processing (see e.g. Kapitaniak, 1996). The basic idea
is to stabilize one of the infinitely many unstable periodic orbits in a chaotic
attractor by feedback control (Ott, et al., 1990). The relevance of this method
for neural systems has been demonstrated for instance by Ding and Kelso (1991)
(following the general ideas of Freemann), Lourenco and Babloyantz (1994) (sug-
gested for pattern recognition and motion detection), Babloyantz and Lourengo
(1994) (applied to biologically oriented models), and Schiff, et al. (1994) (applied
to in vitro experiments). The basic feature of this method is that specific oscil-
latory modes, which may code for instance behavior relevant stimuli, are linked
by seemingly chaotic transient states. This kind of switching between different
attractors is realized with less effort than crossing boundaries of corresponding
basins of attraction or changing the attractor and basin structure, respectively,
of the whole system.

The intention of the present work is to show that chaotic dynamics as well
as its control can be realized in one and the same modular neural network. In
previous publications either the chaotic system is a neural network and external
control is purely algorithmic (Sepulchre and Babloyantz, 1993) or neural control
is applied to algorithmic chaotic systems, like e.g. the dissipative Hénon map
(Alsing, et al., 1994; Der and Herrmann, 1994). Here, the combination of a
chaotic neuromodule with neural control modules is understood as a first and
simple example for the interaction of functionally differentiated neural systems.
For demonstrating specific effects of such an interaction, we choose the discrete
chaotic dynamics of a simple two neuron network (Pasemann 1995). An appro-
priate control algorithm stabilizing a desired periodic orbit is then implemented
into a feedforward network with one layer of neurons. To achieve this, we have
to reformulate the control algorithm using least square control similar to Reyl
et al. (1993), Stollenwerk and Pasemann (1996) and delayed feedback similar to



Dressler and Nitsche (1992), Stollenwerk (1995).

Basic properties of the 2-neuron module (Pasemann, 1995) are summarized in
section 2, and the corresponding implementable control is derived in section 3. To
allow switching between different oscillatory modes, we have to use local control
of specific periodic points. A 4-neuron control layer implements the necessary cut-
off function and the corresponding control function at the same time as shown in
section 4. Each of the stabilized periodic orbits needs a separate control layer, and
the control is activated for instance by disinhibition of the corresponding neurons.
Deterministic switching between different oscillatory modes is then achieved by
activating one control device at a time. Spontaneous switching between different
periodic orbits appears, if all controllers are active at a time. This is demonstrated
in section 5 for unstable orbits with periods two, four and five. The last section
gives a discussion of the results.

2 A Minimal Chaotic Neuromodule

The system subject to control is a recurrent two neuron module with an excitatory
neuron and an inhibitory neuron with self-connection (Figure 1a). Its activity at
time n is given by z, = (x,,¥,), and the discrete time dynamics

£n+1 - f(in) ) i : R2 — R2 )

is defined by the map
Tpp1 = Yy +wi-o(z,) +wie-o(yn) (1)
Ynp1 = VU +wa -0(Ty),

where o denotes the sigmoidal transfer function defining the output of a neuron:

B 1
C 14e®

o(x):

(2)

This module exhibits chaotic dynamics for large parameter domains (Pase-
mann, 1995). In the following we will discuss properties of the global chaotic
attractor existing for the parameter set

?91:—2 y w11:—20 y U}12:6 y
?92:3 , W21 —6 y U}22:0

(3)

This attractor is shown in Fig. 1b. In the following numerical simulations
control is applied to this attractor. Its Lyapunov exponents have been calculated
to Ay = 0.22 and Ay = —3.3, confirming that the attractor is chaotic. They
indicate that the mean expansion is fairly weak so that nearby states separate
slowly from each other on a large part of the attractor.
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Figure 1: a) The chaotic module consisting of a self- inhibitory neuron with
activity x,, and an excitatory neuron with acitvity v, at time step n. b) The
chaotic attractor of this module for parameters as in equation (2).

The Lyapunov exponents only measure mean asymptotic expansion and con-
traction rates of the system. Locally in state space, expansion and contraction
vary drastically. This can be read already from the Jacobi matrix Df of the
system (1) given by

Df(z) = <w110’(x) w120’(y)> ‘

wzla'(x) wna’(y)

Because o is strictly positive and symmetric with maximum at o’(0) = 0.25, the
highest expansion takes place around x = 0. For parts of the present attractor
(Figure 1b) lying in the region x < —5 only contraction occurs (Stollenwerk and
Pasemann, 1996). Due to this fact it turns out that complete orbits up to period
ten can be stabilized by just controlling one single point in this contracting area.
On the chaotic attractor the system visits the vicinity of infinitely many unsta-
ble periodic orbits (Procaccia, 1987). That is, there is an orbit (dense orbit) which
approaches infinitely many unstable periodic orbits arbitrarily closely. Because of
this the chaotic system cannot reach the exact position of an unstable point, even
without dynamic noise. After a short time the system leaves the neighbourhood
of a certain periodic orbit along the stretching direction and comes, because of
folding due to the nonlinear dynamics, to the neighbourhood of another period.
The first five unstable periodic orbits along the chaotic attractor are depicted
in Figure 2. In Stollenwerk and Pasemann (1996) periodic points up to period
ten have been calculated using Newton’s method for the parameter set (3). The
following orbits were found (period/number of orbits): 1/1, 2/1, 4/1, 5/2, 6/2,
7/2,8/3,9/4 and 10/6. No period three orbit is observed. But for periods larger
than four two or more different orbits do exist. This is due to the fact that
the total number of unstable periodic points grows exponentially with period
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Figure 2: Periodic points of period 1, 2, 4 and of two periods 5 are shown in their
position along the attractor. No period 3 exists in the system under study.

length P and rate given by the topological entropy hs along the attractor; here
hr = 0.422 £+ 0.004.

3 Local Control of Unstable Periodic Orbits

The periodic orbits with points (lp,z-)f:l can be locally stabilized by varying one
of the system parameters. Here we apply the control p, to the input of the
inhibitory neuron:

Tpy1 = (V1 +pn) +wir-o(z,) +wiz-o(y,) (4)
Yn+1 = Uy +w21'0($n)

The control is applied only if the system comes close to a periodic point zp;; i.e.
if the control signal stays small

lpn| <p* . (5)

Because the only requirement for control is to change the local expansion to
contraction in the neighbourhood of distinct periodic points, appropriate control
parameter changes p, have to be determined. The general technique to do this
is called pole placement, reviewed e.g. in Romeiras, et al. (1992). Besides the
recently proposed and widely used Ott-Grebogi-Yorke method (OGY) (Ott, et al.,
1990; Romeiras, et al., 1992) there exist alternative methods. One particularly
simple and often quite effective method is the linear least squares minimization of
future deviations Az,,, . This method was applied successfully e.g. in the context
of laser physics by Reyl, et al. (1993). It was compared with the algorithm



of the OGY method in (Stollenwerk and Pasemann, 1995). In the following
we will derive appropriate control signals, which are implementable in a neural
feedforeward structure.

3.1 Instantaneous and delayed control

The dynamics of the chaotic module (1) plus instantaneous control p, can be
described as a mapping f : R* x R — R?* given by equation (4); i.e.

Toy1 = f(@ipn) - (6)
In the neighbourhood of the periodic points, where
Az, =z, — Lp;
is assumed to be small, we consider the linearization of the dynamics (6)

oo U b Y

- EP,@'(O)@ZO EP,@'(O)@ZO

At time n the deviation of the present state z, from the periodic point zp; is
taken.

In order to implement the control in a separate neural module which runs
parallel to the chaotic module one has to take into account the time it needs to
calculate the control. Suppose this can be done in one layer of neurons, then we
have to determine a control which will influence the system one time step ahead.
Hence for the dynamics

Tpp1 = (V1+pn)  Awi-o(z,) +wiz - o(ys) )
Ynt1 = Vs +woy - o () , (7)
Pn+1 = DPni (l'n; yn) )

the control function p,41(xy, y,) has to be calculated. We call this type of control
a delayed control.

In general the future development of the system depends on the whole history
of the control. Taking two control steps into account the least squares condition
reads

||Aln+2(pn7pn+l)||2 = min

hence

0
Opn

0
OPn+1

1Az, 42]* =0 : 1Az, 42]* =0



Using the linearizations M; and h; we have

Az,0= My - Az, + hiyy - Duy1 + higher orders

= MM, Az, +M;p1h; - pn + by - P

= M1 M; Az, +( hyyy : Miph; ) ( P )

Pn+1

where (Qﬁ) denotes the (2 x 2)-matrix obtained from the column A by adding the
column h. Defining d := M; 1M, - Az, p := (pn, pny1)” and the controllability
matrix C by

C:=( hiyr  Minly )
evaluation of the least squares procedure yields the result

p= _(Ctrc)—lctrd (8)

as long as the square matrix (C"C) is invertible. Otherwise, we have to use
the Penrose pseudo inverse C* obtained by singular value decomposition (SVD)
(Broomhead and Lowe, 1988) and get more generally

p=-C'd

Applying the result of equation (8) to the input control equation (7) we get

[ wn o'(wp;) wiao'(yps) \ _. [ @ Bi (1
MZ o < W21 O’(l‘p’i) 0 o Yi 0 ’ ﬁz o 0

Since here (C"C) is invertible, we use equation (8) to obtain

(pn+1 > _ ( —Biv1vi 0 )-Ag
Pn —Qy — B "
From this result we obtain for the instantaneous control
pn=0(—ai , =B ) Az,
as derived in Stollenwerk and Pasemann (1996) and for the delayed control
Pn+1 :( ~Bix1-7 , 0 )'Ain
as in (Stollenwerk, 1995).



4 Self-Control of the Period-2 Orbit
The delayed control just derived has the form
Pny1 = —Bit17% - (Uﬁn - UCP,i)
= —wig 0'(Ypit1) - wa1 o' (xp;) - (L0 — Tpy) 9)

R —W1aWa UI(?JP,HI) (o(zn) — U(xP,i))

where the approximation o(z,) — o(xp;) ~ o'(zp;) - (xn — xp;) was used. We
observe that the delayed control depends only on the z,,-component of the module
activity; i.e. pp1 = Pni1(2,). Thus we finally define

pdd“y(a:n) = —wiWe 0 (Vg + wyo(zp;)) - (0(z,) — o(zp;)) (10)
or correspondingly
P () =1 @5 0(Tn) + i (11)
with coefficients
0i(zp;) == —wipwy o' (Vg + wo0(zpy)) , (12)
VYi(zp; = wiawe o' (Vs + wor0(zp;))o(xp,) (13)

depending only on the periodic points zp;.

4.1 Small control signals using cut-off functions

Now we want to apply the delayed control in terms of a local control. The
corresponding smallness condition (5) of the control parameter p can be expressed
for instance by a cut-off function

I for |p| < p*
®p(p) = { 0 otherwise

An approximation of ® can be realized of course by an appropriate combination
of four sigmoids (2), and it is constructed here in the following way: Taking
into account the symmetry o(—z) = 1 — o(z) of the sigmoid (2) we obtain
the parametrized approximating function ®; in the form of a weighted sum of
stgmoids

Op(z) =k -[o(ax — a) — o(bx — B) — o(bx + () + o(ax + )] (14)

with a := a-¢c—d and 3 := b-c+e. In the following we use a cut-off approximation
with parameters

k= (k,a,b,c,d,e)" =(1,5,50,1,3,1)" .

8
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Figure 3: Approximation of the cut-off function ®(p) (dashed line) by a combi-
nation of four sigmoids (full line).

However, for the controlling task a serious problem can occur if the cut-off
approximations are insufficient near the origin. The controlled periodic orbits
then might be none of the original unstable periodic orbits in the chaotic attrac-
tor; they might even lie outside the chaotic attractor. The crucial point is, that
small control signals must be reproduced exactly. Thus the slope of the cut-off
appoximation ®; must be equal to 1 near the origin, i.e.

APy (x)

TEE\Y) -1
dz o

This constraint gives the following condition for the parameter vector k:
2k (a o'(a) = bd'(B)) =1

Solving this equation with constants a, b, ¢, d, e, i.e. k = (k,5,50,1,3,1)" as

before, we obtain
1

k= 2 = 0.952439
aoc'(a)—bad(B)

The numerical value £ = 0.95 is close to our original guess of k£ = 1 demonstrating
the quality of our approximation parameters. In Figure 3 the approximating
function @ is compared with the original cut-off function ®,-. Especially, the
exact agreement of the slope around zero is clearly visible.

Finally, we have to scale ®; with respect to the cut-off size p* and hence define

Dy (x) :=p* - Pp(x/p) (15)
with parameters k* := k - p* and a* := a/p*, b* := b/p* in the parameter vector
£ = (k* a*,b* c,d, e)".

By applying the approximated cut-off ®;-(z) to the delayed control p?°/@¥ we
are now able to construct a one layer network controlling the chaotic module.

The composed system, having only one type of neurons, is able to stabilize an
unstable periodic orbit.




4.2 Construction of consistent neural self-control

As mentioned in section 2, because the system is contracting in a large phase
space domain a whole unstable periodic orbit can be stabilized by applying the
control only in the neighborhood of one single selected periodic point of the orbit
(Stollenwerk and Pasemann, 1995). Since the constants in the delayed control
p®ay  given by equation (10), depend on the choice of this specific periodic point
Zp,, the corresponding local control is realized by the combination of the cut-off
®y- (15) with p?el@¥. Because of the delayed control, selected periodic points must
be mapped in the next time step to points in the most contracting part of the
attractor (compare section 2). For the unstable period-2 orbit, for example, the
selected point is zp_,; = (0.3107, 2.9976).

Hence, the local control signal p,1 = @5 (p?®(z,)) for a selected periodic
point is generated by the four neurons of the control layer. Let z, , p=1,2,3,4
denote their activities. According to equation (10) their inputs are given by the
weighted output w,o(z) of the inhibitory neuron of the chaotic module. Their
outputs o(z,) project back on the inhibitory neuron via the connecting weights
vy, = 1...,4. So the control module is realized as a one-layer feedforward
network as shown in Figure 4.

Figure 4: Chaotic module and control module with their interfaces A and B; I
denotes the inhibiting inputs for the control neurons.

Now the parameters ¢, u and v of the control network, with 6, denoting the
corresponding bias terms, can be expressed in terms of the parameters ¢; and
; of the delayed control given by equations (12) and (13), and £* characterizing
the approximated cut-off function (15), i.e.

up = a*p; 0 =a*); — « v = k*
uy = b*; O = by — 3 vy = —k*
uz = b*; O3 = b"; + 3 vy = —k*
Uy = a*<pi 94 = a*’gbi + o Vg = k*

10



Using this construction (Figure 4) we call the composition of the chaotic
module with a corresponding control module a self-controlling chaotic neural
network. This network is consistent in the sense that chaotic dynamics as well as
its control is realized in one and the same system using the same type of neurons
everywhere. The effect of this controlling scheme is demonstrated in Figure 5
for the unstable period-2 orbit using a cut-off size p* := 0.05. In Figure 5a the
resulting control signal ®(p(z)) is depicted in a schematic way as a function of the
activity = of the inhibitory neuron. This function has a nonvanishing part only
around the selected periodic point. Its exact shape is of course the one depicted
in Figure 3, but with larger slope because of the distorsion by p?¢%¥(z). The time
series shown in Figure 5b demonstrates the successful control after a transient
motion along the chaotic attractor of Figure 1b.

0.1 4
3 e
__ 0.05- 2
£ s "
g = i
2 0 0
o
-1
-0.054 -2
_3_
'01 T T T -4 T T T T T
-15 -10 -5 0 5 0 1000 2000 3000 4000 5000 6000
a) b)

x(n) n

Figure 5: Self-control for the period-2 orbit: In a) the control function is depicted
in a schematic way while in b) the time series shows successful control after a
transient before the local control signal becomes effective.

For the period-4 and both period-5 orbits local control around selected pe-
riodic points is equally efficient as for the period-2 case. For the period-4 orbit
a convenient periodic point is given by zp_,;, = (1.0010, 2.5359). Selected pe-
riodic points for the two period-5 orbits are zp_5,,; = (1.4625, 2.6293) and
Tp_59;, = (1.7355, 2.9525). In agreement with our theoretical considerations
simulations show that the application of our local self-control to other than these
selected points does not work as effectively or even fails completely.

5 Two Possibilities for Period Switching

Having verified that unstable orbits of period 2, 4 and 5, for example, can be
stabilized by local control in one periodic point, we now investigate two distinct
ways of switching between these different orbits. For that purpose we introduce
inhibiting inputs to all neurons of a control module. In order to stabilize N
different unstable periodic orbits we now have to introduce N different controllers
with different local controlling areas corresponding to the N selected periodic
points.

11



Inhibiting all of these controllers should of course leave the system on the
chaotic attractor. Selective disinhibition of one controller should then stabilize
the corresponding orbit after some transient time. A second situation occurs if
all controllers are active. We will distinguish these two cases denoting them as
selective switching by external control inputs and spontaneous switching mediated
by internal or external noise of the chaotic module.

For simulations we use a setup with three control modules denoted by C(2),
C(4), and C(5.1). They stabilize the orbits 2, 4 and 5.1 with periods two, four
and five, respectively. Each controller is of the form depicted in Figure 4. The
corresponding local control areas do not overlap for the three different periods if
p* = 0.05. In general, areas of nonvanishing control scale of course in height as
well as in width by p*. The second method of switching (spontaneous switching)
will use the fact of nonoverlapping control regions for stabilizing different orbits
in a random sequence induced by dynamical noise.

5.1 Deterministic switching by external inputs

Because the transfer function o satisfies o(x) ~ 0 for large negative x, inhibiting
all neurons of a control module C(v) by a strong negative input I” will set the
corresponding control signal for orbit v to zero. Thus, inhibiting all but one
controller at a time will stabilize the corresponding periodic orbit. Switching
to another orbit is then performed as follows: First the active controller is also
inhibited and the corresponding orbit will be destabilized again. Then, liberating
a different controller will stabilize - after a transient along the chaotic attractor
- the new periodic orbit. In this sense the chaotic attractor links all possible
unstable periodic orbits and its dynamics might be interpreted as an attentive
state of the kind suggested for instance by Skarda and Freeman (1987) and Ding
and Kelso (1991).

y(n)

'4 T T T T T
0 1000 2000 3000 4000 5000 6000
n

Figure 6: Deterministic switching by varying control inputs from period 2 to
period 4 after 2000 time steps and finally to period 5.1 after 4000 steps.
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In Figure 6 selective switching is demonstrated by simulation results with the
described setup: For time steps n = 1 to n = 2000 the period two controller C'(2)
is activated. After a transient of about 500 time steps the period two orbit is in
fact stabilized. Then, for n = 2000 to n = 4000 only the period four controller
C(4) is de-inhibited and successfully stabilizes the orbit after a short transient.
Finally, after n = 4000 the periodic orbit 5.1 is stabilized with controller C'(5.1).
The inhibition for all neurons of a controller C'(v) must be sufficiently large
so that the controller does not perturb the original chaotic dynamics when all
controllers are turned off. For simulations the inhibition was given by a constant
It = —10,000, p = 1,...,4. For controlling a specific orbit » controller C'(v) is
liberated by setting the corresponding inhibiting inputs /] to zero.

5.2 Spontaneous switching by dynamic noise

When activating all three controllers at a time, i.e. all external control inputs I/
are set to zero, the system will, after a transient on the chaotic attractor, enter
one control area in phase space, being controlled there forever. Which periodic
orbit will be stabilized depends on the initial conditions and the relative size of
each control region in respect to the invariant measure of the whole attractor.

T T T
5000 5500 6000 6500 7000
n

Figure 7: Spontaneous switching by internal dynamic noise between all three
deterministically controlled periods 5.1, 4, and finally 2. In between randomly
occuring escapes to transients along the chaotic attractor are visible.

But if an internal (or external) dynamic noise term § € R? is introduced into
the chaotic module (1), the noisy system can escape from a once controlled orbit
and move along the attractor until being eventually captured in another control
area. This new periodic orbit will be destabilized again by the noise, and so on.

Simulations reveal, that the simplest type of noise, i.e. Gaussian white noise
with constant variance, is sufficient to induce spontaneous switching between
orbits of period two, four and five. For the following example we applied noise

13



with a standard deviation of ¢ = 0.002 to the inputs of the chaotic module. This
corresponds to 0.04% of the standard deviation for the z-signal, and to 0.1%
of the standard deviation for the y-signal. Part of the resulting time series is
depicted in Figure 7 where all three orbits 2, 4 and 5.1 are visited. Although each
period is controlled only locally around a single periodic point, the period five
orbit is stabilized most often, eventually destabilized by the noise and revisited
after a short transient. At around time n = 5600, however, the period-4 orbit
is met after a transition and can be stabilized for about 400 time steps before
becomming unstable again. After these switches the system even locks in to the
period-2 orbit at around time step 6600.

Also switching back and forth between period two and period five can be
detected, however, with a larger amount of noise. In our simulations the duration
of continuous stabilization of the orbits is distributed quite unevenly. The reason
for this is, that we restricted ourselves to a constant cut-off p* = 0.05 for all
control areas. A more balanced duration of the different periodic orbits can
be achieved by adjusting the cut-offs p*” with respect to the attractor’s density
around the selected control points Tpi,-

6 Summary and Discussion

In this article we have shown, that in principle a consistent self-controlling chaotic
neural systems is realizable. That is, a modular neural network composed of a
chaotic system and a controller, which is able to switch between different oscilla-
tory modes. Switching will occur as response to external control signals or as an
internal property of a noisy system.

Starting with the delayed algorithmic control for a given unstable periodic
orbit, all bias terms and weights of the corresponding control module can be cal-
culated. So no learning procedure is applied here. With multi-cut-offs generating
the local control around every periodic point of an orbit, the problem scales of
course with the number of periodic points. Hence, the size of such a controller will
grow exponentially with increasing period length, the growth rate being roughly
the topological entropy.

One possible way out of the scaling problem is the “one point control” as
developed in (Stollenwerk and Pasemann, 1996). Here we have shown, that its
delayed version (Stollenwerk, 1995) can be implemented in one layer feedforeward
networks, and that switching between different periodic orbits can be achieved
by this control technique. The combination of the chaotic module with a number
of different controllers can then serve as a special purpose system. For instance
as a “chaotic categorizer” of the type described in Babloyantz and Lourenco
(1994). Or it it can provide a dynamic short term memory, where information is
coded by different periodic orbits. In contrast to the usual content addressable
memories, information is not stored in competitive coexisting attractors here,

14



but a selective control mechanism is used, which transforms one oscillating mode
of the composed system into a different one. For a noisy chaotic module and
all controllers active at the same time, spontaneous switching between different
periodic orbits may be functionally related to a random search memory.
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