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3D-2D ASYMPTOTIC ANALYSIS OF AN OPTIMAL DESIGN PROBLEM
FOR THIN FILMS
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Abstract The Gamma-limit of a rescaled version of an optimal material distribution problem for a cylindrical
two-phase elastic mixture in a thin three-dimensional domain is explicitly computed. Its limit is a two-dimensional
optimal design problem on the cross-section of the thin domain; it involves optimal energy bounds on two-dimensional
mixtures of a related two-phase bulk material. Thus, it is shown in essence that 3D-2D asymptotics and optimal

design commute from a variational standpoint.
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§1. Introduction

Thin film technology has significantly improved in the past few years. The increasing diversity
of available manufacturing methods provides for a better control of the thickness of the thin film
and renders more realistic the idealized view of a film as a thin plate. In such a context the
transformation of bulk properties as the material domain is scaled thinner and thinner becomes a
relevant issue in thin film behavior. In more mathematical terms, a 3D-2D asymptotic analysis of
the thermomechanical and electromagnetic bulk properties of a flat domain as the thickness of the
domain tends to 0 must be performed.

As far as mechanical properties are concerned this type of analysis has been the object of many
investigations in the past twenty years, although mostly in a linear or semilinear context (see [C],
[CD]; see also [MS1], [MS2]); only recently has some progress been made in a truly nonlinear setting
(see [FRS], [LDR], [BJ]; see also [ABaP], [ABuP], [G]). Fully nonlinear elasticity is the assumed
behavior throughout the present study, although in this work, as well as in the previously quoted
papers, the energy densities considered are not totally in agreement with the principles of nonlinear
elasticity because they violate the physical requirement that the lattice energy density blow up as
the determinant of the deformation strain tends to 0. To our knowledge the only relevant work
that respects such a requirement is to be found in [B]; a similar analysis in our context seems
rather hopeless at this time.

Two somewhat related issues provide the inspiration for the present study. On the one hand,
the improved technological ability to pattern thin film substrates permits to create regions of
specific shape and stiffness within the film. The goal is then the optimization of the mechanical
film performance through an optimal distribution of the stiffness of the film. This is a problem
of optimal design, which has thus to be coupled with a 3D-2D asymptotic analysis. On the other
hand, elastic materials are prone to defects that adversely affect their elastic stiffness; those defects
end to grow with the applied loads. The goal is then the prediction of the evolution of the damaged
areas, which will also be affected by the scaling in the thickness.

In more specific terms, two settings are being considered. In both settings, Q(e) is a thin
three-dimensional domain of the form

Q) =w x (—¢,¢),
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with w a bounded, open domain in R?, € > 0, and, for the sake of illustration, Q(g) is assumed to
be clamped on its lateral boundary 0w x (—¢,¢). The thin domain Q(¢) is filled with two elastic
materials with respective energy densities W; and Ws, where W; (i = 1,2) is a continuous real-
valued function on R3*3. Denote by x(-) the characteristic function of the first phase so that at
any point x € Q(¢) the elastic energy is x(x)Wi(+) + (1 — x(z))Wa(-).

The first setting is that of the optimal design of a two-phase mixture of elastic materials in a
thin film. Optimal design of two-phase mixtures is a contemporary topic which originates in the
works of F. Murat and L. Tartar (see [M], [MT]); similar ideas may be found in [L]. It has since
been the subject of numerous papers (e.g. see [GC],[KS], [BK], [AK], [ABFJ]).

Assume that the load f on Q(g) as well as the volume fraction of each phase,

1

are given. Here, and in what follows, £V stands for the N-dimensional Lebesgue measure in RV .
For a fixed thickness e the compliance ¢*(x) is defined as
(1.1)

o = —in ! 1 — 2)(Du) dx —
() = uf{sl/Q(E)(W”l om - [

f-udm] :u=0ondw x (—z—:,z—:)}.

Remark 1.1. The definition (1.1) of the compliance coincides with the classical definition of
compliance in the linearized setting, i.e. when W; and W, are quadratic and the gradient of the
transformation Du is replaced by the symmetrized gradient e(u) := 1/2(Du + Dul). In this case
—2¢%(x) is precisely the work done by the load f (see e.g. [ABFJ]).

The best design will be that which minimizes the compliance, and the problem becomes

(1.2) —Sip{—cg(x) X € L¥(Q(2); {0, 1)), m/m x(w)dr = A}.

As a two-field minimization problem (1.1)—(1.2) reduces to

| ::—supinf{1 [/ (XW1+(1—X)W2)(Du)d:c—/ f-ud:c] cu=0ondwx (—¢,¢),
Q(e) Q(e)

x v | €
X € Lo(Q(e): {0,1}), m&( o) de = /\}.

Our goal is then to compute the limit of If  as ¢ tends to 07. We are not, as of yet, in a position
to solve this problem. The results described in Section 2 will only permit the computation of the
limit as ¢ tends to 0T of

(1.3)

1
Lonst = inf{— [/ (W1 + (1 — x)W2)(Du) dz — / f- udm] cu=0ondwx (—¢,¢),
Q(e) Q(e)

Xu | €
X L¥OE 0.1, gy | v = )\},

that is of finding the worst possible design! Actually, our result is even more restrictive because
the designs may not be arbitrary: only cylindrical domains can be considered, as x = x(z,) will
not depend upon the transverse variable z3 in (1.3).
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The second setting is that of brutal damage evolution of a thin film. We follow there the model

proposed in [FMa] (see also [AB]). The material is assumed to brutally lower its elastic energy at
a point x from Wo to Wi (with Wi < W5) whenever the deformation strain Du(z) at x satisfies

Wa2(Du(z)) — Wi (Du(z)) > &,

where k is a critical energy release rate. Then, for a fixed thickness € > 0, and for a given load
f(x) on Q(e), the problem is shown to be equivalent to determining

€ Q(e) Q(e)

€ .—in 1 T — x(@ u)ar + K T Xr — ruar) -
e = { l/%)(x( Wi + (1 = x(2a))Wa)(Du) d +/ X(@a) d ! d].
u=0o0n 0w x (—e,e),x € LOO(Q(E);{O,l})}.

Specifically, we assume that the energy densities W; (i = 1,2) are such that
alFIP < Wi(F) < B(1+|F|P), FeR>3,
where a, 8 > 0, 1 < p < +00. Further, we define the two-dimensional energy densities

Wi(F) = iangWi(FM), F € R3*?
ze

where (F|z) denotes the 3 x 3 matrix with first two columns those of F' and last column the
vector z. The results described in detail in Section 2 below (cf. in particular Theorems 2.3, 2.4,
Remarks 2.6, 2.8) and a simple rescaling argument — setting ys := x3 /¢ which transforms () into
w x (—=1,1) — would immediately imply that

lirél+ Lorst = Halin {2/ W (6(za), Du(zs)) dzo — / F(zo) - u(zs)dzs - u € WyP(w; R?),
e— ,u w w
1.
o 0 € L*(w;[0,1]) L/G(m )dzy = A
’ ? ? L:Q(w) " (e o ?
and
lir(glJr K = rglin {2/ W (0(zq), Du(zs)) de + 2/@/ O(xy) doy — / F(zy)  u(ry) dag :
e— ;U w w w
(1.6)

ue WiP(w;R), 0 € L= (w; [0, 1])}.

In (1.5), (1.6), F(z4) := [*, f(2q,23)dzs while W is defined in (2.2) from the W’s.

Roughly speaking, the elastic energy density of the thin film in both settings is that obtained
by the lower energy bound on the effective behavior of the compatible two-phase mixtures of the
energies W; (cf. Remark 2.2).

We conclude this introduction with a few words regarding notation. Here, and in what follows,
xo designates the pair of variables x;,z2, and !, denotes the same pair when it varies over the
unit square Q' of R*. D,, will be identified with the pair D1, D, |7,] := /2% + 23, and dz, (resp.
dzl,) will stand for dxydzs (resp. dxidzl). Also, we will pay great attention to the order in which
limits are being taken. Specifically, limy, p— 4+ means lim,, 4o lim, 4o while limy, ;400
means lim,,_, ;oo lim,, 400, with obvious generalizations to a higher number of limits. Finally,
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— will always denote strong convergence, whereas — (resp. —) will denote weak (resp. weak-*)
convergence.

The following section describes the obtained results and gives an overview of the remainder of
the paper.

§2. Statement of the Main Results
We assume that W;(F), i = 1,2, is a continuous real-valued function on R**3 such that

(2.1) alF|P < Wi(F) < B(1+|F|P), FeR>*3,

where a, 8 > 0 and 1 < p < +00.
For i = 1,2, we define

Wi(F) := in]£3Wi(F|Z)v F e R3*2,
ze

Remark 2.1. It is proved in Proposition 1 of [LDR] that W; is continuous and satisfies (2.1).
We further define, for any characteristic function xy on the open unit square Q' of R?> and any

0 €[0,1],

Wi (@, F) = x(z)W1(F) + (1 = x(2))Wa(F),

W;(F) = igf{ Wy (z,, F + Do) dz!, :@EW&7P(Q’;R3)}7

(2.2) W'(,F) = iI;f W;(F) i x € L™(Q'; 40, 1}),/@/ x(z!) dz!, = 9} .

Remark 2.2. This remark asserts that W*(H, F) may be seen as an optimal energy bound on the
periodic mixtures at fixed volume fraction of W; and W,. Indeed, in the spirit of e.g. Lemma 2.1
in [K], it can be easily shown that W (6, F) has the alternative characterization

W6 F) = it {W(F) € L2 0.1)), | x(aa, =0},

X
where
—0 — . — —
(23) W3 (F) = i { [ W\ Pt Do) e Wi (@)},

and W2 (Q'; R?) is the set of all Q"-periodic elements of WLP(R2; R?). If W, and W are convex

then (2.3) may be identified with the energy density associated to the I'-limit of the following
functional defined on WP (w;R?):

L (u) ::/Wx(naca,Du) dz,,

where for every F' € R**? the function W, (-, F') has been @'-periodically extended to all of R?
(cf. e.g. [Mar]). If not, the I-limit of I}’ admits as energy density

#
X

Siiddan e 1 772 yal 1, .3
W)= jut int { [T\ F + Dy s € Wi Q' )}
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as demonstrated in [Mu]. Although in general

#

W1 (F) < Wo(F),

as in Remark 3.8 of [FF] it may be seen that

W"(0,F) = inf {Wﬁ(ﬁ) i x € L™®(Q';{0,1}), /Q/ x(z!) dz!, = 0} :

X

Let w be a bounded open set in R?, and for a subset A of w, § € L>(w;[0,1]), v € WP (w; R?),
0o, A € [0,1], define
(2.4)

J(v;0; A) :=  inf { lim /Ax(_l 1)(Xg(ma)T/Vl + (1 — xe(z0))Wa) <Dav5

1
—D3v6> dzr,dzs :
{xe}.,{ve} | e—0t €

ve € WHP(w x (=1,1);R®), x= € L=(4;{0,1}),
v. »v in LP(Ax (=1,1);R®), x. =80 in L°°(4; [0,1])},

Ga(v; A) :=  inf { lim /A - 1)(Xg(ma)T/Vl + (1 — xe(z0))Wa) <Dav6

{xeb{ve} | em07

1

—D3v5> dr,dzs :
€

ve € WHP(w x (=1,1); R?), x. € L®(4;{0,1}),

1
aﬁz(A)/AXs(xa)dfca:/\}-

The following theorems are the main results of the present study:

Theorem 2.3.

ve v in LP(A x (=1,1); R?)

J(v;6; A) = 2/4W*(0(ma),Dv(ma))dma.

Theorem 2.4. )
Ga(v; A) = 1%1f {J(U;H;A) : mAﬂ(ma)dma = )\} .

Several remarks are timely at this point.

Remark 2.5. It is not a priori obvious that the integral on the right-hand side of the equality in
Theorem 2.3 is meaningful. Remark 3.2 will assert the integrability of z, = W (8(4), Dv(z4)).

Remark 2.6. The statements of both theorems could be rephrased in terms of the original se-
quence of domains §2(g) and rescaled energy densities (see Section 1).

Remark 2.7. The coercivity hypothesis (i.e., the first inequality in (2.1)) may be removed in
Theorems 2.3, 2.4, as demonstrated below. Of course the significance of any of those theorems is
debatable in such an enlarged context because, in the absence of coercivity, sequences {u., Y.} of
approximate minimizers of

oo [ )W ()W) (Do

1
ED3U> dzy — L(v),
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where L is any bounded linear map on W'?(w;R*), might not be such that |[T||w1.e(wx(-1,1))
remain bounded, so that Theorems 2.3, 2.4, become irrelevant.
In any case, if @« =0 in (2.1), define

W{(F) == Wi(F) +n|F|”, n > 0.
Then, according to Theorem 2.3, J"(v;6; A) defined as in (2.4) with W, in lieu of W; satisfies

J"(v;0; A) = 2AW(0($a),Dv(ma))dxa,

with obvious notation. Note that, by virtue of the coercivity of W',

(2.5) J"(0;6; A) = J"(v; 6; A),

where

J"(v;0;A) := inf lim / (Xe (o)W + (1 — xe(za))WS) (Davg 1D3v5> dzodxs
{xe}{ve} | e—0F Ax(—1,1) €

v. = v in WHP(Ax (=1,1);R%), x. =6 inLOO(A;[O,l])}.

Define J(v;6; A) in a similar manner. Then, clearly
J(v;0; A) > J(v;6; A).
Conversely, if for § > 0 there is a sequence {x.,v.} such that
J(wi6:4) > lim (e + (1= xe(a))W2) (D,
=0 J Ax(-1,1)

with {v.} bounded in WP(A x (—1,1); R?), then, for any 5 > 0,

1
ED3U3> diIJad.fL'3 — (5,

J(v;6; A) > J"(v;0; A) — nlim sup/ | Dve |P dzondzs — 6.
Ax(—1,1)

e—0t
Thus - -
limsup J"(v; 0; A) — § < J(v;6; A),
n—0t
and letting § tend to 0T we conclude that
(2.6) lim J"(v;0; A) = J(v;6; A).
n—0t

Recalling (2.5) and by Theorem 2.3 we have

(2.7) J(v;60; A) = 2 lim W (0(za), Dv(z4)) di.

n—=0% JAx(-1,1)

An argument similar to that which led to (2.6) would entail
(2.8) n£%+W(0(xa),F) =W (0(za), F).
Since by (2.1), for all F € R**2,0 <5 < 1, and for a.e.z € w,
W (8(xa), F) < (8+ 1)(1+[FI?),
(2.7), (2.8), and Lebesgue’s Dominated Convergence Theorem imply that

J(v;0; A) = 2/ W (O(za), Dv(za)) dig.
Ax(-1,1)

An analogous argument would apply to Theorems 2.4. Once again, note that the admissible
sequences {v.} in the definition of J(v;#; A) must be such that they remain bounded in W?(A x
(—1,1); ).
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Remark 2.8. The results of Theorems 2.3, 2.4, can accommodate the imposition of various bound-
ary conditions on dw x (—1,1). In particular, the assertions remain valid if J is defined with
sequences {v.} in W := {v € W'P(w x (=1,1);R®) : v =0 on 0w x (—1,1)} (cf. Section 1). The
proofs would be identical or simpler.

The following regularity property of W*(G, F) will be used in the proof of Lemma 4.3 below.
Proposition 2.9. W" is an upper semi-continuous function of (8, F) on [0,1] x R3*2.
Proof. Assume that (6, Fy) converge to (fs, Fo) as k tends to +oo, and, for each § > 0, let
© € WyP(Q';R?) and x € L>°(Q';{0,1}) be such that

* —

(2.9) W (0o0; Foo) > /I(X(w'a)Wl + (1= x(@a))W2)(Foo + Dagp) dzy, — 9,

with

/ X)) dx!, = 6.

By virtue of Remark 2.1, Lebesgue’s Dominated Convergence Theorem implies that

| )WL+ (1= X)) (P + D)

= lim [ (x(zo)Wi+ (1= x(23))W2)(F + Day) dg,
k—4o00 Q'

so that, in view of (2.9),

(2.10) W (0o, Foc) 2 lim [ (W@l )71+ (L= X(@)JTT2) (Fi + Do) dal, = 6.
v—r 100 Q'

If 0y, # 6o, we propose to change y into xj in (2.10) without modifying the value of the limit. This
is a straightforward procedure. Assume for example that 6y > 6. Then simply set xx := x+14,,
where A, is a subset of {z, € Q' : x(z},) = 0} of measure ), — 0, which is always possible
since Oy — oo < 1— 0o = L2({z], € Q" : x(z))) = 0}). If ; < b then remove a set A; from
{z!, € Q' : x(zl,) = 1} of measure 0, — ;. In any case, since ), converges to 6 as k tends to oo,

L?(Ay,) tends to 0 and we have

lim sup/ (1+ |F” + |Da|?) dz!, = 0.
Ay

k—-+o00

Consequently, from (2.10) together with the analogue of (2.1) for W; (cf. Remark 2.1),

W*(HOO,FOO) > lim sup/ Ok (@)W1 + (1 = xk(22))W2)(Fi + Do) dal,

k——+o00

— Clim sup/ (1+ [Fe|” + |Daip|?) dzl, — &
Apg

k——+o00

> limsup W (0, F) — 6.

k——+o00

It suffices to let § — 0.
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Remark 2.10. For each fixed F € R3*2, the function W (-, F) is a continuous function of 6 €
[0,1]. We will not prove this result here; the proof would be very close to that of (3.4) in Lemma
3.1 below.

Remark 2.11. Note that, by virtue of Proposition 2.9, 2o — W (8(24), Dav(24)) is a measurable
function whenever (6,v) € L>(Q';[0,1]) x WHP(Q'; R?).

We conclude this section with a brief overview of the paper. In Section 3 we will prove that
J(v;6;-) defined in (2.4) satisfies

(2.11) J(v;60; A) > 2AW*(e(xa),Dav(xa))dma,

for any open subset A of w (cf. Lemma 3.1). This will establish the integrability of z, —

*

W (0(za), Dav(24)) (cf. Remarks 2.11 and 3.2).

Section 4 is devoted to the proof of the converse inequality in (2.11). Lemma 4.1 addresses
the case of affine v’s and constant 8’s; then, Lemma 4.3 treats the case of piecewise affine v’s and
piecewise constant 6’s, which, in turn, yields the proof of Theorem 2.3.

The proof of Theorem 2.4 is given in the short Section 5.

§3. Study of J(v;0;-)

In the sequel (v,6) is an arbitrary element of W1P(w;R3) x L>(w;[0,1]), and M(RY) denotes
the space of Radon measures on RV . If 4 € M(RY) and B is a Borel set of RY | then the restriction
measure of u to B is defined as

p|B(X):=p(BNX) forall Borel set X C RY.
The present section is devoted to the proof of the following lemma.

Lemma 3.1. For any open subset A of w,

(3.1) J(v;60; A) > 2AW*(e(xa),Dav(xa))dma.

Remark 3.2. In view of Remark 2.11, the integral on the right-hand side of (3.1) is meaningful
and finite.

Proof of Lemma 3.1. By the very definition of J(v;0;A) (see (2.4)) there exists a sequence
{Xn>Vn,en} in L®(A4;{0,1}) x WHP(A x (=1,1); R®) x RT such that

Xn — 6 in L™(4;]0,1]),

vp — v in LP(A x (=1,1); R?),

en — 0T,

and

(32) J(v:6;4) = lim () Wi + (1 = xn(22))W2) (D

n—=+00 JAx(=1,1)

1
€—D3vn> dxodxs.

n

The finiteness of J(v;8; A) implies that

i = (n(20) W3 + (1 = o)) VP2) (D

%ngn> L3Ax (=1,1)
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is a bounded sequence of nonnegative finite Radon measures on R?, hence there exists a nonnegative
finite Radon measure g on R? such that a subsequence of y, — still indexed by n with no loss of
generality — satisfies
fn — o in M(R?).

Let us denote by /i the finite Radon measure on R? defined as

f(B) := u(B x (—1,1)) for all Borel set B C R?,
so that, in view of (3.2),
(33) J(v;6; A) > fi(4).

We will show below that the Radon-Nikodym derivative of ji with respect to the Lebesgue measure
on R? satisfies

(3.4) d_gQ(%) > 9T (8(z), Dav (o)),

for almost every Lebesgue point z¢g € A of § which is also a point of approximate differentiability
for v. Then, (3.3)—(3.4) imply that

J(v;0; A) > ju(A) E/A%(ma)dma > 2/4W*(0(ma),Dav(ma))dma,

and this proves Lemma 3.1.

We now prove (3.4). Denote by Q'(zo, d) the (open) square of side d centered at ¢, and consider
a sequence {d,}, with d, — 07 such that u(90(Q'(zo,d,) x (—1,1)))) = 0. From the definition of i
together with that of the Radon-Nikodym derivative (see e.g. [EG], Section 1.6),

(3.5)
di .1
a7z (@) = A EH(Q (0,04))
. 1
= ql}l}rloo éH(QI(JJO;(Sq) x (-1,1))
. 1 ..
= dim_ @nETm””(QI(xO’é) x (=1,1))
lim ~ (n(@a) s + (1= X (0))W2) ( Davn| =Dy ) dvad
= lim —= lim n(Ta — Yn(Ta oUn|—Dsv, | dxydzs.
g—+oo (5q2 n—+oo Q’(wo,d)x(—ﬁ,l) 1 X 2 c 3 3
Setting

qu(mix) = Xn((T0)a + 5111'21)7
Un((z0)a + 0q2),, x3) — v(20)

qu(x:l, 1133) =

dq ’
(3.5) now reads as
(3.6)
ﬁ(m )= lim (Xgn (Z )W + (1 = Xg,n(z),))Wa) [ Dyv 6—qD v dz! dzx
d£2 0 dn-rtoco @' x(-1.1) g,n\+tq 1 g,n\+*q 2 aVq,n £n 3Yg,n a 3-

The result would then be obvious if

(37) | Yante) oty = o(zo),
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and if, for some 1) € WHP(Q' x (—1,1); R®) with 9 (z4,73) = 0 on 0Q' x (—1,1),
(38) Davqm(m:)n 11,'3) = Dav(mO) + Da’l)[}(mlou .1'3)-

In such a case, Fubini’s theorem would imply that, for a.e. 3 € (=1,1), ¥(-,z3) € Wy P(Q'; R?)
and (2.2) together with (3.6) would yield

%(mo)Z/l W*(8(z0), Dav(xo)) das

= 2W " (0(x0), Dav(x0))-
Unfortunately, there is no guarantee that (3.7), (3.8), hold true, and so the sequence {x¢.n,Vq,n}

must be modified accordingly. We distinguish two cases, the former when 0 < 8(z¢) < 1, the latter
when 6(z¢) = 0 or 1. In both cases

1
: / ro_ s BT
ll,nh—>n-}-oo Q Xq,n('ra) deo = ql}:-noo (55 nll:ir-loo Q' (20,04) A (xa) e
1
(3.9) = lim —2/ 0(xq) drg
1=+00 0 JQ1(wo.0,)
= 9(330),

since zo is a Lebesgue point for §. Set
Agn =1z € Q" xul(x0)a + dg2,) = 1}
Then (3.9) implies that

(3.10) lim  £2(Ay,) = 0(x0)-

q,n—+00

Case 0 < 0(zq) < 1.

By (3.6) and at the expense of extracting a subsequence of {q,n}, still labeled {g,n}, we are
always at liberty, in view of the coercivity of W; (cf. (2.1)), to assume that the sequence {\,,} of
nonnegative finite Radon measures

q
—D3Uq7n
€n

p
Agn = (1 + |Dovgnl? + > £2Q" x (-1,1),

converges weakly-* in M(R?) to a nonnegative finite Radon measure A, as ¢,n — +0o0; we then
define A(B) := A(B x [~1,1]) for all Borel sets B C R.

For a fixed pair (¢,n) we modify x,., as follows. If £?(A,,) = 6(zo) then define Xy, := Xgn-
Assume that such is not the case. If £2(4, ) < 6(zo) then set

1
VO(zo) — £L2(Ayn)

q,n -

)

where [[z]] stands for the integer part of z. Then, for ¢,n large enough and since 6(z¢) < 1, by
(3.1) we have that

(3.11) Kqn(8(z0) — L2(Agn)) < \/9(:'30) — L2(Agn) <1 —0(20),
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so that it is possible to decompose Q' \ A4 (a set of measure at least 1 — 6(z¢)) as
Q'\ Ayn =UF4" 4, UB,

where .
L2(A;) = 0(w0) — L2 (Agn), i=1,...,Kyn.

Now, by virtue of the coercivity of W; (see (2.1)) together with (3.6), there exists an index i(q,n) €
{1,...,K,,} such that

C
7

)
q
—D3’Uq’n
En

p
(3.12) / (1 + | Davgnl’ + ) da! dzs <

Ai(gny*(=1,1)

q,n

With 1 Aitam) denoting the characteristic function of fli(qm), define
i(am

Xgn = Xgn +14

i(g,n)’

so that
(3.13) / Xq.n dzl, = 6(x0).
Ql

A similar construction may be performed in the case where £2(4,,) > 6(zo) > 0, but this time
removing from A, ,, a set A;, ) satisfying (3.12) with

Ky, = [

(3.14) Ky n(L2(Ayn) — 0(20)) < 8(z0).

1
\/L:Q(Aq,n) - G(xo)H 7

and

A characteristic function x, , satisfying (3.13) is thereby constructed.

Note that the argument proposed above fails if 8(zo) € {0, 1} because we cannot satisfy (3.11)
or (3.14).

In any case, in view of (3.12), (3.13), we may find a characteristic function x4, such that

(3.15) || an(al) e, = ba0),
Q/
and
5 p
(3.16) lim (1 + [ Dovgnl” + | L Dsvg > da! dzs = 0.
DI H00 JHa €Q ixgm (wh)#Rayn (24) X (—1,1) En

Clearly (3.6), (2.1) and (3.16) imply that
(3.17)

dji

. . . é
L2 (z0) > qlﬁ{ghlffo/@ (1 1)(Xq,n($la)” 1+ (1= Xgn(25))W2) <Davq,n &_q D3vq7n> da;, dxs.
b I (— s n

We now introduce, for k > 2,

W0 2= PrVg,n + (1 — 1) Dv(x0) - 24,
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where ¢, € C§°(Q') is such that
0< ¢ <1, [[Dawrllpe < K2,
(3.18) o =1 ifzl, €Q'(0,1—1/k),
or=0 ifzdQ(0,1—1/(1+k)).
Note that w4, = Dv(xg) - 2!, on 9Q' x (—1,1) and that wy g, (-,z3) € WHP(Q';R?) for a.e.

z € (—1,1) by application of Fubini’s Theorem. Thus, by virtue of (3.15), (3.17), (3.18), and using
the bound from above in (2.1),

(3.19)
dji . 0
— > 1 f Xon (T YW, 1 — xon(x))W: D wi gl ~LEDswy g0 | dz'd
ac? ™) 2 S Jo il U X)) ( Phan|g, ke > o

.. . . d

> liminf / (Rgn (@)W1 + (1 = Xg.n(2L))Ws) <Dawk7q7n —quwk7q7n> dz! dxs
q,n—~+00 Q'x(—1,1) En
- ﬂ/ (1+ |Dyv(xo)|P) da',dxs
(Q\Q'(0,1-1/(1+k)))x (—1,1)
- ﬂka/ |vg.n — Dv(xg) -zl |P dal,dxs
(Q7(0,1—1/(k+1)\Q' (0,1-1/k)) x(—1,1)
P
-C [1 + |Dovgnl? + ‘5—qD3vq7n ] dz! dzs
(Q"(0,1—1/(k+1)\Q"(0,1—1/k)) x (—1,1) €n
e C
Z 2W (9(.170),Dav($0)) — m
— limsup ﬁka/ |vg.n — Dv(zo) - 2l |F dzl, dzs
g,n—+o00 Q'x(=1,1)
~ O limsup A (@01~ 1/(1+ KD\ @01~ 1/k) x (—1, 1)),
q,n—+00

Now

Jimstp g ((Q'(0, 1= 1/(1+ k) \ Q0,1 =1/k)) x (=1,1)
(3.20) <A@ O,1-1/T+ R\ Q0,1 - 1/R) x (-1, 1))

<MQ'\ Q0,1 -1/(k—1)),

while
(3.21)

lim sup / |vg.n — Dv(zo) - 2L, |P dzl,ds
Q' x(-1,1)

q,n—-+00

lim / |vn (2o, x3) — v(z0) — Dv(z0) - (T — 20)|? dT(dT3
Q’(z076q)x(7171)

|
g

— / |v(zw,z3) — v(z0) — Dv(x0) - (T — 20)|P dTpd5
Q' (w0,04) x(—11)

since ¢ is a point of approximate differentiability for v.
In view of (3.20) and (3.21), (3.19) becomes

j—ﬁl)?(:co) > 2T (6(x0), Dav(wo)) — ﬁ - M@\ Q(0,1-1/(k-1)),
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and (3.4) is obtained by letting k tend to +o0o upon observing that {Q'(0,1 —1/(k — 1))} is an
increasing sequence of open sets with set limit the open square Q'.

The result is proved in the case where 0 < 6(xg) < 1.

Case §(zq) € {0,1}.

Let us consider the case where 6(z¢) = 1; the case 6(x9) = 0 would be handled in a similar
manner.

Firstly, note that if 6(zo) = 1 then (3.9) actually implies the strong convergence to 1 of x,.,, as
g,n — +oo in L™(Q'), for all 1 < r < 4o00. A direct application of Egorov’s Theorem yields, for
any k > 0, the existence of a £2-measurable set Ay, such that £2(A4;) < 1/k and

lim x4, =1 uniformly on Q"\ Ay.

q,n——+00

Then, by virtue of (3.6) together with (2.1),

dji 0
(o) > liminf Wi ( Davgn| L D3vy.n | do,das
acr ¢,n—+00 (Q\Agp)x(—1,1) €n

> liminf Lonag)x(=1,1) (@l ©3) W1(Davg,n) dal,das,
q,n—>+00 Q' x(—1,1)

(3.23)

where 1(on 4,)x(—1,1) denotes the characteristic function of (Q"\ Ax) X (=1,1) in @' x (—=1,1). Now
it was earlier noticed in (3.21) that

Vg — Do(zo) - 2!, in LP(Q' x (=1,1); R?),

and, by virtue of (3.6) and (2.1), the convergence actually holds true in the weak topology of
WLP(Q;R?). But then, application of a classical lower semicontinuity result for quasiconvex inte-
grands (see [AF], Statement II1.7) yields

I ! T !
ql,lnnl}—ﬁl-lgo /Q,X(_Ll) 1(Q’\Ak)><(7171)('rou'r3) Wl(DaUan) diIiad$3
Z/ LA x(=1,1) (T, 23) Qs W1 (Do v(w0)) day, das
Q'%x(-1,1)
= 2L%(Q"\ Ar) QsW1(Dav(20)),

where Q3W stands for the quasiconvexification of W,

- 1 — —
QsW1(F) :=inf {—/ W1 (F + Dog)da! dus - o € Wy P(Q' x (—1, 1);R3)} , FeR¥>2,
g Q'x(-1,1)

In view of (3.23) and for n > 0, by Remark 2.1 we may find ¢ € C§°(Q’ x (—1,1); R®) such that
for all &

~

d%(xo) > 202(Q' \ Ay) Q571 (Dav(z0)

> L2(Q"\ Ap) / Wi(F + Do) dz! drs — 7
Q'x(—1,1)

> 20%(Q"\ Ap) W, (Dav(wo)) — 1
=20%(Q'\ A) W (1,F) —n,

(3.24)

where o is the characteristic function of Q'. Letting k,n — +oc in 3.24 yields

dji ——x
5 (0) 2 20" (1, Dao(xo)),
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and the result is proved in the case 6(z¢) = 1.

§4. Further Study of J(v;6;:); Proof of Theorem 2.3

In a first step it is proved in Lemma 4.1 that equality holds in (3.1) whenever v = vy and
0 = 0, are, respectively, affine and constant. This result yields Theorem 2.3 in the case of affine
v’s and constant 6’s.

Lemma 4.1. For any open subset A of w

I (Vo033 A) < 2L%(A) W (B0, Do)

Proof. The proof relies on a blow-up argument in the spirit of [FMu].
By the definition (2.5) of W, for any n > 0 there exist x” € L>(Q’; {0, 1}) with fQ,X" (z!)dz!, =
foo, and " € Wy (Q'; R?) such that

*

7 (6o Davos) > / ()T + (1 = X7(22))T2) (Davon + D) decydirs — 1.

A measurability selection criterion (see [ET]) and the upper bound in (2.1) allow us to find £7 €
LP(Q'; R?) such that

’

(4.1) W*(eomDaUOO) > / (X" (@)W1 + (1 = X"(25,))Wa)(Davoo + Do | £"(2},)) dzg, — 21.

In addition, continuity properties of W; (cf. Remark 2.1) together with the density of T/VO1 Q' R?)
in Wy P(Q';®?) and in LP(Q'; R?), allow us to take ¢, €7 in Wy (Q"; R?) in (4.1).
Extend X7, ", &" Q'-periodically to R? and set

1 1
VN (T, T3) = Voo (Tq) + E(p"(nxa) + ﬁngn(nxa),
Xo(Za) = X"(nTa)-
Note that
X} = 0 in L(A),
while
0! — vy in LP(A x (—1,1); R3).

Then, according to the definition (2.4) of J(veo; 0005 *)s
(4.2)

J(vo0; 03 A) < liminf (@)W + (1= X3(za))W2) (Dav)

N2+ JAx(=1,1)

n’Ds UZ) dz,dzs

= lim inf (XT(nxo)W1 + (1 — x"(nzy))W2) (DavOo + D" (nzy)

n=+00 JAx(~1,1)

1
+ ﬁx3Da§n(”$a)

f"(nxa)) dxo dxs.

Now W7 and Wy are uniformly continuous on compact sets, so that, for any M, > 0, there exists
0 > 0 such that

(4.3) F,GeB(0O,M),|F-G|<d0=|W;(F)-W;(G)| <e, i=1,2.
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Take
M := |Daveo| + ||Da"l| L + [|€7|wi.co.

Then, according to (4.3) and for n > ||Dy&"||1= /6,

/Ax(—l 1)(X"(nxa)W1 + (1 — x"(nxy))Wa) (DavOO + Do (nzy)

1
+ _xBDaén(nma)
n

&n (nma)) dz,dzs

< / (X"(nza)W1 + (1 — x"(nzy))Wa) (DavOO + Dy (nxy)
Ax(-1,1)

€1(nza) ) dradss +2eL7(A).

Thus, recalling (4.2),
(4.4)
J(Uoo; Ooo; A)

< liminf (X"(nzo)W1 + (1 — X"(nze))Wa) (DavOO + Dagon(nxa)‘{f"(nma)) dxodzs
n=+00 JAx(=1,1)

+ 2eL%(A).

Since (x"(-)W1 + (1 = x"(-))W2)(Daveo + Daw(-)|€7(-)) is a periodic function in L>°(R?), it
converges weakly-* to its average, and (4.4) becomes, with the help of (4.1),
(4.5)

HomiBrci 4) < 26(4) |
+ 2eL%(A)
< 2L (AW (B, Davoo) + 4nL2(A) + 2:L2(A).

(¢ (@)W1 + (1= X" (2a))Wa) (Davec + Datp"(za)

f"(ma)) dzq

!

The result is obtained upon letting £ and then 7 tend to 0 in (4.5).
-

In order to extend the result of Lemma 4.1 to the case where either v is not affine or 8 is not
constant, we show that we may allow some flexibility in the selection of a sequence {€,} such that

J(v;0; A) = lim (Xn(Xa)Wi 4+ (1 = xn(2a))W2) | Davn
n=+00 JAx(-1,1)

1
— D3 vn> dxydzs,
€n

as defined in (2.4). Specifically, we prove the following

Lemma 4.2. Let vy be affine and 0 be constant. Then for any sequence {e,}, with £, — 0T
as n — 400, and for any subset A of w, there exists a subsequence {Ef(n)} of {en} and a sequence

{xA 04} in L°(A;{0,1}) x WHP(A x (=1,1); R®) such that, as n tends to oo,
Xi = oo in L(4;{0,1}),
v S in LP(A x (=1,1);R?),
with
v,‘:‘ =V n a neighborhood of A x (—1,1),

and

A

J(Vooi 0003 A) = lim (i (o)W1 + (1 = X (20))W2) (Dav:i‘ .

n=+00 JAx(-1,1)

D3v;‘3> dxodxs.
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Proof. In a first step the lemma is proved for any cube Q'(a,7) of center a € R? and side length
r > 0. In a second step the result is established for a general A.

Step 1. The result is proved for a cube Q' = Q'(a, ).

Without loss of generality, we take a := 0,7 := 1. From the definition (2.4) of J(voo;000;Q")
there exists a sequence {xn,Vn, @, } in L®(Q';{0,1}) x WHP(Q" x (—1,1); R?) x R} with

Xn = 0sc  in L2(Q';[0,1]),
Up = Voo strongly in LP(Q' x (—1,1); R3),

a, =07,

and

(4.6) J(vsoi003 Q") = lim (&) Wi+ (1= xn () W) (D
n——+oo Q’ ><(7171)

1
—D3Un> dz! dws.
an
Consider the sequence of measures
p 1 p 3 !
)\n =14+ |Davn| + a—p|D3Un| L |_Q X (—1,1)
n

By virtue of (4.6) and of the coercivity hypothesis in (2.1), {\,} is a bounded sequence of finite,
nonnegative Radon measures on R?, hence there exists a finite, nonnegative Radon measure \ on
R? such that a subsequence of {\,} — still indexed by n with no loss of generality — satisfies

Ap 2 A in M(R?).

We also define A(B) := A(B x [—1,1]) for any Borel subset B of R2. Introduce the sequence {(y}
already considered in (3.18). Define further

Whn = PrVn + (1 — 0p) Voo,
and note that wy, = Ve on 0Q" x (—1,1) while
(4.7) Wi = Voo in LP(Q' x (—1,1);R?).

In addition, and using an argument similar to that in the proof of Lemma 3.1,

1
—D3wk7n> dz! dxs
a

n

J(Uoo;eoo; QI) > lim lnf/ (Xn('riy)Wl + (1 - Xn('rix))WQ) (Dawk,n
n=+00 JQr(0,1-1/k)x(—1,1)

n

> liminf (Xn (L)W + (1 — xn(2),))W2) (Dawkm

1
—Dgwk’n> dz! ds
e JQrx(-1,1) @

n——+00

—CLAQN\ Q0,1 — 1/k)) — Climsup {k?ﬁ/ ol e
Q'x(-1,1

+ A ((Q10,1=1/(1+ k) \ Q'(0,1 = 1/k)) x (-1, 1))}

1
—D3wk7n> dz! dxs
a

n

>timinf [ ()W (0= @ )W) (Dot
Q'%x(-1,1)

n——+00

—CLYQ'\ Q'(0,1—1/k)) — CA(Q"\ Q'(0,1 - 1/(k — 1))),
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so that, upon letting k tend to 400, we obtain

J(03000: Q') > limint /Q (&) Wi + (1 = xa (@) W) (Dawk,n

~ k,n—+o0 1% (—1,1)

1
—D3wk7n> dz! drs.
a

n

By virtue of (2.4), (4.7), together with a diagonalization process for the sequence {wy n}, we
conclude that there exist sequences R

Vg = Wg,n(k)>

Xk = Xn(k)s

Qg 1= Qp(k),

such that
D) = Voo in LP(Q' x (—1,1); R®),

Xk = 600 in LOO(Qla {07 1})7
dk — 0+
and
1
J (Vo0 0003 Q') = lim (% (@)W1 + (1= (@) Wa) ( Date| —Dyin ) dalydas.
k—-+o00 Q'x(—1,1) (677
In other words, we are at leisure to assume that the sequence {v,} in (4.6) is such that

(4.8) Up = Vs 0n0Q" x (—1,1).

We now extend Y, and v, — v by Q'-periodicity to all of R? x (—1,1) and define, for any
m € (0,+00) and any (z4,z3) € R3,

Xmm(ma) = Xn(mmoc)a

1
Un,m(ma;q;B) = VUso + E(Un - ’Uoo)(mmoc;m3)7

and note that, in view of (4.8), vy, € Wllo’f,,’(ﬂ%.2 x (-1,1); R?) . Further, it is easily checked that, as
n,m — +o0o,

(4.9) { Unm = Voo in LP(Q' x (=1,1);R%)

Xnm — 00 in L®(Q" x (—1,1);R?).

A 1/m-scaled periodic function converges weakly to its mean; thus, since D,v is constant while
Dsvs, =0, for a.e.z3 € (—1,1)

i [ (s + (0= ) @) (Dot 2 Dav )
(877}

m——+oo Q'

= [ et + (1= x) @) (D

1
—ngn> dz!,,

(877
so that, by virtue of the bound from above in (2.1) together with (4.6), (4.9),

lim lim (Xnm (@)W1 + (1 = Xom) (2h,)Wa) <Davn7m‘aﬂD3vn7m> dz! dzs
n

n—+o00 m—+oo Q' x(—1,1)

~ lim (@)W1 + (1= ) (&) T7) (D
n—-+oo Q’X(le)

= J(Uoo; 000; QI)

1
— D3Un> dz!,dz3

(877
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Thus, for any n there exists m(n) such that if m > m(n) then
(4.10)

/ (Xn,m(mzx)Wl + (1 - Xn,m)(mla)W2) <Davn7m‘ﬂD3vn7m> dm:xde - J(Uoo; 900; QI) < w(n)
Q’X(—l,l) (67%

where lim,, , 1 oo w(n) = 0, and lim,,_, 1 oo m(n) = +oc.
If {ex} is such that €, — 0" as k — +oo, choose k(n) large enough such that m,, := 6:“(") >
m(n), hence m, — 400 as n = +o0, and in view of (4.9), (4.10),

Xnom, = 0o in L®(Q" x (—1,1); R?)
Un,m, — Vo in LP(QI X (_]—7 1)7]R3)7

and

[ o )W+ (=X, @ )T2) (Davmmn
Q'x(-1,1)

D3’Un7mn> dz),drs = J(Voo; Uoo; Q'),
€k(n)

as n — 4oo. Note that m,, is not necessarily an integer number, and so we cannot guarantee
a priori that v, m, = Vs on 0Q' x (—1,1). However, the argument used in (4.6)—(4.8) allows
us to meet this boundary condition upon extracting a further subsequence and modifying vy, .,
on a thin transition layer in the neighborhood of dQ’. This proves the result in the case where

Q' =Q'(0,1).

Step 2. Let Ap, := UNI™ Q' (af*,r7) CC A be a union of disjoint cubes such that £2(A\ A,,) <
1/m, m € N. From the first step and after IV (m) extractions, there exists a subsequence {€(n,m)}
of {e,,} and N(mn) sequences {x}, y, V% m}> ¢ = 1,..., N(m), with

Xnm = Ooc i L=(Q' (0", r{");[0,1]),
Unan = Voo I LP(Q'(af",7") x (—1,1); R,

(4.11) vf%m =0y ondQ'(al",r") x (—=1,1),

and

(4.12)

[0 W+ 0= 020102) (Dath,
Q'(af™,r™)x(=1,1)

Dsv!, m) dz! drs — J(Voo; 000; Q' (al™, 7)),
€k(n,m) ’

as n — +o00. By virtue of (4.11), the n-indexed sequence

N(m)
Xn,m - Z X:L,le’(GE"Wim) + XA\Ap, T,
i=1

N(m)
Un,m : Z Up.m 1@ (a ) T Voo X A\A,, »
i=1
belongs to L>(A;{0,1}) x WhP(A x (—1,1); R?), where x 4\ 4,, is the characteristic function of the
set A\ A, 7 € L. (R?;{0,1}) is a Q'-periodic function with Jo T(@") da’ = b0, and 7, (2") =
7(nz'),z' € Q'. Then, as n — 400 we have

Xnm — 00 in L°(A4;10,1]),
Vnm — Voo in LP(A x (=1,1); R?),
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while, by virtue of (4.12) together with the bound from above in (2.1),

(4.13)
J(Voo; 0o0; A) < liminf /(Xn,m(iﬂa)Wl + (1= xn,m)(Ta)Wa) (Davmm‘ D3vn7m> dx o dxs
m;n—+00 Ax(—1,1) €k(n,m)
N(m)
<1 . . O (qT 2
< liminf ; J (Voo Boo; Q' (@™, 7)) + CL2(A\ Ap)
N(m)
= liminf oo'oo;lmam-
il 2 J (V5o 0o0; Q' (ai", 77"))

Now lemmata 3.1 and 4.1 yield

N(m) N(m)
. . . . ly.m ..m : : 2 ly.m ,.m *
lim inf 2 J(voo; 03 @'(af", 7i")) < liminf 2 E_l L2(Q (ai", 7)) W (foc, Davos)

=2L2(A) W (Boo, Davoo)
< J(Vo0; Ooc; A),
so that the first inequality in (4.13) is actually an equality. A diagonalization process provides a

subsequence {5£(m)} := {E4(n,m) } and a sequence {xi, i1} = {Xn(m),m>Vn(m),m} With the desired
properties.

L

We now prove the equality in Lemma 3.1 for piecewise affine and continuous v’s and piecewise
constant 6’s; this is the object of

Lemma 4.3. If v is piecewise affine and continuous and O is piecewise constant then
J (0503 000 4) < 2 / W (6, Dav) dea.
A

Furthermore, the analogue of Lemma 4.2 holds for such pairs (Voo,800)-

Proof. Let
( N
V= kalAk, vy, affine,
k=1
) N
0 .= Zakuk, 0 constant,
k=1

{ UN A Nw =w, A, disjoint, open subsets of w.

By virtue of Lemma 4.2, and upon N extractions of subsequences, there exists a sequence {e,}
(a subsequence, say, of {1/n}) and N sequences {Xn k,Vnk}, & = 1,..., N, which satisfy the
properties of Lemma 4.2 on A N A. The sequence {x,v,} defined as

N
Xn = Z Xn,k 1AkﬁA;
k=1

N

Un = § Un,klAkﬁAa
k=1



20 I. Fonseca and G. Francfort

is then immediately seen to meet the requirements so as to be admissible in (2.4) (with v,, = v
on a neighborhood of A x (—1,1)). By virtue of lemmata 4.1 and 4.2 we have

1
— D3 Un> dxodzs
En

1
E_DBUn’k> dzr,dzs }

n——+oo

J(0:0; A) < liminf/ (n (@)W1 + (1= xn(20)) W) <Davn
Ax(—1,1)

N
= liminf {Z/( (Xnk(a)W1 + (1 = xpnk(xa))Wa) <Davn,k

oo | = (Aknd) x(—1,1) n
N

= J(vk; Ok; Ax N A)
k=1

N
<23 £2(Ar 0 A) W (B, Dovi)

k=1

:2/ W*(Hoo,Davoo)d:ca.
A

We are now in a position to complete the proof of Theorem 2.3.

Proof of Theorem 2.3. If v is an arbitrary element of W1?(w;R?) and @ an arbitrary element of
L>(w;[0,1]), we let {vy, 68} be a sequence of piecewise affine and continuous v’s and piecewise
constant 6’s such that, as k — 400,

v = v in WHP(w; R?),
(4.14)

0 = 0 in LYw;[0,1]),1 < ¢ < +00.

According to Lemma 4.3 there exist, for each k, a subsequence {g(, 1)} of, say, {1/n}, and a pair
{Xn,k, Unk } satisfying the properties of Lemma 4.2 (with vee = vi,000 = 0i). A diagonalization
process where {er} := {€(n(k).k) } a0d €(n(rt1).k41) < E(n(k),k)> k € N, immediately yields, in view
of (4.14), a sequence {x,¥x} in L>(4;{0,1}) x WHP(A x (—1,1); R?) such that

Xk =6 in L®(4;[0,1]),
o — v in LP(A x (=1,1); R?),

and
1
J(v;0; A) < lim (xk(xa)W1 + (1 — x(24))Wa) (Daﬁk‘—Da%) dxodrs
k=too Jax(-1,1) €k
(4.15) = liminf J(vg; 0 : A)

k—+o0

= 2liminf W*(Hk, D,v) dz,
k—+o0 A

where we have used lemmata 3.1 and 4.1. o

The bound from above for W; (or rather for W; — see Remark 2.1) in (2.1), the first convergence
in (4.14), Fatou’s Lemma and the upper semicontinuity property of W; (see Proposition 2.1) imply
that

. . P _—*
timint [ {801+ Doonl) = " (6. Do) o, > /

{,@(1 + |Davl|?) dao — /AW*(G,Dav)}dma,

A
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thus
/ W*(H,Dav) dzs > lim sup/ W*(Hk,Davk) dzg,
A A

k—-+o00

which, together with (4.15), finally yields
(0365 4) < 2/ T (0(2a), Dav(za)) dea.
A

This inequality and Lemma 3.1 complete the proof of Theorem 2.1.
-

Remark 4.4. We remark that the proof of Theorem 2.3 may be carried out without using Lemma
4.2, as we may always take {e,} = {1/n}. Indeed, it can be seen easily from the proof of Lemma
4.1 that, upon rescaling and up to a translation, if v, is affine, if 6 is constant, and if Q'(a,r) is
a square on R?, then for all > 0 there exist {v”}, {x"} such that as n — +o0

(4.16) 0! 5 ve  in LP(Q'(a,r);R?), v =wvs on Q' (a,r) x (—1,1),

(4.17) X! B0 in L(Q'(a,1)),

and

J (Voo 0003 Q' (a, 7)) < liminf lim (XM (o)W1 + (1 — XN (20)) W) (Davﬁ n2D3U;7L) dzodzs

n—=0% n=H0 JQr(a,r) x (—1,1)

<limsup lim (XM za)Wh + (1 = XN (24))Wa) (Davz
n—=0t "0 S (a,r)x(~1,1)

< 2L%(Q'(a,7))W " (oo, Davis)

n?Ds UZ) dxodrs

where we used the fact that the liminf,,,  in (4.2) is actually lim,,, ;. In view of Lemma 3.1
we have

I (0038003 Q' (@) = Tim_ Tim [ (x3(2a) Wi + (1= x)(2a))Wa) (Dav]

n—=0F =40 Jor (a,r) x (~1,1)

n?Ds UZ) dxodrs

= Z,CZ(Q’((I, T))W*(Qoo, Daveo),
hence, we may extract subsequences
Up = U?L(n)a Xn = Xz(n)

satisfying (4.16), (4.17) and
(4.18)

Homibi Q) = Hm_ [ (o @)W + (1= o)) Wa) (Dave
'(a,r)x(—1,

= 2L2(Q"(a, )W (Boo, Datoo).-

n?Dy vn) dz,dzs

If now we consider a triangle T on the plane, given m € N we may cover T with squares of the
type Q'(a,7), a € R2,7 > 0, up to a set of measure at most 1/m, so that using the construction of
Step 2 in Lemma 4.2 applied to our sequences constructed in (4.16), (4.17) and (4.18), we obtain
a double sequence {vy m, Xn,m} satisfying (4.16), (4.17) on T and for each m € N fixed, and also

J(Woo;000;T) = lim  lim (Xn,m (@)W1 + (1 = xn.m(Ta))Wa) (Davnvm‘n2D3vn7m) dxodrs

m—00 n—+00 Tx(—1,1)

= 2L%(TYW " (B, Davss).



22 I. Fonseca and G. Francfort

As before, we extract a subsequence {Un,m(n)7Xn,m(n)} verifying (4.16), (4.17) and (4.18) with T
in place of @'(a,r). Given the matching boundary conditions imposed on these sequences, it is now
clear that if vy, is piecewise affine on a triangulation of the plane, and if 6, is piecewise constant,
then Lemma 4.3 applies with the same proof, and with {¢,} = {1/n}. We may proceed with the
proof of Theorem 2.3 where {e;} = {1/k}, and where in (4.14) we use the fact that piecewise affine
functions on triangulations of the plane are dense in WP (w; R?).

§5. Proof of Theorem 2.5
Throughout this section, v is an arbitrary element of WP (w;R3).
Define

Iy(v; A) := ir{}f {J(U;G;A) 10 € L>®(4;]0,1]), ﬁ/ﬁlﬁ(ma) dzy = /\} .

Then the inequality
Ga(v; 4) > Ix(v; A)

is immediate because if {x.} is such that

1
W/AXE(:EQ) dre = A,

then a subsequence of {x.}, still indexed by ¢, is such that
Xe =0 in L®(4;(0,1),
with

1
W/Aa(xa)dxa =\

The following lemma proves the converse inequality, hence Theorem 2.4.
Lemma 5.1.
Gr(v; 4) < I\(v; A).

Proof. For a fixed n > 0, consider § € L>(A;[0,1]) such that

1
W/Aa(xa)dxa =)
J(v;0; A) < In(v; A) + 1.

Choose a sequence {xn,Vn,&n} such that

*

Xn — 0 in L% (A;][0,1]),
vp = v in LP(A x (=1,1); R?),

€n — 0T
and
. 1
J(v;0; A) = lim (Xn (o)W1 4+ (1 — xn(24))Wa) <Davn —D3Un> dzodrs.
n=+00 J A% (-1,1) €n
Then
. 1
(5.1) In(v,A)+n> lim (Xn(Ta)W1 4+ (1 — xn(24))Wa) (Davn —D3vn> drodrs
n=+00 JAx(=1,1) En
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and the proof is complete if for every n

/ Xn(To) drg = A.
A
In general this is not so, and it is merely true that
ngl}rloo . Xn(Zo)dry = A
The proof that x, may be modified to yield a x,, with

(5.2) /Ain(:ca) dre = A,

and without changing the value of the limit in (5.1) is exactly analogue to that in the proof of
Lemma 3.1. It will not be repeated at this point. Thus (5.1) implies that

Lo, A) 47> lim (o)W1 + (1 = 2 () W2) (D
n—=+00 JAx(=1,1)

> Ga(v, A),

1
= D3vn> drodrs

n

where the last inequality holds true in view of (5.2) and the definition of G (v, 4).
The proof of Lemma 5.1 is complete upon letting n — 07.

-
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